4,913 research outputs found

    Smart Monte Carlo: Various tricks using Malliavin calculus

    Get PDF
    Current Monte Carlo pricing engines may face computational challenge for the Greeks, because of not only their time consumption but also their poor convergence when using a finite difference estimate with a brute force perturbation. The same story may apply to conditional expectation. In this short paper, following Fournié et al. (1999), we explain how to tackle this issue using Malliavin calculus to smoothen the payoff to estimate. We discuss the relationship with the likelihood ration method of Broadie and Glasserman (1996). We show on numerical results the efficiency of this method and discuss when it is appropriate or not to use it. We see how to apply this method to the Heston model.Monte-Carlo, Quasi-Monte Carlo, Greeks,Malliavin Calculus, Wiener Chaos.

    Option Pricing with Orthogonal Polynomial Expansions

    Full text link
    We derive analytic series representations for European option prices in polynomial stochastic volatility models. This includes the Jacobi, Heston, Stein-Stein, and Hull-White models, for which we provide numerical case studies. We find that our polynomial option price series expansion performs as efficiently and accurately as the Fourier transform based method in the nested affine cases. We also derive and numerically validate series representations for option Greeks. We depict an extension of our approach to exotic options whose payoffs depend on a finite number of prices.Comment: forthcoming in Mathematical Finance, 38 pages, 3 tables, 7 figure

    Pricing and Hedging Asian Basket Options with Quasi-Monte Carlo Simulations

    Get PDF
    In this article we consider the problem of pricing and hedging high-dimensional Asian basket options by Quasi-Monte Carlo simulation. We assume a Black-Scholes market with time-dependent volatilities and show how to compute the deltas by the aid of the Malliavin Calculus, extending the procedure employed by Montero and Kohatsu-Higa (2003). Efficient path-generation algorithms, such as Linear Transformation and Principal Component Analysis, exhibit a high computational cost in a market with time-dependent volatilities. We present a new and fast Cholesky algorithm for block matrices that makes the Linear Transformation even more convenient. Moreover, we propose a new-path generation technique based on a Kronecker Product Approximation. This construction returns the same accuracy of the Linear Transformation used for the computation of the deltas and the prices in the case of correlated asset returns while requiring a lower computational time. All these techniques can be easily employed for stochastic volatility models based on the mixture of multi-dimensional dynamics introduced by Brigo et al. (2004).Comment: 16 page

    Pricing and Risk Management with High-Dimensional Quasi Monte Carlo and Global Sensitivity Analysis

    Full text link
    We review and apply Quasi Monte Carlo (QMC) and Global Sensitivity Analysis (GSA) techniques to pricing and risk management (greeks) of representative financial instruments of increasing complexity. We compare QMC vs standard Monte Carlo (MC) results in great detail, using high-dimensional Sobol' low discrepancy sequences, different discretization methods, and specific analyses of convergence, performance, speed up, stability, and error optimization for finite differences greeks. We find that our QMC outperforms MC in most cases, including the highest-dimensional simulations and greeks calculations, showing faster and more stable convergence to exact or almost exact results. Using GSA, we are able to fully explain our findings in terms of reduced effective dimension of our QMC simulation, allowed in most cases, but not always, by Brownian bridge discretization. We conclude that, beyond pricing, QMC is a very promising technique also for computing risk figures, greeks in particular, as it allows to reduce the computational effort of high-dimensional Monte Carlo simulations typical of modern risk management.Comment: 43 pages, 21 figures, 6 table

    Meshless Methods for Option Pricing and Risks Computation

    Get PDF
    In this thesis we price several financial derivatives by means of radial basis functions. Our main contribution consists in extending the usage of said numerical methods to the pricing of more complex derivatives - such as American and basket options with barriers - and in computing the associated risks. First, we derive the mathematical expressions for the prices and the Greeks of given options; next, we implement the corresponding numerical algorithm in MATLAB and calculate the results. We compare our results to the most common techniques applied in practice such as Finite Differences and Monte Carlo methods. We mostly use real data as input for our examples. We conclude radial basis functions offer a valid alternative to current pricing methods, especially because of the efficiency deriving from the free, direct calculation of risks during the pricing process. Eventually, we provide suggestions for future research by applying radial basis function for an implied volatility surface reconstruction

    Measuring the risk of a nonlinear portfolio with fat tailed risk factors through probability conserving transformation

    Get PDF
    This paper presents a new heuristic for fast approximation of VaR (Value-at-Risk) and CVaR (conditional Value-at-Risk) for financial portfolios, where the net worth of a portfolio is a non-linear function of possibly non-Gaussian risk factors. The proposed method is based on mapping non-normal marginal distributions into normal distributions via a probability conserving transformation and then using a quadratic, i.e. Delta–Gamma, approximation for the portfolio value. The method is very general and can deal with a wide range of marginal distributions of risk factors, including non-parametric distributions. Its computational load is comparable with the Delta–Gamma–Normal method based on Fourier inversion. However, unlike the Delta–Gamma–Normal method, the proposed heuristic preserves the tail behaviour of the individual risk factors, which may be seen as a significant advantage. We demonstrate the utility of the new method with comprehensive numerical experiments on simulated as well as real financial data

    Numerical schemes and Monte Carlo techniques for Greeks in stochastic volatility models

    Get PDF
    The main objective of this thesis is to propose approximations to option sensitivities in stochastic volatility models. The first part explores sequential Monte Carlo techniques for approximating the latent state in a Hidden Markov Model. These techniques are applied to the computation of Greeks by adapting the likelihood ratio method. Convergence of the Greek estimates is proved and tracking of option prices is performed in a stochastic volatility model. The second part defines a class of approximate Greek weights and provides high-order approximations and justification for extrapolation techniques. Under certain regularity assumptions on the value function of the problem, Greek approximations are proved for a fully implementable Monte Carlo framework, using weak Taylor discretisation schemes. The variance and bias are studied for the Delta and Gamma, when using such discrete-time approximations. The final part of the thesis introduces a modified explicit Euler scheme for stochastic differential equations with non-Lipschitz continuous drift or diffusion; a strong rate of convergence is proved. The literature on discretisation techniques for stochastic differential equations has been motivational for the development of techniques preserving the explicitness of the algorithm. Stochastic differential equations in the mathematical finance literature, including the Cox-Ingersoll-Ross, the 3/2 and the Ait-Sahalia models can be discretised, with a strong rate of convergence proved, which is a requirement for multilevel Monte Carlo techniques.Open Acces

    Malliavin calculus in finance

    Get PDF
    This article is an introduction to Malliavin Calculus for practitioners. We treat one specific application to the calculation of greeks in Finance. We consider also the kernel density method to compute greeks and an extension of the Vega index called the local vega index.Malliavin claculus, computational finance, Greeks, Monte Carlo methods, kernel density method
    • …
    corecore