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Abstract

The main objective of this thesis is to propose approximations to option sensitivities in

stochastic volatility models. The first part explores sequential Monte Carlo techniques for

approximating the latent state in a Hidden Markov Model. These techniques are applied to

the computation of Greeks by adapting the likelihood ratio method. Convergence of the Greek

estimates is proved and tracking of option prices is performed in a stochastic volatility model.

The second part defines a class of approximate Greek weights and provides high-order

approximations and justification for extrapolation techniques. Under certain regularity

assumptions on the value function of the problem, Greek approximations are proved for

a fully implementable Monte Carlo framework, using weak Taylor discretisation schemes.

The variance and bias are studied for the Delta and Gamma, when using such discrete-time

approximations.

The final part of the thesis introduces a modified explicit Euler scheme for stochastic differential

equations with non-Lipschitz continuous drift or diffusion; a strong rate of convergence is

proved. The literature on discretisation techniques for stochastic differential equations has been

motivational for the development of techniques preserving the explicitness of the algorithm.

Stochastic differential equations in the mathematical finance literature, including the Cox-

Ingersoll-Ross, the 3/2 and the Ait-Sahalia models can be discretised, with a strong rate of

convergence proved, which is a requirement for multilevel Monte Carlo techniques.
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Introduction

This thesis is split in three parts, with links tying numerical methods, stochastic analysis,

statistics and finance together. A focus throughout is the use of stochastic differential equations

for the modelling of financial instruments and the volatility of a process. A recurring theme is

the computation of option price sensitivities, referred to as the Greeks, in various frameworks

and models. The Greeks are a practical necessity for trading, hedging and risk-warehousing of

financial products. Each chapter concludes with notes on applications to mathematical finance.

The first part of the thesis explores particle filtering techniques, also referred to as Sequential

Monte Carlo (SMC). The filtering problem has its origins in signal processing and estimates

a hidden state based on observations of a noisy system. A Hidden Markov Model (HMM)

set-up is considered in which the asset price is an observable process, and the volatility is the

latent driving process of the asset price. Greeks are approximated using a likelihood ratio

method, where a smoothing algorithm is applied to approximate the score function (derivative

of the log-likelihood of the density function given a set of observations). The method relies

on a forward step of the hidden and observed variables to generate a sample path of the

observed process; this is followed by a backward pass to compute the score function using

particle filtering. A forward-only implementation is considered for applications. It is shown

that Greeks in a stochastic volatility framework can be computed using this approach, and

convergence results are adapted for such applications.

The second part of the thesis introduces a general technique for approximating option price

sensitivities. There are closed-form solutions under some modelling assumptions; Monte

Carlo, trees, quadrature (Fourier) and finite-difference methods have been exploited for

approximating option prices in full generality. Pricing involves a forward process describing

the asset price evolving through time and a backward component describing the option value

with appropriate terminal conditions representing the payoff. The option price is the solution

to a partial differential equation (PDE), with appropriate boundary conditions. The aim is

to compute Greeks alongside option prices by exploring the value function of the PDE and

by finding suitable weights. This is achieved by multiplying the payoff by a functional of the

increments of the driving Brownian motion. Convergence results are studied with an emphasis
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on the smoothness requirements of the value function.

The third part of the thesis studies numerical schemes for discretising stochastic differential

equations driven by Brownian motion. The focus is to move away from the classical setting

where the drift and diffusion functions are assumed to be globally Lipschitz continuous. Such

stochastic differential equations are integral to the modelling of financial markets, with the

aim of improving the fit of volatility smiles and term-structure exhibited by option prices. A

modified explicit Euler scheme is introduced to approximate scalar stochastic processes, for

which strong rates of convergence are proved. A family of SDEs considered include those

with solutions defined in a domain. For applications inspired by finance this domain is

typically the positive half-line (in the case of asset prices, volatility, intensity rates), but can

be generalised. Applications include the CIR model, the 3/2 model and the Ait-Sahalia model.

A demonstration of multilevel Monte Carlo (MLMC) techniques allows this modified Euler

scheme to be used efficiently.

0.1 Preliminaries

The seminal thesis of Bachelier, Einstein’s introduction of Brownian motion to physics and the

work by Wiener and Lévy provided the foundations of the modern analysis of related topics

that followed. An m-dimensional Brownian motion W = (Wt)t≥0 is an adapted stochastic

process on a filtered probability space (Ω,F , (Ft)t≥0, P) such that Wt(ω) : [0, ∞)× Ω → R
m.

It is a Gaussian process, with continuous sample paths. For all times s < t, it follows that

Wt − Ws is independent from the filtration Fs (assumed to be right continuous and containing

all P-null sets). As this thesis is largely concerned with the simulation of stochastic processes,

Brownian motion is an important building block for applications. By having an independent

and identically distributed (i.i.d.) sequence of random variables with mean zero and unit

variance (readily generated by tossing a coin!), a trajectory which converges in the weak sense

to the distribution of a Brownian motion can be constructed.

A process X defined on the probability space equipped with the natural filtration of X, namely

FX
t := σ(Xu|u ∈ [0, t]) (the sigma-algebra generated by the process), is said to be Markovian if

and only if for all bounded, measurable functions ϕ we have that E
�

ϕ(Xt)|FX
s

�

= E[ϕ(Xt)|Xs]

for all s ≤ t; in other words a Markovian process is memoryless and the process in the future

only depends on the knowledge at the present time. Later, hidden Markov models for the
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evolution of the asset prices and their driving volatility processes will be considered. The use

of stochastic differential equations is present in a wide range of applications in the natural

sciences, economics and finance. A time-homogeneous Itô diffusion in R
d is a solution to the

stochastic differential equation

dXt = f (Xt)dt + γ(Xt)dWt , X0 = x ∈ R
d , ∀t ≥ 0 , (0.1.1)

for some f : R
d → R

d, γ : R
d → R

d×m. A strong solution of the above SDE is a continuous

process X, adapted to the natural filtration of the Brownian motion W, and for all t ≥ 0 it holds

that
� t

0

�

| f (Xu)|+ |γ(Xu)|2
�

du (0.1.2)

is finite, almost surely. Furthermore, with probability one for all t ≥ 0, it holds that

Xt = x +
� t

0
f (Xu)du +

� t

0
γ(Xu)dWu. (0.1.3)

By imposing Lipschitz continuity and linear growth conditions on the drift and diffusion

functions, existence and uniqueness of a strong solution are guaranteed.

The notion of a weak solution to the SDE is the triple consisting of the filtered probability

space, the (Ft)-Brownian motion W and Ft-progressively measurable process X satisfying the

stochastic differential equation with probability one, and being such that (0.1.2) is finite, a.s. for

all t ≥ 0.

0.1.1 Financial option theory

In the mathematical finance literature, an option is a contract between two parties with value

based on the future price of an underlying price. A buyer of an option has the right to exercise

the contract, but is under no obligation to engage in a transaction. Option specifications

are typically described in a term sheet, with characteristics including the exercise type and

the payoff. The exercise type describes how the option is exercised (European, American,

Bermudan) [Hul14]. The payoff function of the option is based on the price of the underlying

instrument throughout its lifetime and on key parameters such as the strike price, K; it can

be a combination of path dependence, barriers, Asian/averaging, look-back, digital/binary

and many other flavours. Replication of such a derivative, is the formation of a self-financing,
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hedging strategy. A portfolio is self-financing if there are no external infusions or withdrawals

of capital. By the principle of no-arbitrage opportunities, a self-financing portfolio which

perfectly replicates the payoff of a derivative has the same value as the derivative. Consider

an asset price process X = (Xt)t≥0. A European call option is a contract that gives the holder

the right to purchase one unit of the asset at a fixed strike price at a fixed expiry time, T. The

terminal payoff is thus max(XT − K, 0). A European put gives the right to sell the stock at a

strike price, i.e. the terminal payoff is max(K − XT , 0). Options can be exchange traded (typical

for vanilla options) or “over-the-counter” transactions for bilateral transactions. The latter tend

to be at the more exotic spectrum of products and consist of specialised option transactions.

The Black-Scholes setting is a quoting mechanism and an important modelling framework

arising from the seminal paper [BS73]. The model assumes that the underlying asset price

is log-normally distributed with a constant drift and volatility. In addition, it makes several

assumptions such as the Efficient Market Hypothesis, infinite liquidity of markets, price-

continuity, lack of transaction costs and the ability to trade continuously. In the Black-Scholes

setting, the underlying asset evolves through the stochastic differential equation (0.1.1), with

f (x) ≡ µx and γ(x) ≡ σx, for some constant drift parameter, µ, and some strictly positive

volatility, σ. The construction of a self-financing portfolio and the put-call parity are vital

concepts in derivatives pricing and structuring, especially given the importance of calls and

puts as building blocks for more exotic products.

Itô’s Lemma states that for a stochastic process X satisfying (0.1.1) and some functional

F : [0, ∞)× R
d → R taken to be sufficiently smooth (F ∈ C1,2), then

dF =

�

∂F

∂t
+ f

∂F

∂Xt
+

1
2

γ2 ∂2F

∂X2
t

�

dt + γ
∂F

∂Xt
dWt ,

implying that F is itself an Itô process. The Black-Scholes PDE can be derived using Itô’s

Lemma and closed-form calculations for the price of vanilla products are well known [Hul14].

In general, let X = (Xt)t≥0 be the solution to (0.1.1), g : R
d → R be a payoff function at time T

and define the option price V(x), as the expectation given the initial condition X0 = x,

V(x) := E [g(XT)|X0 = x] . (0.1.4)
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0.1.2 Stochastic Volatility

The instantaneous volatility of the underlying asset price is an important consideration when

modelling the dynamics. A stochastic volatility model is a way of introducing dynamics to the

volatility driving the asset price and several stochastic volatility models are reviewed. Options

can have extreme sensitivities to future volatility levels; for example cliquet contracts have

higher sensitivity to volatility, compared to plain European contracts [Wil01, IO05]. The asset

price is typically known, however the volatility of an instrument is not directly observed and

later a HMM is adapted to the computation of Greeks. The volatility of a financial asset exhibits

variability over time, so it is intuitive to consider a stochastic process for its evolution. There

are numerous ways to model the future instantaneous volatility [Cox75, HW87, Sco87, Hes93,

Cox96, Wil01]. The simplest suggestion is to treat the volatility σt as a Brownian walk or a

geometric Brownian motion. An undesirable outcome of treating the volatility process as a

random walk is that it could become negative.

The Feller diffusion is a mean-reverting stochastic process [Fel54], defined as the unique strong

solution to

dvt = κ(θ − vt)dt + ξ
√

vtdWt, v0 = v > 0, (0.1.5)

where W is a Brownian motion and κ, θ, ξ are strictly positive constant parameters (also referred

to as the CIR process, named after Cox, Ingersoll and Ross [CIR85]). This process has been

widely used in the mathematical finance literature, both for interest rate modelling and as

dynamic for the instantaneous variance of a stock price as in the Heston model [CIR85, Hes93,

JM11].

In financial markets and options, the skew represents the slope of the implied volatility curve

for a given expiration date and the term-structure refers to the implied volatility for different

expiration dates. Various types of skew in option prices stem from liquidity constraints,

regulatory rules, government intervention and dependence on the asset class [Wil06]. A

common feature of stochastic volatility models is the correlation between the Brownian

motions of the underlying instrument and of the driving volatility. This correlation is often

necessary in calibration in order to fit the skew commonly exhibited in equities, FX and

interest rate markets; parameters are fitted to market prices of calls and puts, or other liquid

instruments [MN03]. For example, in the Hull-White model both the asset and the volatility
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follow a geometric Brownian motion with correlated Brownian motion drivers.

The Heston model is a stochastic volatility model where the instantaneous variance follows a

Feller diffusion [Hes93]. In this model, option prices admit (semi-)closed form solutions and

sensitivities. In practice during market calibration, it is often found that the speed of mean-

reversion, κ, is small, as high values of κ reduce the skew exhibited by the model. Additionally,

calibration often suggests that the volatility of volatility, ξ, is large. The Feller condition

ensures that the variance process in (6.4.1) is positive; if 2κθ > ξ2, then P(vt = 0) = 0 for

all t ≥ 0 [Fel54]. This makes the Feller condition difficult to satisfy in practice when calibrating

to market data [Jac05]. The correlation parameter between the driving Brownian motion of

the underlying and variance, ρ, is often negative, because a decrease in the underlying price is

often associated with an increase in the variance.

The constant elasticity of variance (CEV) is a stochastic process used for modelling assets using

an elasticity factor, 0 ≤ α ≤ 2 [Cox75, CR76, Cox96]. The CEV process is the solution to the

following SDE for t ≥ 0:

dXt = µXtdt + σXα/2
t dWt , X0 = x ,

with instantaneous variance of dXt/Xt being σ2Xα−2
t . Note that when α = 2, this is just the

Black-Scholes model. Additionally, the instantaneous variance is inversely proportional to the

underlying, making the model particularly suitable for fitting empirical data [Bec80]. Using a

geometric Brownian motion for the volatility and a CEV process for the underlying asset, the

so-called SABR model is widely used in the interest rates industry [HKLW02].

There has been a growing interest in stochastic volatility models in all areas of mathematical

finance in recent years. Important considerations when comparing stochastic volatility models

are the ability to compute option prices in a closed or semi-closed form, the ability to fit market-

observable phenomenon such as skew and finally the ease of calibration to the market. Under

the Heston model, European options can be computed efficiently using Fast Fourier Transform

algorithms; in addition the model can reproduce a wide range of volatility surfaces implied

from the markets [MN03]. The CIR component of the Heston model often breaches the Feller

condition when calibrating to the market. Additionally, the original Heston model struggles to

create a skew as large as that observed in the market for small T [Gat11, Chapter 5]. It is often

necessary to consider time-dependent parameters in order to perform well on calibrating for a
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large set of options with different maturities and strikes, over a long period of time [MN03].

Stochastic models for the volatility are required because option prices calculated with simple

models are generally not supported by market prices for the whole range of strikes and

maturities. As a result, calibration is in practice performed daily, suggesting time-dependent

parameters.

In this thesis, a model-agnostic framework is considered for approximating the Greeks using

several techniques, focusing on models that have a (semi-)closed form solution to verify

the computations; the finite difference methods and Monte Carlo simulations shall also be

considered. There are alternative stochastic volatility models that could be studied such as the

Scott model, stochastic volatility jump-diffusion processes (SVJD) or SABR alternatives [Sco87,

CLS99, RV08].

0.1.3 Discretisation of SDEs

In situations where the solution of an SDE cannot be written in a closed-form, it is important

to approximate the solution akin to the numerical integration literature. Let n ∈ N
+ be a fixed

positive integer and T > 0 a fixed time horizon. Define the partition of the interval [0, T] by

π := {0 = t0 < t1 < . . . < tn = T}, with maxi=0,...,n−1(ti+1 − ti) =: h = O(1/n). A first-

order approximation is the Euler-Maruyama approximation, when a grid π is used to create an

approximation X̂ of X, defined via

X̂ti+1 = X̂ti
+ f (X̂ti

)hi+1 + γ(X̂ti
)ΔWi+1 , X̂0 = x ,

where ΔWi+1 := Wti+1 − Wti
and hi+1 := ti+1 − ti, which can be interpolated linearly for all

t ∈ [0, T]. The quality of the approximation improves with increasing n, although errors can

potentially propagate and explode in certain scenarios. The measures of error are either based

on the strong error — how close the process X is tracked by the approximation X̂ — or the

error in the distributional sense of a particular function. The strong error is referred to as

E
�

|XT − X̂T|
�

, and the focus of Part III is proving strong rates of convergence for families of

SDEs with non-classical assumptions. Sufficient conditions are imposed, so that for a linearly

interpolated approximation X̂ it holds that for h > 0 small enough

E
�

|Xt − X̂t|p
�1/p ≤ Cphr , ∀t ∈ [0, T] ,
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with some rate of convergence, r > 0, for some p ≥ 1. The weak error for a function g, defined

as |E[g(XT)]− E
�

g(X̂T)
�

|, is a key measure when the focus is evaluating functional driven by

diffusion processes. As this is often a requirement in financial derivatives pricing, it will be the

focus of Part II.

An explicit Euler discretisation of the instantaneous variance in (6.4.1) on the partition π is:

v̂ti+1 = v̂ti
+ κ(θ − v̂ti

)hi+1 + ξ
�

v̂ti
ΔWi+1 , v̂0 = v .

Assume that v̂ti
is strictly positive; by conditioning, the probability of the discretised process

being negative at time ti+1 reads

P(v̂ti+1 < 0|v̂ti
> 0) = P

�

ΔWi+1 <
κ(v̂ti

− θ)hi+1 − v̂ti

ξ
�

v̂ti

�

�

�

�

v̂ti
> 0

�

= Φ

�

κ(v̂ti
− θ)h − v̂ti

ξ
�

v̂ti
hi+1

�

,

where Φ is the cumulative density function of a standard normal distribution. The probability

of a negative variance approximation is positive, even if the Feller condition holds. Upon

discretisation, it is possible for approximations to become negative since the continuous-

time variance process is approximated with a discrete-time Gaussian process. In an extreme

scenario, observe that as ξ gets larger, the probability of a negative approximation for the

variance process approaches 1/2. Enforcing max(v̂t, 0) ensures that the instantaneous variance

is non-negative and is a possible solution. The emphasis of Part III is to consider a modification

of the explicit Euler scheme, for which a strong rate of convergence is proved.

Classical weak and strong convergence results for discretisation schemes of SDEs assume that

the drift and the diffusion coefficients are globally Lipschitz continuous (see [KP92]); however

many models in the literature violate this assumption e.g. CIR, CEV, Ait-Sahalia models.

Typically, in financial derivative pricing weak error is sufficient for applications. Strong

convergence rates are important when using multilevel Monte Carlo methods, as the strong

rate of convergence can be used to optimise computation of functionals [Gil08b, GHM09].

0.1.4 Greeks

One aim of the thesis is to approximate Greeks for a wide class of stochastic volatility models.

A necessity in option trading is the fast and reliable computation of sensitivities of financial

derivatives. These sensitivities shown in Table 1 are computed with respect to parameters
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Spot (x) Volatility Expiry (T) Interest rate (r)
Value (V) Delta (Δ) Vega (V) Theta (Θ) Rho
Delta (Δ) Gamma (Γ) Vanna Charm
Vega (V) Vanna Vomma Veta
Gamma (Γ) Speed Zomma Color

Table 1: Greeks: price and risk (row headings) differentiated with respect to the underlying
parameter (column headings).

intrinsic to the option contract, such as the initial underlying price or expiry time of the

contract, as well as parameters arising from the modelling assumptions, or parameters from

the stochastic volatility model. Greeks are hedging ratios that explain how the profit and loss of

a position evolve with changes in the market. Their computation is well studied using different

mathematical techniques (for a comprehensive treatment refer to [Gla03, Hul14]). Closed-form

Greeks for the Bachelier and Black-Scholes models are known, and Greeks can be computed

in semi-closed form for the Heston model [BS73, Hes93]. Monte Carlo methods are commonly

used to compute option prices and Greeks through simulation, often making use of classical

variance reduction techniques [Cap08, Gla03]. In recent years, Malliavin-inspired techniques

have allowed efficient Monte Carlo schemes for Greek computation [Ben01, FLL+99].

0.1.5 Monte Carlo techniques

Monte Carlo techniques approximate solutions of problems that have difficult or intractable

analytical solutions. Suppose that P is a probability measure on some measurable space (Ω,F ),

and X is a random variable with support R. Monte Carlo methods are commonly used as a tool

for integration, where for example we are interested in the expectation of a random variable

with respect to the probability measure, P, or of a functional g. By generating {x(i)}i=1,...,N,

i.i.d. random samples of X according to P, we can approximate the integral

I(g) := EP[g(X)] =
�

R

g(x)P(x)dx

by ÎN(g) := N−1 ∑
N
i=1 g(x(i)). The Law of Large Numbers, makes convergence of ÎN(g) to

I(g) precise. Provided that the variance, VP[g(X)], is finite, the Central Limit Theorem implies

that
√

N
�

ÎN(g)− I(g)
�

converges in distribution to N(0, VP[g(X)]). The convergence rate

is O(1/
√

N), independent of the dimension. In multi-dimensional settings, Monte Carlo is
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superior to numerical integration [RC05]. Generating i.i.d. samples from P can be difficult if

the probability measure is known only up to a normalising constant. Two methods to handle

such a problem are rejection sampling and importance sampling. As rejection sampling is

usually only possible in low dimensions, therefore importance sampling will be relied upon

for the sequential Monte Carlo methods considered in Chapter 1. The popularity of Monte

Carlo has grown due to its versatility; the ability to be used as a method to integrate, optimise

and deal with non-linear problems.

One of the main tasks in mathematical finance is the pricing of option derivatives. Typically,

the underlying assets are modelled by multi-dimensional SDEs, which rarely admit closed-

form solutions and need to be numerically simulated. Therefore, Monte Carlo techniques

are used to approximate the prices of options, by simulating sample paths of the underlying

assets and estimating functionals to price the financial derivatives of interest (see [Gla03]

for a comprehensive overview of such methods with applications to financial engineering).

A Monte Carlo approximation of the option price using N simulated trajectories (assuming

that the process can be simulated), where path j is denoted by (X
(j)
t )t∈[0,T], is computed by

VN(x) := N−1 ∑j=1,...,N g(X
(j)
T ).

0.2 Contributions of this thesis

In this thesis simulation techniques for stochastic differential equations inspired by

applications in mathematical finance are developed. The thesis is split into three distinct parts

and the contributions are as follows.

The first part of the thesis studies sequential Monte Carlo techniques. Chapter 1 begins with

an introduction of the sequential Monte Carlo methodology, with a focus on sampling from

a sequence of posterior densities. An observed sequence conditional on a latent process is

assumed, to infer the posterior density. Smoothing algorithms are presented to approximate

the density in a Hidden Markov Model. The main contribution of the chapter is to consider

a novel approach for approximating Greeks using such smoothing algorithms in a setting

of unobserved stochastic volatility. This extends the work on SMC methods for option

pricing [JDM10], where the use of smoothing algorithms is suggested (but not pursued)

for approximating the Greeks. The score vector for a given realisation of an underlying

price path is inferred, in order to compute the Greeks under a general stochastic volatility
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setting. The technique is analytically intractable for most models, therefore SMC is used

to perform Bayesian inference. Inspired by likelihood ratio techniques for Greeks, additive

functions that appear due to the structure of the models are derived. Upon simulating a

volatility path and an underlying path, the volatility is immediately “forgotten”. Filtering then

recovers a particle approximation of the density, in order to approximate the log-likelihood

and the score vector. Such a set-up lends itself to further considerations about hedging of

derivatives in general stochastic volatility models. The approach highlights the difficulty in

approximating Greeks upon observing the underlying, and moving away from a volatility

process behaving as a discrete-space Markov chain. In this set-up, an existing SMC algorithm

for smoothing is applied and provides a framework to approximate Greeks [DGA00, DMDS09].

Such techniques are used in the parameter estimation literature [Poy06, Poy11]. Using this

approach, convergence results for the Greek estimates are proved in terms of the number of

Monte Carlo paths, the number of particles and the number of time steps; the theoretical

results are confirmed by numerical examples. The application discusses the tracking error

for options using Black-Scholes Greeks and Greeks in a stochastic volatility model. A major

drawback of such techniques for Greek approximations is the numerical cost compared

with the various alternatives. SMC algorithms are numerically intensive; their inherent

propensity to parallelisation has been a well-studied topic in recent years, however there

remain challenges in using such techniques.

In Part II, a general technique is proposed to compute option Greeks using Itô-Taylor

expansions. The aim is to multiply the payoff by some Fh-measurable weight, for a small

time h—this differs from the Malliavin setting, in which the weight is FT-measurable. The

variance of the weights increases as h decreases and for convergence the mean squared

error (MSE) is controlled. This technique allows Greeks to be approximated under various

stochastic volatility models. In Chapter 3, a numerical approximation is demonstrated for

the Delta of a contingent claim. An approximate class of weights are considered to compute

high-order approximations of the Delta using weak Taylor schemes. Furthermore, by deriving

expansions of these approximations, high-order Greek approximations are extrapolated. In

Chapter 4, a family of functions for approximate weights is introduced for the Gamma, with

higher-order and extrapolated approximations computed. This part concludes with proposing

several directions for future research. Greek approximation under a perturbed model are

considered, with an application for the Vega of an option. A brief review of the backward
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stochastic differential equation (BSDE) literature is provided and a proposed scheme for high-

order approximations of the Gamma for non-linear pricing is suggested.

The third part of the thesis is on the discretisation schemes with strong rates of convergence of

SDEs with non-Lipschitz continuous coefficients. Upon commencing the research, there were

several discretisation schemes for such SDEs, including the implicit families and the various

tamed schemes [DNS12, HJ12], which built on the earlier literature of approximations for SDEs

admitting a solution in a domain [HMS02, BD04, BBD08]. This approach utilises a projection

to ensure that the discretised process stays within a domain of interest. Chapter 6 provides

strong convergence rates for a new modified Euler scheme applied to certain SDEs with non-

globally Lipschitz continuous coefficients. The scheme introduced uses a projection in the state

space, based on the locally Lipschitz continuous coefficients of the drift function of the process.

This approach is naturally suited to SDEs with solutions within a domain, as it considers the

behaviour at the boundary of the state space. The novelty is to consider the behaviour of the

drift function both at zero and at infinity, in order to define the discretisation scheme. This

approach relies on first studying the true process of the SDE and then selecting the scheme

according to the problem. Examples of SDEs considered include the CIR model, the 3/2-

model and the Ait-Sahalia model, all widely used in mathematical finance. A contribution

is the extension of the parameter range for which strong rate of convergence holds, compared

to the implicit schemes in the literature. Furthermore, for many choices of parameters in the

Ait-Sahalia model, an implicit scheme poses significant computational difficulty compared to

an explicit scheme. Numerical results supporting the theoretical results are provided. The

modified Euler scheme is motivated by an application of multilevel Monte Carlo and an

acceleration technique.
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Part I

SMC Greeks
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1. Sequential Monte Carlo Greeks

Sequential Monte Carlo (SMC) methods are model estimation techniques based on simulation,

for approximating expectations with respect to a sequence of densities of increasing dimension.

In this chapter, the use of SMC methods in the field of mathematical finance is explored, and

the main contribution is the approximation of Greeks for a general stochastic volatility model.

SMC methods have gained popularity in the last decade, with applications in engineering and

applications to State Space Models. The algorithm is adapted to compute Greeks in a general

stochastic volatility setting, with convergence results provided. Tracking option prices is

discussed, which has implications in validating stochastic volatility models and their calibrated

parameters. A specific application is the tracking of an S&P 500 call option price over a period

of a month in the Black-Scholes model and of the Greeks in a stochastic volatility model, where

the volatility is a hidden process. An aim is to discuss the practical applications in frameworks

with uncertainty, where filtering can be used to compute the Greeks akin to the likelihood ratio

method.

1.1 Introduction

Real-world phenomena can produce large time series data, evolving either continuously or

discretely in time. Observations are typically discrete in time, with attempts made to describe

the processes using models. An increase in computational power has enabled statistical

inference for models which aim to describe the dynamics accurately. A common objective is

estimating posterior distributions as observations arrive sequentially in time; however, these

posterior distributions rarely admit closed-form solutions. The Kalman filter computes a

Bayesian estimate for the state of a hidden variable in a linear dynamical system, providing an

explicit solution for a linear Markov model perturbed by some Gaussian noise [Kal60]. There

have been numerous extensions to this family of methods, such as the extended Kalman Filter

for non-linear systems and the Unscented Kalman filter [JU97]. Developments in the 1990s of

simulation-based techniques led to approaches consisting of the evolution and the updating of

discrete sets of sampled values, with an associated weight [GSS93, Wes93]. In the literature, it

has become common to refer to the sampled values as “particles”.
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Particle filters are reminiscent of Genetic Algorithm (GA) techniques [SD08]. General steps

involve:

• Initialisation - drawing from an initial prior distribution;

• Sampling (exploration of the space) - “selection” in the GA literature, according to some

fitness/likelihood function;

• Weights - update weights for the “reproduction step”;

• Resampling - “mutation-selection” in the GA literature.

Over the past 20 years there has been an explosion in the number of particle filtering

techniques [DJ08, CGM07]. Those methods include Sequential Importance Resampling (SIR)

and smoothing [GSS93]. There have been various modifications to the original particle filters,

such as an auxiliary family of filters which increase the dimension of sampling [PS99]. Other

modifications include the Probability Hypothesis Density filter and Approximate Bayesian

Computation techniques for particle filtering [WSG10, JMMS12]. Additionally, particle filters

can be modified to maintain multi-modality, which is especially desirable for tracking multiple

objects [VDP03]; an extension of this is tracking using the Boosted Particle filter [OTdF+04].

A summary of applications specifically in finance is provided by [Cre12]. Other applications

include using Kalman filtering to track the state of the “true” order book, assuming the

existence of noisy orders [JN11]. A bootstrap particle filter has been applied to estimate spot

prices from future tenors in commodity markets [ABT08]. There have been attempts to use

particle filtering techniques for inferring the US interest rate, using a monetary model for

the economy [LS07]. Other applications include optimal portfolio allocation under stochastic

volatility models and estimating default probabilities for collaterised debt obligations [BMV06,

Koe11]. In option pricing, SMC methods are used for pricing contingency claims [JDM10].

Inference for stochastic volatility models is considered in [JSDT11]. This work provides

inspiration for the smoothing algorithm shall used to approximate option Greeks.

In recent years, there have been huge developments in proving convergence results for SMC

algorithms [BC09], including bounds and central limit theorems [CD00, Cho05, HSL08]. The

difficulty in analysing convergence comes from the interaction between particles, making

them statistically dependent. As a result, classical results from the Monte Carlo literature
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on convergence cannot be directly applied as the independence condition is not satisfied.

Additionally, there is often accumulation of error with time, unless strict mixing conditions

are imposed. In real applications, the constants bounding the convergence rate can be very

difficult to compute, and can grow exponentially fast with time.

Notations: Capital letters denote random variables and lower case letters denote particular

values, particles or realisations. For generic realisations, (zk)k∈I , use zi:j to denote the vector
�

zi, zi+1, . . . , zj

�

. This definition extends naturally for sequences of random variables (Zk)k∈I
as Zi:j. For integration, dzi:j ≡ dzi dzi+1 . . . dzj is used. Throughout, the convention of n

time steps and N as the number of particles is used, denoted by (X
(i)
k )i=1,...,N, at time steps

k = 0, . . . , n. Let X, Y be two random variables. Let X−valued variable X with f (x) being

its probability density function for all x ∈ X . For random variable X, X ∼ f reads as X is

distributed according to density f . Write X ∝ Y if there exists a finite constant Z > 0, such that

X ∼ Y/Z.

Summary: The rest of this chapter is organised as follows. In Section 1.2, existing

methodologies within the State Space Model literature and Monte Carlo methods tracing

the origins of the particle filtering literature are reviewed [CMR05]. Section 1.3 describes

smoothing and motivates the approximation of score vectors. Section 1.4 introduces a general

framework for computing Greeks. In Section 1.5, convergence in the SMC literature is

reviewed, and convergence results are proved for the proposed Greek approximations. In

Section 1.6, numerical results for the tracking of an S&P 500 call option using a Taylor expansion

consisting of the Greeks under a stochastic volatility model are presented. The chapter

concludes with discussion and possible extensions.

1.2 Inference for State Space Models

State Space Models are a broad family of models describing processes including the Hidden

Markov Models. HMMs are a class of models that can be non-linear and non-Gaussian, making

them suitable for applications in engineering and finance. Suppose that X and Y are random

variables with supports X and Y . The following model covers a wide range of scenarios

and applications: consider an index set I (typically N) and let X = (Xk)k∈I be a Markovian

unobserved process and Y = (Yk)k∈I be an observed process, conditional on X [WH97]. Denote
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by θ ∈ Θ ⊆ R
d a set of fixed model parameters:

Definition 1.2.1 (Set of initial parameters, Θ). Define Θ ⊆ R
d to be a family of parameters for a

HMM assumed. Let θ ∈ Θ be θ = (θ1, . . . , θd).

The following densities are for the evolution of the Markovian process X and the conditional

process Y:

1. The Hidden Markov process X is defined by its initial density X0 ∼ µθ(.)—as convention,

fθ(·|x−1) := µθ(·)—and the transition density Xk|(Xk−1 = xk−1) ∼ fθ(·|xk−1);

2. The process X is not observed directly, but via the observations of the process Y. For

0 ≤ k ≤ n:

Yk|(X0, . . . , Xk = xk, . . . , Xn) ∼ gθ(·|xk) .

The goal of HMM in a setting where θ is fixed is to filter the density of the unobservable

Markovian random variables X0:k given the discrete observations y0:k; i.e. to infer the sequences

of filtering densities πθ(xk|y0:k) for k ≥ 0.

The broad idea of particle filtering is to gradually build up the target distribution using a large

set of random particles. The particles’ location and likelihood are used to construct an empirical

distribution and to perform inference of the hidden state, given the observations y0:n. Suppose

that θ is a known parameter; then the posterior density is

πθ(x0:n|y0:n) =
πθ(x0:n, y0:n)

πθ(y0:n)
, where πθ(y0:n) =

�

X n+1
πθ(x0:n, y0:n)dx0:n ,

and the joint density is

πθ(x0:n, y0:n) = πθ(x0:n)πθ(y0:n|x0:n) =
n

∏
k=0

fθ(xk|xk−1)gθ(yk|xk) .

SMC methods aim to approximate the posterior distribution, πθ(x0:n|y0:n). An important

feature of HMMs is the ability to apply SMC for filtering, smoothing and prediction. These

densities are categorised depending on how much information is available:

• Filtering - state density given past and present observations, πθ(xn|y0:n);

• Smoothing - state density given past and future observations, pθ(xk|y0:n) for k < n;
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• Predicting - state density given past observations, pθ(xk|y0:n) for k > n.

The following two steps update the filtering densities upon the arrival of new observations,

and (1.2.1) and (1.2.2) construct the forward filtering density. After initialisation, Bayes’

theorem and marginalisation are used to update this recursion:

πθ(xk|y0:k) =
gθ(yk|xk)

pθ(yk|y0:k−1)
pθ(xk|y0:k−1) , (1.2.1)

and the following predictive density is used to forecast:

pθ(xk+1|y0:k) =
�

X
fθ(xk+1|Xk)πθ(Xk|y0:k)dXk . (1.2.2)

Applications of SMC include computing expectations using the approximated densities. Let ϕ :

X n+1 ×Yn+1 → R be a function of the hidden state and the observations, and suppose that one

wishes to compute its expectation recursively in time. Eπ[X] and Vπ[X] denote the expected

value and variance of a random variable X, with respect to the probability measure π. Suppose

that ϕ is integrable with respect to πθ(x0:n|y0:n). By approximating the posterior, the particle

approximation can be used to approximate integrals of the form:

I(ϕ) = Eπθ(X0:n|y0:n) [ϕ(X0:n, y0:n)] :=
�

X n+1
ϕ(X0:n, y0:n)πθ(X0:n|y0:n)dX0:n . (1.2.3)

A possible choice for the function ϕ is ϕ(x0:n, y0:n) ≡ xn, for the terminal value of the hidden

state, so that I(ϕ) approximates the average, final, latent state.

1.2.1 SMC Algorithms

SMC algorithms provide posterior estimation using a series of predicting and updating

recursions. The Sequential Importance Sampling technique can be seen as a general framework

for particle filtering. Importance sampling is well studied in classical Monte Carlo literature,

and can be used as a variance reduction technique. Large variance reduction can be achieved

for instance when calculating the Value-at-Risk of large portfolio losses [GHS00]. Importance

sampling can also be applied to the efficient calculation of deep out of the money options.

In SMC methods, importance sampling is used as a way to associate importance weights to

individual particles, to overcome sampling from the “wrong” distribution too often.
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Sequential Importance Sampling (SIS) [GSS93]: Suppose that paths x
(i)
0:n ∼ πθ(X0:n|y0:n) can

be generated given a set of observations y0:n, for i = 1, . . . , N. Thus, the marginal density of

the hidden model given some observations can be approximated. Suppose that particle paths

(x
(i)
0:k−1)i=1,...,N are available at time k − 1, weighted equally. An N-particle approximation of

the posterior density is

πN
θ (x0:k−1|y0:k−1) =

1
N

N

∑
i=1

δ
(x

(i)
0:k−1)

,

where δ is the Dirac measure. By sampling x̄
(i)
k ∼ fθ(.|x(i)k−1) for i = 1, . . . , N, a prediction for

the density at time step k is

pN
θ (x0:k|y0:k−1) =

1
N

N

∑
i=1

δ
(x

(i)
0:k−1,x̄(i)k )

. (1.2.4)

The target distribution at time step k is

πθ(x0:k|y0:k) =
gθ(yk|xk)pθ(x0:k|y0:k−1)

�

X gθ(yk|xk)pθ(x0:k|y0:k−1)dxk
. (1.2.5)

The notation used throughout is {(x
(i)
k , w

(i)
k )}N

i=1, denoting the set of particle positions and

corresponding weights at time step k. A set of particles, weighted according to their likelihood

give the following approximations of πθ(x0:k|y0:k), for time steps k ≥ 0. Substituting the

predicted density in (1.2.5) by the approximation (1.2.4) yields

π̄N
θ (x0:k|y0:k) =

N

∑
i=1

w
(i)
k δ

(x
(i)
0:k)

,

where the weights (w(i)
k )i=1,...,N satisfy

w
(i)
k ∝ gθ(yk|x̄(i)k ) and

N

∑
i=1

w
(i)
k = 1 .

The weighted approximations, πN
θ (x0:k|y0:k), are then propagated through time, up to the

terminal time step n. A feature of the SIS algorithm is that the path trajectories (x
(i)
0:n)i=1,...,N

are independent and identically distributed. Define

ÎN(ϕ) :=
N

∑
i=1

ϕ(x
(i)
0:n, y0:n)w

(i)
n
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as the SMC estimate of I(ϕ) in (1.2.3). SIS is usually successful for small n, however after

several iterations most paths will have a negligible weight [DdFG01, Section 1.3.2]. Eventually

one particle will dominate and be used to approximate the expectation, which illustrates the

weight degeneracy problem.

Resampling: The variance of the weights increases with the number of time steps, and for a

fixed accuracy, the computational cost grows exponentially [KLW94]. To stabilise the variance

of weights, resampling methods have been proposed. Resampling consists of choosing a new

set of particles based on the original set. The common idea is to increase the number of particles

with higher weights, and reduce the number of particles that have low probability. At each time

step, k, N particles from the current particle set could be sampled with replacement according

to:

E

�

N
(i)
k |x(i)0:k

�

= Nw
(i)
k .

The new particle set consists of N
(i)
k realisations of particles x

(i)
0:k, with weights reset to 1/N

for each resampled particle. Details for resampling schemes and examples of the empirical

measures are presented in [Dou05, DMDJ12]. Multinomial resampling draws N new particles

from a multinomial distribution according to the normalised weights (w(i)
k )i=1,...,N. Systematic

resampling uses a single random uniform draw to generate the new particle set. It is

often preferred due to computational simplicity, however the method is sensitive to the

ordering of particles [Dou05]. Other methods include residual resampling and stratified

resampling [BC09, Dou05]. More complicated schemes have been studied, where the number

of particles follow some evolutionary process [CDML99]. Resampling at each discrete time

step can be harmful, so metrics such as the effective sample size (ESS) can be used as a trigger

for performing a resampling step [LC98].

Definition 1.2.2. Define the ESS approximation for a set of particles with weights (w
(i)
k )i=1,...,N as:

Ne f f :=
1

∑
N
i=1

�

w
(i)
k

�2 ∈ [1, N], k ∈ I .

Ne f f approximates the equivalent number of i.i.d. random samples needed for an estimate,

such that its Monte Carlo variance is that of the N-particle weighted approximation. A

threshold can be set such that when Ne f f drops below it, a resampling step is performed. In



40 1.2 Inference for State Space Models

the literature, this threshold is commonly chosen as N/2 or N/3.

Intuitively, particles with high weights are more likely to be resampled, and particles with

low weights will eventually cease to exist upon successive resampling steps. The effect

of many successive resampling steps at time n leads to a loss of path diversity at time

n − k for some lag k > 0, which is referred to as the path degeneracy problem. Attempts

have been made to minimise this problem by careful resampling and monitoring of the

ESS [LC98, Whi, CDML99]. Path degeneracy is induced from resampling, and eventually

approximations of the distribution would be just using one path. The trade-off in resampling

can be summarised as controlling the variance of the weights, whilst not dramatically reducing

the diversity of particles. Many paths will have the same history when looking through the

path of the particles and ultimately all paths will coalesce to a single path [DJ08].

In situations where the consecutive distributions are very different, interpolating distributions

have been proposed to reduce the need to resample particles as often [GC00]. Such techniques

are often computationally expensive as the number of intermediate distributions could be

prohibitive [BLB08].

Particle Filter with Resampling: In Algorithm 1.2.1, the most general particle filter with a

resampling step is described. The ESS metric is used as the trigger to resample, according to a

user-set resampling scheme. This method is based on the SIS algorithm, with the inclusion of

a resampling step.

Algorithm 1.2.1 Particle Filter with Resampling (SIS/R)
Step 0: Initialise

a) For i = 1 → N, sample x
(i)
0 ∼ µ(·).

b) For i = 1 → N, calculate normalised weights w
(i)
0 ∝ gθ

�

y0|x(i)0

�

.
Step 1: Main recursive step. For k = 1 → n
a) Resample Step
if Ne f f < N/2 then

Resample set (x
(i)
k−1)i=1,...,N according to weights ({x

(i)
k−1, w

(i)
k−1})i=1,...,N.

For i = 1 → N, set w
(i)
k−1 := 1/N.

end if
b) Propagate particles. For i = 1 → N, sample x

(i)
k ∼ fθ

�

Xk|x(i)k−1

�

.

c) For i = 1 → N, compute normalised weights, w
(i)
k ∝ w

(i)
k−1gθ

�

yk|x(i)k

�

.
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The families of SIS algorithms are “online”—the complexity of the algorithm does not increase

as the number of time steps increases, and only a fixed memory is required for a fixed number

of particles. This is due to the fact that only a forward pass is required. Smoothing algorithms

requiring a forward and a backward pass are classified as being “offline”.

1.2.2 Convergence Results and Bounds

SMC methods are highly versatile techniques for Bayesian inference. These methods are very

useful for dynamic models and are used to estimate a sequence of distributions of growing

dimension. A frequently quoted application is the sequential Bayesian inference, which aims

to approximate the target distribution πθ(x0:n|y0:n). For convergence results, the number of

particles required for a fixed level of precision increases rapidly with the time steps. For p > 1,

Lp-bounds of the type
�

E

�

�

�

�

�

N

∑
i=1

ϕ(x
(i)
0:n)w

(i)
n −

�

X n+1
ϕ(X0:n)πθ(X0:n|y0:n)dX0:n

�

�

�

�

p
��1/p

≤ Cp,n√
N

,

have been shown, where Cp,n is a constant which grows exponentially fast with the number of

time steps, n [DM04]. This makes the error increase for fixed number of particles, N. Provided

that resampling is used, central limit theorems such as

√
N

�

N

∑
i=1

ϕ(x
(i)
0:n)w

(i)
n −

�

X n+1
ϕ(X0:n)πθ(X0:n|y0:n)dX0:n

�

D→ N(0, σ2
n) ,

hold as N increases to infinity. The variance, σ2
n, is a complicated expression, and varies for

different SMC algorithms and resampling schemes [DM04, Cho05]. SMC filters and their

convergence properties are generally very difficult to study.

1.3 Smoothing

Smoothing is a filtering technique used to approximate the density of a hidden state given past

and future observations. The Forward Filtering Backward Smoothing (FFBS) and Forward

Smoothing only (FS-SMC) implementations will be summarised. The latter is applied to

approximating Greeks (for more details of both algorithms, see [DMDS09]).

Smoothing, in its simplest form, can theoretically be performed alongside a generic particle
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filter. The Filter-Smoother consists of a standard particle filter which approximates πθ(x0:n|y0:n)

using the weighted paths {(x
(i)
0:n, w

(i)
n )}i=1,...,N [Kit96] . The joint smoothing density,

πθ(x0:n|y0:n) ∝ gθ(yn|xn) fθ(xn|xn−1)πθ(x0:n−1|y0:n−1) ,

is marginalised yielding the smoothing density

pθ(xk|y0:n) =
�

X n
πθ(x0:n|y0:n)dx0:k−1dxk+1:n . (1.3.1)

This method requires storage of the newly sampled particle, x
(i)
k , in order to construct paths

x
(i)
0:k := (x

(ji)
0:k−1, x

(i)
k ), where ji will be some resampling indices; note that x

(ji)
0:k−1 are resampled

from (x
(i)
0:k−1)i=1,...,N. The algorithm requires the same O(N) computational cost of the filter.

The particle filter provides accurate approximations for πθ(xk|y0:k), however resampling

reduces the number of distinct paths. This suggests that examining paths of the particles over

time, many paths will have coalesced into a single path. Resampling less frequently can reduce

this problem, however for increasing n − k, the approximation of (1.3.1) will deteriorate as

eventually only one path will have any significant weight [FWT10, DJ08].

Let sk : R ×R → R be a sequence of functions for k ∈ N, and Sn : R
n+1 → R, for n ∈ N, be the

corresponding sequence of additive functionals, defined as Sn(x0:n) := ∑
n
k=1 sk(xk−1, xk). An

objective is computing Sθ
n, known as the smoothed additive functional, which is the expectation

of the functional given the observations y0:n:

Sθ
n := E[Sn(X0:n)|y0:n] , (1.3.2)

which is assumed to be finite. The dependency on θ is due to the fixed parameters in the HMM

setup. The aim is to construct an SMC estimate of Sθ
n.

1.3.1 FFBS Recursion

To mitigate the path degeneracy that afflicts the previously mentioned smoothing techniques,

SMC approximations of the FFBS algorithm have been developed [DGA00]. This procedure

computes the forward filtering densities (πθ(xk|y0:k))k=0,...,n using Bayes’ theorem, followed

by a backward pass approximating the marginal smoothed density (pθ(xk−1, xk|y0:n))k=1,...,n.
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The forward filtering step,

πθ(xk+1|y0:k+1) =
gθ(yk+1|xk+1)

�

X fθ(xk+1|xk)πθ(xk|y0:k)dxk
�

X 2 gθ(yk+1|x′k+1) fθ(x′k+1|x′k)πθ(x′k|y0:k)dx′k:k+1
,

is followed by a backward pass

pθ(xk−1, xk|y0:n) = pθ(xk|y0:n)pθ(xk−1|y0:k−1, xk) = pθ(xk|y0:n)
fθ(xk|xk−1)πθ(xk−1|y0:k−1)

pθ(xk|y0:k−1)
;

(1.3.3)

together these steps approximate the smoothing density. In order to obtain pθ(xk−1|y0:n), the

backward pass is marginalised with respect to xk. The algorithm is based on the following

recursion formula

pθ(xk−1|y0:n) =
�

X
pθ(xk|y0:n)

fθ(xk|xk−1)πθ(xk−1|y0:k−1)

pθ(xk|y0:k−1)
dxk ,

which was initially introduced by [Kit96]. The forward pass requires computation and storage

of (πN
θ (xk|y0:k))k=0,...,n, which are the approximations of (πθ(xk|y0:k))k=0,...,n. Let the SMC

approximation of pθ(xk|y0:n) be pN
θ (xk|y0:n) = ∑

N
i=1 w

(i)
k|n δ

(x
(i)
k )

, for k ≤ n, with initialisation

at the terminal time step k = n, by defining w
(i)
n|n := w

(i)
n . The rest of the weights are defined

recursively using the backward pass (1.3.3):

pN
θ (xk−1, xk|y0:n) =

N

∑
i=1

N

∑
j=1

w
(j)
k|n

w
(i)
k−1 fθ(x

(j)
k |x(i)k−1)

∑
N
l=1 w

(l)
k−1 fθ(x

(j)
k |x(l)k−1)

δ
(x

(i)
k−1,x(j)

k )
=

N

∑
i=1

w
(i)
k−1|n δ

(x
(i)
k−1,x(j)

k )
,

where the weights are defined as

w
(i)
k−1|n :=

N

∑
j=1

w
(j)
k|n

w
(i)
k−1 fθ(x

(j)
k |x(i)k−1)

∑
N
l=1 w

(l)
k−1 fθ(x

(j)
k |x(l)k−1)

. (1.3.4)

Finally, the SMC approximation of Sθ
n is defined via

Ŝθ
n :=

n

∑
k=1

�

X 2
sk(xk−1, xk)pN

θ (xk−1, xk|y0:n)dxk−1:k . (1.3.5)

Algorithm 1.3.1 is an implementation of the FFBS algorithm to compute the weights of the

particles for approximating Ŝθ
n. This method uses the entire history of each particle, which

requires memory proportional to the number of time steps, which makes the algorithm
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“offline”. As a result, the next section considers an online implementation of the FFBS

algorithm to circumvent the growing memory requirement.

Algorithm 1.3.1 Forward Filtering Backward Smoothing Algorithm
Step 0: Initialise.

a) For k = 0 → n, ({x
(i)
k , w

(i)
k })i=1,...,N is the SMC approximation of πθ(xk|y0:k).

b) For i = 1 → N, define w
(i)
n|n := w

(i)
n .

Step 1: Main recursive step. For k = n → 1
For i = 1 → N, compute SMC approximation, (x

(i)
k−1, w

(i)
k−1|n)i=1,...,N, for pθ(xk−1|y0:n)

using (1.3.4).

1.3.2 Forward-only version of the FFBS recursion

The forward-only implementation of the FFBS algorithm avoids the backward pass [DMDS09].

The auxiliary function reviewed allows an online implementation [CMR05]. Define the

forward smoothing recursion as

Tθ
k (Xk) :=

�

X k
Sk(X0:k)pθ(X0:k−1|y0:k−1, Xk)dX0:k−1 . (1.3.6)

and using this recursion it can be shown that Sθ
k =

�

X Tθ
k (Xk)πθ(Xk|y0:k)dXk. The

approximation pN
θ (xk−1|y0:k−1, xk) of pθ(Xk−1|y0:k−1, Xk) is substituted in (1.3.6) to compute

T̂θ
k (xk), which is the N-particle approximation of Tθ

k (Xk). For completion, the proposition

justifying the updating of the forward smoothing recursions is presented:

Proposition 1.3.1 ([DMDS09, Proposition 2.1]). Define Tθ
0 (x0) := 0. For k ≥ 1, the smoothing

recursion for the auxiliary functions Tθ
k (xk) is defined by

Tθ
k (xk) :=

�

X

�

Tθ
k−1(xk−1) + sk(xk−1, xk)

�

pθ(xk−1|y0:k−1, xk)dxk−1 .

Algorithm 1.3.2 will be used to approximate the smoothed additive functional, Sθ
n.

1.3.3 Discussion on Smoothing Methods

The computational cost of FFBS is O(N2) for each time step, compared to O(N) for methods

such as the path-space and fixed-lag approximations [OCDM08]. Fixed-lag smoothers require
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Algorithm 1.3.2 Forward Smoothing SMC algorithm (FS-SMC) [DMDS09]
Step 0: Initialise

a) Create initial SMC approximation, ({x
(i)
0 , w

(i)
0 })i=1,...,N, for πθ(x0|y0).

b) For i = 1 → N, initialise the forward smoothing recursion, T̂θ
0 (x

(i)
0 ) := 0.

Step 1: Main recursive step. For k = 1 → n

a) Compute new SMC approximation, ({x
(i)
k , w

(i)
k })i=1,...,N, for πθ(xk|y0:k).

b) For i = 1 → N, compute new smoothing recursion:

T̂θ
k (x

(i)
k ) =

∑
N
j=1 w

(j)
k−1 fθ(x

(i)
k |x(j)

k−1)
�

T̂θ
k−1(x

(j)
k−1) + sk(x

(j)
k−1, x

(i)
k )
�

∑
N
j=1 w

(j)
k−1 fθ(x

(i)
k |x(j)

k−1)
.

c) Approximate smoothed additive functional, Sθ
k , as Ŝθ

k = ∑
N
i=1 T̂θ

k (x
(i)
k )w

(i)
k .

tuning, rendering them somewhat unattractive, as it is often difficult to gain apriori intuition

about the tuning parameters. Other techniques rely on the forgetting properties of the

model [KDSM09, (17)], but again custom tuning is required [DdFG01].

The drawback of the FFBS algorithm is that the backward pass gets longer with each

consequent time step; the storage requirement of the algorithm is increasing as the number

of time steps grow. The use of past data means that the FFBS is an offline algorithm [DMDS09].

The FS-SMC also has computational cost of O(N2), however it is online, in the sense

that the storage requirements does not increase with the number of time steps. Both the

FFBS and FS-SMC can be implemented more efficiently to reduce the cost from O(N2) to

O(N log N) [KdFD05]. These algorithms has been used to approximate the score vector

required for parameter estimation in a sequential Monte Carlo framework [Poy06, Poy11].

The Filter-Smoother provides degenerate results when smoothing, however it is a

computationally cheap technique [FWT10]. In terms of convergence, the asymptotic variance

for FFBS estimates grows linearly in the time-steps, n [DGMO11]. This suggests better results

when compared to the results for the path-space methods, where error increases at least

quadratically in time, under favourable mixing conditions [DMD03].

1.4 Greeks and Stochastic Volatility

In this section, an implementation of a smoothing SMC algorithm is used to approximate

option Greeks [DMDS09, JDM10]. The setting is that of a HMM where the volatility is a latent



46 1.4 Greeks and Stochastic Volatility

process. A cascade of additive functions are defined for Greeks and convergence results are

proved for the FS-SMC algorithm. The aim of the section is to suggest a novel approach for

approximating Greeks in a general stochastic volatility setting.

Throughout, (xk)k=0,...,n shall denote the latent process path (the unobserved volatility) and

(yk)k=0,...,n the observed asset price realisation (recall that (Xk, Yk)k≥0 denote the random

variables). The density of the asset price path can be written as

pθ(y0:n) =
�

X n+1

n

∏
k=0

fθ(Xk|Xk−1)gθ(yk|Xk)dX0:n . (1.4.1)

As before, consider n equidistant time steps for the discretisation of the time interval [0, T].

A general set-up to approximate Greeks using the likelihood ratio method with respect to

parameters θ ∈ Θ ⊆ R
d is described. Consider options with terminal payoff ϕ(y1:n) and

value

V :=
�

Rn+1
ϕ (y1:n) pθ(y0:n)dy0:n . (1.4.2)

Suppose that one can differentiate V through the integral with respect to θi to obtain

∂V

∂θi
=
�

Rn+1

∂

∂θi
ϕ(y1:n)pθ(y0:n)dy0:n +

�

Rn+1
ϕ(y1:n)

∂ log pθ(y0:n)

∂θi
pθ(y0:n)dy0:n . (1.4.3)

For simplicity, assume that ∂
∂θi

ϕ(y1:n) = 0. A Monte Carlo approach for approximating the

Greeks is to sample M paths of the underlying, according to pθ(y0:n) and approximate (1.4.3)

by
1
M

M

∑
j=1

ϕ(y
(j)
1:n)

∂

∂θi
log(pθ(y

(j)
0:n)) .

The difficulty in this strategy lies in the computation of ∂
∂θi

log(pθ(y
(j)
0:n)), which in general is not

known. The marginal likelihood can be decomposed using Fisher’s identity into an additive

function [DMDS09]:

∂

∂θi
log pθ(y0:n) = E

�

∂

∂θi
log µθ(X0)|y0:n

�

+
n

∑
k=1

E

�

∂

∂θi
log fθ(Xk|Xk−1)|y0:n

�

+
n

∑
k=0

E

�

∂

∂θi
log gθ(yk|Xk)|y0:n

�

.
(1.4.4)

In (1.4.4), ∂
∂θ log pθ(y0:n) is the score vector, whose ith component is ∂ log pθ(y0:n)

∂θi
. It is a
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vector of derivatives of the log-marginal likelihood of the path y0:n, with respect to the

model parameters, θi. The score vector also has direct applications to gradient descent

algorithms [CDM09].

By considering the additive form discussed above, it is possible to numerically approximate the

score vector for any fixed path y0:n [DMDS09]. This is achieved using Algorithm 1.3.2 for path

y0:n with N particles, namely computing the additive expectations in (1.3.2), with the additive

functions defined specifically by the structure of the HMM. In fact, this is performed for M

Monte Carlo paths (y
(j)
0:n)j=1,...,M, and the total computational cost is O(MN2) for each time

step n [DMDS09]. It should also be noted that the techniques is suited to parallelisation across

multiple payoffs and strikes, since the bulk of the computational effort is spent on creating and

updating the particle approximations and score vector approximations.

1.4.1 Additive Functions for Greeks

From the decomposition in (1.4.4), it is apparent that additive functions appear when

approximating Greeks using the SMC approach. In this section, a cascade of these additive

functions are derived under a general framework. As before, suppose that ∂
∂θi

ϕ(y1:n) = 0, for

i = 1, . . . , d. Let pθ(y0:n) be the likelihood of a path of the underlying and for brevity define the

following partial derivatives of the log-likelihoods for i, j, k = 1, . . . , d:

li :=
∂ log pθ(y0:n)

∂θi
, li,j :=

∂2 log pθ(y0:n)

∂θi∂θj
, li,j,k :=

∂3 log pθ(y0:n)

∂θi∂θj∂θk
.

The following proposition defines additive functions for approximating Greeks with respect to

different parameters. Recall that ϕ is the option payoff, and pθ(y0:n) is defined in (1.4.1). These

functions allow Greeks to be expressed as
�

X n+1
ϕ(y1:n)φα(y0:n)pθ(y0:n)dy0:n ,

for some additive functions

φα :=
∂αV

∂θα
=

∂nV

∂θ1 . . . ∂θn
,

and a multi-index α = (α1, . . . , αn) ∈ {1, . . . , d}n. The next few results have been adapted from

the early discrete-event literature [Rub89, (4) and (7)].

Proposition 1.4.1 (First-order additive functions). For any i = 1, . . . , d, then φi = li.
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Proof. Observe that

pθ(y0:n)
∂

∂θ
log pθ(y0:n) =

∂

∂θ
pθ(y0:n);

for θi, differentiation of the initial option value V yields

∂V

∂θi
:=

∂

∂θi

�

X n+1
ϕ(y1:n)pθ(y0:n)dy0:n =

�

X n+1
ϕ(y1:n)li pθ(y0:n)dy0:n .

This follows from (1.4.3), and the assumption that ∂
∂θi

ϕ(y1:n) = 0. ✷

Differentiating V for higher order Greeks, yields further additive functions:

Corollary 1.4.1 (Second-order additive functions). For any i, j ∈ {1, . . . , d}, then

φi,j = φiφj + li,j .

Proof. From the proof of Proposition 1.4.1, [Gly89, Section 3] and the product rule

∂2V0
∂θi∂θj

:= ∂
∂θj

∂
∂θi

�

Rn+1 ϕ(Y1:n)pθ(Y0:n) dY0:n

= ∂
∂θj

�

Rn+1 ϕ(Y1:n)li pθ(Y0:n)dY0:n

=
�

Rn+1 ϕ(Y1:n)lilj pθ(Y0:n)dY0:n +
�

Rn+1 ϕ(Y1:n)li,j pθ(Y0:n)dY0:n ,

(1.4.5)

which concludes the proof. ✷

Note that li is re-used to calculate the second-order Greeks. Assuming that first-order Greeks

were approximated, there is just one new term, li,j, to be calculated.

Corollary 1.4.2 (Third-order additive functions). For any i, j, k ∈ {1, . . . , d}, then φi,j,k =

liljlk + li,jlk + li,klj + lj,kli + li,j,k.

Proof. Differentiating (1.4.5) yields

∂3V0

∂θi∂θj∂θk
:=

∂

∂θk

�

Rn+1
ϕ(Y1:n)

�

lilj + li,j
�

pθ(Y0:n)dY0:n

=
�

Rn+1
ϕ(Y1:n)

�

�

lilj + li,j
� ∂pθ(Y0:n)

∂θk
+

∂
�

lilj + li,j
�

∂θk
pθ(Y0:n)

�

dY0:n

=
�

Rn+1
ϕ(Y1:n)

�

�

lilj + li,j
�

lk +
∂
�

lilj + li,j
�

∂θk

�

pθ(Y0:n)dY0:n

=
�

Rn+1
ϕ(Y1:n)

�

liljlk + li,jlk + li,klj + lj,kli + li,j,k
�

pθ(Y0:n)dY0:n .
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✷

Again, note that higher-order additive functions contain previously evaluated terms.

Remark 1.4.1. As a slight abuse of notation, denote le as the component of the additive function with

respect to e, for all elements e ∈ θ.

Remark 1.4.2. The likelihood ratio method for computing Greeks in the Black-Scholes framework is

treated in [Gla03, Chapter 7.3]. The validity of this approach relies on the ability of changing the order

of integration and differentiation, which can be justified for smooth probability densities—unlike the

pathwise technique for Greeks computation, no smoothness conditions are imposed on the option payoff.

To compute Greeks using this approach, suppose that

∂

∂θ
Epθ

[ϕ(X)] =
�

X
ϕ(X)

∂

∂θ
pθ(X)dX.

The likelihood ratio method usually produces estimates for the Greeks with increasing variance, as the

number of time steps increases—this feature is particularly unattractive in a sequential Monte Carlo

framework, since the MSE of the algorithm increases with n, as shall be seen in Section 1.5.

1.4.2 Greek Calculations for stochastic volatility model

In the general introduction, several models for stochastic volatility were mentioned. The Black-

Scholes model can be thought of as a “HMM”, with a constant volatility. This is to motivate the

subject of HMMs for the price dynamics of the underlying, conditioned on the volatility which

is unobserved. This Black-Scholes formulation is used to test the technique and compare the

Greek approximations to the known closed-form values.

Example 1.4.1. For the Black-Scholes model, sensitivities with respect to parameters θ := (x, σ, r, T)

are computed, where x is the initial underlying price, σ is the initial volatility, r is the interest rate (or

drift) and T is the expiry time of the option.

Example 1.4.2 (Random walk for log-volatility). A Brownian walk is now considered as the dynamic

for the log-volatility process driving the asset price that follows a geometric Brownian motion. W(1) and

W(2) are independent Brownian motions. The model can be written as the solution to the stochastic

differential equation

Hidden: dσt = 1
2 σtη

2dt + σtηdW
(1)
t , σ0 = σ,

Observed: dst = rstdt + σtstdW
(2)
t , s0 = x.

(1.4.6)
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This model has parameters θ := (x, σ, r, T, η), where η is the “volatility” of the log-volatility process.

Assume the following Bayesian set up where σ0:n is the volatility path and s0:n is the underlying

asset price path. Suppose an equidistant time discretisation with time steps of size h := T/n,

and define ak := r − σ2
k /2.

Remark 1.4.3. Consider (Wk)k=1,...,n and (Zk)k=1,...,n being i.i.d. N(0, 1) distributed random

variables, and let

σ̂k+1 = σ̂k exp
�

η
√

hWk

�

, σ̂0 = σ,

ŝk+1 = ŝk exp
�

(r − 1
2 σ̂k)h + σ̂k

√
hZk

�

, ŝ0 = x,

where (ŝk)k≥0 and (σ̂)k≥0 are the discretised processes for the underlying and volatility. The following

results on the additive functions is expressed in terms of the random variables (Wk, Zk)k=1,...,n.

Once a stochastic volatility model is chosen, the score vector for each sensitivity is

approximated according to (1.4.4). This translates to calculating the additive function for the

different Greeks. The additive functions are separated by the contribution from the transition

densities fθ and gθ; denote by l
f
x , the contribution from the latent process transition density

fθ(σk|σk−1), and l
g
x as the additive function contribution from gθ(sk|σk), for the sensitivity with

respect to parameter x (initial underlying). Define

l
f
x :=

n

∑
k=1

E

�

∂

∂x
log fθ(σk|σk−1)|s0:n

�

, l
g
x :=

n

∑
k=0

E

�

∂

∂x
log gθ(sk|σk)|s0:n

�

;

the definition extends to l
f
σ, l

g
σ, and other parameters.

Proposition 1.4.2 (Delta). The additive function for the Delta in Example 1.4.2 is

φx = lx = l
f
x =

Z1

xσ
√

h
.

Proof. From Proposition 1.4.1 and one time step,

pθ(s0:1) =
�

X
pθ(s1|σ1, s0) fθ(σ1|σ0)dσ1.

Generalising this for the n steps, and following on from (1.4.4), observe that all terms apart

from ∂
∂x log pθ(s1|σ0, s0) are null. Using Fisher’s identity (see [DMS14, Appendix D.3, p.495])
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yields

∂

∂x
log pθ(s0:n) = E

�

∂

∂x
log fθ(σ1|σ)|s0:n

�

+ E

�

∂

∂x
log pθ(s1|σ, s0)|s0:n

�

= E

�

∂

∂x
log pθ(s1|σ, x)|s0:n

�

,

which demonstrates that l
f
x = 0. It follows from [Gla03, (7.33),(7.34)] that

Z1 =
log(s1/x)− a0h

σ
√

h
∼ N(0, 1),

therefore

∂

∂x
log pθ(s1|σ, x) =

∂

∂x

�

−1
2

�

log(s1/x)− a0h

σ
√

h

�2
�

=
∂

∂x

�

−Z2
1

2

�

=
Z1

xσ
√

h
.

✷

Remark 1.4.4. It is rather intuitive that l
f
x provides no contribution to the additive function lx; the

density of the latent state differentiated with respect to the initial asset price is zero, since the volatility

drives the asset, and not the other way around.

The additive functions for other sensitivities can be similarly computed:

Proposition 1.4.3 (Vega). The additive function for the Vega in Example 1.4.2 is φσ = lσ = l
f
σ + l

g
σ

where

l
f
σ :=

W1

ση
√

h
, l

g
σ :=

n

∑
k=1

�

Z2
k − 1
σ

− Zk

√
h

�

.

Proof. Recall that for k = 1, . . . , n, Wk := log(σk)−log(σk−1)

η
√

h
∼ N(0, 1); upon differentiation of

log fθ(σk|σk−1) with respect to σ, observe that analogously to the Delta computation, just one

term is left, namely W1/(ση
√

h). For the proof of l
g
σ, see [Gla03, p.405 (7.37)]. ✷

The sensitivity with respect to the drift parameter, r, and the expiry time of the option, T, are

now computed:

Proposition 1.4.4 (Rho). The additive function for the sensitivity Rho of Example 1.4.2 is

φr = lr = l
g
r =

n

∑
k=1

Zk

√
h

σk−1
.
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Proof. Differentiation for l
f
r clearly yields zero, since the interest rate does not play a role in

the transition density for the latent state in the model. To obtain l
g
r , observe that ∂Zk/∂r =

−
√

h/σk−1, which concludes the proof. ✷

Proposition 1.4.5 (Theta). The additive function for the Theta of Example 1.4.2 is φT = lT = l
f
T + l

g
T,

where

l
f
T :=

n

∑
k=1

W2
k

2T
, l

g
T :=

n

∑
k=1

�

Zkak−1
√

h

σk−1T
+

Z2
k

2T

�

.

Remark 1.4.5. There is a particular difference in the forms of the additive functions. For the case of

the Delta and Gamma, the additive functions consist only of the first time step contribution, whereas

additive functions for σ, r and T have a summation across all time steps. The Gamma additive function,

l
g
x,x is derived in [Gla03, p.411 (7.45)], and l

f
x,x := 0 for the stochastic volatility model considered.

Proposition 1.4.6 (Vanna). The additive function for the Vanna of Example 1.4.2 is φx,σ = lx,σ + lxlσ,

where lx,σ = l
f
x,σ + l

g
x,σ and

l
f
x,σ := 0, l

g
x,σ :=

1
xσ

− 2Z1

xσ2
√

h
.

Proof. Combining the results for l
f
x and l

f
σ, the additive function l

f
x,σ is zero. For l

f
x,σ observe

that

l
g
x,σ =

∂

∂σ
l
g
x =

∂

∂σ

Z1

xσ
√

h
=

xσ
√

h ∂
∂σ (Z1)− Z1x

√
h

x2σ2h
=

1
xσ

− 2Z1

xσ2
√

h
,

and the proof is concluded using Corollary 1.4.1. ✷

Corollary 1.4.3 (Random walk for the log-volatility). Suppose the model in (1.4.6), for some fixed θ.

Then, the additive function components for the first and second-order Greeks are in Table 1.1.

The results are derived continuing from the previous five propositions, hence omitted. From

the previous conventions it follows that lσ,σ := l
f
σ,σ + l

g
σ,σ, and similarly for lx,T and lσ,T.

Consequently using Proposition 1.4.1 and Corollary 1.4.1 the Greek additive functions can be

explicited:
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Order Name Value

1 l
f
x 0

1 l
g
x

Z1

xσ
√

h

1 l
f
σ

W1

ση
√

h

1 l
g
σ

n

∑
k=1

�

Z2
k − 1
σ

− Zk

√
h

�

1 l
f
r 0

1 l
g
r

n

∑
k=1

Zk

√
h

σk−1

1 l
f
T

n

∑
k=1

W2
k

2T

1 l
g
T

n

∑
k=1

�

Zkak−1
√

h

σk−1T
+

Z2
k

2T

�

2 l
f
x,x 0

2 l
g
x,x − 1

x2σ2h
− log(s1/x)− a0h

x2σ2h
2 l

f
x,σ 0

2 l
g
x,σ

1
xσ

− 2Z1

xσ2
√

h
2 l

f
x,T 0

2 l
g
x,T − a0

xσ2T
− Z1

σ
√

hxT

2 l
f
σ,σ

−1
σ2η2h

− W1

σ2η
√

h

2 l
g
σ,σ

n

∑
k=1

�

3
√

hZkσk − hσ2
k − 3Z2

k + 1

σ2
k

�

2 l
f
σ,T

n

∑
k=1

Wk(σk−1 − σk)

Tσkσk−1η
√

h

2 l
g
σ,T

n

∑
k=1

�

− Z2
k

Tσk−1
+

�

1

T
√

h
−

T(ak−1 + σ2
k−1 + ak−1

√
h)

σ2
k−1T2

�

Zk +
ak−1

σk−1T
√

h

�

Table 1.1: Components of additive functions for the stochastic volatility model in Example 1.4.2.
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Corollary 1.4.4. The additive functions for the second-order Greeks are:

Gamma: φx,x = lx,x + lxlx,

Vanna: φx,σ = lx,σ + lxlσ,

Charm: φx,T = lx,T + lxlT ,

Vomma: φσ,σ = lσ,σ + lσlσ,

Veta: φσ,T = lσ,T + lσlT.

Remark 1.4.6.

(i) Observe that the variance of the additive functions increases as the step size, h, decreases. This

shall be observed in the numerical results section, where the error for Greeks with respect to the

latent volatility is considerably higher than that for Greeks with respect to the underlying.

(ii) The additive functions in the likelihood ratio method are agnostic of the option payoff-.

(iii) The choice of the stochastic volatility model is somewhat arbitrary; although tables for other models

are not included, it is straightforward to derive the additive functions following the steps prescribed

from the previous claims.

1.5 Convergence

This section reviews particle filtering convergence results in discrete time, which are adapted

for the proposed approach [BC09, CD00, CD02]. The main results for convergence of the

FS-SMC algorithm are shown for bounded payoff functions, however the approach can be

extended for a general class of unbounded functions [HSL08].

Recall that the latent process, X = (Xk)k∈N, Xk ∈ R
d, is a stochastic Markov process defined

on the probability triple (Ω,F , P). For shorthand, denote by g
yk

k the density gθ(yk|·) and fk for

fθ(xk|·). There exists a recurrence formula for the distribution of the random variable, Xk. For

A ⊆ X , define the random density π
Y0:k
k as

π
Y0:k
k (A) := P(Xk ∈ A|Y0:k)

and the expectation with respect to function ϕ as π
Y0:k
k ϕ := E[ϕ(Xk)|Y0:k]. Particle filtering

approximates the random measure π
Y0:k
k , which can be used to calculate the expectation with

respect to any bounded function ϕ. From now on, fixed paths Y0:n = y0:n are taken. For each
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individual realisation, y0:n, the conditional density and expectations are

π
y0:k
k (A) := P(Xk ∈ A|Y0:k = y0:k) , π

y0:k
k ϕ := E[ϕ(Xk)|Y0:k = y0:k] .

To ease notation, the explicit dependence on the path y0:k is omitted. Define the empirical

measure created from the position of the N particles {x
(i)
k }i=1,...,N as

πN
k :=

1
N

N

∑
i=1

δ(xk
(i)) ,

where the samples are generated from an SMC method (for example, using Algorithm 1.2.1).

The weighted measure and the predictive empirical measures are

π̄N
k :=

N

∑
i=1

w
(i)
k δ(xk

(i)) , pN
k :=

1
N

N

∑
i=1

δ
(x̄

(i)
k )

,

where x̄
(i)
k ∼ fθ

�

.|x(i)k−1

�

is the particle position after the predictive step.

Definition 1.5.1. Let p be a measure (non-null everywhere) and let ϕ be a non-negative, bounded

function. The projective product associated with a function, ϕ : R → R, is defined as p(ϕ) :=
�

Rd ϕ(x)p(x)dx. Furthermore, suppose that p(ϕ) > 0. The projective operator ⋆ is the set function

defined by

ϕ ⋆ p(A) :=

�

A ϕ(x)p(x)dx

p(ϕ)
, for all A ∈ B(Rd) .

The next result establishes the recurrence formula, consisting of a predictive and updating step:

Proposition 1.5.1 ([BC09, Proposition 10.6]). For a fixed path y0:k the probability measure π
y0:k
k

satisfies the recurrence relation π
y0:k
k = g

yk

k ⋆

�

fkπ
y0:k−1
k−1

�

, PY0:k
− almost surely.

The term fkπ
y0:k−1
k−1 is the prediction step, occurring before the new observation yk becomes

available. The second step updates the density taking into account the new information yk.

Intuitively, for the fixed observation case πN
k converges to π

y0:k
k and pN

k converges to p
y0:k−1
k

almost surely if

• πN
0 tends to the correct initial distribution;

• the limit of the distance between the predictive sequence pN
k and fkπN

k−1 is zero.

Throughout, assume that the following conditions are satisfied:
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• pN
k and πN

k are random, non-null everywhere measures;

• pN
k g

yk

k > 0 for all N > 0 and time steps k.

Convergence for the SMC method presented in Algorithm 1.2.1 is proved inductively, with

bounds in terms of the number of particles and a stochastically increasing constant with time:

Lemma 1.5.1 ([BC09, Corollary 10.28]). Suppose that ϕ is bounded. Then, for all k = 1, . . . , n,

E
�

(πN
k ϕ − π

y0:k
k ϕ)2

�

≤ Ck/N, for some constant Ck depending on time.

1.5.1 Convergence for Greeks

For the application proposed, consider the family of simplified additive functions Sn(x0:n) =

∑
n
k=0 sk(xk), where sk : R → R. Define �sk� := supx∈R

|sk(x)|, and denote the oscillation of sk

by osc(sk) := supx,y∈R
|sk(x)− sk(y)|. The following regularity assumptions are considered:

(Hb): There exist 0 < ρ, δ < ∞ such that for all x, x′ ∈ X , y ∈ Y and θ ∈ Θ,

ρ−1 ≤ fθ

�

x′|x
�

≤ ρ , δ−1 ≤ gθ (y|x) ≤ δ ;

furthermore, sk are bounded and osc(sk) ≤ 1 for all k = 1, . . . , n.

Recall (1.3.5). The next lemma provides a bound on the mean squared error of Sθ
n:

Lemma 1.5.2 ([DMDS09, Theorem 3.1]). Assume that (Hb) holds and θ ∈ Θ. Then,

E

�

|Ŝθ
n − Sθ

n|2
�

≤ C(n + 1)
N

�

1 +

�

n + 1
N

�2

,

where C is a finite constant, independent of N, θ and the choice of additive functions.

Convergence of Algorithm 1.3.2 relies on (Hb), however the authors suggest that

numerical studies do not always require them in order for the algorithm to perform

satisfactorily [DMDS09].

The error of the approximation is bounded using the number of particles and the number of

simulated paths. Path dependence is introduced in the definition of the smoothed additive

functionals, i.e. for path j, define the expectation of the additive functional as

Sθ,j
n (y

(j)
0:n) := E

�

Sn(X0:n)|y(j)
0:n

�

.
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Denote Ŝθ,j
n (y

(j)
0:n) as the SMC approximations of Sθ,j

n (y
(j)
0:n), using N particles. Using

Lemma 1.5.2, the main result of this section on the convergence for approximating Greeks

follows:

Theorem 1.5.1. Assume that (Hb) holds and that ϕ is bounded. Consider Algorithm 1.3.2 with N

particles and M simulated paths. Then,

E





�

1
M

M

∑
j=1

ϕ(y
(j)
0:n)Ŝ

θ,j
n (y

(j)
0:n)−

�

Rn+1
ϕ(Y0:n)Sθ

n(Y0:n)pθ(Y0:n)dY0:n

�2




≤ C





1
NM

�

1 +

�

n + 1
N

�2

+
1
M



 ,

(1.5.1)

where C is a constant independent of N, M, θ depending on the choice of additive functions.

Proof. Applying Minkowski’s Lemma to the left-hand side of (1.5.1) yields

E





�

1
M

M

∑
j=1

ϕ(y
(j)
0:n)Ŝ

θ,j
n (y

(j)
0:n)−

�

Rn+1
ϕ(Y0:n)Sθ

n(Y0:n)pθ(Y0:n)dY0:n

�2


 ≤ 2
�

E

�

Λ2
�

+ E

�

Υ2
��

,

where

Λ :=
1
M

M

∑
j=1

ϕ(y
(j)
0:n)Ŝ

θ,j
n (y

(j)
0:n)−

1
M

M

∑
j=1

ϕ(y
(j)
0:n)S

θ,j
n (y

(j)
0:n) ,

and

Υ :=
1
M

M

∑
j=1

ϕ(y
(j)
0:n)S

θ,j
n (y

(j)
0:n)−

�

Rn+1
ϕ(Y0:n)Sθ

n(Y0:n)pθ(Y0:n)dY0:n .

Thus, E
�

Λ2
�

can be bounded using Lemma 1.5.2, the boundedness of ϕ, the independence

of paths (y
(j)
0:n)

M
j=1 and the fact that the approximation Ŝθ,j

n (y
(j)
0:n) is an unbiased estimator of
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Sθ,j
n (y

(j)
0:n):

E
�
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�
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�
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(j)
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�

�2




=
C
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M
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E

��

Ŝθ,j
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n (y
(j)
0:n)
� �

Ŝθ,l
n (y

(l)
0:n)− Sθ,l

n (y
(l)
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��

=
C

M2

M

∑
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E

�

�

Ŝθ,j
n (y

(j)
0:n)− Sθ,j

n (y
(j)
0:n)
�2
�

=
C

M
E

�

�

Ŝθ,j
n (y

(j)
0:n)− Sθ,j

n (y
(j)
0:n)
�2
�

≤ C

NM

�

1 +

�

n + 1
N

�2

.

The expectation of Υ2 is bounded using the Monte Carlo error by observing that

E

�

Υ2
�

= E





�

1
M

M

∑
j=1

ϕ(y
(j)
0:n)S

θ,j
n (y

(j)
0:n)−

�

Rn+1
ϕ(Y0:n)Sθ

n(Y0:n)pθ(Y0:n)dY0:n

�2


 =
C

M
,

where C := V[ϕ(Y0:n)Sθ
n(Y0:n)] < ∞, since ϕ and Sθ

n(Y0:n) are finite. Combining the two

bounds proves the claim. ✷

For general discretisation schemes, assume a weak rate of convergence q > 0, i.e. for

approximations (x̂k, ŷk)k=1,...,n of (xk, yk)k=1,...,n, assume that
�

�

�

�

E[Φ(x0:n, y0:n)]− E[Φ(x̂0:n, ŷ0:n)]

�

�

�

�

≤ C/nq, (1.5.2)

for all sufficiently smooth functional Φ : X n+1 × Yn+1 → R. For the next corollary

Φ(x0:n, y0:n) := ϕ(y0:n)Sθ
n(y0:n).

Corollary 1.5.1. Assume that (Hb) holds, ϕ is bounded, and that (1.5.2) holds for some q > 0. Consider

Algorithm 1.3.2 with N particles and M simulated paths for n time steps. Then,
�

�

�

�

E

�

1
M

M

∑
j=1

ϕ(ŷ
(j)
0:n)Ŝ

θ,j
n (ŷ

(j)
0:n)

�

− E

�

�

Rn+1
ϕ(Y0:n)Sθ

n(Y0:n)pθ(Y0:n)dY0:n

� �

�

�

�

≤ C







1
nq +

�

�

�

�

1
NM

�

1 +

�

n + 1
N

�2

+
1
M






,

where C is a constant independent of N, M, θ and depending on the choice of additive functions.
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The corollary follows from the previous theorem. Corollary 1.5.1 suggests how parameters

N, M should be chosen for a fixed computational effort; the cost of the FS-SMC algorithm

is O(nN2M). Therefore, choosing N proportional to nα and M proportional to nβ for some

α, β, convergence for discretisation schemes with a weak convergence of rate q are obtained.

From the above MSE, 2q ≤ β and 2q ≤ 2α + β − 1 imply that it is sufficient to choose α = 1/2

and β = 2q.

Example 1.5.1.

• Euler scheme with q = 1: for n = 100 time steps, selecting N = 10 and M = 10000 is a sensible

choice of parameters according to the corollary. Observe that the number of particles increases for

a large number of paths, M.

• For a higher-order scheme with a rate of weak convergence q = 2, (M, N, n) = (108, 10, 100) is

an appropriate choice. It seems apparent that considering weak Taylor approximations of higher

order for general stochastic volatility models would be beneficial for controlling the cost of the

algorithm, given that increasing the number of particles is particularly computationally expensive

in this framework.

1.6 Numerical Results

In this section, numerical results are presented for approximating Greeks. First, the FS-SMC

algorithm is applied to the Black-Scholes model in order to validate the technique — the setting

is taken to be a “HMM” with fixed volatility. Later, the stochastic volatility model in (1.4.6) is

considered. Finally, an indirect method to validate the Greeks for option price replication is

implemented. The aim is to track the option price through a Taylor expansion of the option

price with respect to first-order and second-order Greeks. It is shown that tracking using a

stochastic volatility model greatly outperforms tracking using the Black-Scholes Greeks. An

example of tracking an S&P 500 call option over one month is considered using the Delta,

Gamma, Vega and Theta.

Denote by (M, N, n, R) the parameters of a particular experiment, where M is the number of

simulated underlying paths, N is the number of particles used to approximate the score vector

for each path, n is the number of time steps, and R is the number of repeats for the experiment.

The number of repeats demonstrates the variability in the Greek approximations across runs.
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Remark 1.6.1. Upon using Algorithm 1.3.2, the bulk of the computational effort is to compute the score

vector. The efficiency is greatly improved, by only approximating the score vector for those paths that

expire in the money; otherwise the score vector is set to zero. This is particularly important for options

with a low probability of expiring in-the-money.

1.6.1 Black-Scholes

In this section the methodology is applied to the Black-Scholes model. Consider the Delta

of a European call option with parameters (x, σ, r, T) = (100, 0.249, 0.03, 30/365), and

strikes K = 80, . . . , 120, in steps of 1. First, run the SMC algorithm using the parameters

(M, N, n, R) = (10000, 1000, 1, 1), which has a runtime of 10345 seconds (2:53 hours), displayed

in Figure 1.1 (Left). The step size for the time discretisation is h = 30/365. Observe that for

a wide range of strikes, the Delta approximation using the SMC approach is of reasonable

accuracy by comparison to the closed-form solution.

Figure 1.1: (Left): (M, N, n, R) = (10000, 1000, 1, 1). (Right): (M, N, n, R) = (1000, 1000, 10, 1).

Now, the algorithm is repeated for (M, N, n, R) = (1000, 1000, 10, 1), which took 10009 seconds

(2:47 hours). The results are displayed in Figure 1.1 (Right). The step size now is h = 3/365.
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The time steps are increased from 1 to 10, and the number of paths simulated, M, are reduced

from 10000 to 1000. From Theorem 1.5.1, the discrepancy between the SMC approximation for

the Delta and the true Black-Scholes Delta is expected to increase, as the error propagates as

time steps increase and the number of particles decreases. This is demonstrated by the large

noise present in the SMC approximation in Figure 1.1 (Right).

Figure 1.1 (Right) shows how a reduction in the number of Monte Carlo paths and an increase

in the number of time steps has a detrimental effect to the accuracy of the Delta approximation

as expected by the theory. In the Black-Scholes scenario it is unnecessary to have a large

number of particles approximating the “hidden” state of the volatility, as it is kept constant—

indeed, fixing N = 1 yields the same results. Additionally, since the option is not path

dependent, n = 1 suffices. For each strike, K, the calculations are repeated and a new set of

particles approximations are created—the approach used here demonstrates the noise between

the different runs.

Example 1.6.1. Parallelisation across strikes and payoffs is possible so that Greeks for a family of

options can be computed using the same SMC approximations. This approach provides “smoother”

results as the same realisation is used as demonstrated in Figure 1.2. The run took 12 seconds, for

(M, N, n, R) = (100000, 1, 1, 1), and the same Black-Scholes parameters.

Example 1.6.2. Consider a Black-Scholes model with parameters (x, σ, r, T) = (100, 0.3, 0.03, 30/365),

and a call option with strike K = 100. The closed-form sensitivities for this option are (Δ, V , Θ, Γ) =

(0.528569, 11.40798,−22.2988, 0.046266). Using the likelihood ratio method in the SMC framework

with (M, N, n, R) = (1000000, 1, 1, 1) yields (Δ̂, V̂ , Θ̂, Γ̂) = (0.529, 11.4,−22.4, 0.0463), and took

166 seconds. Note that due to the absence of stochastic volatility, just one particle is used.

From Theorem 1.5.1, recall that for fixed time steps n, and fixed number of particles N, the mean

squared error of the Greek approximations has rate of convergence O(1/M), in the number of

simulated trajectories. The algorithm is applied with parameters (N, n, R) = (1, 1, 100), to the

call option in the previous example, for M = (2i)i=10,...,18, and compute the mean squared error

over the R = 100 repeats. The results for the four Greeks are presented in Figure 1.3, with the

displayed rate matching the predicted rate from Theorem 1.5.1.
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Figure 1.2: BS vs SMC, parallelised across K = 80, . . . , 120. Greeks: Δ, V , Θ and Γ.
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Figure 1.3: Rate of convergence for Δ, V , Θ and Γ (log− log scale).
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Figure 1.4: Box plots for the Greeks using Monte Carlo bumping.

1.6.2 Stochastic Volatility Greeks

Consider a call option with strike price K = 110, and the following parameters: (x, σ, r, T, η) =

(100, 0.3, 0.03, 30/365, 0.3), and compute the Greeks with respect to the underlying and the

volatility using Monte Carlo simulation and finite differences. Greek computed using bumping

with (M, n, R) = (1000000, 10, 30) are shown in Figure 1.4. Each run took 40 seconds, to give a

combined total of 20 minutes.

Remark 1.6.2. The steps for the finite differences are hx := x/
√

M and hσ := σ/
√

M. There was

some level of tuning for choosing appropriate bump sizes, as picking the offsets too small or too large can

produce poor results. Asymptotically, it is well known how to select the optimal hx and hσ to control the

bias and variance [Gla03, Chapter 7.1.2].

For the same option parameters, consider the SMC algorithm with parameters (M, N, n, R) =

(100000, 50, 10, 30), and the Greeks obtained are summarised in Figure 1.5. Each run took 450

seconds, for a combined total of 225 minutes, which is around ten-fold more computationally

expensive compared with the bumping example above. Observe that the approximations using

the SMC approach have much wider confidence intervals for the Greeks compared to the
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Figure 1.5: Box plots for the Greeks using SMC technique.

bumping approach. In addition, the Vomma approximation is particularly bad, suggesting a

need for an increase in particles and paths. Having said that, the mean of the 30 approximations

provides a workable Greek approximation, and the bumping approximations are within the

interquartile range of the SMC approximations.

Example 1.6.3 (Resampling). The SMC algorithm included multinomial resampling and a resampling

threshold of N/3. Repeating the experiment is now slightly more expensive (mainly due to computing

the ESS at each time step), and now each run takes 510 seconds for the parameters (M, N, n, R) =

(100000, 50, 10, 30). The results are presented in Figure 1.6. The results are comparable to those without

resampling, especially as the rate of resampling is really low (an average of 0.015 resampling steps per

path). Resampling would have a greater effect for a larger n, when more resampling steps are required.

Example 1.6.4. Recall Section 1.5 (recall Corollary 1.5.1). Fix the number of repeats to R = 250

and consider n = 2, 4, 8, . . . , 64. The measure of error used is the Mean Absolute Error (MAE). Fix

the number of particles N to be proportional to n1/2 and the number of paths M to be proportional

to n2, since a weak convergence of order one is supposed for the explicit Euler scheme. In Figure 1.7,

convergence for the Greek approximations is observed, albeit with a slow rate for the Vomma. The rate of
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Figure 1.6: Box plots for the Greeks using SMC technique, and multinomial resampling.
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Figure 1.7: Example 1.6.4. Mean absolute error vs n (log− log scale).
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resampling increases exponentially for a larger number of time steps, as expected.

1.6.3 Tracking Option prices using Greeks

In this section, an option price is tracked using Greeks, from 02/09/2010 to 28/09/2010.

Consider the S&P European call option, with strike K = 1100. Taylor expanding the option

price, V, using Greeks Vi, Vi,j and Vi,j,k, leads to

dV =
d

∑
i=1

Vidθi +
1
2

d

∑
i=1

d

∑
j=1

Vi,jdθidθj +
1
6

d

∑
i=1

d

∑
j=1

d

∑
k=1

Vi,j,kdθidθjdθk + . . . . (1.6.1)

Consider the Taylor expansion

dV = ΔdS +
1
2

Γ (dS)2 + Vdσ + ΘdT + ǫ . (1.6.2)

where ǫ denotes the error, and Δ, V , Γ and Θ are the Delta, Vega, Gamma and Theta.

The SMC algorithm is ran at each time step to calculate the Greeks and track the option price

with the Taylor expansion in (1.6.2). For the stochastic volatility model in Example 1.4.2

tracking is superior to that of the Black-Scholes Greeks, as shown in Figure 1.8. The initial

volatility is chosen as the implied volatility, computed every day. For the stochastic volatility

set-up, a value for η is required; this was approximated to 0.0042 for the option data, by

calculating the standard deviation of historical implied volatilities. For each data point,

the algorithm was ran using the stochastic volatility model with parameters (M, N, n, R) =

(100, 10, 1, 1000) and (r, σ, η) = (0.007, 0.22, 0.0042), with a total run time of 2:02 hours for

all 16 data points. The other input parameters are all market observed. The absolute error

terms, |ǫ|, from (1.6.2) are studied. Denote ǫBS as the error term in the call price after Taylor

expansion using the Black-Scholes Greeks, and ǫSV as the error from Taylor expanding using

Greeks from the stochastic volatility model. The mean and variance of the absolute errors

compare favourably for the SMC Taylor expansion in comparison to the Taylor expansion

using the Black-Scholes Greeks. The errors in tracking using the Black-Scholes Greeks have

moments E|ǫBS| = 6.48 and V|ǫBS| = 9.26. For the SMC tracking, the moments for the errors

are E|ǫSV | = 2.13 and V|ǫSV | = 2.21. There is a considerable amount of improvement in the

tracking ability.

Remark 1.6.3. The tracking of option prices using the Greeks is highly dependent on the movement of
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the underlying every day, dS, as it affects the tracked price due to the Delta and Gamma. This plays a

very important role in the tracking of an option, as it often contributes the biggest change in the value

of a derivative. Other components such as the dT (change in time) are obviously predictable due to the

arrow of time, and constant expiration of the option. For weekends, and non-working day, it is assumed

that several days have gone by; in other words, time is not “stopped” over weekends.

The results show that robust Greek calculations from a stochastic volatility model can

potentially improve the tracking ability of the option price. More Greeks could be used for

the Taylor expansion, however they have very little effect on the tracked price.

1.7 Future work

A general framework for calculating option Greeks is introduced and an SMC method is

applied to a real financial application. Convergence results have been provided, and optimal

choices of the number of time steps, paths and particles have been discussed for simulation

schemes of varying weak rates of convergence.

The focus throughout has been on a forward-only smoothing algorithm. This has been with

the view that the method is “online” in the sense that the backward filter does not get more

expensive with time. As an alternative, the two-filter smoothing method has the potential

advantage of putting samples in desirable regions of the state for the particle filter [BDM10].

The trade-off for this method is that it is offline, however it would be interesting to study results

from different SMC methodologies.

Example 1.7.1 (Bermudan options). This SMC framework lends itself to computing Greeks for

Bermudan options. The pricing of Bermudan/American-style options can be separated into considering

low and high-biased estimates, and there have been important contributions in the pricing of such options

by simulation and regression techniques [BDGT00, LS01, Til93, Car96]. The filtering density could be

incorporated into the regression functions used for providing low-biased estimates of the option price,

i.e. regression in order to decide when the option is exercised [RB10].

As we have seen in (1.6.1), the option price can be tracked with accurate Greek calculations,

with the tracking error providing a measure for different stochastic volatility models. Further

investigating is required to determine which model provides Greeks that track the option price

best. The motivation behind this approach is that one would be able to compare models using

the tracking ability of options.
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Part II

A class of approximate Greek weights
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2. Theory

There exist several methods for estimating the price sensitivities (“Greeks”) for contingent

claims: PDE methods, finite-difference approximations through re-simulation, pathwise

techniques, likelihood ratio methods, perturbation techniques and Malliavin calculus. The

proposed approach uses Itô-Taylor approximations, and Fϑ-measurable weights for the option

payoff for some small time 0 < ϑ ≤ T, that produce biased estimates for the Greeks. We derive

and analyse Monte Carlo estimators for the Greeks in a general setting, including some families

of stochastic volatility models. In certain cases, the Greek weights obtained coincide with those

arising in the Malliavin Greeks literature (Bachelier/Black-Scholes model).

Let (Ω,F , (Ft)t∈[0,T], P) be a filtered probability space equipped with an m-dimensional

(Ft)t∈[0,T]-adapted Brownian motion W = (Wt)t∈[0,T]. Let X = (Xt)t≥0 be a d-dimensional

process, with components X
(1)
t , . . . , X

(d)
t , f : [0, T]× R

d × R
d → R

d and γ : [0, T]× R
d × R

d →
R

d×m be two functions.

We interpret process X as the stock prices. The payoff of an option depends on X, which is the

strong solution to the stochastic differential equation

Xx,θ
t = x +

� t

0
f (t, Xx,θ

t , θ)dt +
� t

0
γ(t, Xx,θ

t , θ)dWt, Xx,θ
0 = x ∈ R

d, (2.0.1)

where θ ∈ R
d is a set of given parameters. We shall drop x, θ in the above notation when it is

clear from the context. For the ith component of X, interpret the above as

X
(i)
t = X

(i)
0 +

� t

0
fi(s, Xs, θ)ds +

m

∑
j=1

� t

0
γi,j(s, Xs, θ)dW

(j)
s .

The use of SDEs to model financial assets is well studied for pricing contingent claims

(see [Hul14, Gla03, KN12] and references therein). Fix T > 0 as the time horizon of interest.

For some n ∈ N, define the grid π := {0 = t0 < t1 < . . . < tn = T}. Let g : R
dn → R be the

payoff function, and in the classical theory of the financial markets, we define the option price

V(x) as an expectation given the initial condition, X0 = x, namely

V(x) := E [g(Xt1 , . . . , Xtn)|X0 = x] . (2.0.2)
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A Monte Carlo approximation of the option price using N simulated trajectories (assuming

that the process can be perfectly simulated), where path j is denoted by (X
(j)
ti
)i=0,...,n, is

VN(x) :=
1
N

N

∑
j=1

g(X
(j)
t1

, . . . , X
(j)
tn
).

Our aim is to provide a representation of the option price sensitivities with respect to the

initial condition, ∂
∂x V(x). Later, we approximate sensitivities with respect to the parameter θ

in (2.0.1), namely vector ( ∂
∂θi

V(x))i=1,...,d. Common Greeks include the Delta (Δ), defined as

the sensitivity of the option price with respect to the initial value, and the Vega (V), i.e. the

sensitivity of the option price with respect to the volatility.

For smooth payoff functions g, the Greeks can be approximated through the pathwise approach

(see [GM02, Proposition 1.1]). An obvious constraint is the typical non-smoothness exhibited

by common payoffs.

An intuitive method to compute Greeks is through re-simulation of the option price V(x), for

different values of x, and approximating the option sensitivities through a finite difference. For

example, the Delta can be approximated by the forward difference,
�

VN(x + ε)− VN(x)
�

/ε,

for some small ε > 0, which has convergence of order O(N−1/4); for a central difference

scheme,
�

VN(x + ε)− VN(x − ε)
�

/(2ε), this can be improved to O(N−1/3) [Gly89, YK91].

Furthermore, by using common random numbers and a central difference scheme, better

convergence results up to the Monte Carlo rate of convergence O(N−1/2) can be achieved.

This approach can perform poorly for non-smooth payoff functions and exotic options [GY92].

An alternative method is the likelihood ratio method (LRM), where the computation of Greeks

is achieved by E[g(XT)H], for random weight H (see [BG96]). Such representation removes the

necessity that the payoff is smooth.

The connection between the pathwise and likelihood ratio methods, to Malliavin calculus is

explored in [CG07]. Malliavin calculus allows Greeks to be expressed in the form

∂V(x)

∂θ
= E [g(Xt1 , . . . , Xtn)πθ|X0 = x] ,

where πθ is some weight associated to a sensitivity in the θ direction [FLL+99, Ben01]. Using

Malliavin techniques with Monte Carlo simulation allows convergence rates of O(N−1/2).

Malliavin weights are known for certain families of jump-diffusion processes [DJ06, EKP04].
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In a one-dimensional setting for the underlying asset, the Δ in a Black-Scholes framework has

a Malliavin weight of wx = WT/(xγT), which is a function of the Brownian motion driving the

underlying process and the constant volatility, γ. The Vega of an option, V , can be computed

using the Malliavin weight wγ = W2
T/(γT)−WT − 1/γ, and more examples for Greek weights

can be found in [FLL+99].

Another family of methods for approximating option prices and sensitivities is the asymptotic

expansion schemes. The asymptotic expansion approach introduces a perturbation in the

model for approximating an option price. This method perturbs the general SDE in (2.0.1)

to

dXx,θ,ε
t = f (t, Xx,θ,ε

t , θ)dt + εγ(t, Xx,θ,ε
t , θ)dWt, Xx,θ,ε

0 = x ∈ R
d, θ ∈ R

d, ∀t ≥ 0,

(2.0.3)

for some ε ∈ (0, 1]. Using small order expansions, up to selected bias O(εk), for k ∈ N
+,

the option price is approximated under the perturbed model [KT01, MTU04]; there have been

extensions for stochastic volatility models in a Markovian setting [KT03]. The validity in

the Black-Scholes setting has been demonstrated for an expansion of the option price [KT03,

Theorem 3.3]. There has been efforts to apply control variate techniques to reduce the

variance when applying asymptotic expansions [MTU04], and more recent results on strong

convergence using accelerated schemes [TY12]. An extension to this family of techniques is

the asymptotic expansion of the perturbed first variation process. This can be used to derive

first-order Greeks [MTU04, Theorem 2, 3].

Motivation: We shall consider a general technique and derive biased estimates for the Greeks,

using expansions of the value function u. These approximations will take the form

Greek = E[g(XT)wϑ] +O(ϑl),

for some order l depending on the smoothness of the value function and the type of weight

considered. In addition, we work under fully implementable schemes and discuss the

convergence rate of the Greek approximations using either the strong or the weak rates of

convergence of the process X. The idea above will be formalised and higher-order Greek

expansions will be derived.
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Notations: In the following, denote by C a constant that depends only on T, f , γ, x, θ, but

whose value does not depend on the number of steps n (its value may change from line to

line). Denote a constant by Cr if it depends on any additional parameter r. Let C be the set of

continuous functions, and denote Cb the subset of bounded continuous functions. Denote by C l
b

the set of continuous functions, whose first l derivatives are continuous and bounded. Denote

by Cp the set of continuous functions ϕ with at most polynomial growth, e.g. for all x it holds

that |ϕ(x)| ≤ C(1 + |x|q) for some q > 0. Let N
+ be the set of strictly positive integers, and

N := N
+ ∪ {0}. For a matrix M, denote by M∗ its transpose. We shall denote by O(hk) that

the limit for small h is such that

lim
h→0

O(hk)

hk
= C,

for some constant C that does not depend on n.

2.1 Introduction

Let (Ω,F , (F )t∈[0,T], P) be a filtered probability space equipped with an m-dimensional

(F )t∈[0,T]-adapted Brownian motion W = (Wt)t∈[0,T]. In the setting where f , γ, g are Lipschitz

continuous, define Yt = E[g(XT)|Ft] = u(t, Xt), where u : [0, T] × R
d → R is the solution

(possibly in the viscosity sense) to the partial differential equation

L(0)u(t, ·) = 0, t ∈ [0, T), and u(T, ·) = g(·), (2.1.1)

with the operators L(1), . . . , L(m), L(0) defined as (we use the notation ∂x ≡ ∂
∂x )

L(j) :=
d

∑
k=1

γk,j∂xk
for j = 1, . . . , m, (2.1.2)

L(0) :=∂t +
d

∑
k=1

fk∂xk
+

1
2

d

∑
k=1,j=1

ak,j∂xk
∂xj

, (2.1.3)

and a = (ak,j) = γγ∗. Under smoothness assumptions on the coefficients, it is possible to show

that u ∈ C1,2([0, T]× R
d → R) is a classical solution to the above PDE. In this case application

of Itô’s formula, yields the representation

Yt = g(XT)−
� T

t
Z∗

t dWt, YT = g(XT), (2.1.4)
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where Y ∈ R, Z ∈ R
d, g : R

d → R is a measurable function with polynomial growth, and

Zt = γ(t, Xt)∂xu(t, Xt), t ∈ [0, T].

2.2 Multi-indices and Stochastic Taylor expansions

We review the multi-indices notation from [KP92, Chapter 5]. For l ∈ N
+, define a multi-index

α = (j1, j2, . . . , jl), with ji ∈ {0, 1, . . . , m}. The number of elements in α is denoted by l := l(α).

Let n(α) denote the number of null components of α and M the set of multi-indices such that

M :=
�

α = (j1, j2, . . . , jl) : ji ∈ {0, 1, . . . , m}, i ∈ {1, . . . , l} for l, m ∈ N
+
�

∪ {∅},

where ∅ is the multi-index of length zero (i.e. l(∅) = 0). Define the following operations

on α, with l (α) ≥ 1: −α = (j2, . . . , jl), α− = (j1, . . . , jl−1) and for completeness, −(j) =

(j)− = ∅, for all j ∈ {0, . . . , m}. We define ∗ to be the concatenation operator such that

α ∗ ᾱ :=
�

j1, . . . , jl , j̄1, . . . , j̄l
�

. For α such that l(α) ≥ 1, define α+ to be the multi-index α with

null entries removed. Denote by (j)l the multi-index of length l, with entries all equal to j.

The continuous and adapted process ϕ belongs to S2([0, T]) if E

�

sups∈[0,T] |ϕs|2
�

is finite.

Definition 2.2.1 ([KP92, (5.2.12)]). Let α ∈ M and ϕ : [0, T] → R, such that ϕ ∈ S2([0, T]); define

the multiple Itô integrals for all 0 ≤ s ≤ t ≤ T by

Iα
s,t[ϕ(·)] =



























ϕ(t), if α := ∅,
� t

s
Iα−
s,u [ϕ(·)]du, if l(α) > 0 and jl(α) = 0,

� t

s
Iα−
s,u [ϕ(·)]dW

(jl(α))
u , if l(α) > 0 and jl(α) ≥ 1,

for s, t ∈ [0, T]. (2.2.1)

For shorthand define Iα
t [ϕ(·)] := Iα

0,t[ϕ(·)], for integrals beginning at time zero.

In particular, for α = (j) for all j ∈ {1, . . . , m}, then I
(j)
t [ϕ(·)] =

� t
0 ϕ(s)dW

(j)
s . For α ∈ M\{∅},

denote by Lα the operator

Lα := L(j1) ◦ L(j2) ◦ . . . ◦ L(jl), (2.2.2)

where L(i) ◦ L(j)u· ≡ L(i)
�

L(j)u·
�

. We shall write I
(k)
t = I

(k)
t [1], and uα

· ≡ Lαu·.

For α ∈ M, define k0(α) as the number of null components before the first non-zero component,

and ki(α) for i = 1, . . . , l(α+) as the number of null components in α between the ith and
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(i + 1)th non-zero components. For α, β ∈ M define

w(α, β) := l(α+) +
l(α+)

∑
i=0

(ki(α) + ki(β)) , (2.2.3)

which is the number of non-zero components in α, plus the total number of null components

in α and β. We quote a useful result, which is a simplification of [KP92, Lemma 5.7.2]:

Lemma 2.2.1. Let α, β ∈ M. Then, for any t ∈ [0, T],

E

�

Iα
t I

β
t

�

=















0, if α+ �= β+,

tw(α,β)

w(α, β)!

l(α+)

∏
i=0

C
ki(α)
ki(α)+ki(β)

, if α+ = β+,
(2.2.4)

where Ck
i := i!/(k!(i − k)!) is the usual combinatorial notation.

Itô-Taylor expansions for diffusion processes provide an extension to Itô’s formula for a smooth

function. These stochastic Taylor expansions can be written concisely using hierarchical sets of

multi-indices:

Definition 2.2.2. A set A ⊂ M is called hierarchical if:

1. A is nonempty;

2. supα∈A l(α) is finite;

3. for any α ∈ A \ {∅}, −α ∈ A.

The corresponding remainder set, B(A), is defined by

B(A) := {α ∈ M\A|− α ∈ A} .

The following result generalises Itô-Taylor expansions for diffusions:

Theorem 2.2.1 ([KP92, Theorem 5.5.1]). Let ϑ be a stopping time such that 0 ≤ ϑ ≤ T almost surely,

and let A ⊂ M be a hierarchical set. For X defined in (2.0.1) and u : [0, T]× R
d → R, the Itô-Taylor

expansion

u(ϑ, Xϑ) = ∑
α∈A

Iα
ϑ [L

αu(0, X0)] + ∑
α∈B(A)

Iα
ϑ [L

αu(·, X·)] (2.2.5)

holds, provided that the right-hand side is well defined.
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Remark 2.2.1. The theorem above generalises Itô’s Lemma; let A = {∅}, since

u(ϑ, Xϑ) = I∅
ϑ [u(0, X0)] + ∑

α∈B(∅)

Iα
ϑ [L

αu(·, X·)].

Clearly, B(∅) = {(0), (1), . . . , (m)}, and hence the equality u(ϑ, Xϑ) = u(0, X0) +
� ϑ

0 L(0)u(s, Xs)ds + ∑
m
j=1

� ϑ
0 L(j)u(s, Xs)dW

(j)
s directly follows from (2.2.1).

A priori regularity assumptions will be imposed on the value function u (we sometimes

abbreviate ut := u(t, Xt)).

Definition 2.2.3. Let α ∈ M\ {∅}, and define Gα
b as the set of functions u : [0, T]× R

d → R such

that Lαu· is well defined, continuous and bounded.

The following assumptions on the value function impose bounds on Lαu· for different lengths

of multi-index α, for some fixed l ∈ N
+:

(Hul
b): u ∈ Gα

b for all α ∈ M\ {∅} such that l(α) ≤ l.

Example

Recall the process X defined in (2.0.1), and fix d = m. The price of an option on X with payoff g

is defined via (2.0.2), and we are interested here in computing sensitivities with respect to

X
(1)
0 , . . . , X

(d)
0 . For r ∈ N, define the hierarchical set Dr := {α ∈ M|l(α) ≤ r}, with the

corresponding remainder set B(Dr) = Dr+1 \ Dr = {α ∈ M|l(α) = r + 1}. Let u be a

sufficiently smooth value function. Applying Theorem 2.2.1 with A = {∅} to u, in terms

of the operators (2.1.3) and (2.1.2), for any t ∈ [0, T], we obtain

ut = u0 +
d

∑
j=0

I
(j)
t [L(j)u·]. (2.2.6)

Similarly, applying Theorem 2.2.1 to L(0)u, . . . , L(d)u yields

L(j)ut = L(j)u0 +
d

∑
i=0

I
(i)
t [L(i) ◦ L(j)u·], j = 0, . . . , d,

and substituting these in (2.2.6), yields the expansion of ut denoted by

ut = u0 +
d

∑
j=0

I
(j)
t [L(j)u0] + ∑

α∈B(D1)

Iα
t [L

αu·]. (2.2.7)
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We motivate the sequel with a result on approximating first-order Greeks with a bias of

order O(ϑ), for some ϑ ∈ (0, T].

Remark 2.2.2. In a two-dimensional financial setting (m = d = 2), suppose that X(1) denotes

the instantaneous volatility process and X(2) the underlying asset. In this setting, ∂x1u0 :=

∂

∂X
(1)
s

u(s, Xs)

�

�

�

�

s=0
is the Vega and ∂x2u0 is the Delta, so that (2.2.8) allows us to solve simultaneously

for these first-order Greeks. Throughout, we assume that the diffusion coefficient γ is uniformly positive

definite at the initial time.

The proof of the following result is left to Appendix A.1:

Proposition 2.2.1. Assume (Hu2
b) and d = m. Then, for ϑ ∈ (0, T] and j = 1, . . . , d,

E

�

g (XT)
I
(j)
ϑ

ϑ

�

=
d

∑
l=1

γl,j(x)∂xl
u0 +O(ϑ). (2.2.8)

2.3 Expansion in d dimensions for general order

Fix some l ∈ N
+ throughout this section. Define the set of multi-indices Mi,j,k:

Definition 2.3.1. For i, k ∈ N
+, i ≥ r, define Mi,r,k as the set of multi-indices of length i, that have r

indices equal to k. Formally,

Mi,r,k :=

�

α = (j1, . . . , ji) ∈ M\ {∅} : l(α) = i,
i

∑
p=1

11k(jp) = r

�

,

where 11k(j) = 1 if j = k and zero otherwise.

The next proposition generalises Proposition 2.2.1 (proof in Appendix A.1):

Proposition 2.3.1. Let u be the solution to (2.1.1) and suppose that (Hul+1
b ) holds. Then, for

j = 1, . . . , d and ϑ ∈ (0, T],

E

�

g(XT)
I
(j)
ϑ
ϑ

�

= u
(j)
0 +

l

∑
i=2

∑
α∈Mi,1,j

ji �=0

uα
0

ϑi−1

i!
+O(ϑl). (2.3.1)

It is possible to obtain expressions containing higher-order Greeks using this approach. This

time uϑ is multiplied by Iα
ϑ , for α = (j1, j2) with j1, j2 ∈ {1, . . . , d}. The results are presented

using the notations from Definition 2.3.1 and throughout rely on Lemma 2.2.1.
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Proposition 2.3.2 (Second-order expansion). Let u be the solution to (2.1.1) and assume (Hul+2
b )

holds. Then, for ϑ ∈ (0, T] and all j = 1, . . . , d,

E

�

g(XT)
2I

(j,j)
ϑ

ϑ2

�

= u
(j,j)
0 +

l+1

∑
i=3

∑
α∈Mi,2,j

ji �=0

2uα
0

ϑi−2

i!
+O(ϑl). (2.3.2)

Proof. Set β := (1, 1) and use the approach from Proposition 2.3.1. ✷

Proposition 2.3.3 (Second-order cross terms expansion). Let (Hu3
b) hold. Then, for j1, j2 ∈

{1, . . . , d}, it follows that E

�

2g(XT)I
(j1,j2)
ϑ /ϑ2

�

= u
(j1,j2)
0 +O(ϑ).

Proof. Expressing E

�

uϑ I
(1,2)
ϑ

�

for some ϑ ∈ (0, T], and Lemma 2.2.1 yield

E

�

uϑ I
(1,2)
ϑ

�

= ∑
α∈D2

E

�

Iα
ϑ [u

α
0 ]I

(1,2)
ϑ

�

+ ∑
α∈B(D2)

E

�

Iα
ϑ [u

α
· ]I

(1,2)
ϑ

�

=
ϑ2

2
u
(1,2)
0 +O(ϑ3);

since the terms in B(D2) and the boundedness of Lαu·, it holds that
�

�

�

�

∑
α∈B(D2)

E

�

Iα
ϑ [u

α
· ]I

(1,2)
ϑ

�

�

�

�

�

≤ CE

��

I
(0,1,2)
ϑ + I

(1,0,2)
ϑ + I

(1,2,0)
ϑ

�

I
(1,2)
ϑ

�

= O(ϑ3).

Therefore, E

�

2uϑ I
(1,2)
ϑ /ϑ2

�

= u
(1,2)
0 +O(ϑ) and similarly E

�

2uϑ I
(2,1)
ϑ /ϑ2

�

= u
(2,1)
0 +O(ϑ). ✷

Remark 2.3.1. Terms such as I
(j,j)
ϑ =

� ϑ
0 W

(j)
s dW

(j)
s are easy to compute using Itô’s formula.

The equality
� ϑ

0 W
(j)
s dW

(j)
s = (W

(j)
ϑ )2/2 − ϑ/2 will be exploited for the MC simulation. Terms

such as I
(j1,j2)
ϑ =

� ϑ
0 W

(j1)
s dW

(j2)
s are difficult to compute directly; for cross terms, with j1 �= j2,

E

�

I
(j1,j2)
ϑ + I

(j2,j1)
ϑ

�

= E

�

I
(j1)
ϑ I

(j2)
ϑ

�

= E

�

W
(j1)
ϑ W

(j2)
ϑ

�

will be used.

2.4 Convergence and regularity

This section proves convergence for Greek approximations, under certain regularity

assumptions. The mean squared error (MSE) of an estimator Ŷ, with respect to the random

variable Y, is defined as MSE(Ŷ) := E
�

(Ŷ − Y)2
�

. As a measure of error, we consider the bias

arising from the Itô-Taylor expansion, the Monte Carlo error and the discretisation error, using

a partition π := {0 = t0 < . . . < tn = T}, such that |π| := maxi=1,...,n(ti − ti−1) = O(h).

These are related by suitable constants ζ, η > 0, such that ϑ := 1/Nζ and h := 1/Nη, where N
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is the number of Monte Carlo paths. From Proposition 2.3.1 and Proposition 2.3.2, the bias

is based on the order of the expansion. Consider a discretisation scheme and denote by X̂ the

discretised version of the process X defined in (2.0.1) with an equidistant partition with stepsize

|π| = O(h). We shall say that X̂ converges strongly with order k > 0 at time T if there exist

constants C, h0 > 0, such that for all h ∈ (0, h0), then E
�

|XT − X̂T|
�

≤ Chk. We shall say that

the same approximation converges weakly with order k > 0 at time T if for each g ∈ C2(k+1)
p

there exist constants C, h0 > 0, such that for all h ∈ (0, h0), then |E[g(XT)]− E
�

g(X̂T)
�

| ≤ Chk.

As an example, assume g is a Lipschitz continuous function, and the discretisation scheme has

strong rate of convergence k. For ϑ ∈ (0, T] and j ∈ {1, . . . , m}, the weight Wϑ/ϑ and the

Cauchy-Schwarz inequality yield
�

�

�

�

E

�

g(Xtn)
W

(j)
ϑ
ϑ

�

− E

�

g(X̂tn)
W

(j)
ϑ
ϑ

� �

�

�

�

≤
�

E

�

�

g(Xtn)− g(X̂tn)
�2
�

E

�

(W
(j)
ϑ /ϑ)2

�

≤ C

�

E
�

(Xtn − X̂tn)
2
� 1

ϑ
≤ C

hk

√
ϑ

.

This can be extended to polynomials P such that P(ϑ) �= 0, and multi-indices α ∈ M\ {∅} as

E

�

�

�

�

�

g(Xtn)− g(X̂tn)
� Iα

ϑ

P(ϑ)

�

�

�

�

= O
�

hk

�

V

�

Iα
ϑ

P(ϑ)

��

.

2.4.1 General convergence result

For j = 1, . . . , m, define the approximation for u
(j)
0 to be

Ŷ(j) :=
1
N

N

∑
i=1

g(X̂i
tn
)

I
(j),i
ϑ

ϑ
, (2.4.1)

where for the ith Monte Carlo simulation, X̂i
tn

is the approximation of the process X at time T,

and I
(j),i
ϑ := W

(j),i
ϑ is the ith path of the jth Brownian motion at time ϑ (in total nN Brownian

i.i.d. increments).

Theorem 2.4.1. Assume (Hu2
b), g is bounded and Lipschitz continuous, and consider a discretisation

scheme with a strong convergence rate k. Then, for ζ = 1/3 and η ≥ 1/(2k), the MSE of the

approximation Ŷ(j) in (2.4.1) is O(N−2/3), for j = 1, . . . , m.
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Proof. Recall the result from Proposition 2.2.1. For j ∈ {1, . . . , m}, the bias of the approximation

of u
(j)
0 is
�

�

�

�

E

�

g(X̂T)
I
(j)
ϑ
ϑ

�

− u
(j)
0

�

�

�

�

=

�

�

�

�

E

�

g(XT)
I
(j)
ϑ
ϑ

�

− u
(j)
0 + E

�

�

g(X̂T)− g(XT)
� I

(j)
ϑ
ϑ

��

�

�

�

≤ O(ϑ) + C
�

E
�

(XT − X̂T)2
�

�

�

�

�E

�

�

I
(j)
ϑ
ϑ

�2
�

= O(ϑ) +O
�

hk√
ϑ

�

,

(2.4.2)

from the Lipschitz continuity of g and the Cauchy-Schwarz inequality. From the boundedness

of g, it is clear that V

�

g(XT)
I
(j)
ϑ
ϑ

�

≤ Cg

ϑ . This leads to the variance of (2.4.1) being of order

O(Nζ−1). The MSE of approximation (2.4.1) is thus

O(Nζ−1) +O(N−2ζ) +O(Nζ−2kη) +O(N−ζ/2−kη),

from which it follows that ζ = 1/3, η ≥ 1/(2k) and that the MSE of (2.4.1) is of order O(N−2/3).

This concludes the proof of Theorem 2.4.1. ✷

Furthermore, the computational cost of the algorithm is O(N1+1/(2k)), therefore a log− log

plot of the MSE against the computational cost will have a slope of −4k
3(2k+1) ; as k increases, this

quantity approaches −2/3.

2.4.2 Romberg Extrapolation

Recall the process X from (2.0.1), with (x, θ) dependence suppressed. To create a scheme with

bias of order O(hl) for the first-order Greeks, assume the expansion

E

�

g(XT)
Wh

h

�

= γ(x)Δ + d1h + d2h2 + . . . + dl−1hl−1 +O(hl) (2.4.3)

holds for some constants di ∈ R. In the one-dimensional case, approximating the Δ can be

achieved by

E

�

g(XT)

�

l

∑
i=1

ci
Wih

ih

��

= γ(x)Δ +O(hl), (2.4.4)



82 2.4 Convergence and regularity

for some Brownian motion W and h ∈ (0, T/l], where ci are scheme-specific constants. Define

Zk :=
� kh
(k−1)h dWs for k = 1, . . . , l, and by independence, it follows that

V

�

l

∑
i=1

ci
Wih

ih

�

= V

�

l

∑
i=1

Zi

�

l

∑
j=i

cj

jh

��

=
1
h

l

∑
i=1

�

l

∑
j=i

cj

j

�2

=:
Cl

h
. (2.4.5)

The variance for bounded payoffs is controlled by

V

�

g(XT)
l

∑
i=1

ci
Wih

ih

�

≤ Cl�g�2
∞

h
. (2.4.6)

We can solve for ci such that (2.4.4) is satisfied. For fixed l ∈ N
+, the system has the following

structure,














e1,1 e1,2 · · · e1,l

e2,1 e2,2 · · · e2,l
...

... . . . ...

el,1 el,2 · · · el,l





























c1

c2
...

cl















=















1

0
...

0















, (2.4.7)

where ei,j := ji−1, for all i, j ∈ {1, . . . , l}. The matrix [ei,j]i,j is invertible, so the system admits a

unique solution (inverse of a Vandermonde-matrix, see [Pag07, LP14] and references therein).

From a numerical point of view, even though the bias is of higher-order, the variance multiple

rapidly increases. For l = 1, . . . , 6, the constants in (2.4.5) read

C1 = 1, C2 = 2.5, C3 = 4.83, C4 = 9.25, C5 = 18.95, C6 = 42.68.

Define for j = 1, . . . , m, the Monte Carlo approximation for the first-order Greek with bias

O(ϑl) as

Ŷ(j),l :=
1
N

N

∑
i=1

g(X̂i
tn
)





l

∑
q=1

cq

W
(j),i
qϑ

qϑ



 , (2.4.8)

where (cq)q=1,...,l are the solutions from (2.4.7). The extrapolation weights are step functions.

The next theorem shows the MSE for this approximation, using a discretisation scheme with

convergence of strong order k:

Theorem 2.4.2. Assume (Hul+1
b ), g is bounded and Lipschitz continuous, and consider a discretisation

scheme with strong convergence rate k. Then, for ζ = 1/(2l + 1) and η ≥ 1/(2k) the MSE of Ŷ(j),l is
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of order O(N− 2l
2l+1 ).

Proof. By the approach in Theorem 2.4.1, apply an Itô-Taylor expansion to the value function to

obtain an expression as in (2.4.3). For j ∈ {1, . . . , m}, E

�

g(XT)

�

∑
l
q=1 cq

W
(j),i
qϑ

qϑ

��

is an estimator

of u
(j)
0 with bias of order O(ϑl), where (cq)q=1,...,l are defined as the solution of (2.4.7). Indeed,

E



uϑ





l

∑
q=1

cq

W
(j),i
qϑ

qϑ







 = u
(j)
0 +O(ϑl). (2.4.9)

For all α ∈ M\ {∅} such that l(α) = l + 1 and α+ = (j), applying Lemma 2.2.1 yields

�

�

�

�

E

�

Iα
ϑ [u

α
. ]

I
(j),i
ϑ

ϑ

�

�

�

�

�

≤
�

E

�

�

Iα
ϑ [u

α
. ]
�2
�

�

�

�

�

�E





�

I
(j),i
ϑ

ϑ

�2

 ≤ C√
ϑ

�

�

�

�

ϑw(α,α)

w(α, α)

l(α+)

∏
q=0

C
kq(α)

2kq(α)
. (2.4.10)

As for the one-dimensional case, the multi-indices α ∈ M of interest are those such that

α+ = (j). From Definition (2.2.3), w(α, α) = 2(l + 1) − 1 = 2(l + 1/2), where l(α) = l + 1.

Simplifying (2.4.10) yields
�

�

�

�

E

�

Iα
ϑ [u

α
. ]

I
(j),i
ϑ

ϑ

�

�

�

�

�

≤ C√
ϑ

�

ϑ2(l+ 1
2 ) = O(ϑl).

As a result, the Romberg extrapolation technique can be performed, which concludes the claim

in (2.4.9). Consider now the bias arising from the discretisation scheme with strong rate of

convergence k. Similar to (2.4.2), observe that

�

�

�

�

E



g(X̂T)
l

∑
q=1

cq

W
(j),i
qϑ

qϑ



− u
(j)
0

�

�

�

�

=

�

�

�

�

E



g(XT)
l

∑
q=1

cq

W
(j),i
qϑ

qϑ



− u
(j)
0 + E





�

g(X̂T)− g(XT)
�

l

∑
q=1

cq

W
(j),i
qϑ

qϑ





�

�

�

�

≤ O(ϑl) + C
�

E
�

(XT − X̂T)2
�

�

�

�

�

�

�

E











l

∑
q=1

cq

W
(j),i
qϑ

qϑ





2





= O(ϑl) +O

�

hk

√
ϑ

�

.
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Consider the variance of (2.4.8). By independence and using (2.4.6), it follows that

V(Ŷ(j),l) =
1
N

V



g(X̂i
tn
)

l

∑
q=1

cq

W
(j),i
qϑ

qϑ



 ≤
Cg,l

Nϑ
,

therefore the variance of the approximation is O(Nζ−1). The MSE is of order equal to

O(Nζ−1) +O(N−2lζ) +O(N−(l−1/2)ζ−kη) +O(Nζ−2kη), and from the first and second terms it

follows that −2lζ = ζ − 1, hence ζ = 1/(2l + 1). In addition, from the first and last terms it

follows that η ≥ 1/(2k), hence the MSE is of order O
�

N−2l/(2l+1)
�

. ✷

Remark 2.4.1. By Theorem 2.4.2, the log− log plot of the MSE against the computational cost has a

slope of − 4lk
(2l+1)(2k+1) , which approaches −1 as k or l tend to infinity.

2.4.3 Cross sensitivities

For j1, j2 ∈ {1, . . . , m}, define the approximation for u
(j1,j2)
0 to be

Ŷ(j1,j2) =
1
N

N

∑
i=1

g(X̂i
tn
)

2I
(j1,j2),i
ϑ

ϑ2 , (2.4.11)

where for the ith Monte Carlo simulation, X̂i
tn

is the approximation of the process X at time T,

and I
(j1,j2),i
ϑ is the integral as defined in (2.2.1), at time ϑ.

Theorem 2.4.3. Let (Hu3
b), g bounded and Lipschitz continuous, and consider a discretisation scheme

with strong convergence rate k. Then, for ζ = 1/4 and η ≥ 1/(2k) the MSE of Ŷ(j1,j2) is O(N−1/2),

where j1, j2 ∈ {1, . . . , m}.

Proof. Continuing from Proposition 2.3.3, for j1, j2 ∈ {1, . . . , m}, the bias of the approximation

of u
(j1,j2)
0 is

�

�

�

�

E

�

g(X̂T)
2I

(j1,j2)
ϑ

ϑ2

�

− u
(j1,j2)
0

�

�

�

�

=

�

�

�

�

E

�

g(XT)
2I

(j1,j2)
ϑ

ϑ2

�

− u
(j1,j2)
0 + E

�

�

g(X̂T)− g(XT)
� 2I

(j1,j2)
ϑ

ϑ2

�

�

�

�

�

≤ O(ϑ) + C
�

E
�

(XT − X̂T)2
�

�

�

�

�

�E





�

2I
(j1,j2)
ϑ

ϑ2

�2

 = O(ϑ) +O
�

hk

ϑ

�

, (2.4.12)
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from the Lipschitz continuity of g and the Cauchy-Schwarz inequality. Since g is bounded,

then V

�

g(XT)
2I

(j1,j2)
ϑ

ϑ2

�

≤ Cg

ϑ2 , which leads to the variance of Ŷ(j1,j2) in (2.4.11) being O(N2ζ−1).

Therefore, the MSE is of order O(N2ζ−1) +O(N−2ζ) +O(N2ζ−2kη) +O(N−kη), from which it

follows that setting ζ = 1/4, η ≥ 1/(2k) leads to the MSE of (2.4.11) to be O(N−1/2). ✷

2.4.4 Black-Scholes: Comparison with Malliavin Greeks

Consider the Black-Scholes model with zero drift, under which the asset price process X is the

solution to

dXt = γXtdWt, X0 = x > 0, (2.4.13)

for some constant volatility parameter γ > 0 [BS73].

Lemma 2.4.1. Let (Hu3
b), g bounded and Lipschitz continuous, and consider a discretisation scheme

with strong convergence rate k. Then, the weights for the Delta and Gamma of the driftless Black-

Scholes model in (2.4.13), with corresponding MSE rates in terms of the number of Monte Carlo paths

are summarised in Table 2.1.

Greek Weight Value Bias ζ η MSE
Delta Wϑ

ϑxγ ∂xu0 O(ϑ) 1/3 ≥ 1/(2k) O(N−2/3)

Gamma W2
ϑ

ϑ2x2γ2 − 1
ϑx2γ2 − Wϑ

ϑx2γ
∂xxu0 O(ϑ) 1/4 ≥ 1/(2k) O(N−1/2)

Table 2.1: Black-Scholes Delta and Gamma.

Proof. Follows as a corollary of Theorems 2.4.1 and 2.4.3, and recalling Remark 2.3.1. ✷

Observe that the weight for computing the Delta is Wϑ/(ϑxγ), whilst the Malliavin weight is

WT/(Txγ) (see [Ben01]). Replacing ϑ by T in the expression for the Gamma in Table 2.1 yields

the Malliavin weight (see [Ben01, Chapter 2.3]). In the Black-Scholes model, the Vega (V) and

the Gamma (Γ) are related by V = Tγx2Γ. As a result, the Vega can be approximated using the

Gamma approximation.
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2.4.5 Stochastic Volatility

We consider the couple X = (X, γ), that is the solution to the following stochastic differential

equations

dXt = γtXtdW
(1)
t , X0 = x > 0,

dγt = θγtdW
(2)
t , γ0 = γ > 0,

(2.4.14)

where θ ∈ R
+ is a fixed constant parameter. We study approximating the Delta (sensitivity

with respect to x), the Vega (sensitivity with respect to γ) and the Gamma. This is a specific

example of the SABR model, with skewness parameter and correlation set to zero (i.e. β = 1

and ρ = 0 in the notation of [HKLW02]). Since, E

�

g(XT)I
(1)
ϑ /ϑ

�

= u
(1)
0 +O(ϑ) = γxΔ +O(ϑ),

it follows that Δ = E

�

g(XT)
I
(1)
ϑ

γxϑ

�

+ O(ϑ). Similarly, the Vega can be approximated as

V = E

�

g(XT)
I
(2)
ϑ

θγϑ

�

+O(ϑ). For the Gamma, consider

E

�

g(XT)
2I

(1,1)
ϑ

ϑ2

�

= u
(1,1)
0 +O(ϑ) = γ2x(Δ + xΓ) +O(ϑ),

so that the Gamma can be expressed by Γ = E

�

g(XT)
2I

(1,1)
ϑ

γ2x2ϑ2

�

− Δ
x +O(ϑ).

Corollary 2.4.1. Let (Hu3
b), g bounded and Lipschitz continuous, and consider a discretisation scheme

with a strong convergence rate k. Then, the weights for the Delta, Vega, Gamma, Vanna and Vomma are

presented in Table 2.2.

Greek Weight Value Bias ζ η MSE

Delta W
(1)
ϑ

ϑxγ ∂xu0 O(ϑ) 1/3 ≥ 1/(2k) O(N−2/3)

Vega W
(2)
ϑ

ϑγθ ∂γu0 O(ϑ) 1/3 ≥ 1/(2k) O(N−2/3)

Gamma (W
(1)
ϑ )2

ϑ2x2γ2 − 1
ϑx2γ2 −

W
(1)
ϑ

ϑx2γ
∂xxu0 O(ϑ) 1/4 ≥ 1/(2k) O(N−1/2)

Vanna W
(1)
ϑ W

(2)
ϑ

ϑ2xγ2θ
− W

(1)
ϑ

2ϑxγ2 ∂xγu0 O(ϑ) 1/4 ≥ 1/(2k) O(N−1/2)

Vomma (W
(2)
ϑ )2

ϑ2γ2θ2 − 1
ϑγ2θ2 −

W
(2)
ϑ

ϑγ2θ
∂γγu0 O(ϑ) 1/4 ≥ 1/(2k) O(N−1/2)

Table 2.2: First and second-order Greeks for SV model (2.4.14).
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3. Numerical Approximation of the Delta

The focus in this chapter is the approximation of the first-order sensitivity of the value

function u, solution to the Cauchy problem in (2.1.1), with respect to the space variables. We

demonstrate two approaches to approximate the Delta (Δ) of an option with high-order of

convergence.

The first technique is inspired from the BSDE literature on numerical methods and consists

of multiplying the option payoff by weights based on the driving Brownian motion. We

describe ψ-functions, that characterise such weights, and discuss the variance properties of the

Delta approximations, using weights characterised by polynomials ψp,l and step functions ψs,l,

within the ψ-family of functions. We state approximation results when using a discrete-time

approximation for process X. By studying such fully implementable algorithms, we obtain

order 1 approximations for the Delta, improving the rate 1/2 proved in the backward stochastic

differential equation (BSDE) literature [Cha14].

The second approach follows from the ideas of the seminal work by [TT90] and builds

on [Cha14]. The aim is to justify an expansion of the Delta allowing intuitive extrapolation

techniques to be applied in order to obtain higher-order approximations. We improve the

results from the previous chapter on convergence of the Greek approximations, by considering

the weak order of convergence upon discretisation using weak Taylor schemes.

3.1 A class of Δ weights

We review a class of functions which are used to define weights to approximate the Δ of a

contingent claim and they are inspired from the work done on the numerical approximations

of BSDEs.

Definition 3.1.1 (ψ-functions [CC14, Definition 1.5 (i)]). For l ∈ N, define Bl
[0,1] as the set of

bounded, measurable functions ψ : [0, 1] → R such that
� 1

0
ψ(s)ds = 1, and if l ∈ N

+,
� 1

0
ψ(s)skds = 0 for all 1 ≤ k ≤ l.

The solution (X, Y, Z) of (2.0.1) and (2.1.4) is a special case of a BSDE with a zero-driver. In a
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financial context, the process Z is related to the first-order sensitivity, and Z0 = γ(x)Δ at the

initial time. We define the weight H
ψ
· , which is used to approximate the Z process in (2.1.4):

Definition 3.1.2 (H
ψ
h -functionals [CC14, Definition 1.5 (ii)]). Let ψ ∈ Bl

[0,1], and for 0 < h ≤ T,

define the row vector H
ψ
t,h with entries j = 1, . . . , m by

(H
ψ
t,h)j :=

1
h

� t+h

s=t
ψj

�

s − t

h

�

dW
(j)
s ,

and for shorthand H
ψ
h := H

ψ
0,h.

Recall the smoothness assumptions of the value function from Definition 2.2.3, (Hul
b), and the

operators defined in (2.1.2)-(2.1.3). The value function u throughout this chapter will be the

solution to (2.1.1).

Proposition 3.1.1 ([CC14, Proposition 2.3]). Fix l ∈ N. Let (Hul+2
b ) hold, ψ ∈ Bl

[0,1]. Then, for

h ∈ (0, T],

E

�

(H
ψ
h )jg(XT)

�

= u
(j)
0 +O(hl+1), j = 1, . . . , m. (3.1.1)

Proof. By an application of the conditional expectation, E

�

(H
ψ
h )jg(XT)

�

= E

�

(H
ψ
h )ju(h, Xh)

�

.

Consider the class of theoretical coefficients H
ψ
· ; from [CC14, Proposition 2.3 (i)], we can expand

any sufficiently smooth function using a weak Taylor expansion. For u ∈ G l+2
b , ψ ∈ Bl

[0,1], for

all 1 ≤ j ≤ m, we then obtain

E

�

(H
ψ
t,h)ju(t + h, Xt,x

t+h)
�

= u(j)(t, x) + hu(j,0)(t, x) + · · ·+ hl

l!
u(j)∗(0)l(t, x) +O(hl+1) , (3.1.2)

where (Xt,x
s ) is the process at time s ≥ t, with initial conditions (t, x) ∈ [0, T]×R

d, i.e. Xt,x
t = x.

The result immediately follows by considering the initial time t = 0, since all terms u
(j)∗(0)l
0 for

l ∈ N
+ are equal to zero from (2.1.1). ✷

Remark 3.1.1. The expansion (3.1.1) from Proposition 3.1.1 holds true with ψ ≡ 1 in the special case

where L(1) ◦ L(0) = L(0) ◦ L(1) for partial differential equations such that u
(0)
0 = 0.

Corollary 3.1.1. For all j = 1, . . . , m, the following statements hold:

1. Let (Hu2
b) and ψ0 ≡ 1, belonging to B0

[0,1]. Then, E

�

(H
ψ0
h )juh

�

= u
(j)
0 +O(h).

2. (a) (Hu3
b), ψp,1(u) ≡ 4 − 6u ∈ B1

[0,1] implies that E

�

(H
ψp,1
h )juh

�

= u
(j)
0 +O(h2).
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(b) (Hu3
b), for c ∈ (0, 1) the function ψs,1(u) ≡ 1

c(c−1)11[1−c,1](u) +
c−2
c−1 is also in B1

[0,1]. Then,

E

�

(H
ψs,1
h )juh

�

= u
(j)
0 +O(h2).

3. Let (Hu4
b) and fix distinct c, c′ ∈ (0, 1). Define

ψs,2(u) ≡
1 − c′

c(1 − c)(c′ − c)
11[1−c,1](u)+

c − 1
c′(1 − c′)(c′ − c)

11[1−c′ ,1](u)+

�

1 +
1

1 − c
+

1
1 − c′

�

,

which belongs to B2
[0,1]. Then, E

�

(H
ψs,2
h )juh

�

= u
(j)
0 +O(h3).

Proof. This corollary is a by-product of Proposition 3.1.1, [CC14, Example 2.1] and [CC14,

Proposition 2.4]. ✷

3.1.1 Variance properties

The previous corollary explicited several ψ·,l functions and the corresponding bias of the

approximation of u
(j)
0 . For ψ ≡ 1, by direct calculation V[H

ψ
h ] = 1/h; we study the variance

of higher-order weights using functions belonging to B1
[0,1] and B2

[0,1]. The variance of these

weights, coupled with the associated bias allows the MSE of the Greek approximations to be

studied.

Example 3.1.1 (Step function ψs,1 ∈ B1
[0,1]). In order to simulate the weight H

ψs,1
h using the step

function ψs,1, we fix c ∈ (0, 1). From the definition of H
ψs,1
h , it follows that

H
ψs,1
h = 1

h

� h
0 ψs,1(s/h)dWs =

1
h

� h
0

�

1
c(c−1)11[1−c,1](s/h) + c−2

c−111[0,1](s/h)
�

dWs

= 1
hc(c−1) (Wh − Wh(1−c)) +

c−2
h(c−1)Wh = c−1

c
Wh
h + 1

c

Wh(1−c)

h(1−c)
.

This weight is simulated using the Brownian motion at times h and h(1 − c). The variance of H
ψs,1
h ,

given a fixed c, is

V(H
ψs,1
h ) =

(c − 1)2 + 2(c − 1) + 1/(1 − c)

c2h
=

c2 − c − 1
ch(c − 1)

, (3.1.3)

and the minimum variance of 5/h is attained independently of h with c = 1/2.

Example 3.1.2 (Polynomial ψp,1 ∈ B1
[0,1]). We now consider ψp,1(u) ≡ 4 − 6u and the variance of
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the weight H
ψp,1
h . From Definition 3.1.1, it follows that

H
ψp,1
h =

1
h

� h

0
ψp,1(s/h)dWs =

4
h

Wh −
6
h2

� h

0
sdWs.

To compute this weight, we sample from the vector
�

Wh
� h

0 sdWs

�

∼ N(0, Σ), where Σ :=

�

h h2/2

h2/2 h3/3

�

.

By performing a Cholesky decomposition, Σ = LL∗ where

L =





√
h 0

1
2 h3/2 1

2
√

3
h3/2



 ,

and using independent Z1, Z2 ∼ N(0, 1), the vector can be sampled by setting
�

Wh
� h

0 sdWs

�

=





√
h 0

1
2 h3/2 ± 1

2
√

3
h3/2





�

Z1

Z2

�

. (3.1.4)

The variance of H
ψp,1
h is easily computed using Itô’s isometry and evaluates to

V(H
ψp,1
h ) =

16
h2

� h

0
ds − 48

h3

� h

0
sds +

36
h4

� h

0
s2ds =

4
h

,

noting that it is lower than that of the weight defined using ψs,1 in Example 3.1.1.

Example 3.1.3 (Step function ψs,2 ∈ B2
[0,1]). For distinct (c, c′) ∈ (0, 1)2 fixed, the weight H

ψs,2
h is

given by

H
ψs,2
h =

�

Wh − W(1−c)h

�

(1 − c′)

hc(1 − c)(c′ − c)
+

�

Wh − W(1−c′)h

�

(c − 1)

hc′(1 − c′)(c′ − c)
+

Wh

h

�

1 +
1

1 − c
+

1
1 − c′

�

.

The minimal variance V[H
ψs,2
h ] = 11.1/h is achieved at (c, c′) = (0.775, 0.126), independently of h.

Example 3.1.4 (Polynomial ψp,2 ∈ B2
[0,1]). The unique quadratic belonging to B2

[0,1] is ψp,2(u) ≡
9 − 36u + 30u2, with a corresponding weight of

H
ψp,2
h =

9
h

� h

0
dWs −

36
h2

� h

0
sdWs +

30
h3

� h

0
s2dWs.
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The vector has the following distribution:








Wh
� h

0 sdWs
� h

0 s2dWs









∼ N(0, Σ), where Σ :=









h h2/2 h3/3

h2/2 h3/3 h4/4

h3/3 h4/4 h5/5









,

and by Cholesky’s decomposition, Σ = LL∗ where

L =









√
h 0 0

1
2 h3/2 1

2
√

3
h3/2 0

1
3 h5/2 1

2
√

3
h5/2 1

6
√

5
h5/2









.

Using independent Z1, Z2, Z3 ∼ N(0, 1), the desired vector can be sampled by LZ where Z is the

column vector consisting of Z1, Z2, Z3. The variance of the weight is

V[H
ψp,2
h ] =

81
h

+
1296
3h

+
900
5h

− 648
2h

+
540
3h

− 2160
4h

=
9
h

,

which is slightly less than the variance of ψs,2 in Example 3.1.3.

3.1.2 Optimal function ψ

We consider the MSE of the approximations using h := 1/Nζ , where N is the number of Monte

Carlo realisations. Assume a setting where we can perfectly simulate the process without any

discretisation error. Consider the MSE bounds denoted by Ml for some fixed l, of the Greek

approximations using ψ ∈ Bl
[0,1], given the optimal values of ζ which yields the same order of

convergence for the bias and variance components of the mean squared error. The MSE of an

approximation using ψ ∈ B0
[0,1] (i.e. ψ ≡ 1) for optimal ζ = 1/3 can be expressed as

M0 :=
C2

1

N2/3 +
C4

N1−1/3 =
C2

1 + C4

N2/3 ,

where C1 is the bias constant in the expansion using ψ ≡ 1, and C4 is a bound on the variance

term. For weights defined by functions ψ ∈ B1
[0,1] and using the optimal ζ = 1/5, the MSE can

be expressed as

M1 :=
C2

2

N4/5 +
C3C4

N1−1/5 =
C2

2 + C3C4

N4/5 ,
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where C2 is the bias constant in the expansion using ψ ∈ B1
[0,1], C3 = 5 for the step function ψs,1

and C3 = 4 for ψp,1 ∈ B1
[0,1] (recalling the computations in Examples 3.1.1-3.1.2). The constants

C1 and C2 above are bounds depending on the higher-order sensitivities of the value function.

Therefore, by comparing the mean squared errors bounds, M1 ≤ M0 holds only when

N ≥
�

C2
2 + C3C4

C2
1 + C4

�15/2

.

From this, we observe that depending on the above constants, the critical value of N for

which a higher-order scheme produces a smaller MSE can be quite large. For example, when

C1 = C2 = C4 = 1, a lower MSE occurs for ψp,1 when N ≈ 103. A slight change of the constants

to C1 = C4 = 1 and C2 = 6, implies M1 ≤ M0 only when N ≈ 1010. This shows how the

optimal choice of scheme is dependent on the constants arising from the expansions and the

MSE computation.

Remark 3.1.2.

(i) The MSE considered for comparison purposes above is the upper bound, as opposed to the actual

value.

(ii) This section highlights a practical consideration which can be observed when performing the

numerical simulations: it is imperative to consider the variance increase upon the selection of

higher-order weights.

3.2 Weak Taylor schemes

We now combine the above with higher-order approximations of the process X, recalling the

iterated Itô integrals from Definition 2.2.1:

Definition 3.2.1 (Weak Taylor scheme of order r [KP92, (14.5.4)]). Consider a discretised process

X̂ = (X̂t)t∈[0,T] using a weak Taylor scheme of order r of the process X in (0.1.3). For a grid

π := {0 := t0 < t1 < . . . < tn := T}, we define X̂ using the hierarchical set Dr (recall definition on

page 77) for t ∈ [ti, ti+1] as

X̂t := X̂ti
+ ∑

α∈Dr\{∅}
fα(ti, X̂ti

)Iα
ti ,t, X̂t0 := Xt0 ,
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f(t, x) ≡ x, with f(0) = f , f(1) = γ, and for l ≥ 1 such that α = (j1, . . . , jl), then fα = L(j1)f−α (for

the d = m = 1 case).

Remark 3.2.1.

(i) We have extended the usual definition of the weak Taylor scheme for all t ∈ [0, T] as opposed to

just defining the discretisation at the grid points of π.

(ii) The (continuous) Euler scheme on [0, T] is the weak Taylor scheme of order r = 1. Define (X̂)t∈[0,T]

on an equidistant grid π such that |π| = T/n, for t ∈ [ti, ti+1] by

X̂t := X̂ti
+ f (X̂ti

)(t − ti) + γ(X̂ti
)(Wt − Wti

), X̂0 := X0.

(iii) We sometimes highlight the number of time steps n in π by referring to the approximation as

X̂n := (X̂n
t )t∈[0,T].

3.2.1 Approximation using Euler scheme

Let us observe that on [0, h], the Euler scheme is a Brownian motion with constant drift f (y)

and volatility γ(y), if the process X start at y at t = 0. We denote by L̂
(j)
y , j = 0, . . . , m the

operators associated to this process:

Definition 3.2.2. Define the fixed space operators L̂
(j)
y for some y = (y1, . . . , yd) ∈ R

d acting on

C1,2(R+ × R
d → R) functions ϕ by:

{L̂
(j)
y ϕ}(t, x) :=

d

∑
k=1

γk,j(y)∂xk
ϕ(t, x) for j = 1, . . . , m, (3.2.1)

{L̂
(0)
y ϕ}(t, x) :=

�

∂t +
d

∑
k=1

fk(y)∂xk
+

1
2

m

∑
j=1

L̂
(j)
y ◦ L̂

(j)
y

�

ϕ(t, x). (3.2.2)

Remark 3.2.2. Consider the Euler scheme and fix y = X̂ti
: then L̂

(0)
y is the operator associated to

the diffusion process (X̂t)t∈[ti ,ti+1]
. Recall the operators defined in (2.1.1); note that L(0)ϕ(t, Xt) =

L̂
(0)
Xt

ϕ(t, Xt) and L(1)ϕ(t, Xt) = L̂
(1)
Xt

ϕ(t, Xt) for this example.

Example 3.2.1. In the one-dimensional case (d = m = 1), we consider several examples, to distinguish

between Lαu(t, x) and L̂α
xu(t, x) (supposing that f ≡ 0).
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(i) Observe that L(1,1)u(t, x) = γ2(x)∂xxu(t, x)+γ(x)γ′(x)∂xu(t, x). Now, L̂
(1)
y ◦ (γ(y)∂x)u(t, x) =

γ2(y)∂xxu(t, x), therefore substituting y = x yields L̂
(1,1)
x u(t, x) = γ2(x)∂xxu(t, x). Combining

the two expressions yields

L(1,1)u(t, x) = L̂
(1,1)
x u(t, x) + γ(x)γ′(x)∂xu(t, x). (3.2.3)

(ii) L(0,0)u(t, x) can be similarly expanded. Consider L̂
(0,0)
y u(t, x) = ∂ttu(t, x) + γ2(y)∂txxu(t, x) +

1
4 γ4(y)∂xxxxu(t, x), and setting y = x yields

L(0,0)u(t, x) = L̂
(0,0)
x u(t, x) +

1
2

γ2(x)∂x

�

γ(x)γ′(x)
�

∂xxu(t, x) + γ3γ′(x)∂xxxu(t, x).

(3.2.4)

Recall the Euler scheme from Remark 3.2.1(ii): define (X̂
s,y
u )u≥t for (s, y) ∈ [0, T)× R

d as the

process such that X̂
s,y
t = y +

� t
s f (X̂

s,y
r )dr +

� t
s γ(X̂

s,y
r )dWr, and X̂

s,y
s = y. For the Euler scheme,

we are able to write the operators L̂α
y and for multi-indices such that l(α) ≤ 1, we have that

L̂α
yu(s, y) = Lαu(s, y).

We now state the following result using the function ψ ≡ 1, for the expansion of any smooth

value function using (3.1.2):

Lemma 3.2.1. Fix l ∈ N and consider an Euler scheme. For any v ∈ G l+2
b and x ∈ R

d, then

E

�

v(h, X̂0,x
h )
�

= v(0, x) + L̂
(0)
x v(0, x)h + · · ·+ L̂

(0)l+1
x v(0, x)

hl+1

(l + 1)!
+O(hl+2),

E

�

(H1
h)jv(h, X̂0,x

h )
�

= L̂
(j)
x v(0, x) + L̂

(j,0)
x v(0, x)h + · · ·+ L̂

(j)∗(0)l
x v(0, x)

hl

l!
+O(hl+1),

with (H1
h)j = W

(j)
h /h, for all j = 1, . . . , m.

Proof. The first part is [CC14, Proposition 2.2]. The second part simply follows since

L̂
(0)
x ◦ L̂

(1)
x = L̂

(1)
x ◦ L̂

(0)
x , so we quote [CC14, Proposition 2.3 (iii)]. ✷

Remark 3.2.3.

(i) Recall the multi-variate version of Taylor’s theorem. For a multi-index α = (α1, . . . , αn), and

x ∈ R
n, define xα := ∏

n
i=1 x

αi
i . Furthermore, define α! := ∏

n
i=1(αi!) and

∂α f :=
∂l(α) f

∂xα1
1 · · · ∂xαn

n
.
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If f : R
n → R is k times differentiable at point b ∈ R

n, then there exists some remainder R, such

that

f (x) = ∑
l(α)≤k

∂α f (b)

α!
(x − b)α + R,

with R approaching zero as x approaches b.

(ii) For the value function u : R
+ × R

d → R, l(α) = d + 1. We shall restrict the proofs to d = 1, i.e.

two-dimensional Taylor’s theorem shall be used with respect to time and space.

(iii) This multi-index α should not be confused with the multi-indices used for the Itô-Taylor

expansions.

The next result is a fully implementable technique for computing the Delta of an option, and

is the primary contribution of this chapter. We consider the Euler scheme discretisation, set

ψ ≡ 1 ∈ B0
[0,1] and state the main result for approximating the Δ using an Euler scheme:

Theorem 3.2.1. Suppose that (Hu3
b) holds for a value function u, ψ ∈ B0

[0,1], and suppose an Euler

scheme on an equidistant mesh π, such that |π| = h. Then,

E

�

(H
ψ
h )jg(X̂T)

�

= L(j)u(0, x) +O(h).

Proof. We begin by fixing an equidistant time grid π with n points of size h.

i) By a telescoping sum it follows that

E

�

(H
ψ
h )jg(X̂T)

�

= E

�

(H
ψ
h )j

n−1

∑
i=1

�

u(ti+1, X̂ti+1)− u(ti, X̂ti
)

�

�

+ E

�

(H
ψ
h )ju(t1, X̂t1)

�

, (3.2.5)

and from Lemma 3.2.3 we note that E

�

(H
ψ
h )ju(h, X̂h)

�

= L(j)u(0, x) +O(h), where h = t1.

ii) It is left to deal with the telescoping series; consider

u(ti+1, X̂ti+1)− u(ti, X̂ti
) =

� ti+1
ti

L̂
(0)
X̂ti

u(s, X̂s)ds + ∑
m
j=1

� ti+1
ti

L̂
(j)

X̂ti

u(s, X̂s)dW
(j)
s

= hL̂
(0)
X̂ti

u(ti, X̂ti
) +
� ti+1

ti

� s
ti

L̂
(0,0)
X̂ti

u(r, X̂r)drds + R2 + R1,
(3.2.6)

where R1 := ∑
m
j=1

� ti+1
ti

L̂
(j)

X̂ti

u(s, X̂s)dW
(j)
s and R2 := ∑

m
j=1

� ti+1
ti

� s
ti

L̂
(j,0)
X̂ti

u(r, X̂r)dW
(j)
r ds. The

term L̂
(0)
X̂ti

u(ti, X̂ti
) is zero directly from the partial differential equation, since L̂

(0)
X̂ti

u(ti, X̂ti
) =
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L(0)u(ti, X̂ti
) = 0. We now consider the second term, which can be rewritten as

� ti+1

ti

� s

ti

L̂
(0,0)
X̂ti

u(r, X̂r)drds =
h2

2
ϕ(ti, X̂ti

) + R3,

where ϕ(t, xt) := L̂
(0,0)
xt

u(t, xt) and R3 :=
� ti+1

ti

� s
ti
{ϕ(r, X̂r)− ϕ(ti, X̂ti

)}drds. We now combine

E

�

(H
ψ
h )j{u(ti+1, X̂ti+1)− u(ti, X̂ti

)}
�

= E

�

(H
ψ
h )j{ h2

2 ϕ(ti, X̂ti
) + R3 + R2 + R1}

�

. (3.2.7)

It is apparent that for all i = 1, . . . , n − 1 it holds that E

�

(H
ψ
h )jEti

[R1 + R2]
�

= 0, by

taking a conditional expectation and noting that the Brownian increments are independent.

An application of the Cauchy-Schwarz inequality, yields E

�

(H
ψ
h )jR3

�

≤ �(H
ψ
h )j�2�R3�2 ≤

Ch2 for ψ ≡ 1 since ψ ∈ B0
[0,1], and ϕ is sufficiently smooth. Furthermore,

E

�

(H
ψ
h )j ϕ(ti, X̂ti

)
�

= E

�

(H
ψ
h )j ϕ̃i(h, X̂h)

�

by the Markov property of (X̂ti
)i=1,...,n, where

ϕ̃i(h, x) = E
�

ϕ(ti, X̂ti
)|X̂ti

= x
�

. From this, we obtain E

�

(H
ψ
h )j ϕ(ti, X̂ti

)
�

= L̂
(j)
x ϕi(0, x) +O(h),

since we can perfectly simulate (H
ψ
h )j and

Eti

�

(H
ψ
ti ,h

)jv(ti+1, X̂i+1)
�

= v(j)(ti, X̂i) +O(h) , for v ∈ G1
b .

Therefore, h2

2 ∑
n
i=1 E

�

(H
ψ
h )j ϕ(ti, X̂ti

)
�

= O(h). To conclude, summation over i = 1, . . . , n − 1

for (3.2.7) yields E

�

(H
ψ
h )jg(X̂T)

�

= u
(j)
0 +O(h).

✷

In the next section, we study the case for higher order schemes, using weights defined by

functions ψ ∈ Bl
[0,1], for l ≥ 1.

3.2.2 Approximation using higher-order weak Taylor scheme

We now consider a weak Taylor scheme of order r, and introduce the operators L̂α,r
y where

l(α) ≤ r, and argue that these operators are such that for all α ∈ Dr, L̂α,r
y u(s, y) = Lαu(s, y); we

do not attempt to explicit these operators for weak Taylor schemes of higher orders.

Definition 3.2.3. Consider a weak Taylor scheme of order r ≥ 2, a multi-index α such that α = (0)l

for l ≥ 1, and a smooth function u. Itô-Taylor expanding u(h, X̂0,x
h ) yields the smooth function

E

�

u(h, X̂0,x
h )
�

= u(0, x) + C1u(0, x)h + C2u(0, x)h2 + . . . + Cl+1u(0, x)hl+1 +O(hl+2)
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for some constants Ci, and the operators L̂α,r
x are defined implicitly by

E

�

u(h, X̂0,x
h )
�

= u(0, x)+ L̂
(0),r
x u(0, x)h+ L̂

(0,0),r
x u(0, x)

h2

2
+ . . .+ L̂

(0)l+1,r
x u(0, x)

hl+1

(l + 1)!
+O(hl+2).

Lemma 3.2.2. Suppose that (Hul+2
b ) holds for the value function u and consider a weak Taylor scheme

of order r = l + 1. For all α ∈ Dr such that α is a multi-index with all entries being equal to zero, and

(0, x) ∈ [0, T]× R
d, it holds that L̂α,r

x u(0, x) ≡ Lαu(0, x).

Proof. Consider a multi-index of the form α = (0)k for all k = 1, . . . , l + 1. We use the properties

of the value function to recall that

E
�

u(h, X̂h)
�

= E[u(h, Xh)] +O(hr+1), (3.2.8)

given the order of the weak Taylor scheme; this follows from [KP92, Theorem 14.5.2], as we are

just considering one time step (see [KP92, p.474, (14.5.12)]). Furthermore, by extending [CC14,

Proposition 2.2], we can write the expansion of the weak Taylor scheme of order r, using the

(unspecified) operators L̂α,r
x :

E

�

u(h, X̂0,x
h )
�

= u(0, x) + L̂
(0),r
x u(0, x)h + . . . + L̂

(0)l+1,r
x u(0, x)

hl+1

(l + 1)!
+O(hl+2).

For the true process X, the value function can be expanded as

E[u(h, Xh)] = u(0, x) + L(0)u(0, x)h + . . . + L(0)l+1u(0, x)
hl+1

(l + 1)!
+O(hl+2).

Observe that from (3.2.8), and the previous two equalities, we can compare coefficients of h to

establish that

E
�

u(h, X̂h)
�

− E[u(h, Xh)] =
l+1

∑
k=1

�

L̂
(0)k ,r
x u(0, x)− L(0)k u(0, x)

� hk

k!
+O(hl+2)

and

E
�

u(h, X̂h)
�

− E[u(h, Xh)] = O(hr+1)

therefore by division by hk for k = 0, . . . , l + 1, L̂
(0)k ,r
x u(0, x) = L(0)k u(0, x) holds. ✷

The above lemma is required so that we can use the notation L̂α,r
x u(0, x) ≡ Lαu(0, x) for

sufficiently smooth value functions with α = (0)k and k ≤ r. We have included a few examples
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throughout the following sections that explicit the Taylor expansions of the value function

using weak Taylor schemes.

We now similarly define the operators L̂α,r
x for α = (j) ∗ (0)l for l ≥ 0, using the weight (H

ψ
h )j:

Definition 3.2.4. For ψ ∈ Bl
[0,1], a weak Taylor scheme of order r and a smooth value function u, an

Itô-Taylor expansion yields

E

�

(H
ψ
h )ju(h, X̂0,x

h )
�

= L(j)u(0, x) + C̃1h + C̃2h2 + . . . + C̃lh
l +O(hl+1),

for some constants C̃i, and we define implicitly the operators L̂α,r
x

E

�

(H
ψ
h )ju(h, X̂0,x

h )
�

= L̂
(j),r
x u(0, x) + L̂

(1,0),r
x u(0, x)h + . . . + L̂

(1)∗(0)l ,r
x u(0, x)

hl

l!
+O(hl+1),

for multi-indices α = (1) ∗ (0)k for k = 0, . . . , l.

Lemma 3.2.3. Fix l ∈ N. Suppose (Hul+2
b ) holds, a weak Taylor scheme of order l + 1 and ψ ∈ Bl

[0,1].

Then,

Eti

�

H
ψ
ti ,h

u(ti+1, X
ti ,X̂ti
ti+1

)

�

= Eti

�

H
ψ
ti ,h

u(ti+1, X̂ti+1)
�

+O(hl+1).

Proof. We prove only for the weak Taylor scheme of order 2, using a function ψ ∈ B1
[0,1]. We

consider the first time step, i.e. i = 0, and h := t1 (equidistant grid). Fix ψ ∈ B1
[0,1] and (Hu3

b)

holds; the weak Taylor 2 scheme for one step (with f ≡ 0) is

X̂h = x + γ
√

hΔW +
1
2

γγ′h
�

(ΔW)2 − h
�

+
1
2

γ2γ′′ (hΔW − ΔZ) , (3.2.9)

where ΔW := I
(j)
h =

� h
0 dW

(j)
s , and ΔZ := I

(j,0)
h =

� h
0 W

(j)
s ds. Apply a Taylor expansion

to u(h, X̂h) around (0, x) (recalling Remark 3.2.3(i)), multiply by the weight (H
ψ
h )j :=

1
h

� h
0 ψ(s/h)dW

(j)
s , and take the expectation to obtain

E

�

(H
ψ
h )ju(h, X̂h)

�

= E

�

( 1
h

� h
0 ψ(s/h)dW

(j)
s )u(0, x)

�

+ E

�

( 1
h

� h
0 ψ(s/h)dW

(j)
s )
�

(X̂h − x)∂xu(0, x) + h∂tu(0, x)
�

�

+ E

�

( 1
h

� h
0 ψ(s/h)dW

(j)
s ) (X̂h−x)2∂xxu(0,x)+2h(X̂h−x)∂txu(0,x)+h2∂ttu(0,x)

2!

�

+ E

�

(H
ψ
h )j

(X̂h−x)3∂xxxu(0,x)+3h(X̂h−x)2∂txxu(0,x)+3h2(X̂h−x)∂ttxu(0,x)+h3∂tttu(0,x)
3!

�

+ E

�

(H
ψ
h )j

�

(X̂h−x)4∂xxxx+4h(X̂h−x)3∂txxx+6h2(X̂h−x)2∂ttxx+4h3(X̂h−x)∂tttx+h4∂tttt
4!

�

u(0, x)
�

+ . . . ;
(3.2.10)
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now consider the individual terms. The first term on the RHS of (3.2.10) is zero since ψ is

bounded. For the second term, observe that by Itô’s isometry, and the properties of ψ ∈ Bl
[0,1]

in Definition 3.1.1, then

E

�

( 1
h

� h
0 ψ(s/h)dW

(j)
s )
�

(X̂h − x)∂xu(0, x) + h∂tu(0, x)
�

�

= E

�

1
h

� h
0 ψ(s/h)dsγ(x) + 1

h
1
2 γ′′(x)γ2(x)

� h
0 ψ(s/h)sds

�

∂xu(0, x) + hE

�

� h
0 ψ(s/h)dW

(j)
s

�

∂tu(0, x)

= γ(x)∂xu(0, x) = γ(x)Δ.
(3.2.11)

From the third line of (3.2.10), consider

E

��

1
h

� h

0
ψ(s/h)dW

(j)
s

�

(X̂h − x)2∂xxu(0, x) + 2h(X̂h − x)∂txu(0, x) + h2∂ttu(0, x)

2!

�

;

the first term evaluates to (γ → γ(x), γ′ → γ′(x), γ′′ → γ′′(x))

E

�

(H
ψ
h )j

(X̂h − x)2

2!
∂xxu(0, x)

�

=

�

γ′γ2h +
1
4

γ′′γ3γ′h2
�

∂xxu(0, x);

since from one of the cross terms

E

�

(H
ψ
h )j

1
2

γ′γ2((ΔW)3 − ΔWh)

�

=
3
2

γ2γ′h − 1
2

γ′γ2h = γ′γ2h.

and other terms such as

E

�

1
4
(H

ψ
h )jγ

′γ′′γ3
�

(ΔW)2 − h
�

(hΔW − ΔZ)

�

= O(h2).

Other terms evaluate to zero using
� 1

0 ψ(s)sds = 0 and hΔW − ΔZ =
� h

0 sdW
(j)
s . We also

consider

E

�

(H
ψ
h )j

(X̂h − x)3

3!
∂xxxu(0, x)

�

=
1
2

γ3h∂xxxu(0, x) +O(h2),

which can be observed using the same properties.

For the cross-term ∂txu(0, x), observe that

E

�

(H
ψ
h )j

2(X̂h − x)h

2!

�

= E

��

� h

0
ψ(s/h)dW

(j)
s

��

γΔW +
γ′γ

2

�

(ΔW)2 − h
�

+
γ′′γ2

2

� h

0
sdW

(j)
s

��

= γ(x)
� h

0
ψ(s/h)ds +

1
2

γ′′γ2
� h

0
ψ(s/h)sds = γ(x)h,

by the properties in Definition 3.1.1 and a change of variables.
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Similarly, for higher order Taylor expansions, the expectation of the product with the weight

H
ψ
h is controlled by O(h2). By combining the above equalities, we can conclude that

E

�

(H
ψ
h )ju(h, X̂h)

�

= γ(x)∂xu(0, x) +O(h2),

since L(1,0)u(0, x) = γ(x)

�

∂tx + γ(x)γ′(x)∂xx +
1
2 γ2(x)∂xxx

�

u(0, x) = 0. The proof similarly

follows for higher order weak Taylor schemes and the corresponding functions ψ ∈ Bl
[0,1]. ✷

Corollary 3.2.1. Consider the value function solving (2.1.1), where (Hul+2
b ) holds. For ψ ∈ Bl

[0,1], and

a weak Taylor scheme of order r, then the operators L̂α,r
x are defined as

L̂
(1),r
x u(0, x) = L(1)u(0, x), · · · , L̂

(1)∗(0)l ,r
x u(0, x) = L(1)∗(0)l u(0, x).

Proof. Recall, that for ψ ∈ Bl
[0,1], and a weak Taylor scheme of order r = l + 1, we have that for

value functions such that (Hul+2
b ),

E

�

H
ψ
h u(h, Xh)

�

= L(1)u(0, x) + L(1,0)u(0, x)h + . . . + L(1)∗(0)l u(0, x)
hl

l!
+O(hl+1);

since the value function is such that L(0)u(0, x) = 0, then E

�

H
ψ
h u(h, Xh)

�

= L(1)u(0, x) +

O(hl+1). We conclude by applying Lemma 3.2.3, since E

�

H
ψ
h u(h, Xh)

�

= E

�

H
ψ
h u(h, X̂h)

�

+

O(hl+1). ✷

Remark 3.2.4.

(i) We can similarly obtain the operators L̂α,r
x for other multi-indices α, by appropriately selecting a

weight. We shall not require them, so we do not explicit them here.

(ii) We see that by imposing smoothness and boundedness assumptions on Lαu(0, x), these properties

can be passed on to L̂α,r
x u(0, x) for weak Taylor schemes of sufficiently high order.

Theorem 3.2.1 paves the way for a general result for higher-order weak Taylor schemes, which

can be justified by [TT90, Theorem 1 (iv)], where the results are shown in the d = m = 1 case:

Corollary 3.2.2. Fix l ∈ N. Consider a weak Taylor scheme of order l + 1, on an equidistant mesh π,

such that |π| = h, suppose (Hul+3
b ) holds for a value function u, and let ψ ∈ Bl

[0,1]. Then,

E

�

H
ψ
h g(X̂T)

�

= L(1)u(0, x) +O(hl+1).
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Proof. From Lemma 3.2.3 it follows that E

�

H
ψ
h u(h, X̂h)

�

= L(1)u(0, x) +O(hl+1), where h = t1.

Define ϕ(t, xt) ≡ L̂
(0)l+2,r
xt

u(t, xt), where the operator is associated to a weak Taylor scheme of

order r. From an extension of (3.2.7), then

E

�

H
ψ
h

�

u(ti+1, X̂ti+1)− u(ti, X̂ti
)

��

= E

�

H
ψ
h

�

hl+2

(l + 2)!
ϕ(ti, X̂ti

) + R

�

�

,

where R := I
(0)l+2
ti ,ti+1

�

ϕ(·, X̂·)− ϕ(ti, X̂ti
)
�

. An application of the Cauchy-Schwarz inequality,

yields E

�

H
ψ
h R
�

≤ �H
ψ
h �2�R�2 ≤ Chl+2 for ψ ∈ Bl

[0,1] and ϕ sufficiently smooth. We conclude

with a first-order expansion of the sum of E

�

(H
ψ
h )j ϕ(ti, X̂ti

)
�

which is treated similarly as in the

proof of Theorem 3.2.1. ✷

The above corollary is constructive for selecting a discretisation scheme on [0, T], and an

appropriate function ψ ∈ Bl
[0,1] in order to have approximations of Δ to a higher order of bias.

3.3 Extrapolation method

We now recall Section 2.4.2 and the assumed expansion. We shall prove that the expansion

in (2.4.3) holds for the X̂ discretisation using weak Taylor schemes.

3.3.1 Euler scheme

The next lemma provides an approximation of an integral, using summations for a general

function v : [0, T]× R
d → R, which is characterised by the smoothness of the function:

Lemma 3.3.1. For v ∈ G2
b , then

n−1

∑
i=0

hE[v(ti, Xti
)] =

� T

0
E[v(s, Xs)]ds + h

� T

0

1
2

E

�

L(0)v(s, Xs)
�

ds +O(h2) .

Proof. 1. First, recall that if f : [0, T] → R is C1, then we recognise an order 1 approximation of

an integral, which allows us to write

n−1

∑
i=0

h f (ti) =
� T

0
f (s)ds +O(h). (3.3.1)
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Indeed, observe that
n−1

∑
i=0

� ti+1

ti

{ f (s)− f (ti)}ds =
n−1

∑
i=0

� ti+1

ti

� 1

0
f ′(ti + λ(s − ti))(s − ti)dλds.

The results follow from the continuity of f ′ on [0, T].

2. We now compute
� T

0
E[v(s, Xs)]ds −

n−1

∑
i=0

hE[v(ti, Xti
)] =

n−1

∑
i=0

� ti+1

ti

E[v(s, Xs)− v(ti, Xti
)]ds.

From the weak expansion in Lemma 3.2.1, we have

n−1

∑
i=0

� ti+1

ti

E[v(s, Xs)− v(ti, Xti
)]ds =

n−1

∑
i=0

� ti+1

ti

E

�

L(0)v(ti, Xti
)
�

(s − ti)ds +O(h2)

= h

�

h
n−1

∑
i=0

1
2

E

�

L(0)v(ti, Xti
)
�

�

+O(h2).

The proof of the lemma is concluded by using the first step. ✷

We expand E

�

(H
ψ
h )jg(X̂T)

�

in the step size h with ψ ≡ 1, to justify an extrapolation method:

Proposition 3.3.1. Suppose that u ∈ G4
b , ψ ≡ 1 and assume an Euler scheme for the discretisation of

the process X. Then,

E

�

(H1
h)jg(X̂T)

�

= u(j)(0, x) + hC1,j,x,T +O(h2).

Proof. Note t1 = h, and Hh := (H1
h)j.

1. Applying Ito’s Formula, we compute successively (similarly to (3.2.6))

Eti

�

u(ti+1, X̂ti+1)− u(ti, X̂ti
)
�

= Eti

�

� ti+1

ti

L̂
(0)
X̂ti

u(s, X̂s)ds

�

= hL̂
(0)
X̂ti

u(ti, X̂ti
) + Eti

�

� ti+1

ti

� s

ti

L̂
(0,0)
X̂ti

u(r, X̂r)drds

�

=
h2

2
L̂
(0,0)
X̂ti

u(ti, X̂ti
) +

h3

6
L̂
(0,0,0)
X̂ti

u(ti, X̂ti
) +O(h4),

(3.3.2)

where to get the last equality we used also the fact that L̂
(0)
X̂ti

u(ti, X̂ti
) = 0, and the boundedness
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of the derivatives of the value function. We define

φ1
e (s, x) :=

1
2

L̂
(0,0)
x u(s, x) , φ2

e (s, x) :=
1
6

L̂
(0,0,0)
x u(s, x).

With this notation, we obtain,

E
�

Hh{g(X̂T)− u(h, X̂h)}
�

= E

�

Hh

�

n−1

∑
i=1

Et1

�

h2φ1
e (ti, X̂ti

) + h3φ2
e (ti, X̂ti

)
�

+O(h4)

��

. (3.3.3)

From [TT90, Theorem 1], we know that

Et1

�

φ1
e (ti, X̂ti

)
�

= Et1

�

φ1
e (ti, X

t1,X̂t1
ti

)

�

+ hφ̃1
e,i(t1, X̂t1) +O(h2) ,

for some bounded function φ̃1
e,i, and

Et1

�

φ2
e (ti, X̂ti

)
�

= Et1

�

φ2
e (ti, X

t1,X̂t1
ti

)

�

+O(h).

Combining these equalities with (3.3.3), we obtain

E
�

Hh{g(X̂T)− u(h, X̂h)}
�

= O(h
5
2 ) + h3

E

�

Hh

n−1

∑
i=1

φ̃1
e,i(t1, X̂t1)

�

+E

�

Hh

�

n−1

∑
i=1

Et1

�

h2φ1
e (ti, X

t1,X̂t1
ti

) + h3φ2
e (ti, X

t1,X̂t1
ti

)

�

��

,

(3.3.4)

using the Cauchy-Schwarz inequality and the variance of Hh. Using Lemma 3.2.1, we observe

that

E

�

Hh

n−1

∑
i=1

φ̃1
e,i(t1, X̂t1)

�

=
n−1

∑
i=1

�

L(j)φ̃1
e,i(0, x) +O(h)

�

= O
�

1
h

�

. (3.3.5)

We also compute

n−1

∑
i=1

hEt1

�

φ2
e (ti, X

t1,X̂t1
ti

)

�

= Et1

�

� T

t1

φ2
e (s, X

t1,X̂t1
s )ds

�

+O(h), (3.3.6)

leading to

h2
E

�

Hhh
n−1

∑
i=1

φ2
e (ti, X

t1,X̂t1
ti

)

�

= h2
�

L(j)ϕ2
e (0, x) +O(h

1
2 )
�

= O(h2), (3.3.7)
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where ϕ2
e (t, x) := E

�

� T
t φ2

e (s, Xs)ds
�

and using Lemma 3.3.1. Similarly,

n−1

∑
i=1

hEt1

�

φ1
e (ti, X

t1,X̂t1
ti

)

�

= Et1

�

� T

t1

φ1
e (s, X

t1,X̂t1
s )ds

�

+
h

2
Et1

�

� T

t1

L(0)φ1
e (s, X

t1,X̂t1
s )ds

�

+O(h2)

= ϕ1
e (t1, X̂t1) + ϕ̃1

e (t1, X̂t1)h +O(h2),

where for any (t, x) ∈ [0, T] × R
d, ϕ1

e (t, x) := Et

�

� T
t φ1

e (s, Xt,x
s )ds

�

and ϕ̃1
e (t, x) :=

Et

�

� T
t L(0)φ1

e (s, Xt,x
s )ds

�

/2. Note that ϕ1
e ∈ G2

b and ϕ̃1
e ∈ G1

b .

We compute

hE

�

Hhh
n−1

∑
i=1

φ1
e (ti, X

t1,X̂t1
ti

)

�

= hL(j)ϕ1
e (0, x) +O(h2); (3.3.8)

combining (4.1.6), (3.3.5), (3.3.7) and (3.3.8) we get

E
�

Hh{g(X̂T)− u(h, X̂h)}
�

= hL(j)ϕ1
e (0, x) +O(h2). (3.3.9)

2. We now observe that

E
�

Hhg(X̂T)
�

= E
�

Hh{g(X̂T)− u(h, X̂h)}
�

+ E
�

Hhu(h, X̂h)
�

= hL(j)ϕ1
e (0, x) +O(h2) + E

�

Hhu(h, X̂h)
�

.

Using Lemma 3.2.1, we have

E
�

Hhu(h, X̂h)
�

= L(j)u(0, x) + hL̂
(j,0)
x u(0, x) +O(h2).

Combining the above expansion with (3.3.9), we finally obtain

E
�

Hhg(X̂T)
�

= L(j)u(0, x) + h
�

L(j)ϕ1
e (0, x) + L̂

(j,0)
x u(0, x)

�

+O(h2),

which completes the proof. ✷

We consider X̂n/2 = (X̂n/2
t )t∈[0,T], the Euler scheme associated with a grid of stepsize of 2h,

recalling the notation from Remark 3.2.1(iii). The following result yields a second order

approximation of the Δ using the Romberg method:
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Theorem 3.3.1. Suppose that u ∈ G4
b and ψ ≡ 1. Using an Euler scheme we have

2E

�

(H
ψ
h )jg(X̂n

T)
�

− E

�

(H
ψ
2h)jg(X̂n/2

T )
�

= L(j)u(0, x) +O(h2). (3.3.10)

Proof. The proof is a direct consequence of the previous proposition, and noting that

L̂
(j)
x u(0, x) = L(j)u(0, x). ✷

Remark 3.3.1.

(i) By the above arguments, we can present a third-order scheme using the Euler scheme; following

the same steps, we can show that for (Hu5
b) and an Euler scheme with ψ ≡ 1, then

E

�

H
ψ
h u(h, X̂h)

�

= γ(x)Δ + d1h + d2
h2

2
+O(h3);

straightforward extrapolation suggests

3E

�

H
ψ
h g(X̂n

T)
�

− 5
2

E

�

H
ψ
2hg(X̂n/2

T )
�

+ E

�

H
ψ
3hg(X̂n/3

T )
�

= γ(x)Δ +O(h3).

(ii) The step functions defined using (2.4.4) are similar to the step functions defined using the families

Bl
[0,1]. Setting c = 1/2 for ψs,1, coincides with the scheme using (2.4.4) yielding the same step

function and weight variance. For higher-order schemes, we saw in Example 3.1.3 that the optimal

(c, c′) �= (1/3, 2/3) which are the suggested parameters for the scheme using equidistant step

functions; therefore weights defined using ψ ∈ Bl
[0,1] achieve a better variance bound compared to

the equidistant step functions defined using (2.4.4).

3.3.2 Weak Taylor scheme of order 2

We extend the previous result for the Euler scheme to a weak Taylor scheme of order 2 to

perform extrapolation. Recall the scheme (3.2.9), with the drift set to zero. For extrapolation,

we proceed from Lemma 3.2.3 with an additional level of Taylor expansions (d = m = 1):

Lemma 3.3.2. Suppose a weak Taylor 2 scheme, ψ ∈ B1
[0,1] and (Hu4

b). Then, E

�

H
ψ
h u(h, X̂h)

�

=

u
(1)
0 + C2,x,Th2 +O(h3).
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Proof. This proof extends Lemma 3.2.3 to an additional order of Taylor expansions, up to O(h3)

terms. For a general ψ ∈ B1
[0,1]:

E

�

H
ψ
h u(h, X̂h)

�

=γ(x)∂xu(0, x) +

�

1
2

γ∂ttx +
1
4

γ2γ′′∂tx + γ2γ′∂txx +
1
2

γ3∂txxx

+
1
4

γ3γ′γ′′∂xx +

�

3
2

γ3(γ′)2 +
1
2

γ

�

−1
2

γ2(γ′)2 +
1
2

γ′′γ3
�

+
1
8

γ′′γ4
�

∂xxx

+ γ4γ′∂xxxx +
1
8

γ5∂xxxxx

�

u(0, x)h2 +O(h3),

therefore we can conclude. ✷

Theorem 3.3.2. Suppose that u ∈ G5
b . Then, for ψ ∈ B1

[0,1], and a weak Taylor scheme of order 2, with

an equidistant stepsize |π| = h

4
3

E

�

(H
ψ
h )jg(X̂n

T)
�

− 1
3

E

�

(H
ψ
2h)jg(X̂n/2

T )
�

= L(j)u(0, x) +O(h3).

Proof. Observe that for j = 1, . . . , m

E

�

(H
ψ
h )jg(X̂T)

�

= E

�

(H
ψ
h )j{g(X̂T)− u(h, X̂h)}

�

+ E
�

(Hh)ju(h, X̂h)
�

= L(j)u(0, x) + E

�

(H
ψ
h )j{g(X̂T)− u(h, X̂h)}

�

+ C2,j,x,Th2 +O(h3),

using Lemma 3.3.2 for Taylor expanding the value function u(h, X̂h) using a weight ψ ∈ B1
[0,1].

Now recall the telescoping term (3.3.2): since we are using a weak Taylor scheme of order 2,

from Lemma 3.2.2 we know that L̂
(0,0),2
x u(s, x) = L(0,0)u(s, x) = 0, therefore

Eti

�

u(ti+1, X̂ti+1)− u(ti, X̂ti
)
�

=
h3

6
L̂
(0,0,0),2
X̂ti

u(ti, X̂ti
) +

h4

24
L̂
(0,0,0,0),2
X̂ti

u(ti, X̂ti
) +O(h5).

The proof follows from the same argument as the proof for the Euler scheme extrapolation

(Proposition 3.3.1). For (s, x) ∈ [0, T]× R
d, we denote for our second order scheme

φ1
s (s, x) :=

1
6

L̂
(0,0,0),2
x u(s, x) , φ2

s (s, x) :=
1

24
L̂
(0,0,0,0),2
x u(s, x),

where L̂α,2
x is the operator of the weak Taylor scheme of order 2 for multi-index α. With this

notation, we obtain

E

�

(H
ψ
h )j{g(X̂T)− u(h, X̂h)}

�

= E

�

(H
ψ
h )j

n−1

∑
i=1

�

Et1

�

h3φ1
s (ti, X̂ti

) + h4φ2
s (ti, X̂ti

)
�

+O(h5)
�

�

.
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Observe that we can approximate as an integral using Lemma 3.3.1,

n−1

∑
i=1

hEt1

�

φ1
s (ti, X

t1,X̂t1
ti

)

�

= Et1

�

� T

t1

φ1
s (s, X

t1,X̂t1
s )ds

�

+
h

2
Et1

�

� T

t1

L(0)φ1
s (s, X

t1,X̂t1
s )ds

�

+O(h2)

= ϕ1
s (t1, X̂t1) + ϕ̃1

s (t1, X̂t1)h +O(h2),

where for any (t, x) ∈ [0, T] × R
d, ϕ1

s (t, x) := Et

�

� T
t φ1

s (s, Xt,x
s )ds

�

and ϕ̃1
s (t, x) :=

Et

�

� T
t L(0)φ1

s (s, Xt,x
s )ds

�

/2. Note that with ϕ1
s ∈ G2

b and ϕ̃1
s ∈ G1

b , we compute as before

hE

�

(Hh)jh
n−1

∑
i=1

φ1
s (ti, X

t1,X̂t1
ti

)

�

= hL(j)ϕ1
s (0, x) +O(h2),

and similarly to (3.3.6) and (3.3.7), we have

h3
E

�

(H
ψ
h )j

n−1

∑
i=1

hφ2
s (ti, X̂ti

)

�

= h3
�

L(j)ϕ2
s (0, x) +O(h

1
2 )
�

= O(h3),

where ϕ2
s (t, x) := E

�

� T
t φ2

e (s, Xt,x
s )ds

�

. To conclude, observe that using the Cauchy-Schwarz

inequality, E

�

(H
ψ
h )j ∑

n−1
i=1 O(h5)

�

= E

�

(H
ψ
h )jO(h4)

�

= O(h7/2), which enables us to conclude

that

E

�

(H
ψ
h )jg(X̂n

T)
�

= L(j)u(0, x) + C2,j,x,Th2 +O(h3);

by extrapolation we obtain a scheme for Δ approximations with a bias of O(h3). ✷

3.4 Simulation results

We now price contingent claims and approximate the Greeks using finite difference methods.

It is often the preferred technique for small-dimensional problems. Finite difference methods

replace the partial derivatives by their approximations on a grid, in order to reduce the problem

to a finite set of algebraic equations (for details, see [Duf06]).

We implement the explicit finite difference method, which marches-back in time from the

terminal payoff at expiry time T, to the initial time t = 0. The benefit of this technique is

the quick implementation, whilst the drawback is that in order to guarantee stability of the

algorithm, doubling the number of space steps increases the number of required time steps

four-fold.
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We consider the following smooth, Lipschitz continuous diffusion and payoff function for our

numerical examples:

Example 3.4.1 (Smooth diffusion and payoff). Suppose zero drift, diffusion γ(u) ≡ 1 + sin2(u),

and payoff g(u) ≡ arctan(u). Consider initial condition x = 0.3 and T = 1 as the parameters. The true

price, Δ and Γ of this option are (0.155, 0.503,−0.086), computed using the finite difference method,

1000 spatial steps and 4000000 time steps.

Remark 3.4.1. We compute the slope of the straight line of the mean squared error against the

computational cost (log− log scale), which is proxied by the runtime (measured in seconds) of the

algorithms. Throughout this numerical section, we include the slope and constant of the straight line

in the legend for the various plots, which are an indication of the complexity of the various techniques.

We use the weak Taylor schemes (see [KP92, Chapter 14] for more details). The parameter ζ determines

the size of h := 1/Nζ , for which the first step is simulated, and also defines the equidistant step size.

We summarise the parameters in tables for the different techniques, explaining the scheme, weight and

convergence properties.

3.4.1 High-order Δ approximation

Consider N simulations, and fix the step size |π| to equal to the h-increment of the weight

defined; i.e. |π| := h. For this example, to approximate the Δ, the approximation E

�

H
ψ
h g(X̂n

T)
�

has a bias of O(hr), where r is the order of the scheme used (r = 1 corresponds to the Euler

scheme, r = 2 corresponds to the second order weak Taylor scheme, etc). In Table 3.1, we

explicit the implementation of the Δ using the different schemes, and weight requirements,

where h = |π| = 1/Nζ .

r (Scheme) Weight ζ MSE Cost Slope
1 (Euler) ψ ≡ 1 1/3 O(N−2/3) O(N4/3) −1/2
2 (WT2) ψs,1, ψp,1 1/5 O(N−4/5) O(N6/5) −2/3
3 (WT3) ψs,2, ψp,2 1/7 O(N−6/7) O(N8/7) −3/4

Table 3.1: Implementation and MSE for the Delta.

In Figure 3.1, we consider high-order approximations for the Δ, for Example 3.4.1. Observe that

the slope of the approximation improves dramatically from the Euler scheme (ψ ≡ 1), to the

weak Taylor scheme 2 (with ψs,1) and consequently the weak Taylor order 3 scheme with ψs,2.
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WT1 (r,c) = (−0.51649,−8.4175)
WT2 (r,c) = (−0.70609,−8.5722)
WT3 (r,c) = (−0.76792,−8.6215)

Figure 3.1: MSE vs Cost (log− log) in seconds for the Delta, each with 500 repeats. Parameters
as in Table 3.1.

For this example, for an MSE of approximately exp(−10), the weak Taylor order 3 scheme takes

20 seconds, whilst the Euler scheme takes approximately 60 seconds; even though the higher

weak Taylor scheme is more computationally demanding, the fact that ζ is much lower means

that the step sizes are considerably bigger, translating to a faster runtime. In addition, recall

the discussion from Section 3.1.2 on the size of N for which high-order schemes are preferred

to higher-order schemes for a fixed computational effort available: from Figure 3.1, we observe

that for runtimes of more than approximately 0.3 seconds, high-order Δ approximations are

preferred to the Euler scheme and ψ ≡ 1 (basic approximation).

Remark 3.4.2 (Different schemes on [0, h] and [h, T]).

(i) We could consider using different schemes on [0, h] and [h, T], where [0, h] is discretised using one

time step.

(ii) The computational cost of each method is determined by the step size and scheme for the

discretisation of [h, T].
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3.4.2 Extrapolation Delta

We now consider Romberg-Richardson style extrapolation from Theorems 3.3.1 and 3.3.2.

ψ A B Scheme ζ MSE Cost Slope
ψ ≡ 1 2 1 Euler 1/5 O(N−4/5) O(N6/5) −2/3
ψs,1 4/3 1/3 WT2 1/7 O(N−6/7) O(N8/7) −3/4

Table 3.2: Parameters for extrapolating the Δ using Euler and the weak Taylor scheme of
order 2, using h := 1/Nζ . MSE, Computational cost and log− log slope. For numerics, see
Figure 3.3.

Example 3.4.2. We consider extrapolation with independent Brownian paths and the same Brownian

paths, for Example 3.4.1:

(i) Independent Brownian paths: the two extrapolation terms in (3.3.10) are calculated

independently. This achieves the expected strong slope of MSE vs Cost of −2/3 as expected from

Table 3.2 for the Euler scheme with ζ = 1/5. In Figure 3.2, we show the actual average values of

Δ obtained, showing the superior performance of the extrapolation.

(ii) Same Brownian paths: the two extrapolation terms in (3.3.10) are calculated using the same

Brownian path. This achieves the same strong rate of convergence, however the constant is lower,

since the variance of (3.3.10) has a smaller constant.

In Figure 3.3, we consider parameters from Table 3.2. The rate of convergence increases as

expected for the higher order extrapolation; we observe that extrapolation using a weak Taylor

scheme of order 2 is an improvement on higher-order Δ using a weak Taylor scheme of order 3

and ψs,2.

Remark 3.4.3. Recall Remark 3.3.1(i). The optimal ζ = 1/7 for the extrapolated Δ yields an MSE of

O(N−6/7), with computational cost O(N8/7) and a theoretical slope of −3/4 for the log− log plot of

the MSE against the computational cost.

It is natural to compare high-order approximations from the previous section to the Greeks

using extrapolation: we compare Figure 3.1 and Figure 3.3. Comparing a weak Taylor 2 scheme

with ψs,1, and an extrapolated Euler scheme with ψ = 1, the performance is similar. Upon

comparing the weak Taylor 3 scheme with ψs,2 and an extrapolated weak Taylor 2 scheme with
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Figure 3.2: See Example 3.4.2(i). Δ values obtained against time in seconds for the extrapolated
Δ, the value with stepsize h, 2h and the true Δ. Each run is repeated 100 times, with the number
of Monte Carlo paths N = 214, . . . , 220. Euler scheme extrapolation with ζ = 1/5.
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WT1, WT1, ψ ≡ 1, (m,c) = (−0.66338,−8.6781)

WT2, WT2, ψ
s,1

, (r,c) = (−0.78319,−9.0532)

Figure 3.3: MSE vs Cost (log− log) for the extrapolated Δ using WT1 and WT2 schemes with
ψ ≡ 1 and ψs,1, each run is repeated 100 times. Parameters as in Table 3.2.
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ψs,1, then the extrapolated scheme achieves an improved constant, since the variance of the

weight is much smaller. Furthermore, it is worth highlighting that the extrapolated scheme is

easier to implement, and can be further parallelised.

3.4.3 Heston Greeks

We now apply the results of the previous sections even if the assumptions required for the

proofs are not satisfied to perform numerics. Consider an asset price process S = (St)t≥0,

with S0 = x > 0, defined on a complete filtered probability space (Ω,F , (F )t≥0, P), assuming

some constant interest rate r ∈ R. In the Heston model, the variance process is modelled as a

mean-reverting square-root diffusion stochastic process. The tuple (St, Xt) is the unique strong

solution to
dSt = rStdt +

√
XtStdB

(1)
t , S0 = x > 0 ,

dXt = κ(θ − Xt)dt + ξ
√

XtdB
(2)
t , X0 = v > 0

d�B(1), B(2)�t = ρdt , |ρ| ≤ 1 ,

(3.4.1)

with κ, θ, ξ > 0, B(1) = (B(1))t≥0 and B(2) = (B(2))t≥0 being two correlated Brownian motions.

If 2κθ ≥ ξ2, then P(Xt = 0) = 0, for all t ≥ 0. This is referred to as the Feller condition, and

when satisfied ensures that the origin is unattainable for the variance process (see [RW00]). We

also mention that moments of the Heston model can explode depending on the parameters. For

exponents p > 1, E
�

S
p
t

�

is finite for all t > 0 if and only if ρ ≤ κ/(ξ p)−
�

(p − 1)/p [AP07].

The Heston model can be represented with independent Brownian motions W(1) = (W
(1)
t )t≥0

and W(2) = (W
(2)
t )t≥0 as

d

�

St

Xt

�

=

�

rSt

κ (θ − Xt)

�

dt +

�
�

1 − ρ2
√

XtSt ρ
√

XtSt

0 ξ
√

Xt

��

dW
(1)
t

dW
(2)
t

�

, S0 = x,

, X0 = v.
(3.4.2)

Consider now approximating the Delta under the Heston model. The difficulty in simulating

the Heston model is the CIR volatility process as it can become negative using the Euler-

Maruyama scheme; as a result, we consider several techniques for approximating the process.

We consider an explicit Euler scheme, and a drift-implicit scheme [Alf13a]. Future work could

be to consider a second-order discretisation scheme for the CIR process [Alf08]. By a suitable
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Lamperti transform, we can obtain the log-Heston model [DNS12]

d log(St) = (r − 1
2Y2

t )dt + Yt

�

�

1 − ρ2dW
(1)
t + ρdW

(2)
t

�

, S0 = x

dYt =
�

4κθ−ξ2

8
1
Yt
− κ

2Yt

�

dt + ξ
2dW

(2)
t , Y0 =

√
v,

(3.4.3)

where Y :=
√

X. Apply the Euler scheme for the log-price equation and the drift-implicit

square root scheme for the volatility process to obtain H̄tk
, which is an approximation of

log(Stk
) given by

H̄tk
= log(x) +

k−1

∑
l=0

�

r − 1
2

Ȳ2
tl

�

Δtl+1 +
k−1

∑
l=0

Ȳtl

�

�

1 − ρ2ΔW
(1)
l+1 + ρΔW

(2)
l+1

�

, (3.4.4)

and S̄tk
:= exp(H̄tk

) is an approximation of the asset price at time tk. We now consider several

schemes for approximating the CIR process in the Heston model, in order to use the above

discretisation scheme for the log-price.

Consider a terminal payoff function g, of the asset price, and suppose that the correlation

parameter is set to zero, in a zero interest rate environment (i.e. ρ ≡ 0, r ≡ 0). Applying

our previous results, a suggested scheme for the Δ in the Heston model is

Δ = E

�

g(XT)
ΔW

(1)
h

hx
√

v

�

+O(h).

Example 3.4.3 (Modified explicit Euler scheme). One approach is to apply the modified explicit

scheme, which is the next part of the thesis (see Part III). If the Feller condition 2κθ/ξ2 > 1 holds, then

the transformed process Y =
√

X is the unique strong solution to

dYt = f (Yt)dt + cdW
(2)
t , Y0 =

√
v,

with drift function f (x) ≡ a/x + bx, a := (4κθ − ξ2)/8 > 0, b := −κ/2 and c := ξ/2 from (3.4.3).

Example 3.4.4 (Drift Implicit scheme). The drift-implicit Euler method can be written as

Ȳtk+1 = Ȳtk
+ f (Ȳtk+1)Δtk+1 + cΔW

(2)
k+1, Ȳ0 =

√
v.

We can take the positive root of the quadratic equation, solving for Ȳtk+1 , to obtain the explicit solution

Ȳtk+1 =
Ȳtk

+ cΔW
(2)
k+1

2(1 − bΔtk+1)
+

�

�

�

�

(Ȳtk
+ cΔW

(2)
k+1)

2

4(1 − bΔtk+1)2 +
aΔtk+1

1 − bΔtk+1
, Ȳt0 =

√
v.
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We can approximate the CIR process using X̄tk
= Ȳ2

tk
. For convergence of the modified Euler

approximation to the log-Heston price in (3.4.4), refer to [KN12, Corollary 5.5].

Example 3.4.5 (Heston Call option). Consider the following parameters for the Heston model:

(κ, θ, ξ, r, ρ, x, v) = (1.15, 0.04, 0.2, 0, 0, 100, 0.04). We consider a European Call option, with strike

K = 100, and terminal time T = 1. The true price and semi-analytic Δ are computed to be

(11.03, 0.555).

In Figure 3.4, we consider the explicit and drift-implicit approximations, with the parameters

ζ = 1/3, with ψ ∈ B0
[0,1]. Note that the schemes are quite similar, with comparable

performance as expected; in fact the drift-implicit Euler has a slightly lower constant as it is

more computationally intensive.

−3 −2 −1 0 1 2 3
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

log(cost (sec))

lo
g(

M
S

E
)

MSE vs Cost Heston Delta (log log plot)

Explicit Euler (r,c) = (−0.53697,−6.4368)

Drift−implicit (r,c) = (−0.49373,−6.2407)

Figure 3.4: Heston model: MSE vs Cost (log− log) in seconds for the Δ of the option in
Example 3.4.5, 100 repeats, ψ ≡ 1, ζ = 1/3. Explicit Euler scheme is from Example 3.4.3,
Drift-implicit is from Example 3.4.4.

By following the same techniques, we can approximate the Heston Vega (V := ∂vu(0, x)) by

V = E

�

g(XT)
(H

ψ
h )2

ξ
√

v

�

+O(h),

using the second Brownian motion to define the weight—performance is similar hence omitted.
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3.5 Discussion

In this chapter, we have shown two valid approaches for computing the Δ. The first uses

specific weights which improve the order of bias; the second technique is based on the Romberg

extrapolation technique. We have shown that E

�

H
ψ
h g(X̂T)

�

admits an expansion in terms

of the equidistant step size h for weak Taylor schemes of varying order. Combined with a

particular choice of ψ functions, we can use the ideas from the theoretical expansions from

Chapter 2 to create higher order approximations, or further improve the Δ procedure by

Romberg extrapolation.

The main measure of error used is the MSE compared to the runtime; it is seen that

the extrapolation techniques obtain superior slope compared to just high-order techniques.

Extrapolation of the Euler scheme is particularly appealing due to the fact that it is not

necessary to compute potentially difficult derivatives of the drift and diffusion functions that

are required for weak Taylor schemes of high-order. Furthermore, it is hard to justify schemes

of extremely high orders, due to the implementation and the increasing variance constant of the

weights. Another advantage of extrapolation is that it lends itself to natural parallelisation, so

in a production environment one would divide the work effort across the two runs. Expansion

methods for the Euler scheme allow Greek computation for general models without having

to differentiate the drift and diffusion coefficients; this can really be a “black-box” in real-life

applications.

It is important to consider the function ψ in tandem with the weak Taylor scheme used; using

an inappropriate combination can increase the variance unnecessarily. There is the subtlety of

the smoothness required of the value function; it would be interesting to consider examples of

value functions for which (Hul
b) holds, but (Hul+1

b ) doesn’t, and then perform extrapolation

or higher order schemes for which convergence cannot be justified theoretically.

We have also considered an example for the Heston model Δ using a modified explicit Euler

scheme, and the more numerically demanding drift-implicit scheme, for which proving the

results is more challenging.
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4. Numerical Approximation of the Gamma

In this chapter, we extend the themes from Chapter 3 to approximate the Gamma of an option.

This quantity in a financial setting is Γ := ∂xxu(0, x) at the initial time, the second derivative

of the value function with respect to the initial spot price. In this chapter, we use numerical

schemes to approximate expressions containing the Γ within them. A new set of functions are

introduced to define suitable weights for these approximations.

4.1 High-order approximations

The aim now is to generalise the high order approximations for the Δ to approximate the Γ. We

proceed with considering families of functions, which will be used to define weights Γ
φ
h (vector

of length m) to approximate u
(j,j)
0 by

E

�

(Γ
φ
h )jg(XT)

�

= E

�

(Γ
φ
h )ju(h, Xh)

�

, (4.1.1)

where we recall that u
(j,j)
0 = L(j,j)u(0, x).

Definition 4.1.1 (φ-functions). For l ∈ N
+, define Kl

[0,1] as the set of bounded, measurable functions

φ : [0, 1] → R such that
� 1

0
φ(s)sds = 1, (4.1.2)

and if l ≥ 2, then for all k = 2, . . . , l,
� 1

0
φ(s)skds = 0. (4.1.3)

We now define the general family of weights Γ
φ
h for φ ∈ Kl

[0,1]:

Definition 4.1.2 (Γφ
h -weights). Let φ ∈ Kl

[0,1], and for 0 < h ≤ T, define the row vector Γ
φ
t,h as

(Γ
φ
t,h)j :=

1
h2

� t+h

t
φ

�

s − t

h

�

W
(j)
s dW

(j)
s for j = 1, . . . , m,

and for shorthand Γ
φ
h := Γ

φ
0,h.
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Example 4.1.1. We motivate the family of functions defined with an example using φ ∈ K1
[0,1]. Suppose

a weak Taylor scheme of order 2 (r = 2) and that (Hu3
b) holds. Following from (4.1.1), u

(1,1)
0 can be

approximated using Itô-Taylor expansions using the hierarchical set D2 and the remainder set B(D2);

the terms from the remainder set are bounded by O(h) from the smooth, bounded derivatives, and

E

�

(Γ
φ
h )j I

(j,j)
h

�

= 1 from (4.1.2). This concludes that E

�

(Γ
φ
h )jg(XT)

�

= u
(j,j)
0 +O(h).

Example 4.1.2. Suppose φ ∈ K2
[0,1]. By considering an Itô-Taylor expansion of u(h, Xh) (d = m = 1

case) with a hierarchical set D3, observe that

E

�

Γ
φ
h u(h, Xh)

�

= E

�

Γ
φ
h

�

u
(1,1)
0 I

(1,1)
h + u

(0,1,1)
0 I

(0,1,1)
h + u

(1,0,1)
0 I

(1,0,1)
h

��

+ ∑
α∈B(D3)

E

�

Γ
φ
h Iα

h [u
α
· ]
�

.

Let (Hu4
b), and consider the various terms individually:

(i) The first term is evaluated using the definition of Γ
φ
h , Itô’s isometry, a change of variables

and (4.1.2):

E

�

Γ
φ
h u

(1,1)
0 I

(1,1)
h

�

= u
(1,1)
0

1
h2

� h

0
φ
� s

h

�

sds = u
(1,1)
0 . (4.1.4)

(ii) The second term can be explicited using Itô’s isometry and (4.1.3):

E

�

Γ
φ
h I

(0,1,1)
h

�

=
1
h2

� h

s=0
φ
� s

h

� s2

2
ds =

h

2

� 1

0
φ(s)s2ds = 0.

(iii) For the third term observe that
� s

u=0 Wudu =
� s

u=0(s − u)dWu by an integration by parts

argument, therefore using (4.1.3) we obtain

E

�

Γ
φ
h I

(1,0,1)
h

�

= h
� 1

s=0
φ(s)

� s

u=0
(s − u)duds =

h

2

� 1

0
φ(s)s2ds = 0.

The term u
(1,1,0)
0 is equal to zero from L(0)u(·, X·) = 0. Combining (i)-(iii) and noting that

∑α∈B(D3) E

�

Γ
φ
h Iα

h [u
α
· ]
�

= O(h2), it follows that E

�

(Γ
φ
h )jg(XT)

�

= u
(1,1)
0 +O(h2).

4.1.1 Weights and variance properties

We now consider a general result to show that the weights Γ
φ
h are suitable for approximating

u
(j,j)
0 by considering higher-order terms in the Itô-Taylor expansion of u(h, Xh):
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Theorem 4.1.1. Fix l ∈ N
+. Suppose (Hul+2

b ) holds and φ ∈ Kl
[0,1]. Then, for h ∈ (0, T] and

j = 1, . . . , m,

E

�

(Γ
φ
h )jg(XT)

�

= u
(j,j)
0 +O(hl).

Proof. 1. We compute E

�

Γ
φ
h Iα

h

�

recalling L(0)u· = 0, then it is sufficient to consider multi-

indices such that l(α) = q, α+ = (j, j) and 2 ≤ q ≤ l + 1. Then, for every such multi-

index, there exists a ∈ N
+, such that 2 ≤ a ≤ q and the multi-index can be expressed as

α = (0)a−2 ∗ (j) ∗ (0)q−a ∗ (j). For such multi-index, we have

E

�

(Γ
φ
h )j I

α
h

�

=
1
h2 E

��

� h

s=0
φ(s/h)W

(j)
s dW

(j)
s

�

I
(0)a−2∗(j)∗(0)q−a∗(j)

h

�

=
1
h2

� h

0
φ(s/h)E

�

I
(j)
s I

(0)a−2∗(j)∗(0)q−a
s

�

ds.

Since k0((j)) = k1((j)) = 0, and k0(α) = a − 2 and k1(α) = q − a, it follows from Lemma 2.2.1

that

E

�

I
(j)
s I

(0)a−2∗(j)∗(0)q−a
s

�

=
sq−1

(q − 1)!
.

Therefore, for α = (0)a−2 ∗ (j) ∗ (0)q−a ∗ (j),

E

�

(Γ
φ
h )j I

α
h

�

=
1

(q − 1)!h2

� h

0
φ(s/h)sq−1ds =

hq−2

(q − 1)!

� 1

0
φ(s)sq−1ds = 0,

unless q = a = 2, which yields 1 as seen in (4.1.4).

2. Consider an Itô-Taylor expansion for u(h, Xh) using the hierarchical set Dl+1, and remainder

set B(Dl+1). The only non-zero expectation terms are those with multi-indices α such that

α+ = (j, j); therefore, α is again of the form α = (0)a−2 ∗ (j) ∗ (0)l−a ∗ (j), for q = l + 2.

Recalling (2.2.3), observe that k0(α) = a − 2, k1(α) = l + 2 − a, k2(α) = 0, and k0((j, j)) =

k1((j, j)) = k2((j, j)) = 0, leading to w((j, j), α) = l + 2 for all α ∈ B(Dl+1). From the regularity

(Hul+2
b ), it follows that ∑α∈B(Dl+1)

E

�

(Γ
φ
h )j I

α
h [u

α
· ]
�

= O(hl). ✷

We now consider various functions φ ∈ Kl
[0,1], and again categorise them in polynomials φp,l

and step functions φs,l.

Polynomial functions φp,l ∈ Kl
[0,1]

We now derive the polynomials that belong to Kl
[0,1] by simultaneously solving equations from

the conditions imposed on φp,l by (4.1.2) and (4.1.3):
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Lemma 4.1.1. Suppose m = 1.

1. φp,1 ≡ 2 ≡ ψs,1, belongs to K1
[0,1]. The weight defined using φp,1 has variance V[Γ

φp,1
h ] = 2

h2 .

2. φp,2(s) ≡ 18 − 24s belongs to K2
[0,1].

3. φp,3(s) ≡ 72 − 240s + 180s2 belongs to K3
[0,1].

Remark 4.1.1. We can easily simulate Γ
φp,1
h ; however for φp,l for l ≥ 2, we require terms

� h
0 skWsdWs

for each k = 2, . . . , l, which are generally difficult to simulate.

Step functions φs,l ∈ Kl
[0,1]

Weights defined using step functions are easier to simulate. Therefore, we explicit Γ
φs,2
h , for

some fixed c ∈ (0, 1):

Lemma 4.1.2. Function φs,2(u) ≡ −2
c(c−1)2 11[1−c,1](u) + (2 − 2

c−1 +
2

(c−1)2 ) is a bounded, measurable

step function for any c ∈ (0, 1) and belongs to K2
[0,1]. Furthermore, the minimum variance for the

weight Γ
φs,2
h is attained when c = 3/2 −

√
5/2, independently of h.

Proof. We choose a step function φs,2 : [0, 1] → R, with one step at point c ∈ (0, 1). From

the properties of φs,2, we require
� 1

0 φs,2(u)udu = 1 and
� 1

0 φs,2(u)u
2du = 0. By forming the

simultaneous equations

A
� 1

(1−c)
udu + B

� 1

0
udu = 1, A

� 1

(1−c)
u2du + B

� 1

0
u2du = 0,

it follows that

φs,2(u) ≡
−2

c(c − 1)2 11[1−c,1](u) +

�

2 − 2
c − 1

+
2

(c − 1)2

�

.

We explicit the weight Γ
φs,2
h using Definition 4.1.2 as

Γ
φs,2
h = 1

h2

� h
0 φs,2(s/h)WsdWs

= 1
h2

� h
0

�

−2
c(c−1)2 11[1−c,1](s/h)Ws + (2 − 2

c−1 +
2

(c−1)2 )11[0,1](s/h)Ws

�

dWs

= −1
h2c(c−1)2

�

�

W2
h − h

�

−
�

W2
h(1−c) − h(1 − c)

��

+
�

1 − 1
c−1 +

1
(c−1)2

�

(W2
h−h)
h2

= (c−1)
ch2

�

W2
h − h

�

+ 1
h2c(c−1)2

�

W2
h(1−c) − h(1 − c)

�

.
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The weight has mean zero, so to compute the variance, we square and take expectations;

simplifying the resulting expression using

E

�

W4
h

�

= 3h2 and E

�

W2
h W2

(1−c)h

�

= h2(1 − c)(3 − 2c) for c ∈ (0, 1).

Differentiating the variance of the weight with respect to c, yields a minimum variance attained

at c = 3/2 −
√

5/2 ≈ 0.382, independently of h. The minimum variance of Γ
φs,2
h is hence given

by

V(Γ
φs,2
h ) =

9404
√

5 − 21028

h2(3
√

5 − 7)(21
√

5 − 47)(4
√

5 − 9)
≈ 24.2

h2 .

✷

For the step function φs,3 with steps at distinct points c, c′ ∈ (0, 1), we consider three

simultaneous equations from the definition of the function φ ∈ K3
[0,1]. Their solution yields

φs,3(u) ≡ s111[1−c,1](u) + s211[1−c′ ,1](u) + s3,

where

s1 := −2
1

c (c − 1)2 − 2
1

c (c − 1) (c′ − c)
,

s2 :=
−2c + 2

cc′
+ 2

1
c (c − 1) (c′ − c)

+
2c − 4

(c − 1) (c′ − 1)
− 2
�

c′ − 1
�−2

and

s3 := 2 + 2 (c − 1)−2 − 2 (c − 1)−1 +
−2c + 4

(c − 1) (c′ − 1)
+ 2
�

c′ − 1
�−2 .

Lemma 4.1.3. The weight defined using the step function φs,3 attains its minimal variance at c = 0.676,

c′ = 0.104 independently of h, and V[Γ
φs,3
h ] = 95.7/h2.

The proof is omitted as it follows the same argument as in the proof of Lemma 4.1.2.

4.1.2 Approximating the Γ using the Euler scheme

We now discretise the process using an Euler scheme, and consider approximating the Γ. The

next lemma will be required for the main result in this section:

Lemma 4.1.4. Suppose an Euler scheme, φ ≡ 2, and (Hu2
b) holds. Then,

E

�

(Γ
φ
h )ju(h, X̂h)

�

= L̂
(j,j)
x u(0, x) +O(h) = γ2∂xxu(0, x) +O(h);
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assuming (Hu3
b), we have

E

�

(Γ
φ
h )ju(h, X̂h)

�

= L̂
(j,j)
x u(0, x) + L̂

(j,j,0)
x u(0, x)h +O(h2).

Proof. We show the proof for d = m = 1, which extends naturally. Using X̂h = x + f (x)h +

γ(x)ΔW, perform a Taylor expansion on u(h, X̂h) using the multivariate Taylor theorem around

(0, x), observing that when φ ≡ 2, then Γ
φ
h =

�

(I
(1)
h )2 − h

�

/h2:

E

�

Γ
φ
h u(h, X̂h)

�

=E

�

Γ
φ
h u(0, x)

�

+ E

��

(ΔW)2 − h

h2

�

�

(X̂h − x)∂xu(0, x) + h∂tu(0, x)
�

�

+ E

��

(ΔW)2 − h

h2

�

(X̂h − x)2∂xxu(0, x) + 2h(X̂h − x)∂txu(0, x) + h2∂ttu(0, x)

2!

�

+ . . . ,

where ΔW :=
� h

0 dWs = I
(1)
h , and ΔZ :=

� h
0 Wsds. We now consider the terms individually,

starting from E

�

Γ
φ
h u(0, x)

�

= 0.

1. For the first part, we expand up to O(h) terms. Furthermore, observe that the ∂xxu(0, x)

terms are

E

�

Γ
φ
h

(X̂h − x)2

2!

�

=E







�

I
(1)
h

�2
− h

h2

�

f (x)h + γ(x)I
(1)
h

�2







=E

�

1
2

γ2
�

I
(1)
h

�4
− 1

2
γ2
�

I
(1)
h

�2
+

�

f γ
�

I
(1)
h

�3
− f γI

(1)
h

�√
h

�

+ E

��

1
2

f 2
�

I
(1)
h

�2
− 1

2
f 2
�

h

�

=
3
2

γ(x)2 − 1
2

γ(x)2 = γ2(x),

using the properties of the Brownian motion. We now consider the term containing ∂xxxu(0, x):

E

�

Γ
φ
h

(X̂h − x)3

3!

�

=E

�

1
6

γ3
�

�

I
(1)
h

�4
− 1

2
γ2
�

I
(1)
h

�5
−
�

I
(1)
h

�3
�

+

�

f γ
�

I
(1)
h

�3
− f γI

(1)
h

�√
h

�

+E

�

1
2

f γ2
�

�

I
(1)
h

�4
−
�

I
(1)
h

�2
�

h

�

+ E

�

1
2

f γ2
�

�

I
(1)
h

�4
−
�

I
(1)
h

�2
�

h3/2
�

+O(h2)

= f (x)γ(x)2h +O(h2).
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For the ∂xxxxu(0, x) terms, we have

E

�

Γ
φ
h

(X̂h − x)4

4!

�

=
15
24

γ4h + 3
�

1
4

f 2γ2h2 − 1
24

γ4h

�

+

�

1
24

f 4h3 − 1
4

f 2γ2h2
�

− 1
24

f 4h3

=
1
2

γ(x)4h +
1
2

f (x)2γ(x)2h2.

Now, we consider several of the cross terms containing ∂txu(0, x):

E

�

Γ
φ
h

2h(X̂h − x)

2!

�

=E

�

f (x)
�

I
(1)
h

�2
h − f (x)h + γ(x)

√
h
�

I
(1)
h

�3
− γ(x)

√
hI

(1)
h

�

= 0.

For terms relating to ∂txxu(0, x),

E

�

Γ
φ
h

3h(X̂h − x)2

3!

�

=E

�

1
2

γ2
�

�

I
(1)
h

�4
−
�

I
(1)
h

�2
�

h + f (x)γ(x)

�

�

I
(1)
h

�3
− I

(1)
h

�

h3/2 +O(h2)

�

=γ(x)2h +O(h2),

and similarly we can check that the ∂ttxu(0, x) terms are O(h2). For higher-order terms, we

have that terms such as L̂α
xu(0, x) are continuous and bounded by assumption. Collecting the

terms up to O(h) proves the first part.

2. For the second result, collect the terms until O(h2), with the additional smoothness in

the value function. We continue to Taylor expand the value function, and observe that the

∂xxxxxu(0, x) terms are

E

�

Γ
φ
h

(X̂h − x)5

5!

�

=E

�

1
120

γ5
�

�

I
(1)
h

�7
−
�

I
(1)
h

�5
�

h3/2
�

+O(h2) = O(h2);

and similarly for higher order terms, we can check that E

�

Γ
φ
h
(X̂h−x)k

k!

�

= O(h2) for k ≥ 5.

E

�

Γ
φ
h u(h, X̂h)

�

=

�

γ(x)2∂xx + {γ2∂txx + f γ2∂xxx +
1
2

γ4∂xxxx}h +O(h2)

�

u(0, x)

= L̂
(1,1)
x u(0, x) + L̂

(1,1,0)
x u(0, x)h +O(h2).

✷

Remark 4.1.2.

(i) An alternative proof to Lemma 4.1.4 is to use the Euler scheme and an extension to Lemma 3.2.1.

(ii) The above proof can be shown for general φ ∈ K1
[0,1]—we pick φ ≡ 2 as it defines a weight with
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the smallest variance.

We now conclude the result for approximating the Γ using an Euler scheme:

Theorem 4.1.2. Suppose (Hu4
b) and φ ≡ 2. Using an Euler scheme, then

E

�

(Γ
φ
h )jg(X̂T)

�

= L̂
(j,j)
x u(0, x) +O(h).

Proof. This proof follows essentially the same steps as in the proof of Theorem 3.2.1. By a

telescoping sum and the first part of the previous lemma,

E

�

(Γ
φ
h )jg(X̂T)

�

= L̂
(j,j)
x u(0, x) +O(h) + E

�

(Γ
φ
h )j

n−1

∑
i=1

�

u(ti+1, X̂ti+1)− u(ti, X̂ti
)
�

�

.

Applying Ito’s Formula, we compute

Eti

�

u(ti+1, X̂ti+1)− u(ti, X̂ti
)
�

= Eti

�

� ti+1
ti

L̂
(0)
X̂ti

u(s, X̂s)ds

�

= hL̂
(0)
X̂ti

u(ti, X̂ti
) + Eti

�

� ti+1
ti

� s
ti

L̂
(0,0)
X̂ti

u(r, X̂r)drds

�

= h2

2 L̂
(0,0)
X̂ti

u(ti, X̂ti
) +O(h3),

(4.1.5)

where to get the last equality we used also the fact that L̂
(0)
X̂ti

u(ti, X̂ti
) = 0, and the boundedness

of the derivatives of the value function. For (s, y) ∈ [0, T]×R
d, define φ1

e (s, y) := 1
2 L̂

(0,0)
y u(s, y).

With this notation, we obtain,

E

�

(Γ
φ
h )j{g(X̂T)− u(h, X̂h)}

�

= E

�

(Γ
φ
h )j

n−1

∑
i=1

�

Et1

�

h2φ1
e (ti, X̂ti

)
�

+O(h3)
�

�

.

From the smoothness of φ1
e , then Et1

�

φ1
e (ti, X̂ti

)
�

= Et1

�

φ1
e (ti, X

t1,X̂t1
ti

)

�

+O(h). Combining these

equalities, we obtain

E

�

(Γ
φ
h )j{g(X̂T)− u(h, X̂h)}

�

= O(h) + E

�

(Γ
φ
h )j

�

∑
n−1
i=1 Et1

�

h2φ1
e (ti, X

t1,X̂t1
ti

)

���

, (4.1.6)

using the Cauchy-Schwarz inequality and the variance of weight (Γφ
h )j. We observe that,

n−1

∑
i=1

hEt1

�

φ1
e (ti, X

t1,X̂t1
ti

)

�

= ϕ1
e (t1, X̂t1) +O(h),
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where for any (t, x) ∈ [0, T]× R
d, ϕ1

e (t, x) := Et

�

� T
t φ1

e (s, Xt,x
s )ds

�

, noting that ϕ1
e ∈ G2

b .

We compute

hE

�

(Γ
φ
h )jh

n−1

∑
i=1

φ1
e (ti, X

t1,X̂t1
ti

)

�

= hL̂
(j,j)
x ϕ1

e (0, x) +O(h2);

therefore

E

�

(Γ
φ
h )jg(X̂T)

�

= L̂
(j,j)
x u(0, x) +O(h).

✷

4.1.3 High-order expansion for Γ

We now pursue high-order approximations, which shall lead to approximations of u
(1,1)
0 , as

opposed to L̂
(1,1)
x u(0, x) using the approximations from the previous section. In Chapter 3, we

applied weak Taylor schemes of order r used for approximating the Δ. The aim is to extend

these results for the Γ—we begin with the analogues result to Lemma 3.2.3:

Lemma 4.1.5. Fix l ∈ N
+. Suppose that (Hul+2

b ) holds for a value function and L(0)u· = 0,

φ ∈ Kl
[0,1], and suppose that the order of the weak Taylor scheme is l + 1. Then,

Eti

�

Γ
φ
ti ,h

u(ti+1, X
ti ,X̂ti
ti+1

)

�

= Eti

�

Γ
φ
ti ,h

u(ti+1, X̂ti+1)
�

+O(hl);

in particular, E

�

Γ
φ
h u(h, Xh)

�

= E

�

Γ
φ
h u(h, X̂h)

�

+O(h), when φ ≡ 2, (Hu3
b) and a weak Taylor scheme

of order 2 is used.

Proof. We show the proof in the d = m = 1 case, and only in the case of a weak Taylor 2

scheme.

i) We first show the result for a weak Taylor scheme of order 2 (without drift), for φ ∈ K1
[0,1].

The proof is analogues to Lemma 3.3.2, but using weights for the Γ. Recall that

X̂h := x + γ(x)I
(1)
h +

1
2

γγ′
�

�

I
(1)
h

�2
− h

�

+
1
2

γ2γ′′ I(0,1)
h ,

where

I
(1)
h =

� h

0
dWs, I

(0,1)
h =

� h

0

� s

0
dvdWs.
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Now, multiply the Taylor expansion of u(h, X̂h) by Γ
φ
h and take expectations:

E

�

Γ
φ
h u(h, X̂h)

�

= E

�

Γ
φ
h u(0, x)

�

+ E

�

Γ
φ
h

�

(X̂h − x)∂xu(0, x) + h∂tu(0, x)
�

�

+E

�

Γ
φ
h
(X̂h−x)2∂xxu(0,x)+2h(X̂h−x)∂txu(0,x)+h2∂ttu(0,x)

2!

�

+ . . . ,

(4.1.7)

and we explicit the individual terms, in this case up to O(h), with

Γ
φ
h =

1
h2

� h

0
φ(s/h)WsdWs.

For the first term, E

�

Γ
φ
h u(0, x)

�

= 0. The terms ∂xu(0, x) are

E

�

Γ
φ
h (X̂h − x)

�

= E

�

Γ
φ
h

�

γI
(1)
h +

1
2

γγ′
�

�

I
(1)
h

�2
− h

�

+
1
2

γ′′γ2
� h

0
sdWs

��

=
1
2

γγ′
E

�

2
h2

� h

0
φ(s/h)sds

�

= γγ′,

using a change of variables and (4.1.2). For the ∂tu(0, x) and ∂ttu(0, x) terms, we have

E

�

Γ
φ
h h
�

= E

�

Γ
φ
h h2
�

= 0. For the terms containing ∂xxu(0, x), we obtain

E

�

Γ
φ
h

(X̂h − x)2

2

�

=E

�

Γ
φ
h

�

1
8

γ2γ′′
�

I
(1)
h

�4
+

1
2

γ2γ′
�

I
(1)
h

�3
��

+ E

�

Γ
φ
h

�

1
2

γ2 − 1
4

γ2(γ′)2h +
1
4

γ3γ′γ′′ I(0,1)
h

�

�

I
(1)
h

�2
�

+ E

�

Γ
φ
h

�

−1
2

γ2γ′h +
1
2

γ3γ′′ I(0,1)
h

�

I
(1)
h

�

+ E

�

Γ
φ
h

�

1
8

γ2(γ′)2h2 − 1
4

γ3γ′γ′′hI
(0,1)
h +

1
8

γ4(γ′′)2
�

I
(0,1)
h

�2
��

=E

�

γ2

2h2

�

3
� h

0
φ(s/h)sds −

� h

0
φ(s/h)sds

��

+O(h)

=γ2
� 1

0
φ(s)sds +O(h) = γ2 +O(h).

Higher order and cross terms can be dealt with in a similar manner. For the remainder terms,

observe that since (Hu3
b), then

E

�

Γ
φ
h u(h, X̂h)

�

= L(1,1)u(0, x) +O(h).
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ii) For the second result, consider a weak Taylor order 3 scheme, with φ ∈ K2
[0,1]; using the

property
� 1

0 φ(s)s2ds = 0, the remainder terms are of O(h2). For this we require an additional

level of smoothness in the value function; i.e. (Hu4
b). ✷

We now prove convergence for the weak Taylor scheme with r = 2:

Theorem 4.1.3. Suppose that (Hu3
b) holds, φ ∈ K1

[0,1], and suppose a weak Taylor scheme of order 2,

on an equidistant time grid π such that |π| = h. Then,

u
(j,j)
0 = E

�

(Γ
φ
h )jg(X̂T)

�

+O(h).

Proof. We begin by fixing the equidistant time grid π with n points of size h.

i) By a telescoping sum it follows that E

�

(Γ
φ
h )jg(X̂T)

�

can be expressed as

E

�

(Γ
φ
h )ju(tn, X̂tn)

�

= E

�

(Γ
φ
h )j

n−1

∑
i=1

{u(ti+1, X̂ti+1)− u(ti, X̂ti
)}
�

+ E

�

(Γ
φ
h )ju(t1, X̂t1)

�

, (4.1.8)

and from Lemma 4.1.5 we note that E

�

(Γ
φ
h )ju(h, X̂h)

�

= u
(j,j)
0 +O(h), where h := t1.

ii) It is left to deal with the telescoping series. Consider

u(ti+1, X̂ti+1)− u(ti, X̂ti
) =

� ti+1
ti

L̂
(0),2
X̂ti

u(s, X̂s)ds + ∑
m
j=1

� ti+1
ti

L̂
(j),2
X̂ti

u(s, X̂s)dW
(j)
s

= hL̂
(0),2
X̂ti

u(ti, X̂ti
) +
� ti+1

ti

� s
ti

L̂
(0,0),2
X̂ti

u(r, X̂r)drds + R,

and observe that since we have used a weak Taylor 2 scheme,

u(ti+1, X̂ti+1)− u(ti, X̂ti
) =

h2

2
L̂
(0,0),2
X̂ti

u(ti, X̂ti
) +O(h3) + R; (4.1.9)

R are terms that have conditional expectation equal to zero given the filtration Fti
, and for a

weak Taylor scheme of order 2, L̂
(0,0),2
X̂ti

u(ti, X̂ti
) = L(0,0)u(ti, X̂ti

) = 0 from Lemma 3.2.2. From

this, we can conclude by summation that

E

�

(Γ
φ
h )j

n−1

∑
i=1

{u(ti+1, X̂ti+1)− u(ti, X̂ti
)}
�

≤ C

�

h4

h2 = O(h),

from the Cauchy-Schwarz inequality, (Hu3
b), and observing that �Γ

φ
h�2 =

√
2/h. Therefore,

E

�

(Γ
φ
h )ju(tn, X̂tn)

�

= E

�

(Γ
φ
h )j

n−1

∑
i=1

{u(ti+1, X̂ti+1)− u(ti, X̂ti
)}
�

+E

�

(Γ
φ
h )ju(h, X̂h)

�

= u
(j,j)
0 +O(h),
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which concludes the proof. ✷

Remark 4.1.3 (Simplified weak Taylor schemes). For higher-order schemes, it could be advantageous

to consider simplified weak Taylor schemes; for an Euler scheme we replace the
� ti+1

ti
dWs components

by simple expressions such as the random variable ΔŴi+1, where hi+1 = ti+1 − ti and P(ΔŴi+1 =

±
�

hi+1) = 1/2. For a weak Taylor scheme of order 2, also replace
� ti+1

ti
Wsds by 1

2 ΔŴi+1hi+1, with

P(ΔŴi+1 = ±
�

3hi+1) = 1/6 and P(ΔŴi+1 = 0) = 2/3.

The use of such simplified schemes enables the techniques to be implemented in a deterministic manner

as a binomial/trinomial lattice; if there is no “recombination” of the tree, then the computational cost

grows exponentially.

We now state a more general result for higher-order approximations of u
(j,j)
0 :

Theorem 4.1.4. Fix l ∈ N
+. Suppose that (Hul+2

b ) holds for a value function u, φ ∈ Kl
[0,1], and

suppose a weak Taylor scheme of order l + 1, on an equidistant time grid π, such that |π| = h. Then,

u
(j,j)
0 = E

�

(Γ
φ
h )jg(X̂T)

�

+O(hl).

4.2 Combination of weak Taylor schemes

We can see from Lemma 4.1.4 that for an Euler scheme and h := t1, we can write

E

�

Γ
φ
h u(h, X̂h)

�

= L̂
(1,1)
x u(0, x) +O(h) = γ2(x)∂xxu(0, x) +O(h), (4.2.1)

where L̂
(1,1)
x u(0, x) = γ2(x)∂xxu(0, x), which includes the Γ. Furthermore, from the previous

section, using a weak Taylor scheme of order 2, then

E

�

Γ
φ
h u(h, X̂h)

�

= L(1,1)u(0, x) +O(h) = γ(x)2∂xxu(0, x) + γ(x)γ′(x)∂xu(0, x) +O(h). (4.2.2)

As a result, we have several alternatives for approximating the Γ. We could set φ ≡ 2 and:

(a) Use an Euler scheme for the first time step, and the weak Taylor order 2 scheme for the

remainder of the time steps, yielding (4.2.1).

(b) Use the weak Taylor order 2 scheme throughout for all time steps, and approximate the Γ

by rearranging (4.2.2).



Chapter 4. Numerical Approximation of the Gamma 129

(c) Euler scheme throughout, with Γ approximated as in part a).

(d) For completeness, one could use a weak Taylor 2 scheme for the first step, followed by an

Euler scheme for the remainder of the steps. The Γ is approximated as in part b) above.

Remark 4.2.1. Observe that using the Euler scheme has the apparent advantage of not requiring the Δ,

since L̂
(1,1)
x u(0, x) contains the Γ.

4.3 Extrapolation

We begin by performing extrapolation for the Γ using the Euler scheme, to obtain a result

similar to Theorem 3.3.1. The proof of the next theorem is very similar to that for the Delta, so

for completeness is included in the appendix.

Theorem 4.3.1. Consider an Euler scheme throughout. Suppose that u ∈ G4
b . Then, for φ ≡ 2 ∈ K1

[0,1],

2E

�

(Γ
φ
h )jg(X̂n

T)
�

− E

�

(Γ
φ
2h)jg(X̂n/2

T )
�

= L̂
(j,j)
x u(0, x) +O(h2).

We now show an expansion using a weak Taylor 2 scheme and φ ∈ K1
[0,1] in order to justify the

extrapolation technique for the Γ:

Lemma 4.3.1. Consider a weak Taylor scheme of order 2, and φ ≡ 2 ∈ K1
[0,1]. Suppose that (Hu4

b)

holds. Then,

E

�

Γ
φ
h g(X̂T)

�

= u
(1,1)
0 + Ch +O(h2).

Proof. i) We apply the weak Taylor 2 scheme, and consider terms in the Taylor expansion of

u(h, X̂h) as in (4.1.7), expanding up to O(h2). We start with E

�

Γ
φ
h u(0, x)

�

= 0. We now take

expectation of E

�

Γ
φ
h (X̂h − x)∂xu(0, x)

�

to obtain
�

3
2 γγ′ + ( f − γγ′ + 1

2 f f ′h + 1
4 h f ′′γ2) + (− f + 1

2 γγ′ − 1
2 h f f ′ − 1

4 h f ′′γ2)
�

∂xu(0, x)

=
�

γγ′ + h
�

1
2 f f ′ + 1

2 f ′′γ2 − 1
2 f f ′ − 1

2 f ′′γ2
��

∂xu(0, x) = γγ′∂xu(0, x)

where f := f (x), f ′ := d f (x)
dx and likewise for γ and higher order derivatives. We now consider

the second term in our expansion, namely E

�

Γ
φ
h
(X̂h−x)2

2 ∂xxu(0, x)
�

and expand in powers of h
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to obtain
�

15
8 hγ2(γ′)2 + 3{− 3

8 hγ2(γ′)2 + 1
2 hγ2 f ′ + 1

4 hγ3γ′ + 1
2 γ2 + h f γγ′}

�

∂xxu(0, x)

+
�

− 1
2 hγ2 f ′ − 1

4 hγ3γ′′ + 3
8 hγ2(γ′)2 + 1

2 h f 2 − 1
2 γ2 − 3

2 h f γγ′
�

∂xxu(0, x)

+
�

1
2 h f γγ′ − 1

8 hγ2(γ′)2 − 1
2 h f 2

�

∂xxu(0, x) +O(h2)

=
�

γ2 + h{γ2(γ′)2 + γ2 f ′ + 1
2 γ3γ′′ + 2 f γγ′}

�

∂xxu(0, x) +O(h2).

We now consider E

�

Γ
φ
h
(X̂h−x)3

3! ∂xxxu(0, x)
�

and repeat the prescribed steps to obtain
�

15
4 hγ3 + 3{− 1

2 hγ3γ′ + 1
2 h f γ2}+ 1

4 hγ3γ′ − 1
2 h f γ2

�

∂xxxu(0, x) +O(h2)

= h(5
2 γ3γ′ + f γ2)∂xxxu(0, x) +O(h2).

Studying E

�

Γ
φ
h
(X̂h−x)4

4! ∂xxxxu(0, x)
�

yields

1
2 hγ4∂xxxxu(0, x) +O(h2),

and with further effort

E

�

Γ
φ
h

(X̂h − x)5

5!
∂xxxxxu(0, x)

�

= O(h2).

We now consider the cross terms

E

�

Γ
φ
h 2

(X̂h − x)h

2!
∂txu(0, x)

�

= γγ′h∂txu(0, x) +O(h2),

E

�

Γ
φ
h 3

(X̂h − x)2h

3!
∂txxu(0, x)

�

= γ2h∂txxu(0, x) +O(h2)

and E

�

Γ
φ
h 3 (X̂h−x)h2

3! ∂ttxu(0, x)
�

= O(h2), E

�

Γ
φ
h 4 (X̂h−x)3h

4! ∂txxxu(0, x)
�

= O(h2),

E

�

Γ
φ
h 6

(X̂h − x)2h2

4!
∂ttxxu(0, x)

�

= O(h2),

and E

�

Γ
φ
h 6 (X̂h−x)h3

4! ∂tttxu(0, x)
�

= O(h3). This is sufficient to show that for this example, we

have E

�

Γ
φ
h u(h, X̂h)

�

= u
(1,1)
0 + hC1 +O(h2).

ii) We now consider the telescoping terms: using the second part of the proof of Theorem 4.3.1,
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we can conclude that

E

�

Γ
φ
h

n−1

∑
i=1

�

u(ti+1, X̂ti+1)− u(ti, X̂ti
)

�

�

= C2h +O(h2).

Therefore, E

�

Γ
φ
h g(X̂T)

�

= u
(1,1)
0 + Ch +O(h2) with C := C1 + C2. ✷

The next theorem extrapolates for the Γ analogously to Theorem 3.3.1 for the Δ:

Theorem 4.3.2. Consider a weak Taylor scheme order 2 throughout. Suppose that u ∈ G4
b . Then, for

φ ≡ 2 ∈ K1
[0,1],

2E

�

(Γ
φ
h )jg(X̂n

T)
�

− E

�

(Γ
φ
2h)jg(X̂n/2

T )
�

= L(j,j)u(0, x) +O(h2).

Proof. Application of Lemma 4.3.1. ✷

Theorem 4.3.3. Consider a weak Taylor scheme of order 3. Suppose that u ∈ G5
b . Then, for φ ∈ K2

[0,1],

4
3

E

�

(Γ
φ
h )jg(X̂n

T)
�

− 1
3

E

�

(Γ
φ
2h)jg(X̂n/2

T )
�

= L(j,j)u(0, x) +O(h3).

4.4 Simulation results

We consider higher-order approximations of the Γ and extrapolation results. We study

Example 3.4.1 throughout.

4.4.1 High-order Γ

We now summarise parameter configurations in Table 4.4.1 for high-order Γ approximations.

φ Expression Scheme ζ MSE Cost Slope

φ ≡ 2 ∈ K1
[0,1] L̂

(1,1)
x u0 Euler 1/4 O(N−1/2) O(N5/4) -2/5

φ ≡ 2 ∈ K1
[0,1] L(1,1)u0 WT2 1/4 O(N−1/2) O(N5/4) -2/5

φs,2 ∈ K2
[0,1] L(1,1)u0 WT3 1/6 O(N−2/3) O(N7/6) -4/7

Table 4.1: Approximating Γ in different ways, using different ζ and schemes.

In this example, we consider ζ = 1/4. The computational cost is O(N5/4) and the MSE is

O(N−1/2), which suggests a gradient of −2/5. This slope is confirmed by Figure 4.1.
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MSE vs Cost Gamma (log log plot)

WT2 (r,c) = (−0.41837,−5.9818)

Figure 4.1: MSE vs Cost (log− log) in seconds for the Γ, 250 repeats. Parameters as in Table 4.4.1
(i.e. ζ = 1/4).

Example 4.4.1. We consider Example 3.4.1. For the scheme configurations a), b), c) from Section 4.2,

in Figure 4.2 we use ζ = 1/4 and the true Δ (we require Δ for examples b) and d) above). We consider

N = 218, . . . , 223, with 30 repeats. We see that when ζ = 1/4, all schemes convergence with the same

rate; the predicted value is −2/5 since the computational cost is O(N5/4) and the MSE is O(N−1/2).

4.4.2 Extrapolation for Γ

We consider the three different examples of extrapolations in Figure 4.3, with the parameters

summarised in Table 4.2. The first example uses an Euler scheme, with ζ = 1/6. Extrapolating

for the Γ using an Euler scheme approximates L̂
(1,1)
x = γ2(x)Γ, which does not include the Δ

term. In this example, this is highly attractive, as we do not require an approximation of the

Δ to obtain the Γ. The second example, uses a weak Taylor scheme of order 2 throughout,

with ζ = 1/6. The approximation now is of L(1,1)u(0, x), which is an expression containing

the Δ. We see that this is slightly worse compared to the Γ using an Euler scheme, as we have

now used the approximation of the Δ at each step, as opposed to the true value. For both of

these examples, the extrapolation is performed using (A, B) = (2, 1), yielding a bias of O(h2).
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WT2 throughout (r,c) = (−0.51452,−5.9271)
1st step Euler, WT2 after (r,c) = (−0.45089,−5.9751)
Euler throughout (r,c) = (−0.48085,−6.0374)

log (complexity (sec))log(cost (sec))

CostMSE vs Cost for Gamma (log log plot)

Figure 4.2: See Example 4.4.1. Gamma approximated using various schemes, ζ = 1/4.

φ Expression Scheme A B ζ MSE Cost Slope

φ ≡ 2 ∈ K1
[0,1] L̂

(1,1)
x u0 Euler 2 1 1/6 O(N−2/3) O(N7/6) -4/7

φ ≡ 2 ∈ K1
[0,1] L(1,1)u0 WT2 2 1 1/6 O(N−2/3) O(N7/6) -4/7

φs,2 ∈ K2
[0,1] L(1,1)u0 WT3 4/3 1/3 1/8 O(N−3/4) O(N9/8) -2/3

Table 4.2: Approximating Γ using extrapolation, using different ζ and schemes.
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MSE vs Cost Extrapolated Gamma (log log plot)

Euler, φ≡2, (r,c) =(−0.6138,−4.7974)
WT2, φ≡2, (r,c) =(−0.5920,−4.4686)

WT3, φ
s.2

, (r,c) =(−0.7259,−6.7696)

Figure 4.3: MSE vs Cost (log− log) in seconds for the Γ, 100 repeats, using extrapolation.
Euler scheme and WT2 with φ ≡ 2, and (A, B) = (2, 1). Third plot is WT3, using ψs,2 and
(A, B) = (4/3, 1/3). See Table 4.2.

Note that the weak Taylor 2 scheme is slightly more computationally tasking. For these two

examples, the computational cost is O(N7/6) and the MSE is O(N−2/3), which suggests a slope

of −4/7, confirmed by the numerics. The third example uses a weak Taylor scheme of order

3, with ζ = 1/8 and φs,2. The performance is superior and even though though the scheme is

very computationally expensive. The computational cost is now O(N9/8), and with an MSE of

O(N−3/4) the theoretical slope is −2/3, which is observed.
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5. Possible extensions

Thus far, we have considered stochastic differential equations of the form (2.0.1), and

approximated option sensitivities with respect to the initial state variable, x ∈ R
d. In this

section, we approximate the sensitivity with respect to a parameter, other than a state variable.

For example, the Vega of an option in a Black-Scholes model is defined as the sensitivity of

the option price to a change in the fixed, initial volatility; the idea here is to make the constant

volatility parameter stochastic by introducing a perturbation. It will be seen that the technique

relies on the expansion of the value function with a perturbation parameter ε.

Let Xε = (Xε
t )t≥0 be a perturbed version of process X, and let uε

· be the value function of

the perturbed Cauchy problem. Informally, the aim is to be able to make statements such

as Xε
t = Xt + O(ε) in some probabilistic sense, and similarly for the solution of the PDE.

In [FSW12, Theorem 1.2], it is shown that assuming (H f 1) then for all t, δ > 0 it holds that

E|Xε
t − Xt|2 ≤ Ctε

2 and limε↓0 P(max0≤s≤t |Xε
t − Xt| > δ) = 0.

5.1 General perturbation

We consider a perturbation with an independent Brownian motion. Recalling (2.0.1), consider

a driftless, time-homogeneous n-dimensional stochastic process X = (Xt)t≤0 satisfying

dXt = γ(Xt, θ)dW
(1)
t , X0 = x ∈ R

d, (5.1.1)

where θ ∈ R
d is fixed, and W(1) is an m-dimensional Brownian motion. Introduce a small

perturbation ε > 0, an independent (from W(1)) d-dimensional Brownian motion W(2) =

(W
(2)
t )t≥0 and consider the perturbed couple Xε = (Xε, θε), solution to the following SDEs:

dXε
t = γ(Xε

t , θε
t )dW

(1)
t , Xε

0 = x ∈ R
d,

dθε
t = εdW

(2)
t , θε

0 = θ ∈ R
d.

(5.1.2)

Essentially, the dimension of the system has increased from R
d to R

d+d, whilst the number of

parameters has gone from the R
d (the dimensions of θ) to R (that of ε). Supposing Lipschitz

continuity and linear growth on the driving coefficients of (5.1.2) guarantees existence and

uniqueness of the solution. We choose to continue with the expansion approach described in
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the previous section, and fix d = d = 1 and m = 1. The new Brownian motion, W(2), allows us

to compute the sensitivity with respect to θ, using a suitable Fϑ-measurable weight multiplied

by the payoff. In the perturbed model, consider a terminal payoff function g ∈ Cp. Suppose

that (uε
t)t∈[0,T] is the value function, where uε

t := uε
t(t, Xε

t , θε
t , ε). Formally, the option pricing

paradigm can now be represented as

uε
0 = E[g ((Xε

T)1)] = E[g (Xε
T)] ,

where (a)i is notation for the ith entry of a. It is clear that u0
0(0, x, θ, 0) = u0(0, x, θ), i.e. the

value function of (5.1.1) coincides with that of (5.1.2) when the perturbation parameter ε is

zero. However, it is not obvious how the limit of limε↓0 uε
0(0, x, θ, ε) behaves, whether it exists,

and whether it equals to u0(0, x, θ).

Throughout, we make the following assumptions on the ability to expand the value function

in terms of the perturbation ε:

(Hur,l
ε ): There exists a rate r > 0 such that for all ε > 0, uε

· = u0
· + Cεr + o(εr) holds pointwise

and for all multi-indices α such that l(α) ≤ l also Lαuε
· = Lαu0

· + Cεr + o(εr) holds pointwise.

From now on assume (Hu1,l
ε ) holds throughout for some l ≥ 1, although we do not attempt to

impose conditions for this strong condition to hold. The analysis will be performed assuming

the rate r = 1, and it could be repeated in the same manner for a general r > 0.

The aim is to approximate sensitivities, such as

∂uε
0(0, x, θ, ε)

∂x

�

�

�

�

ε↓0
and

∂uε
0(0, x, θ, ε)

∂θ

�

�

�

�

ε↓0
,

in addition to higher-order derivatives.

Remark 5.1.1. We do not require Delta approximations, however insist on including them in the

analysis for the included perturbation. The reason behind that is so that all Greeks can be computed

with one forward pass using the perturbed stochastic differential equation.

Remark 5.1.2. Expansions for the volatility of volatility in a similar framework have been considered

in [Lew00, Chapter 3]. The author presents two expansions: in terms of the option price, and in terms

of the implied volatility, and is able to present some asymptotics for them (see [Lew00, Table 3.2], with

better performance for the second type of expansion).

In the next proposition, the aim is to approximate sensitivities with respect to x and θ, and
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compute the Greeks using (Xε
t )t∈[0,T], whilst ε tends to zero. Again, the operators L(0), L(1), L(2)

defined in (2.1.3) and (2.1.2) will be used. As a convention (and slight abuse of notation), γ

denotes γ(x, θ), where (x, θ) are the initial values of the driving SDEs.

Proposition 5.1.1. Consider the model in (5.1.2), and assume (Hu3
b) and (Hu1,2

ε ). Let γ : R
2 → R

be three times continuously differentiable, with bounded derivatives. Then, Table 5.1 shows expressions

containing the first and second-order sensitivities with respect to x and θ, by multiplying the payoff by

the given weights:

Weight Value Bias

I
(1)
ϑ
ϑγ ∂xu0

0 O(ϑ) +O(ε)

I
(2)
ϑ
ϑε ∂θu0

0 O(ϑ) +O(ε)

2I
(1,1)
ϑ

ϑ2 L(1,1)u0
0 O(ϑ) +O(ε)

2I
(1)
ϑ I

(2)
ϑ

ϑ2 L(1,2)u0
0 + L(2,1)u0

0 O(ϑε) +O(ε2)

2I
(2,2)
ϑ

ϑ2ε2 ∂θθu0
0 O(ϑ) +O(ε)

Table 5.1: Two dimensional sensitivities and weights for the general perturbed model.

Proof. The Itô-Taylor expansion in (2.2.7) can be recalled for uε
ϑ; multiplying it by I

(1)
ϑ yields

E

�

uε
ϑ I

(1)
ϑ

�

= E

�

I
(1)
ϑ

�

L(1)uε
0

�

I
(1)
ϑ

�

+ E

�

I
(1,0)
ϑ

�

L(1,0)uε
.

�

I
(1)
ϑ

�

+ E

�

I
(0,1)
ϑ

�

L(0,1)uε
.

�

I
(1)
ϑ

�

= ϑL(1)uε
0 +O(ϑ2)

= ϑL(1)u0
0 +O(ϑ2) +O(ϑε)

= ϑγ∂xu0
0 +O(ϑ2) +O(ϑε),

thus obtaining the weight I
(1)
ϑ /(ϑγ) for ∂xu0

0 and the corresponding bias. The proof for ∂θu0
0

is similar, thus omitted. In summary, the perturbed solution Xε is multiplied by the following

weights to approximate the first-order Greeks:

∂xu0
0 = E

�

g(Xε
T)

I
(1)
ϑ
ϑγ

�

+O(ε) +O(ϑ),

∂θu0
0 = E

�

g(Xε
T)

I
(2)
ϑ
ϑε

�

+O(ε) +O(ϑ).
(5.1.3)

For the second-order sensitivities, recall the hierarchical set D2 and consider the Itô-Taylor
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expansion of uε
ϑ which has the following Itô-Taylor expansion:

uε
ϑ = ∑

α∈D2

Iα
ϑ [L

αuε
0] + ∑

α∈B(D2)

Iα
ϑ [L

αuε
· ] .

Multiply the expansion by I
(1,1)
ϑ , and by

E

�

uε
ϑ

2I
(1,1)
ϑ

ϑ2

�

= L(1,1)uε
0 +O(ϑ),

we obtain

E

�

g(Xε
T)2I

(1,1)
ϑ /ϑ2

�

= L(1,1)uε
0 +O(ϑ) = L(1,1)u0

0 +O(ϑ) +O(ε). (5.1.4)

Similar analysis can be performed for the weight 2I
(2,2)
ϑ /ϑ2 to obtain an expression containing

L(2,2)u0
0; since L(2) = ε∂θ, hence it holds that

E

�

g(Xε
T)

2I
(2,2)
ϑ

ϑ2ε2

�

= ∂θθu0
0 +O(ϑ) +O(ε). (5.1.5)

For the cross-terms, repeat the same computations, and recall that E

�

I
(1,2)
ϑ + I

(2,1)
ϑ

�

=

E

�

I
(1)
ϑ I

(2)
ϑ

�

from Remark 2.3.1, so that the expression

E

�

g(Xε
T)

2I
(1)
ϑ I

(2)
ϑ

ϑ2

�

= L(1,2)u0
0 + L(2,1)u0

0 +O(ϑε) +O(ε2) (5.1.6)

holds, assuming smoothness for the functions γ and uε
ϑ. Combining expressions (5.1.3), (5.1.4),

(5.1.5) and (5.1.6) proves the results in Table 5.1. ✷

5.1.1 Example: perturbed Bachelier model

Consider the perturbed Bachelier model:

Definition 5.1.1. The driftless perturbed Bachelier model is (5.1.2) with γ(x, θ) ≡ θ.

The strategy is to approximate sensitivities with respect to x and θ, and compute the Greeks

using the perturbed process (Xε
t )t∈[0,T], whilst the perturbation ε tends to zero. We proceed

with a corollary (proof in Appendix A.2), which is a consequence of Proposition 5.1.1.
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Corollary 5.1.1 (Perturbed Bachelier Greeks). Suppose that (Hu3
b) and (Hu1,2

ε ) hold. Then, the

following expressions for the first and second-order Greeks from Table 5.2 hold:

Greek Weight Value Bias

Delta I
(1)
ϑ
ϑθ ∂xu0

0 O(ϑ) +O(ε)

Vega I
(2)
ϑ
ϑε ∂θu0

0 O(ϑ) +O(ε)

Gamma 2I
(1,1)
ϑ

ϑ2θ2 ∂xxu0
0 O(ϑ) +O(ε)

Vanna I
(1)
ϑ I

(2)
ϑ

ϑ2θε
− I

(1)
ϑ

2ϑθ2 ∂θxu0
0 O(ϑ) +O(ε)

Vomma 2I
(2,2)
ϑ

ϑ2ε2 ∂θθu0
0 O(ϑ) +O(ε)

Table 5.2: Bachelier Greeks using two-dimensional uncorrelated Brownian motion for the
underlying and the volatility.

We now prove convergence results for the Bachelier Greek approximations in Table 5.2, when

using a discretisation scheme with a strong rate of convergence of order k. We proceed as in

Section 2.4 to compute the MSE of the Greek approximations, including the error introduced

from the perturbed SDE using the parameter ε. The parameters ζ, η are chosen as before (recall

definitions on page 80), and the perturbation is set to ε := 1/Nν.

Consider an approximation for the Delta with N paths under the perturbed model to be

Δ̂ε
N := 1

N ∑
N
i=1 g(X̂ε,i

T )I
(1),i
ϑ /(ϑθ), where X̂ε,i

T is the ith simulated path.

Proposition 5.1.2 (Delta). Assume (Hu2
b) and (Hu1,2

ε ), g is bounded and Lipschitz continuous, and

consider a discretisation scheme with strong convergence rate k. Then, for ζ = 1/3 and ν, kη ≥ 1/3

the MSE of Δ̂ε
N is O(N−2/3).

Proof. The bias of the approximation of the Delta is E
�

Δε
N

�

− Δ = O(ϑ) + O(ε) + O(ϑε).

By using a discretisation scheme with strong rate of convergence k, it follows that E
�

Δ̂ε
N

�

=

Δ +O(hk) +O(ϑ) +O(ε) +O(ϑε). The variance of Δ̂ε
N is O(1/(Nϑ)). The proof then follows

from observing that the MSE of Δ̂ε
N is

O(Nζ−1) +O(N−2kη) +O(N−2ν) +O(N−2ζ) +O(N−ν−kη) +O(N−kη−ζ) +O(N−ζ−ν).

From the first and the fourth terms it follows that ζ = 1/3. To match the other errors, it is

necessary to have ν, kη ≥ 1/3. With such choice of parameters, the MSE is of order O(N−2/3).



140 5.1 General perturbation

This concludes the proof of Proposition 5.1.2. ✷

The next Greek of interest is the V and its approximation is V̂ ε
N := 1

N ∑
N
i=1 g(X̂ε,i

T )
I
(2),i
ϑ
ϑε . Similarly,

the bias of this approximation, when using a strong-order scheme with rate k is E
�

V̂ ε
N

�

− V =

O(hk) +O(ϑ) +O(ε) +O(ϑε).

Proposition 5.1.3 (Vega). Assume (Hu2
b) and (Hu1,2

ε ), g is bounded and Lipschitz continuous, and

consider a discretisation scheme with strong convergence rate k. Then, for ζ = ν = 1/5, kη ≥ 1/5 the

MSE of V̂ ε
N is O(N−2/5).

Proof. For the Vega, the variance of V ε
N is

V(V̂ ε
N) =

V

�

g(X̂ε
T)I

(2)
ϑ

�

Nϑ2ε2 = O
�

1
Nϑε2

�

.

Combining this with the bias, the MSE is proportional to

O(Nζ+2ν−1) +O(N−2kη) +O(N−2ν) +O(N−2ζ) +O(N−ν−kη) +O(N−kη−ζ) +O(N−ζ−ν).

From this, it follows that 1 − ζ − 2ν = 2ν = 2ζ, therefore ζ = ν = 1/5. In addition, if kη ≥ 1/5

is chosen, the MSE is of order O(N−2/5). ✷

Consider now the second-order Greeks, namely Gamma, Vanna and Vomma, referring to them

as Γ, Va and Vo. Their corresponding approximations in the perturbed model are defined by

Γ̂ε
N :=

1
N

N

∑
i=1

g(X̂ε,i
T )

2I
(1,1),i
ϑ

ϑ2θ2 ,

V̂ ε
a,N :=

1
N

N

∑
i=1

g(X̂ε,i
T )

�

I
(1),i
ϑ I

(2),i
ϑ

ϑ2θε
− I

(1),i
ϑ

2ϑθ2

�

,

V̂ ε
o,N :=

1
N

N

∑
i=1

g(X̂ε,i
T )

2I
(2,2),i
ϑ

ϑ2ε2 .

(5.1.7)

Proposition 5.1.4 (Gamma, Vanna, Vomma). Assume (Hu3
b) and (Hu1,2

ε ), g bounded and Lipschitz

continuous, and consider a discretisation scheme with strong convergence rate k. Then,

1. for ζ = 1/4 and ν, kη ≥ 1/4 the MSE of Γ̂ε
N is of order O(N−1/2);

2. for ζ = ν = 1/6 and kη ≥ 1/6 the MSE of V̂ ε
a,N is of order O(N−1/3);
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3. for ζ = ν = 1/8 and kη ≥ 1/8 the MSE of V̂ ε
o,N is of order O(N−1/4).

Proof. All three proofs follow in the spirit of Proposition 5.1.2 and 5.1.3. The different

parameter constraints on ζ, ν, kη arise from the variance term, so that the MSE can be controlled.

1. The variance of Γ̂ε
N is O(1/(Nϑ2)). The MSE for the approximation of the Gamma

is O(N2ζ−1) + O(N−2kη) + O(N−2ν) + O(N−2ζ) + O(N−ν−kη) + O(N−kη−ζ) + O(N−ζ−ν).

Therefore, to balance the error from the first and the fourth terms, 1 − 2ζ = 2ζ yields ζ = 1/4

and the MSE is O(N−1/2) when kη, ν ≥ 1/4.

2. The variance of V̂ ε
a,N is O(1/(Nϑ2ε2)). From the MSE, 1 − 2ζ − 2ν = 2ν = 2ζ yields

ζ = ν = 1/6. By choosing kη ≥ 1/6, it follows that the MSE is O(N−1/3).

3. The variance of V̂ ε
o,N is O(1/(Nϑ2ε4)). From the MSE of the Vomma, it follows that

1 − 2ζ − 4ν = 2ν = 2ζ therefore ζ = ν = 1/8, and for kη ≥ 1/8 it follows that the MSE is

O(N−1/4). ✷

A summary of Proposition 5.1.2-5.1.4 is included in Figure 5.3.

Greek ζ ν kη MSE

Delta 1/3 ≥ 1/3 ≥ 1/3 O(N−2/3)

Vega 1/5 1/5 ≥ 1/5 O(N−2/5)

Gamma 1/4 ≥ 1/4 ≥ 1/4 O(N−1/2)

Vanna 1/6 1/6 ≥ 1/6 O(N−1/3)

Vomma 1/8 1/8 ≥ 1/8 O(N−1/4)

Table 5.3: Parameters and constraints, with MSE.

5.1.2 Numerical results: Vega with perturbation

We now consider the Bachelier model with parameters (x, θ, T) = (100, 20, 1), and consider

a European call option with strike K = 105. Our focus is to compute the Vega, and from

Table 5.3, we use an Euler scheme and fix (ζ, ν, η) = (1/5, 1/5, 1/5). In Figure 5.1, we show

the improved approximations for these Greeks against N.

Remark 5.1.3. For this example, it is not necessary to include a perturbation to compute the Delta and

Gamma; the plots simply demonstrate that even with the ε perturbation, we can compute these Greeks

using the perturbed model.
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Figure 5.1: Bachelier model Delta, Vega, and Gamma, using a perturbation. MSE vs N using
antithetic variables and an Euler scheme.

In Figure 5.2, we plot the mean squared error against the computational cost (measured in

seconds), in a log− log scale. The slope of this is −0.73, which is an improvement on the

predicted value of −1/3 (since the computational cost is O(N6/5) for ζ = ν = η = 1/5).

5.2 High-order Greeks for non-linear pricing

Backward stochastic differential equations (BSDEs) have been widely used in stochastic

control, and in mathematical finance for pricing problems, see e.g. [EKPQ97, MY99, PP92,

EKHM08] and references therein. The solution of a (decoupled) forward-backward stochastic

differential equation consisting of the adapted processes (Y, Z) satisfying

dXt = f (Xt)dt + γ(Xt)dWt, X0 = x, (5.2.1)

−dYt = h(Xt, Yt, Zt)dt − Z∗
t dWt, YT = g(XT), (5.2.2)

where h : R
d × R × R

d → R is the driver, and f : R
d → R

d, γ : R
d → R

d, g : R
d → R and h

are some Lipschitz continuous functions.

The approximation of the forward X process is well studied, and in the BSDE literature the

focus is on approximating (Y, Z) in a backward, recursive manner. Recent methods extend the

setting to a broader class of BSDEs (with drivers) based on Euler approximations [BT04]; other
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Figure 5.2: Bachelier model Vega: MSE vs Cost (log− log) using antithetic variates and an Euler
scheme.

work considers multi-step and Runge-Kutta schemes [Cha14, CC14]. A variance reduction

technique is considered in [AA13]. A possible extension could be extending the solution of a

BSDE, to include process G = (Gt)t∈[0,T]. Formally, define Gt := L(1,1)u(t, Xt), for t ∈ [0, T],

and consider a solution (X, Y, Z, G).

Consider an equidistant mesh π with n time points 0 = t0 < t1 < . . . < tn = T and denote by

(Yi, Zi, Gi) the approximation of (Yti
, Zti

, Gti
) for i = 0, . . . , n, where h := T/n.

On this time grid, we suggest a one-step fully-implementable approximation:

(i) Initialize the terminal conditions, (Yn, Zn, Gn), which are Ftn-measurable, square-

integrable random variables.

(ii) Let approximations (Yi, Zi, Gi) be given by

Yi = Eti
[Yi+1 + (ti+1 − ti)h(ti, Xi, Yi, Zi)], Zi = Eti

[H
ψ
ti ,h

Yi+1], Gi = Eti
[Γ

φ
ti ,h

Yi+1],

where the coefficients H
ψ
ti ,h

and Γ
φ
ti ,h

are Fti+1-measurable random variables, such that for



144 5.2 High-order Greeks for non-linear pricing

some positive Λ

hE

�

|Hψ
ti ,h

|2
�

≤ Λ, Eti
[H

ψ
ti ,h

] = 0, and h2
E

�

|Γφ
ti ,h

|2
�

≤ Λ, Eti
[Γ

φ
ti ,h

] = 0.

Such schemes have been considered in [FTW11, CSTV07]. The value of (Yn, Zn, Gn) is given by

(g(XT), γ(XT)∂xg(XT), γ(XT)∂x (γ(XT)∂xg(XT))) extending the notion of a solution in [PP92].

Convergence properties for (Y, Z) are well studied for one-step, multi-step and Runge-Kutta

schemes [Zha04, Cha14, CC14].

Future work in this general direction would be to adapt what has been done in the previous

sections to the non-linear setting (extrapolation method, Gamma approximations).
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Part III

Explicit Euler scheme for SDEs
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6. An Explicit Euler scheme for financial SDEs with

non-Lipschitz coefficients

We propose here a modified explicit Euler-Maruyama discretisation scheme for a class of

stochastic differential equations with non-Lipschitz drift or diffusion coefficients. This scheme

yields strong convergence, with a rate, which, under some regularity and integrability

conditions on the coefficients of the SDE, is actually optimal. We then apply it to some widely

used diffusion models in the mathematical finance literature, including the Cox-Ingersoll-Ross,

the CEV, the 3/2 and the Ait-Sahalia models, as well as to a family of mean-reverting processes

with locally smooth coefficients.

6.1 Introduction

One of the main tasks in mathematical finance is to evaluate complex derivative products,

where the underlying assets are modelled by multi-dimensional SDEs which rarely admit

closed-form solutions. Monte Carlo techniques are therefore needed to approximate these

prices, and Glasserman’s book [Gla03] has become the main reference for a comprehensive

overview of such methods with applications to financial engineering.

Classical weak and strong convergence results for discretisation schemes of SDEs assume that

the drift and the diffusion coefficients are globally Lipschitz continuous [KP92]; however many

models used in the literature, such as the CIR, CEV, Ait-Sahalia models, violate this assumption.

For pricing purposes, weak error is usually sufficient, but strong convergence rates are needed

when using multilevel Monte Carlo methods (MLMC), in order to optimise the computational

complexity [Gil08b, GHM09].

In traditional Euler-Maruyama discretisation schemes, the constructed approximation can

potentially escape the domain of the true solution of the SDE. In recent years, a lot of effort has

been focused on deriving schemes staying in restricted domains for SDEs with non-Lipschitz

continuous coefficients [Alf13a, BBD08, BD04, HMS02, HJK12, NS12]. Several modifications

have been introduced such as the drift-implicit [DNS12] and the increment-tamed explicit Euler

schemes [HJ12, Theorem 3.15]; in the context of mathematical finance, a thorough overview of
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these can be found in [KN12].

A now classical trick is to apply a suitable Lamperti transform in order to obtain an SDE

with constant diffusion coefficient, thereby translating all the non-smoothness to the drift.

In the context of non-globally Lipschitz coefficients, this idea, introduced by Alfonsi [Alf05],

was further exploited in [Alf13b, NS12] to obtain strong Lp-convergence rates for implicit

“Lamperti-Euler” schemes, in particular for the CIR and the Ait-Sahalia models, and for scalar

SDEs with one-sided Lipschitz continuous drift and constant diffusion [NS12].

Under sufficient differentiability conditions, modified Itô-Taylor schemes [JKN09] of

order ψ > 0 provide pathwise convergence results of order ψ − ε (for arbitrarily small ε > 0).

This approach relies on a localisation argument similar to that in [Gyö98], with an auxiliary

drift and diffusion function chosen upon the discretised process exiting a sub-domain. For

irregular coefficients, some strong rates of convergence have been obtained under more

restrictive conditions in [Gyö98, GR11, Yan02, NT13].

Motivated by these different approaches, our main contribution is to provide an efficient

numerical approximation of SDEs with non-globally Lipschitz coefficients.

We first present an explicit Euler scheme with a projection for SDEs with locally Lipschitz

and globally one-sided Lipschitz drift coefficient, which has a computational cost of the same

order as the explicit Euler-Maruyama scheme. We prove strong rates of convergence for a

wide family of SDEs, often exceeding the parameter range of the implicit schemes available

in the literature. Under suitable assumptions, we are able to obtain fast convergence reaching

the optimal rates of convergence. The scheme shares some of the features of the tamed-scheme

family. Its analysis however does not require heavy technical tools. Having in mind application

to mathematical finance, the analysis is made for SDEs whose support is included in (0, ∞).

Nevertheless, the techniques used here can be extended to the multi-dimensional cases under

some suitable assumptions. An important contribution is the choice of the scheme in relation to

considering the rate of explosion of the drift function at the boundaries of the domain through

a locally Lipschitz continuous condition. To the best of our knowledge, thus far in the literature

of tamed schemes, only the exploding behaviour at infinity has been considered.

We then turn our attention on SDEs with non-globally Lipschitz diffusion coefficients, as often

encountered in finance. We apply a Lamperti transformation to the process of interest in order

to shift the non-Lipschitz behaviour from the diffusion to the drift function, before using the
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modified scheme. This allows us to prove rate of convergence for the original process in the

L1+ε-norm for ε ≥ 0. The rate of convergence for the value ε = 1 can then be used for MLMC

applications.

The remainder of the chapter is structured as follows. In Section 6.2, the modified Euler-

Maruyama scheme is introduced. In Section 6.3, the main convergence result is proven for

the scheme. In Section 6.4, the scheme is applied to families of SDEs, such as the CIR, the 3/2

and the Ait-Sahalia models, widely used in mathematical finance, and the Ginzburg-Landau.

In Section 6.5, numerical results for the rates of convergence obtained are shown and discussed.

Notations: In the sequel, D is the interval (0, ∞). We denote by D̃η the domain [η, ∞), and

D̄ := D̃0. Furthermore, we define the interval D̆ζ := (−∞, ζ] and Ďη,ζ = D̃η ∩ D̆ζ , for η ≤ ζ.

We denote by C2(D) the space of twice differentiable functions with continuous derivatives

on D, and by C2
b (D) the space of functions in C2(D) with first and second bounded derivatives.

We shall denote by N
+ the set of strictly positive integers. For m > 0, we denote Lm the set of

random variable Z such that �Z�m := E[|Z|m]1/m
< +∞.

6.2 Definitions and assumptions

Let (Ω,F , (Ft)t≥0, P) be a filtered probability space, and W = (Wt)t≥0 a standard (Ft)-adapted

Brownian motion. Consider a stochastic differential equation of the form

dYt = f (Yt)dt + γ(Yt)dWt, Y0 = y0. (6.2.1)

Throughout this article, we shall assume the following:

(Hy0): the SDE (6.2.1) admits a unique strong solution in D = (0, ∞); the drift f is locally

Lipschitz continuous and globally one-sided Lipschitz continuous on D, namely there exist

α, β ≥ 0, K > 0, such that for all (x, y) ∈ D2:

| f (x)− f (y)| ≤ K

�

1 + |x|α + |y|α + 1
|x|β +

1
|y|β
�

|x − y|, (6.2.2)

(x − y) ( f (x)− f (y)) ≤ K|x − y|2; (6.2.3)

furthermore, the diffusion function γ is K-Lipschitz continuous on D̄ for some K > 0: for all

(x, y) ∈ D̄2, the inequality |γ(x)− γ(y)| ≤ K|x − y| holds.

Remark 6.2.1. The function γ could as well be defined on D. However, assuming the Lipschitz
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continuity of γ on D would lead to a natural extension of γ on D̄.

Remark 6.2.2. In many models used in practice (in particular the Feller/CIR diffusion in mathematical

finance, see Section 6.4.1), these assumptions are not met. A suitable change of variables, however,

allows us to bypass this: consider an SDE of the form

dXt = µ(Xt)dt + σ(Xt)dWt, X0 = x0, (6.2.4)

where the process X takes values in some domain DX ⊆ R. If σ(x) > 0 for all x ∈ DX, the Lamperti

transformation of X is defined as F(x) ≡
� x

σ(z)−1dz, and Itô’s Lemma implies that the process defined

pathwise by Y := F(X) satisfies (6.2.1) with f ≡ F′µ + 1
2 F′′σ2 and γ ≡ F′σ is constant.

Let n ∈ N
+ be a fixed positive integer and T > 0 a fixed time horizon. Define the partition of

the interval [0, T] by π := {0 = t0 < t1 < . . . < tn = T}, with maxi=0,...,n−1(ti+1 − ti) =: h =

O(1/n).

For a closed interval C ⊂ R, we define pC : R → C as the projection operator onto C. For ease

of notation, we define also pn = pDn , for x ∈ R,

pn(x) =



























n−k ∨ x ∧ nk′ , Dn = Ďn−k ,nk′ if α > 0, β > 0

n−k ∨ x , Dn = D̃n−k if α = 0, β > 0

x ∧ nk′ , Dn = D̆nk′ if α > 0, β = 0

x , Dn = D̄ if α = β = 0

. (6.2.5)

In the following, we denote by C a constant that depends only on K, T, α, β, y0, but whose

value may change from line to line. We denote it by Cp if it depends on an extra parameter p.

We now introduce our explicit scheme for the discretisation process Ŷ:

Definition 6.2.1. Set Ŷ0 := Y0 and for i = 0, . . . , n − 1,

Ŷti+1 := Ŷti
+ fn(Ŷti

)hi+1 + γ̄(Ŷti
)ΔWi+1,

with hi+1 := ti+1 − ti, ΔWi+1 := Wti+1 − Wti
, fn := f ◦ pn and γ̄ := γ ◦ pD̄.

Remark 6.2.3.

(i) For some applications, it may be interesting to force the scheme to take values in a domain, e.g.

intervals D̄, D̄η, D̆ζ or even Ďη,ζ . To this end, we introduce some extensions of the previous
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scheme. For all i ≤ n, we define Ȳti
:= pD̄(Ŷti

), Ỹti
:= pD̄η

(Ŷti
), Y̆ti

:= pD̆ζ
(Ŷti

) and

Y̌ti
:= pĎη,ζ

(Ŷti
), for some η, ζ > 0 to be determined later on, see Corollary 6.3.1 for details.

In Proposition 6.3.3, we prove finite moments and finite inverse moments for these modifications.

(ii) Observe that for α = β = 0, Ŷ is the usual Euler-Maruyama scheme, up to a projection onto D̄.

The following lemma shows how the properties of the initial drift f translate into the new

projected drift fn:

Lemma 6.2.1. For any n ∈ N
+, the composition fn ≡ f ◦ pn is Lipschitz continuous with Lipschitz

constant L(n) = 2K(1 + nkβ1{β>0} + nk′α1{α>0}), and one-sided Lipschitz continuous with the same

constant K as the one-sided Lipschitz continuous constant of f .

Proof. The fact that fn is L(n)-Lipschitz continuous is straightforward. We prove the one-sided

Lipschitz property in two steps below.

Step 1. Let r > l > 0 such that Dn ⊂ (l, r). Assume that f is C1(l, r). From (6.2.2), we have,

for z, z′ ∈ Dn, z > z′, f (z)− f (z′)
z−z′ ≤ K, and letting z′ → z, we retrieve that f ′(z) ≤ K. This shows

that f = g + ℓ, where g is a non-increasing function and ℓ is K-Lipschitz continuous, setting

e.g. g(x) ≡
� x

l+r
2

f ′(u)1{ f ′(u)≤0}du and ℓ(x) ≡
� x

l+r
2

f ′(u)1{ f ′(u)>0}du. Since pn is non-decreasing

and 1-Lipschitz on R, we have fn = g ◦ pn + ℓ ◦ pn, with g ◦ pn non-increasing and ℓ ◦ pn K-

Lipschitz continuous on R. This shows that fn satisfies (6.2.3) as well on R.

Step 2. We now deal with the general case using a smoothing argument. Let l, r ∈ D, r > l,

such that for all Dn ⊂ (l, r). We consider a sequence (ϕm)m≥1 of mollifiers whose supports are

included in [− l
2 , l

2 ] and define f m ≡ ϕm ⋆ f ≡
�

[− l
2 , l

2 ]
ϕm(u) f (x − u)du as the convolution of

ϕm and f . We observe that, for all x, y ∈ (l, r),

(x − y)( f m(x)− f m(y)) =
�

[− l
2 , l

2 ]
ϕm(u){(x − y)( f (x − u)− f (y − u))}du

≤ K|x − y|2
�

[− l
2 , l

2 ]
ϕm(u)du ≤ K|x − y|2 ,

where we used (6.2.3) and the fact that
�

D ϕm(u)du = 1. Since f m is smooth, we can apply

Step 1 to obtain, for all (x, y) ∈ R
2,

(x − y) ( f m(pn(x))− f m(pn(y))) ≤ K|x − y|2 .
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Letting m go to infinity, we then obtain

(x − y) ( f (pn(x))− f (pn(y))) ≤ K|x − y|2 ,

for all x, y ∈ R, which concludes the proof. ✷

Remark 6.2.4. For any n ∈ N
+, since fn and γ are Lipschitz continuous, an easy induction shows

that the scheme in Definition 6.2.1 satisfies maxi=0,...,n �Ŷti
�2 < ∞. The bound is a priori non-uniform

in n, since the Lipschitz constant of fn depends on n.

We now introduce the following assumption, which implies that L(n)2h ≤ C, for all n ∈ N
+,

and which relates the locally Lipschitz exponents α and β to the size of the truncated

domain Dn:

(Hp): the strictly positive constants k, k′ satisfy 2βk ≤ 1 and 2αk′ ≤ 1.

We require additional assumptions to prove the strong convergence rate of our scheme: below

(Hy1) imposes a condition on the moments of the process Y in terms of the locally Lipschitz

exponents α and β, to obtain a minimal convergence rate. We shall further impose regularity

conditions on f and γ to obtain a better rate of convergence.

(Hy1): (Hp) holds and there exist q′ > 2(α + 1) and q > 2β such that E

�

|Yt|q
′
�

and E[|Yt|−q]

are finite for all t ∈ [0, T].

(Hy2): (Hy1) holds, the drift function f is of class C2(D), and

sup
t∈[0,T]

E

�

|γ(Yt) f ′(Yt)|2 +
�

�

�

�

f ′(Yt) f (Yt) +
γ2(Yt)

2
f ′′(Yt)

�

�

�

�

2
�

< ∞. (6.2.6)

For an implicit scheme, strong rates of convergence have been derived in [NS12]

assuming (Hy2); inspired by this paper, our motivation is to recover strong rates of

convergence for the explicit scheme in Definition 6.2.1.

6.3 Convergence results

In this section we prove strong rate of convergence for the scheme in Definition 6.2.1 under

some of the assumptions stated above; this result follows from estimates for the regularity

of the processes Y and f (Y), and the discretisation error of the scheme. Below, we give the
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results for the general case α, β ≥ 0, but in the proof we restrict to the most complicated case

α > 0, β > 0.

6.3.1 Preliminary estimates

Our first two results concern the error due to projecting the true solution Y on Dn.

Lemma 6.3.1. Assume that (Hy0) and (Hy1) hold. Then, for any t ∈ [0, T],

E

�

|Yt − pn(Yt)|2
�

≤ Cq,q′

�

1
nk(q+2)

1{β>0} +
1

nk′(q′−2)
1{α>0}

�

=: K1(n, q, q′) ,

where q, q′ are given by (Hy1).

Proof. For any t ∈ [0, T], we can write

E

�

|Yt − pn(Yt)|2
�

≤ 1
n2k

P

�

Yt <
1
nk

�

+ E

�

|Yt|21{Yt>nk′}

�

.

Set η = q′/2 and θ = q′/(q′ − 2), its conjugate exponent. Hölder’s inequality yields

E

�

|Yt|21{Yt>nk′}

�

≤ E

�

|Yt|q
′�1/η

P{Yt > nk′}1/θ.

Using (Hy1) and the set equality {Yt > nk′} = {Y
q′
t > nk′q′}, Markov’s inequality implies

E

�

|Yt|21{Yt>nk′}

�

≤ Cq′n
−k′(q′−2). Likewise, since {Yt < n−k} = {Y

−q
t > nkq}, Markov’s in-

equality yields P(Yt < n−k) ≤ Cqn−kq, and the lemma follows. ✷

Lemma 6.3.2. Assume that (Hy0) and (Hy1) hold. Then, for any t ∈ [0, T],

E

�

| f (Yt)− fn(Yt)|2
�

≤ Cq,q′

�

1
nk(q−2(β−1))

1{β>0} +
1

nk′(q′−2(α+1))
1{α>0}

�

=: K2(n, q, q′) ,

where q, q′ are given by (Hy1).

Proof. Using (6.2.2), we observe that

| f (Yt)− fn(Yt)|2 ≤ C
�

1 + |Yt|−2β + |Yt|2α
�

|Yt − pn(Yt)|2

≤ C
�

1 + |Yt|−2β
� 1

n2k
1{Yt<n−k} + C

�

1 + |Yt|2α
�

|Yt|21{Yt>nk′}

:= A1 + A2.



154 6.3 Convergence results

Set η := q/(2β) and θ := q/(q − 2β). Hölder’s inequality then yields

E[A1] ≤
Cq

n2k
E
�

|Yt|−q
�1/η

P{Yt < n−k}1/θ ,

and (Hy1) together with Markov’s inequality imply E[A1] ≤ Cqn−k(q−2(β−1)). Setting η′ :=
q′

2(α+1) and θ′ := q′

q′−2(α+1) , a similar computation gives E[A2] ≤ Cq′n
−k′(q′−2(α+1)). ✷

The following lemma provides a regularity result for the process Y and will be required for

the main convergence result. For a given stochastic process X on (Ω,F , (Ft)t≥0, P) and the

partition π, we define its “regularity” by

Rπ[X] :=
n−1

∑
i=0

� ti+1

ti

E

�

|Xt − Xti
|2
�

dt . (6.3.1)

Lemma 6.3.3. Assume that (Hy0) and (Hy1) hold. The regularity of Y satisfies Rπ[Y] ≤ Cq,q′h,

where q, q′ are given by (Hy1).

Proof. For t ∈ (ti, ti+1], since γ is K-Lipschitz, (Hy1) implies

E

�

|Yt − Yti
|2
�

≤ CE

�

�

� t

ti

f (Ys)ds

�2

+
� t

ti

(|Ys|2 + 1)ds

�

≤ Ch

�

1 +
1
h

E

�

�

� t

ti

f (Ys)ds

�2
��

.

For t ∈ (ti, ti+1], we now compute

1
h

E

�

�

� t

ti

f (Ys)ds

�2
�

≤ E

�

� ti+1

ti

| f (Ys)|2ds

�

≤ 2
�

� ti+1

ti

E

�

| f (Ys)− fn(Ys)|2
�

ds +
� ti+1

ti

E

�

| fn(Ys)|2
�

ds

�

≤ Ch

�

K2(n, q, q′) + L(n)2 sup
t∈[ti ,ti+1]

E

�

1 + |Yt|2
�

�

.

Using (Hy1) and the inequality L(n)2h ≤ C, which holds under (Hp), we obtain

E
�

|Yt − Yti
|2
�

≤ Cq,q′h for t ∈ (ti, ti+1], and the lemma follows from the upper bound

Rπ[Y] =
n−1

∑
i=0

� ti+1

ti

E

�

|Yt − Yti
|2
�

dt ≤ C max
i=0,...,n−1

sup
t∈[ti ,ti+1]

E

�

|Yt − Yti
|2
�

≤ Cq,q′h .

✷
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We now compute upper bounds for the regularity of f (Y).

Lemma 6.3.4. Assume that (Hy0) and (Hy1) hold.

(i) Then Rπ[ f (Y)] ≤ C
�

K2(n, q, q′) + L(n)2h
�

, where q, q′ are given by (Hy1).

(ii) If moreover (Hy2) holds, then Rπ[ f (Y)] ≤ Ch.

Proof. The inequality in (i) is a direct consequence of the following computation:
� ti+1

ti

E

�

| f (Yt)− f (Yti
)|2
�

dt ≤ C
�

� ti+1

ti

E

�

| f (Yt)− fn(Yt)|2
�

dt

+
� ti+1

ti

E

�

| fn(Yt)− fn(Yti
)|2
�

dt

+ hE

�

| fn(Yti
)− f (Yti

)|2
� �

≤ Ch
�

K2(n, q, q′) + L(n)2h
�

,

where we used Lemma 6.3.2, Lemma 6.3.3, and (Hp). Let us now prove (ii). The drift function f

is of class C2(D) by (Hy2), and Itô’s Formula on the interval [ti, ti+1] implies

f (Yti+1)− f (Yti
) =

� ti+1

ti

�

f ′(Yt) f (Yt) +
1
2

f ′′(Yt)γ(Yt)
2
�

dt +
� ti+1

ti

f ′(Yt)γ(Yt)dWt.

Squaring and applying the Cauchy-Schwarz inequality the yields

E

�

| f (Yti+1)− f (Yti
)|2
�

≤
� ti+1

ti

E

�

|γ(Yt) f ′(Yt)|2 + h

�

�

�

�

f ′(Yt) f (Yt) +
γ2(Yt)

2
f ′′(Yt)

�

�

�

�

2
�

dt,

and (ii) follows from (6.2.6), direct integration on [ti, ti+1] and summation. ✷

6.3.2 Convergence result

We consider here the discretisation error between the true process Y and the discretised

process Ŷ. Let us introduce the following notations:

δYi := Yti
− Ŷti

, δn fi := fn(Yti
)− fn(Ŷti

), δγi := γ(Yti
)− γ̄(Ŷti

) . (6.3.2)

The following key proposition provides a bound on the squared differences |δYi|2, which

depends on both the partition size and the regularity (in the sense of (6.3.1)), and which will be

refined further below in Theorem 6.3.1.
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Proposition 6.3.1. Assume that (Hy0) and (Hy1) hold, then

max
i=0,...,n

E

�

|δYi|2
�

≤ C
�

K2(n, q, q′) +Rπ[ f (Y)] +Rπ[Y]
�

, (6.3.3)

where q, q′ are given by (Hy1).

Proof. 1. We first show that the global error between the scheme and the solution is controlled

by the sum of local truncation errors defined below. Indeed, observe that

Yti+1 = Yti
+ fn(Yti

)hi+1 + γ̄(Yti
)ΔWi+1 + ζd

i+1 + ζw
i+1,

for i ≤ n − 1, where

ζd
i+1 :=

� ti+1

ti

( f (Yt)− fn(Yti
))dt,

ζw
i+1 :=

� ti+1

ti

(γ(Yt)− γ̄(Yti
))dWt =

� ti+1

ti

(γ(Yt)− γ(Yti
))dWt.

The last equality comes from the fact that Y takes values in D and γ̄(Yti
) = γ(Yti

), for all i ≤ n.

Therefore, squaring the difference δYi+1 gives

|δYi+1|2 =|δYi|2 + 2δYiδn fihi+1 + 2δYiδγiΔWi+1 + 2δYiζ
d
i+1 + 2δYiζ

w
i+1

+ |δn fihi+1 + δγiΔWi+1 + ζd
i+1 + ζw

i+1|2 .

Using the simple identity Eti

�

2δYiδγiΔWi+1 + 2δYiζ
w
i+1

�

= 0 and an application of Young’s

inequality yields

E

�

|δYi+1|2
�

≤ (1 + Ch)E
�

|δYi|2
�

+ CE

�

|δn fihi+1|2 + |δγi|2hi+1 +
|Eti

�

ζd
i+1

�

|2
h

+ |ζd
i+1|2 + |ζw

i+1|2
�

≤
�

1 + Ch + CL(n)2h2
�

E

�

|δYi|2
�

+ CE





�

Eti

�

ζd
i+1

��2

h
+ |ζd

i+1|2 + |ζw
i+1|2



 ,

since fn is one-sided Lipschitz continuous (Lemma 6.2.1), locally Lipschitz continuous with

Lipschitz constant L(n) and γ is Lipschitz continuous. Under (Hp), L(n)2h ≤ C and an
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iteration yields

max
i=0,...,n

E

�

|δYi|2
�

≤ C
n

∑
j=1

E







�

Etj

�

ζd
j

��2

h
+ |ζd

j |2 + |ζw
j |2





(6.3.4)

≤ C
n

∑
j=1

E

� |ζd
j |2

h
+ |ζw

j |2
�

. (6.3.5)

2. We now provide explicit errors for the global truncation. As γ is K-Lipschitz, we have

E
�

|ζw
i+1|2

�

≤ C
� ti+1

ti
E
�

|Yt − Yti
|2
�

dt, and hence

n

∑
i=1

E

�

|ζw
i |2
�

≤ CRπ[Y]. (6.3.6)

We now compute an upper bound for E
�

|ζd
i+1|2

�

. Since

ζd
i+1 :=

� ti+1

ti

( f (Yt)− fn(Yti
))dt =

� ti+1

ti

( f (Yt)− f (Yti
))dt +

� ti+1

ti

( f (Yti
)− fn(Yti

))dt, (6.3.7)

The Cauchy-Schwarz inequality yields

E

�

|ζd
i+1|2

�

≤ Ch

�

� ti+1

ti

E

�

| f (Yt)− f (Yti
)|2
�

dt + hE

�

| f (Yti
)− fn(Yti

)|2
�

�

,

and Lemma 6.3.2 implies E
�

|ζd
i+1|2

�

≤ Ch(
� ti+1

ti
E
�

| f (Yt)− f (Yti
)|2
�

dt + hK2(n, q, q′)) and
1
h ∑

n
i=1 E

�

|ζd
i |2
�

≤ C (K2(n, q, q′) +Rπ[ f (Y)]). Combining this with (6.3.5) and (6.3.6) concludes

the proof. ✷

We have kept the above result general, without a priori assuming that the drift function belongs

to C2(D). If we consider a constant diffusion and (Hy2), we can recover a better upper bound

using (6.3.4) instead of (6.3.5) in the first part of the previous proof and prove a first-order

strong rate of convergence. This will be illustrated in Proposition 6.3.2 below.

We now state the main result of our paper, namely a strong rate for δYi defined in (6.3.2).

Theorem 6.3.1. Assume that (Hy0) holds, then the inequality

max
i=0,...,n

�δYi�2 ≤ Cq,q′h
r (6.3.8)

holds with r = min(1
2 − β

q+2 , 1
2 − α

q′−2) > 0 under (Hy1) by setting (k, k′) = ( 1
q+2 , 1

q′−2) and
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r = min(1
2 , q+2

4β − 1
2 , q′−2

4α − 1
2) > 0 under (Hy2) by setting (k, k′) = ( 1

2β , 1
2α ).

Proof. 1. Assume (Hy1). Combining Lemma 6.3.3 and Lemma 6.3.4(i) with (6.3.3) yields

max
i=0,...,n

E

�

|δYi|2
�

≤ C(K2(n, q, q′) + L(n)2h + h);

≤ Cq,q′(h
1−2βk + hk(q+2)−2βk + h1−2αk′ + hk′(q′−2)−2αk′ + h) .

To balance the error terms, set k = 1
q+2 and k′ = 1

q′−2 , observing that under (Hy1), (Hp)

holds for this choice of parameters. Thus, we obtain maxi=0,...,n �δYi�2 ≤ Cq,q′h
r, with

r = min(1
2 −

β
q+2 , 1

2 − α
q′−2), with r > 0.

2. Assume (Hy2). Lemma 6.3.3 and Lemma 6.3.4(ii) with (6.3.3) imply

max
i=0,...,n

E

�

|δYi|2
�

≤ C(K2(n, q, q′) + h) .

Setting k = 1
2β , k′ = 1

2α yields maxi=0,...,n �δYi�2 ≤ Cq,q′h
r, where r = min(1/2, q+2

4β − 1/2, q′−2
4α −

1/2). Since (Hy2) implies (Hy1), we observe that r > 0. ✷

We now state the convergence results associated to the extensions of the scheme defined in

Remark 6.2.3.

Corollary 6.3.1. Assume that (Hy0) holds. Then the approximations (Ỹti
)i≤n and (Y̆ti

)i≤n defined in

Remark 6.2.3 satisfy

max
i=0,...,n

�

�Yti
− Ȳti

�2 + �Yti
− Ỹti

�2 + �Yti
− Y̆ti

�2
�

≤ Cq,q′h
r,

holds with r = min(1
2 − β

q+2 , 1
2 − α

q′−2) > 0 under (Hy1) by setting (k, k′) = ( 1
q+2 , 1

q′−2) and

r = min(1
2 , q+2

4β − 1
2 , q′−2

4α − 1
2) > 0 under (Hy2) by setting (k, k′) = ( 1

2β , 1
2α ), where η := h2r/q and

ζ := h−2r/(q′−2).

Proof. The proof follows by computing upper bounds for each of the three quantities on the

left-hand side. For all i ≤ n, since pD̄ is 1-Lipschitz continuous, we can write

E

�

|Yti
− Ȳti

|2
�

= E

�

|pD̄(Yti
)− pD̄(Ŷti

)|2
�

≤ E

�

|Yti
− Ŷti

|2
�

= E |δYi|2 ,

and the upper bound for �Yti
− Ȳti

�2 follows from Theorem 6.3.1.
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Set now η = h2r/q. For i ≤ n,

E

�

|Yti
− Ỹti

|2
�

≤ 2
�

E

�

|Yti
− pD̄η

(Yti
)|2
�

+ E

�

|pD̄η
(Yti

)− pD̄η
(Ŷti

)|2
��

≤ 2
�

E

�

|Yti
− pD̄η

(Yti
)|2
�

+ E

�

|Yti
− Ŷti

|2
��

≤ Cq,q′
�

E

�

|Yti
− pD̄η

(Yti
)|2
�

+ h2r
�

, (6.3.9)

where the last inequality follows from Theorem 6.3.1. A straightforward adaptation of the

proof of Lemma 6.3.1 yields E

�

|Yti
− pD̄η

(Yti
)|2
�

≤ Cqηq, which gives the second bound.

Similarly, for i ≤ n, the equality E[|Yti
− pD̆ζ

(Yti
)|2] = E[|Yti

− ζ|21{Yti
>ζ}] holds, and an

application of Hölder’s inequality gives E[|Yti
− pD̆ζ

(Yti
)|2] ≤ Cq′ζ

−(q′−2). Choosing ζ =

h−2r/(q′−2) concludes the proof. ✷

Remark 6.3.1. For SDEs defined on the whole real line, strong convergence rates have been proved using

tamed explicit schemes [HJK12, Sab13]. The authors assumed that the drift satisfies (6.2.2) and (6.2.3)

with locally Lipschitz exponents α ∈ (0, ∞), β = 0, D = R and that the diffusion is K-Lipschitz.

Under these assumptions, (6.2.1) has a unique strong solution [Kry90]. Our modified scheme and a

slight modification of the projection, namely, pn(x) ≡ −nk′ ∨ x ∧ nk′ can be applied to cover this case.

We now show that, as for the classical Euler scheme, our modified scheme may have a first-

order strong rate of convergence if the diffusion coefficient is constant. This can be observed

in practice, as shown in Section 6.5.1. This also suggests that a similarly modified Milstein

scheme, when the diffusion coefficient is not constant, will have a first-order strong rate of

convergence.

Proposition 6.3.2. Assume that γ(x) ≡ γ > 0 for all x ∈ D, and that (Hy0) and (Hy2) hold, with

q > 6β − 2 and q′ > 6α + 2. Then,

max
i=0,...,n

�

�δYi�2 + �Yti
− Ȳti

�2 + �Yti
− Ỹti

�2 + �Yti
− Y̆ti

�2
�

≤ Cq,q′h ,

where we set η := h2/q and ζ := h−2/(q′−2) in the definition of Ỹ and Y̆.

Proof. The proof is similar to Step 2 in the proof of Proposition 6.3.1, but uses the sharper upper

bound (6.3.4). Since the diffusion function is constant, ∑
n
i=1 E

�

|ζw
i |2
�

is null, and using (6.3.7),
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we can write

max
i

E

�

|δYi|2
�

≤
n−1

∑
i=0

E

�

|ζd
i+1|2 +

(Eti

�

ζd
i+1

�

)2

h

�

(6.3.10)

≤ K2(n, q, q′) +
n−1

∑
i=0

E

�

�

�

�

�

� ti+1

ti

( f (Yt)− f (Yti
))dt

�

�

�

�

2

+
1
h

�

Eti

�

� ti+1

ti

( f (Yt)− f (Yti
))dt

��2
�

.

Moreover, Itô’s Lemma implies
� ti+1

ti

( f (Yt)− f (Yti
))dt =

� ti+1

ti

�

� t

ti

f ′(Yu) f (Yu) +
1
2

f ′′(Yu)γ
2du +

� t

ti

f ′(Yu)γdWu

�

dt

which we can rewrite as
� ti+1

ti

�

� t

ti

f ′(Yu) f (Yu) +
1
2

f ′′(Yu)γ
2du

�

dt +
� ti+1

ti

(ti+1 − t) f ′(Yt)γdWt.

Under (Hy2), we then obtain easily, recalling (6.3.10), that

max
i

E

�

|δYi|2
�

≤ C(K2(n, q, q′) + h2) .

The proposition then follows by setting (k, k′) = ( 1
2β , 1

2α ) and using the fact that q > 6β − 2 and

q′ > 6α + 2, from Lemma 6.3.2.

The statement for �Yti
− Ȳti

�2, �Yti
− Ỹti

�2, �Yti
− Y̆ti

�2, follows from the same arguments as in

Corollary 6.3.1. ✷

6.3.3 Moment properties of the schemes

For later use, we show that our approximations have uniformly bounded second moments,

which completes the result of Remark 6.2.4.

Lemma 6.3.5. Assume that (Hy0) and (Hy1) hold. Then, for q, q′ given by (Hy1),

max
i=0,...,n

E

�

|Ŷti
|2 + |Ȳti

|2 + |Y̆ti
|2 + |Ỹti

|2
�

≤ Cq,q′

with for Y̆, ζ := h−2r/(q′−2) and for Ỹ, η := h2r/q, recall Remark 6.2.3, and with r = min(1
2 −

β
q+2 , 1

2 − α
q′−2) > 0, under (Hy2) r = min(1

2 , q+2
4β − 1

2 , q′−2
4α − 1

2) > 0, and if moreover, q > 6β − 2,

q′ > 6α + 2 and γ(·) ≡ γ > 0, r = 1.
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Proof. Since |Ŷi|2 ≤ 2(|Yti
− Ŷti

|2 + |Yti
|2), (Hy1) and Theorem 6.3.1 imply that

E

�

|Ŷti
|2
�

≤ 2
�

E

�

|Yti
− Ŷti

|2
�

+ E

�

|Yti
|2
��

≤ Cq,q′(h
2r + 1) ≤ Cq,q′

holds for any i ≤ n, which proves the claim.

The statement for Ȳ, Y̆ and Ỹ follows from Corollary 6.3.1 or Proposition 6.3.2. ✷

We now consider the modifications Ỹ and Y̆ defined in Remark 6.2.3 and prove some finite

moments or inverse moments for them, extending the previous result.

Proposition 6.3.3. Assume that (Hy0) hold and let ζ := h−2r/(q′−2) and η := h2r/q, where q and q′

are given by (Hy1).

(i) if (Hy1) holds, then maxi=0,...,n E

�

Y̆
p
ti

�

≤ Cp,q,q′ for all p ∈ [1, (q′ − 1) ∨ 2];

(ii) if (Hy1) holds with q ≥ 4, then maxi=0,...,n E

�

Ỹ
−p
ti

�

≤ Cp,q,q′ for all p ∈ [1, q − 3].

Proof. 1. We first prove (i). We remark that the result for p ∈ [1, 2] follows directly from

Lemma 6.3.5. We now assume that 1 < p ≤ q − 1 and we introduce the sets A := {Yti
≤ ζ}

and B := {|δYti
| > 1}, where δY := Y̆ − Y. We then observe that

Y̆
p
ti
= Y̆

p
ti

1Ac + Y̆
p
ti

1A∩Bc + Y̆
p
ti

1A∩B

and deal which each terms in the right hand side separately.

Since Y̆ ≤ ζ by definition, we compute, for the first term,

E

�

Y̆
p
ti

1Ac

�

≤ E

�

Y
p
ti

�

≤ Cp . (6.3.11)

For the second term, as |δYti
| ≤ 1 on Bc, we obtain

E

�

Y̆
p
ti

1A∩Bc

�

≤ Cp(1 + E

�

Y
p
ti

�

) ≤ Cp. (6.3.12)

For the last term, we first observe that for non negative y, y′ and θ �= 1,

(y′)θ − yθ = θ
� 1

0

�

(1 − λ)y + λy′
�θ−1 dλ(y′ − y). (6.3.13)

Using the above equality for y′ = Y̆ti
, y′ = Yti

and θ = p we compute that

|Y̆p
ti
− Y

p
ti
| ≤ Cp(Y̆

p−1
ti

+ Y
p−1
ti

)|δYti
| .
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Then since, Y̆
p
ti

1A∩B ≤ Y
p
ti
+ |Y̆p

ti
− Y

p
ti
|1A∩B, we observe that

E

�

Y̆
p
ti

1A∩B

�

≤ Cp(1 + ζ p−1)E
�

|δYti
|1|δYti

|>1

�

≤ Cp(1 + ζ p−1)E
�

|δYti
|2
�

Applying Corollary 6.3.1, we thus obtain

E

�

Y̆
p
ti

1A∩B

�

≤ Cp(1 + ζ p−1h2r) ≤ Cp . (6.3.14)

The proof of the first statement is concluded by combining the previous inequality with (6.3.11)

and (6.3.12).

2. We now prove (ii). We assume that p ∈ [1, q − 3] and that q ≥ 4. We introduce the set

A = {Yti
≥ η} and B = {|δY| > η2}, where δY := Ỹ − Y. We observe that

Ỹ
−p
ti

= Ỹ
−p
ti

1Ac + Ỹ
−p
ti

1A∩Bc + Ỹ
−p
ti

1A∩B .

We are going to upper bound separately the expectation of each terms appearing in the right

hand side of the above equality.

For the first term, since on Ac, Yti
≤ Ỹti

holds by definition, we get

E

�

Ỹ
−p
ti

1Ac

�

≤ E

�

Y
−p
ti

1Ac

�

≤ Cp .

For the second term, observing that 1
Yti

− 1
Ỹti

=
δYti

Yti
Ỹti

, we compute

E

�

Ỹ
−p
ti

1A∩Bc

�

≤ CpE

�

Y
−p
ti

+

�

�

�

�

δYti

Yti
Ỹti

�

�

�

�

p

1A∩Bc

�

≤ Cp,

since on A ∩ Bc, |δYti
| ≤ η2 and 1

Yti
≤ 1

η . For the last term, we compute that

E

�

Ỹ
−p
ti

1A∩B

�

≤ CpE

�

Y
−p
ti

+ |Ỹ−p
ti

− Y
−p
ti

|1A∩B

�

and using (6.3.13), we get

E

�

Ỹ
−p
ti

1A∩B

�

≤ Cp(1 + E

�

(Ỹ
−p−1
ti

+ Y
−p−1
ti

)|δYti
|1A∩B

�

≤ Cp(1 + η−(p+1))E
�

|δYti
|1{|δYti

|>η2}
�

.
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Using the Cauchy-Schwarz inequality and then applying Chebyshev’s inequality, we obtain

E

�

Ỹ
−p
ti

1A∩B

�

≤ Cp(1 + η−(p+3))h2r ≤ Cp ,

which concludes the proof for this step. ✷

6.4 Applications to financial SDEs

We now apply our results to various stochastic differential equations widely used in the

literature.

6.4.1 CIR model

We consider the Feller diffusion [Fel54], defined as the unique strong solution to

dXt = κ(θ − Xt)dt + ξ
√

XtdWt, X0 = x0 > 0, (6.4.1)

where W is a Brownian motion, and κ, θ, ξ are strictly positive constant parameters. This

process has been widely used in the mathematical finance literature, both for interest rate

modelling [CIR85] and for the instantaneous variance of a stock price process [Hes93]. Under

the Feller condition ω := 2κθ/ξ2 > 1, X remains strictly positive almost surely, and Itô’s

Lemma implies that the Lamperti transform Y =
√

X satisfies

dYt = f (Yt)dt + c dWt, Y0 =
√

x0 > 0, (6.4.2)

where

f (x) ≡ a/x + bx, a := (4κθ − ξ2)/8, b := −κ/2, c := ξ/2; (6.4.3)

furthermore, a > 0 when the Feller condition holds. Since X = Y2, proving a rate of

convergence for a discretisation scheme for the process Y will allow us to obtain a rate of

convergence for the process X. In the following corollary, we apply Theorem 6.3.1 to provide

bounds for �δYi�2 and �δXi�1, where δXi := Xti
− X̂ti

= Y2
ti
− Ŷ2

ti
.
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Corollary 6.4.1. For ω > 2, maxi=0,...,n (�δYi�2 + �δXi�1) ≤ Crhr holds, where


















r ∈
�

1
6

,
1
2
− 1

ω + 1

�

, if 2 < ω ≤ 3,

r = 1/2, if 3 < ω ≤ 5,

r = 1, if ω > 5.

(6.4.4)

Proof. Consider first the bound for �δYi�2. The drift of Y is one-sided Lipschitz continuous and

locally Lipschitz continuous with exponents α = 0 and β = 2, and the diffusion is constant,

hence Lipschitz continuous. From [DNS12, page 5], we know that supt∈[0,T] E(|Xt|p) < +∞

for all p > −2κθ/ξ2, and therefore

sup
t∈[0,T]

E(|Yt|−ℓ) < +∞ for all ℓ < 4κθ/ξ2 = 2ω. (6.4.5)

In the case 2 < ω ≤ 3, we choose q ∈ (4, 2ω) and fix k = 1/(q + 2), so that (Hp) holds (no

condition on k′ is required since α = 0) and (Hy1) holds as well. From Theorem 6.3.1 it follows

that the convergence rate is given by r := 1/2 − β/(q + 2). We compute easily, since β = 2,

that r ∈ (1
6 , 1

2 − 1
ω+1), depending on the choice of q ∈ (4, 2ω).

Consider now the case 3 < ω. We compute that E(| f (Yt) f ′(Yt) +
1
2 c2 f ′′(Yt)|2) ≤ CE(|Yt|2 +

|Yt|−6) ≤ C hold. Combining the previous inequality with (6.4.5), we obtain that (Hy2) holds.

Fix q ∈ (6, 2ω) and set k = 1/4, it follows that r = min(1/2, (q + 2)/8 − 1/2) = 1/2 from

Theorem 6.3.1. The case ω > 5 follows directly from Proposition 6.3.2.

We now prove the corollary for the difference δXi. The Cauchy-Schwarz inequality and the

result above imply

E[|δXi|] = E
�

|(Yti
− Ŷti

)(Yti
+ Ŷti

)|
�

≤
�

E(|δYi|2)E
�

|Yti
+ Ŷti

|2
�

≤ Crhr
�

E(|Yti
|2) + E(|Ŷti

|2) ≤ Crhr,

since E(|Yti
|2) and E(|Ŷti

|2) are finite from [HMS02, Lemma 3.2] and Lemma 6.3.5. ✷

Define δX̆i := Xti
− X̆ti

, where X̆ti
:= Y̆2

ti
, recall Remark 6.2.3. We now consider a general

L1+ε-norm for convergence of the discretisation scheme of process X.

Corollary 6.4.2. Suppose that ω > 2 and fix ε ≥ 0.Then

max
i=0,...,n

�δX̆i�1+ε ≤ Cr,εh
r/(1+ε),
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with r defined as in (6.4.4) and where we set ζ := h
− 2r

q′−2 , with q′ = 3 + 4ǫ in the definition of X̆ = Y̆2,

recall Remark 6.2.3.

Proof. For all i ≥ 0, we have

�δX̆i�1+ε
1+ε = E

�

|Xti
− X̆ti

|1+ε
�

= E
�

|Yti
− Y̆ti

||Yti
− Y̆ti

|ε|Yti
+ Y̆ti

|1+ε
�

≤ �Yti
− Y̆ti

�2

�

E

�

�

|Yti
|+ |Y̆ti

|
�2+4ε

�

.

From (6.4.5), we have that E
�

|Yti
|2+4ε

�

< Cǫ. Similarly, since E

�

|Yti
|q′
�

< +∞, we obtain

from Proposition 6.3.3(i), that E
�

|Y̆ti
|2+4ε

�

< Cr,ε. This moment bounds, combined with

Corollary 6.3.1 (or Proposition 6.3.2, when r = 1) and the above inequality, leads to �δX̆i�1+ε
1+ε ≤

Cr,εh
r. ✷

Remark 6.4.1. We obtain above a rate of convergence for a larger set of parameters compared to the

results using an implicit Euler scheme in [NS12], where rates of convergence are proved for ω ≥ 3;

however, we only achieve a convergence rate of 1 when ω > 5.

6.4.2 Locally smooth coefficients

We now consider a stochastic differential equation of the form (6.2.4), with drift function

µ(x) ≡ µ1(x) − µ2(x)x, where µ1, µ2 : D → R, and diffusion function σ(x) ≡ γxν, with

γ > 0 and ν ∈ [1/2, 1]. This model encompasses the Feller diffusion (see Section 6.4.1) and

the CEV model [CR76], both widely used in mathematical finance. For the special case ν = 1,

the diffusion function is K-Lipschitz and our scheme applies directly to the process X as long

as (6.2.2) and (6.2.3) hold for the drift function µ.

We now focus on the case ν ∈ [1/2, 1). The Lamperti transform reads F(x) ≡
� x dy/σ(y) ≡

1
γ(1−ν)

x1−ν, with inverse F−1(y) ≡ [γ(1 − ν)y]
1

1−ν . The process Y = F(X) is the solution to

dYt = f (Yt)dt + dWt, with Y0 = F(x0) and

f (y) ≡ µ
�

F−1(y)
�

σ (F−1(y))
− 1

2
σ′
�

F−1(y)
�

. (6.4.6)

In order for the functions µ and σ to satisfy the required conditions, we assume:

(Hs0): ν ∈ [1/2, 1), and µ1, µ2 are bounded and belong to C2
b (D); furthermore µ1 is non-

negative and non-increasing, and µ2 is non-decreasing.

We distinguish between two cases for parameter ν:
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(Hs1): ν ∈ (1/2, 1) and µ1(0) > 0.

(Hs2): ν = 1/2 and there exists x̄ > 0 such that 2µ1(x)/γ2 ≥ 1 for all 0 < x < x̄.

We now prove a rate of convergence as a corollary of Theorem 6.3.1.

Proposition 6.4.1 (Locally smooth coefficients). Assume that (Hs0) holds. Then,

max
i=0,...,n

�

�δYi�2 + �δXi�1 + �δX̆i�1+ǫ
1+ǫ

�

≤ Cr,ǫhr, ǫ ≥ 0,

with

1. If (Hs1) holds, r = 1.

2. If (Hs2) and 2µ1(0)/γ2 =: ω > 3 hold, r ∈ ( 1
6 , 1/2 − 1/ω) if 3 < ω ≤ 4, r = 1/2 if

4 < ω ≤ 6 and r = 1 if ω > 6.

In both cases, we set ζ := h
− 2r

q′−2 , with q′ = 3 + 4ǫ in the definition of X̆ = Y̆2, recall Remark 6.2.3.

Proof. In [DM11, Proposition 3.1], De Marco proves that under (Hs0), there exists a unique

strong solution to (6.2.4), which stays in [0, ∞) almost surely. In addition, he shows that (Hs1)

and (Hs2) further imply that P(τ0 = ∞) = 1, where τ0 is the first time the process X reaches

zero. We recall that once we perform the Lamperti transformation, the diffusion function is a

constant.

We divide the proof in several parts: in (i) we show that the drift function f is one-sided

Lipschitz continuous; in (ii) we show that f is locally Lipschitz continuous, and hence conclude

that (6.2.2) and (6.2.3) hold.

(i) From (6.4.6), it follows that, for all (x, y) ∈ D2,

(x − y) ( f (x)− f (y)) = (x − y)

�

µ(F−1(x))
σ(F−1(x))

− 1
2 σ′ �F−1(x)

�

− µ(F−1(y))
σ(F−1(y))

+ 1
2 σ′ �F−1(y)

�

�

.

Since σ′(F−1(x)) = ν/[(1 − ν)x], we observe that

(x − y)

�

1
2

σ′
�

F−1(y)
�

− 1
2

σ′
�

F−1(x)
�

�

=
ν

2(1 − ν)
(x − y)

�

1
y
− 1

x

�

≤ 0,

because x, y > 0 and ν/(2 − 2ν) > 0. Clearly, σ
�

F−1(x)
�

= γ [γ(1 − ν)x]
ν

1−ν , and

µ
�

F−1(x)
�

= µ1

�

[γ(1 − ν)x]
1

1−ν

�

− µ2

�

[γ(1 − ν)x]
1

1−ν

�

[γ(1 − ν)x]
1

1−ν .
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Now, consider the remaining terms, namely

(x − y)

�

µ(F−1(x))
σ(F−1(x))

− µ(F−1(y))
σ(F−1(y))

�

.

Introduce x̃ := [γ(1 − ν)x]
1

1−ν and ỹ := [γ(1 − ν)y]
1

1−ν . Note that

(x − y)

�

µ1 (x̃)

σ (F−1(x))
− µ1 (ỹ)

σ (F−1(y))

�

=

(x − y)µ1 (x̃)

�

1
σ (F−1(x))

− 1
σ (F−1(y))

�

+
(x − y)

σ (F−1(y))
[µ1 (x̃)− µ1 (ỹ)] ≤ 0,

since µ1 is non-negative and non-increasing, ν/(1 − ν) ≥ 1, and using the fact that the map

σ ◦ F−1 is increasing. Additionally,

(x − y)

�

µ2(ỹ)ỹ

σ(F−1(y))
− µ2(x̃)x̃

σ(F−1(x))

�

= (1 − ν)(x − y)µ2 (ỹ) (y − x) + x(x − y) [µ2 (ỹ)− µ2 (x̃)] ≤ C(x − y)2,

since σ
�

F−1(x)
�

≡ γ [γ(1 − ν)x]
ν

1−ν , and since µ2 is bounded and non-decreasing.

Combining these results shows that the function f is one-sided Lipschitz continuous.

(ii) We now show that f is locally Lipschitz continuous. By differentiation, it is clear that

σ
�

F−1(x)
�

=
�

F−1
�′
(x), and hence

f ′(x) = µ′
�

F−1(x)
�

− µ
�

F−1(x)
�

σ′ �F−1(x)
�

σ (F−1(x))
− 1

2

�

F−1
�′

(x)σ′′
�

F−1(x)
�

. (6.4.7)

By (Hs0), the first term on the right-hand side can be bounded as follows:

|µ′
�

F−1(x)
�

| ≤ |µ′
1

�

F−1(x)
�

|+ |µ2

�

F−1(x)
�

|+ |µ′
2

�

F−1(x)
�

F−1(x)| ≤ C
�

1 + |x|1/(1−ν)
�

.

Regarding the second term, since σ′ �F−1(x)
�

= γν [γ(1 − ν)x]
ν−1
1−ν = ν

(1−ν)x
, and

µ
�

F−1(x)
�

= µ1

�

[γ(1 − ν)x]1/(1−ν)
�

− µ2

�

[γ(1 − ν)x]1/(1−ν)
�

[γ(1 − ν)x]1/(1−ν) ,

we see that
�

�

�

�

�

µ
�

F−1(x)
�

σ′ �F−1(x)
�

σ (F−1(x))

�

�

�

�

�

≤

�

�

�

�

�

�

C1

µ1

�

C2x
1

1−ν

�

x
1

1−ν

�

�

�

�

�

�

+
�

�

�C3µ2(C4x
1

1−ν )
�

�

� , (6.4.8)
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where C1, C2, C3, C4 are positive constants. By (Hs0) it follows that (6.4.8) is bounded by

C
�

1 + x−β
�

, for β = 1/(1 − ν).

We finally consider the last term on the right-hand side of (6.4.7). Observe that

σ′′
�

F−1(x)
�

= γν(ν − 1) [γ(1 − ν)x]
ν−2
1−ν = −Cx

ν−2
1−ν

and | 1
2

�

F−1
�′
(x)σ′′ �F−1(x)

�

| ≤ C/x2 ≤ Cx−β, since ν ∈ [1/2, 1). These three bounds

yield | f ′(x)| ≤ C(1 + x1/(1−ν) + x−1/(1−ν)), and hence the drift function is locally Lipschitz

continuous, with α = β = 1/(1 − ν). Combining this with (i) allows us to conclude that (6.2.2)

and (6.2.3) hold.

We now prove statements 1 and 2 in the corollary.

1) Assume (Hs1). Since the locally Lipschitz exponents are α = β = 1/(1 − ν), fix k = k′ =

(1 − ν)/2, so that (Hp) holds. By [DM11], E(supt∈[0,T] |X
p
t |) and E(supt∈[0,T] |Xt|−p) are finite

for all p > 0; therefore E(supt∈[0,T] |Yt|−q) is finite for all q > 0 [DM11, Lemma 3.1]. We note

that f belongs to the class C2(D) and (Hy2) holds, therefore r = 1 from Proposition 6.3.2.

The proof of the statement for �δX̆i�1+ǫ follows from the same arguments as in the proof of

Corollary 6.4.2.

2) Assume that (Hs2) holds and let 2µ1(0)/γ2 =: ω > 3. Here, α = 0 an β = 0. Then,

maxt∈[0,T] E(|Xt|−p) is finite for all p < ω − 1 [DM11, Lemma 3.1], and so is maxt∈[0,T] E(|Yt|−ℓ)

for all ℓ < 2(ω − 1). Fix q ∈ (4, 2(ω − 1)) and set k = 1/(q + 2), so that (Hp) and (Hy1) hold.

From Theorem 6.3.1, r = 1/2 − β/(q + 2) ∈ (1
6 , 1

2 − 1
ω ) holds.

Further assume that 4 < ω ≤ 6. Note that the drift function f belongs to the class C2(D). Fix

q ∈ (8, 2ω) and k = 1/4, so that (Hp) holds. By the assumptions on the parameters it follows

that maxt∈[0,T] E(|Yt|−6) = maxt∈[0,T] E(|Xt|−3) is finite, and therefore (Hy2) holds. From The-

orem 6.3.1, r = min(1/2, (q + 2)/8 − 1/2) > 1/2. Finally, in the case ω > 6, we can apply

Proposition 6.3.2, to conclude that r = 1.

The proof of the statement for �δX̆i�1+ǫ follows from the same arguments as in the proof of

Corollary 6.4.2. ✷

In the CIR model, we obtain r = 1/2 for 3 < ω < 5, using finite inverse moments of the

process Y from [DNS12]. For the general case in Proposition 6.4.1, we assumed that 4 < ω < 6

for r = 1/2. In the next corollary, we impose additional assumptions in order to recover the
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same parameter constraints as for the Feller diffusion in the previous section.

Proposition 6.4.2. Assume (Hs0) and (Hs2), and let a∗, b∗ > 0 be such that µ1(x) ≥ a∗ and

µ2(x) ≤ b∗ for all x ∈ D = (0, ∞). Then,

max
i=0,...,n

�

�δYi�2 + �δXi�1 + �δX̆�1+ǫ
1+ǫ

�

≤ Cr,ǫhr, ǫ ≥ 0 ,

with r = 1/2 if 3 < ω := 2µ1(0)/γ2 ≤ 5, and r = 1 if ω > 5.

We set ζ := h
− 2r

q′−2 , with q′ = 3 + 4ǫ in the definition of X̆ = Y̆2, recall Remark 6.2.3.

Proof. From the assumptions on µ1 and µ2, there exists a∗, b∗ > 0 such that the inequality

µ1(x) − µ2(x)x ≥ a∗ − b∗x holds in the domain D. We define Z as the process with drift

a∗ − b∗x (instead of µ1(x)− µ2(x)x), and diffusion σ(x) ≡ γx1/2. Therefore, by the Comparison

Theorem (see [KS91, Section 5.2]) the inequality Xt ≥ Zt holds for all t ∈ [0, T] almost surely,

and hence E(|Xt|−p) ≤ E(|Zt|−p) is true for all p > 0. Now, Z is clearly a Feller diffusion and,

from the assumption on ω, it follows that maxt∈[0,T] E(|Zt|−3) is finite. The result then follows

directly from the second part of Corollary 6.4.1.

The proof of the statement for �δX̆i�1+ǫ follows from the same arguments as in the proof of

Corollary 6.4.2. ✷

6.4.3 3/2 model

The 3/2 process X = (Xt)t≥0 [Hes97] is the solution to

dXt = c1Xt(c2 − Xt)dt + c3X3/2
t dWt, X0 = x0 > 0, (6.4.9)

with c1, c2, c3 > 0. Introduce the quantity ω := 2 + 2c1/c2
3. The Feller diffusion and the 3/2

process are related as follows: the map F(y) ≡ y−1/2 yields the Lamperti transformed CIR

process Y := F(X), as in (6.4.2) and (6.4.3), with parameters, a := (4c1 + 3c2
3)/8, b := −c1c2/2

and c := −c3/2. Existence and uniqueness can be retrieved from the properties of the Feller

diffusion, and maxt∈[0,T] E(|Xt|p) is finite for all p < ω.

Corollary 6.4.3 (3/2 model). Let Y := X−1/2. Then, maxi=0,...,n �δYi�2 ≤ Chr, with r ∈
(1

6 , 1
2 − 1

w+1) if ω ∈ (2, 3], r = 1/2 if 3 < ω ≤ 5 and r = 1 if ω > 5.

Proof. In terms of the CIR coefficients, we have ω = 2 + 2c1/c2
3 = 2κθ/ξ2. We directly apply

Corollary 6.4.1 to get the desired results. ✷
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We now establish a convergence result for the 3/2 process X, using the modification X̃ (recall

Remark 6.2.3).

Proposition 6.4.3. Let ω > 3 and fix ε ≥ 0. If 3 + 2ε < ω, then

max
i=0,...,n

�Xti
− X̃ti

�1+ε ≤ Cr,εh
r

2(1+ε) ,

with r = 1/2 for ω ≤ 5 and r = 1 for ω > 5, where η = hr/(2ω).

Proof. It follows that

�Xti
− X̃ti

�1+ε
1+ε = E

�

|Xti
− X̃ti

|1+ε
�

= E

�

| 1
Y2

ti

− 1
Ỹ2

ti

|1+ε

�

= E

�

�

�

�

�

(Yti
−Ỹti

)(Yti
+Ỹti

)

Y2
ti

Ỹ2
ti

�

�

�

�

1+ε
�

≤ Cε�Yti
− Ỹti

�2

�

E

�

(Yti
+Ỹti

)2+4ε

|Yti
|4+4εỸ4+4ε

ti

�

≤ Cε�Yti
− Ỹti

�2

�

E
�

|Yti
|−(6+4ε) + E

�

|Ỹti
|−(6+4ε)

��

;

since 3 + 2ε < ω it follows that E

�

|Yti
|−(6+4ε)

�

is bounded by a constant. Furthermore, for

η = hr/(2ω) (q is such that q < 2ω), it follows that E

�

|Ỹti
|−(6+4ε)

�

≤ η−(6+4ε), therefore
�

E
�

|Ỹti
|−(6+4ε)

�

≤ Cε,ωh−r/2, which together with 3 + 2ε < ω and Corollary 6.3.1 (or

Proposition 6.3.2, if r = 1), conclude the result. ✷

Remark 6.4.2. The last corollary proves Lp-bounds (p > 1) for the 3/2 model. In [NS12,

Proposition 3.2] the authors prove strong convergence for the 3/2 process using a drift-implicit scheme

when ω > 6 holds; our results above improve this by yielding strong rates of convergence for ω > 3.

Alternatively, we could indeed use Proposition 6.3.3 for a higher rate of convergence, however

the parameter ω required is larger:

Corollary 6.4.4. Let ω >
9+4ε

2 ∨ 5 for some fixed ε ≥ 0. Then

max
i=0,...,n

�Xti
− X̃ti

�1+ε ≤ Cε,ωh1/(1+ε).
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Proof. From the computation in the proof of Proposition 6.4.3, we have

�Xti
− X̃ti

�1+ε
1+ε ≤ Cε�Yti

− Ỹti
�2

�

E
�

|Yti
|−(6+4ε) + E

�

|Ỹti
|−(6+4ε)

��

;

Using Proposition 6.3.3(ii), the term E

�

|Ỹti
|−(6+4ε)

�

is bounded by a constant depending on ω

and ε, since 6 + 4ε < q − 3 < 2ω − 3. Moreover, since ω > 5, we get that �Yti
− Ỹti

�2 ≤ Ch,

from (6.4.4) and the same arguments as in the proof of Proposition 6.3.2. ✷

6.4.4 Ait-Sahalia model

In the Ait-Sahalia interest rate model [AS96], X is the solution to

dXt =

�

a−1

Xt
− a0 + a1Xt − a2X

̺
t

�

dt + γX
ρ
t dWt, X0 = x0 > 0, (6.4.10)

where all constant parameters are non-negative, and ρ, ̺ > 1. From [SMHP11], there exists a

strong solution on (0, ∞), and the Lamperti transformation Y := X1−ρ satisfies

dYt = f (Yt)dt + (1 − ρ)γdWt, Y0 = x
1−ρ
0 > 0, (6.4.11)

with

f (x) ≡ (1 − ρ)

�

a−1x
−1−ρ
1−ρ − a0x

−ρ
1−ρ + a1x − a2x

−ρ+̺
1−ρ − ργ2

2
x−1
�

.

Corollary 6.4.5. If ̺ + 1 > 2ρ, then max
i=0,...,n

�δYi�2 ≤ Ch.

Proof. Straightforward differentiation yields

f ′(x) = −a−1(1 + ρ)x
2

ρ−1 + a0ρx
1

ρ−1 + a1(1 − ρ)− a2(−ρ + ̺)x
− r−1

ρ−1 − ργ2

2
(ρ − 1)x−2.

We have limx↓0 f ′(x) = limx↑∞ f ′(x) = −∞, hence sup0<x<∞ f ′(x) is finite by continuity and

therefore f is one-sided Lipschitz continuous. In addition, | f ′(x)| ≤ C(1 + x
2

ρ−1 + x
− ̺−1

ρ−1 ) for

x > 0, so f is locally Lipschitz continuous with α = 2/(ρ − 1) and β = (̺ − 1)/(ρ − 1).

The diffusion is constant, hence Lipschitz continuous. Using the locally Lipschitz continuous

properties of the drift, fix k = 1/(2β) and k′ = 1/(2α). We recall that if ̺ + 1 > 2ρ, then

maxt∈[0,T] E(|Xt|p) and maxt∈[0,T] E(|Xt|−p) are finite for all p �= 0 [SMHP11, Lemma 2.1] so

that (Hy1) holds. Differentiation yields

f ′′(x) =
−2a−1(ρ + 1)

ρ − 1
x

3−ρ
ρ−1 +

a0ρ

ρ − 1
x

2−ρ
ρ−1 + a2

(−ρ + ̺)(̺ − 1)
ρ − 1

x
− ̺+ρ−2

ρ−1 + ργ2(ρ − 1)x−3 .
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Since f belongs to C2(D) and (6.2.6) is finite by [SMHP11, Lemma 2.3], then (Hy2) holds.

Fix q > 6β − 2 and q′ > 6α + 2. Then, by Proposition 6.3.2, the statement is proved. ✷

We now compute a strong rate of convergence for the Ait-Sahalia process X. We need to

control the behaviour of the approximation near 0 and at ∞. In order to do that, we introduce

modification X̌ti
:= Y̌

1
1−ρ where Y̌ti

= pD̄η
◦ pD̆ζ

(Ŷti
) = pĎη,ζ

(Ŷti
), for η and ζ to be determined

later on.

Corollary 6.4.6. If ̺ + 1 > 2ρ, then for ǫ ≥ 0,

max
i=0,...,n

�Xti
− X̌ti

�1+ǫ ≤ Ch
1

1+ǫ

with η := h2/q, ζ = h
− 2

q′−2 and q = 3 + 4ρ(1 + ǫ)/(1 − ρ), q′ = 4ǫ + 1.

Proof. A similar approach to Proposition 6.3.3 yields

E[|δX̌ti
|1+ǫ] ≤ C

�

E

�

|Yti
|4ρ(1+ǫ)/(1−ρ) + |Yti

|4ǫ + |Y̌ti
|4ρ(1+ǫ)/(1−ρ) + |Y̌ti

|4ǫ
�� 1

2
(E|δY̌ti

|2) 1
2 ,

where δX̌ti
= Xti

− X̌ti
and δY̌ti

= Yti
− Y̌ti

. Since ρ > 1 and ̺ + 1 > 2ρ, E[|Yti
|4ρ(1+ǫ)/(1−ρ) +

|Yti
|4ǫ] is finite. Observing that Y̌ ≤ Y̆ + η, 1

Y̌
≤ 1

Ỹ
+ 1

ζ and using Proposition 6.3.3, we get

E

�

|Y̌ti
|4ρ(1+ǫ)/(1−ρ) + |Y̌ti

|4ǫ
�

≤ C. Also, we compute

|Yti
− Y̌ti

| ≤ |Yti
− pD̄η

(Yti
)|+ |pD̄η

(Yti
)− pD̄η

◦ pD̆ζ
(Ŷti

)|

≤ |Yti
− pD̄η

(Yti
)|+ |Yti

− pD̆ζ
(Yti

)|+ |Yti
− Ŷti

|

recalling that pD̄η
and pD̆ζ

are 1-Lipschitz. Using similar arguments as in the proof of Corollary

6.3.1, we then obtain (E|δY̌ti
|2) 1

2 ≤ Ch and the result follows. ✷

6.5 Numerical results

In this section, we numerically confirm the strong convergence rate of the modified Euler

scheme for the CIR model, the one-dimensional stochastic Ginzburg-Landau equation with

multiplicative noise, and the Ait-Sahalia model. For a process X, denote by X̂
(j)
T the modified

Euler-Maruyama approximation at time T and X
(j)
T the closed-form solution (or reference

solution), using the same Brownian motion path (the jth path). The empirical average absolute



Chapter 6. An Explicit Euler scheme for financial SDEs with non-Lipschitz coefficients 173

error E is defined by

E :=
1
M

M

∑
j=1

|X(j)
T − X̂

(j)
T |,

over M sample paths, which we will set to M = 10000. An equidistant time grid is used,

with step sizes h := T/2N, for different values of N. The strong error rates are computed by

plotting E against the number of discretisation steps on a log-log scale, and the strong rate of

convergence r is then retrieved using linear regression.

6.5.1 CIR model

The Lamperti-transformed drift-implicit square-root Euler method (see [DNS12, NS12]) has a

unique strictly positive solution defined for i = 0, . . . , n − 1 by

Yti+1 =
Yti

+ cΔWi+1

2(1 − bhi+1)
+

�

(Yti
+ cΔWi+1)2

4(1 − bhi+1)2 +
ahi+1

1 − bhi+1
, Y0 =

√
x0 > 0,

with a, b, c defined in (6.4.3). The CIR/Feller diffusion is recovered by setting Xti
= Y2

ti
for

i ≤ n, and we compare the modified explicit Euler scheme with this implicit scheme used as a

reference solution (with a large number of time steps).

We compute the strong rates of convergence for the CIR process, where the implicit scheme is

used as a reference solution. Set (κ, θ, ξ, T, x0) = (0.125ω, 1, 0.5, 1, 1), such that 2κθ/ξ2 = ω.

The cases ω = (1, 1.5, 2, 2.5, 3, 3.5, 4) are considered. The reference solution is computed using

N = 12. Figure 6.1 shows the rates of convergence r achieved for the CIR process, where

k = 1/4 in the modified scheme, according to Corollary 6.4.1. In the corollary, we prove a

strong rate of convergence of 1/2 when 3 < ω ≤ 5, and r = 1 for ω > 5. The coefficient of

determination R2, for the goodness of the fit of the straight line, is above 0.998 for all ω. We

observe that numerically order 1 is achieved by our scheme for ω > 1, which is better than the

bound we proved.

Remark 6.5.1. The projection introduced in Definition 6.2.1 can be modified to p̃n(x) := Ln−k ∨
x ∧ Unk′ , with L, U > 0 suitably chosen constant. This is beneficial if the process has extreme initial

conditions or average state, and does not impact the convergence results.

For small x0, it is intuitive to use the projection in Remark 6.5.1 to achieve faster convergence

(albeit without affecting the asymptotic behaviour). Set (κ, θ, ξ, T) = (0.375, 1, 0.5, 1), such
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Figure 6.1: CIR model: E against number of steps (log2 scale).

Figure 6.2: Absolute error (log2 scale) for N = 10.
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that 2κθ/ξ2 = 3. In Figure 6.2, we let x0 vary between 0.05 and 1.2 in increments of 0.05.

We compare the errors achieved for k = 1/4, using the projections pn(x) = n−k ∨ x and

p̃n(x) =
√

x0n−k ∨ x. By using the projection p̃n, smaller errors can be achieved for small

x0.

6.5.2 Ginzburg-Landau

Consider the one-dimensional stochastic Ginzburg-Landau SDE [KP92, Chapter 4], where the

process X is the unique strong solution to

dXt =

�

−X3
t +

�

λ +
1
2

σ2
�

Xt

�

dt + σXtdWt, X0 = x0 > 0,

for λ, σ ≥ 0, which admits the closed-form solution

Xt =
x0 exp(λt + σWt)

�

1 + 2x2
0

� t
0 exp(2λs + 2σWs)ds

. (6.5.1)

This SDE is a special case of the Ait-Sahalia process with (a−1, a0, a1, a2, ̺, ρ) = (0, 0, λ +

σ2/2, 1, 3, 1). For this choice of parameters, ̺ + 1 > 2ρ, hence the moments and inverse

moments of Xt are finite for all t ∈ [0, T], and the solution stays in (0, ∞) almost surely. The

drift function satisfies (6.2.2), with (α, β) = (2, 0), e.g. set k′ = 1/4 in the modified scheme.

In addition, the drift is one-sided Lipschitz continuous and the diffusion is K-Lipschitz. As

a result, theoretical convergence for this example can be obtained with rate r = 1, recall also

Remark 6.3.1.

Ginzburg-Landau strong convergence: For this SDE, the closed-form solution is used in the

definition of E to compute the strong rate of convergence r. Figure 6.3 shows the average

absolute error E using the modified scheme, for parameters (σ, λ, T, x0) = (1, 1/2, 1, 1). The

empirical rate achieved of 0.53 (same as the standard Euler scheme) which is lower than the

predicted rate of 1. This can be explained since we are approximating the integral in (6.5.1) as

a summation.

Ginzburg-Landau Euler-Maruyama divergence: We consider an example of the Ginzburg-

Landau SDE for which the standard Euler-Maruyama scheme diverges, and compare the

results with the modified explicit scheme. Fix parameters (σ, λ, T, x0) = (7, 0, 3, 1) as
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Figure 6.3: Ginzburg-Landau model: average absolute error E vs N (log2 scale).

in [HJK11], for which the authors prove moment explosion for the classical Euler-Maruyama

scheme, see [HJK11, Table 1]. Figure 6.4 shows the error E for the classical and the modified

schemes, for different N. For the modified scheme, set k′ = 1/4. The modified Euler scheme

converges with a rate rm = 0.43. For a range of step sizes, the classical Euler scheme explodes,

as proven in [HJK11] (N.B. very large and NaN values are set to 220 in the figure, to illustrate

the explosions for the classical scheme). The modified scheme appears to be more robust.

6.5.3 Ait-Sahalia model

The strong rate of convergence for the Ait-Sahalia model is computed using a reference solution

with a large number of steps. Consider the parameters (a−1, a0, a1, a2, γ, x0) = (1, 1, 1, 1, 1, 1),

and (̺, ρ, T) = (2, 3/2, 1). From these parameters, note that α = 4 and β = 2. Fix k and k′, such

that 2βk = 1 and 2αk′ = 1, so that (Hy1) holds. Figure 6.5 shows E against the number of steps

(log-log plot), where 212 steps are used for the reference solution. The Ait-Sahalia empirical

rate of convergence r = 1.25 could be justified by the fact that we used a reference solution

instead of the true solution.
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7. Examples and extensions

Let �x� be the Euclidean distance of a vector x ∈ R
d,

�x� :=

�

�

�

�

d

∑
i=1

x2
i .

We consider a d-dimensional drift vector function f : R
d → R

d and a d × m-matrix diffusion

function γ : R
d → R

d×m. We denote γi,. the vector function that returns the ith column of γ;

in other words γi,. : R
d → R

d. Let the process Y = (Yt)t≥0 be the solution to the stochastic

differential equation

dYt = f (Yt)dt + γ(Yt)dWt, Y0 = y0 ∈ R
d, (7.0.1)

where W is an m-dimensional Brownian motion. We shall consider the following assumptions:

(HD): the solution of (7.0.1) takes values in D ⊆ R
d, almost surely.

(H f ): f is locally Lipschitz continuous and globally one-sided Lipschitz continuous on D,

namely there exist α, β ≥ 0 and K > 0, such that for all (x, y) ∈ D2:

� f (x)− f (y)� ≤ K(1 + �x�α + �y�α +
1

�x�β
+

1
�y�β

)�x − y�,

�x − y, f (x)− f (y)� ≤ K�x − y�2 .

(Hγ): γi,. is Lipschitz continuous on D for all dimensions i = 1, . . . , d: there exists K > 0 such

that for all (x, y) ∈ D2,

�γi,.(x)− γi,.(y)� ≤ K�x − y� .

7.1 Singularities on the closure of D

In the one-dimensional case, we introduced a projection map of the state-space to an

interval Dn. The projection map in a multi-dimensional example is pn,d : R
d → Dn,d, with

Dn,d := {(x1, . . . , xd) ∈ R
d : xi > 0, i = 1, . . . , d and n−k ≤ �x� ≤ nk′}. Consider a sequence

of convex sub-domains, Dn,2, such that the set-theoretic limit of Dn exists and equals to D, and

a one-Lipschitz projection map pn,d. In Figure 7.1, we consider Dn,2 for D = (0, ∞)2, with
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Figure 7.1: Sub-domain Dn,2, with singularities at the origin, and at points A and B.

singularities on the closure of D.

7.2 Domain D = (−∞, ∞)

We define the sub-domain Dn := D−
n

�

D+
n where D−

n := [−nk′ ,−n−k] and D+
n := [n−k, nk′ ].

We also introduce En := E−
n

�

E0
n

�

E+
n , where E−

n := (−∞,−nk′), E0
n := (−n−k, n−k) and

E+
n := (nk′ , ∞). However, the projection map

p̃n(x) :=



































x if x ∈ Dn,

−nk′ if x ∈ E−
n ,

nk′ if x ∈ E+
n ,

−n−k if 0 > x > −n−k,

n−k if 0 ≤ x < n−k,

is not one-Lipschitz and Dn is not an interval.

Example 7.2.1 (SDEs on D = (−∞, ∞)). We consider the stochastic differential equation

dYt = µ f (Yt)dt + σdWt, Y0 = y ∈ R, (7.2.1)

where µ and σ are positive constants and

f (x) =

�

−√
x if x ≥ 0,

√
−x if x < 0.
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The first derivative of the drift function is

f ′(x) =















−1/(2
√

x) if x > 0,

−1/(2
√
−x) if x < 0,

undefined if x = 0.

We require the projection map to allow the process to “cross” the singularity at the origin. For

the Euler scheme y = pn(x) + f (pn(x))h + γ(pn(x))ΔW, we require |pn(x)− pn(y)| ≤ |x − y|,
i.e. the map to be one-Lipschitz. The two regions D−

n and D+
n , are separated by E0

n.

Definition 7.2.1. In the case where D = R, we define the projection map pn,x : R → Dn using the

next step y given by y = x + f (x)h + γ(x)ΔW— using strictly positive k, k′ and x ∈ Dn — by

pn,x(y) :=



































y if y ∈ Dn,

n−k if y ∈ E0
n, x ∈ D+

n ,

−n−k if y ∈ E0
n, x ∈ D−

n ,

nk′ if y ∈ E+
n , x ∈ Dn,

−nk′ if y ∈ E−
n , x ∈ Dn.

Remark 7.2.1.

(i) For x ∈ Dn, set y = x + f (x)h + γ(x)ΔW; if y ∈ Dn, the projection pn,x(y) is the identity map.

s

(ii) For y ∈ En; if y ∈ E+
n (or E−

n ), then pn,x(y) = nk′ (resp. −nk′), if y ∈ E0
n, and x ∈ D+

n (or

x ∈ D−
n ), then pn,x(y) = n−k (resp. −n−k).

(iii) As we increase the number of steps, n, the region E0
n becomes smaller. The aim is to allow a

transition of the process from D+
n to D−

n and vice versa, and the projection allows the process to

cross E0
n in one time step.

For x ∈ Dn, note that |pn,x(x)− pn,x(y)| ≤ |x− y|, and we now define the discretisation scheme:

Definition 7.2.2. Set Ŷ0 = Y0 ∈ Dn and for i = 0, . . . , n − 1,

Ŷti+1 := pn,Ŷti−1
(Ŷti

) + fn,Ŷti−1
(Ŷti

)hi+1 + γn,Ŷti−1
(Ŷti

)ΔWi+1,

with hi+1 := ti+1 − ti, ΔWi+1 := Wti+1 − Wti
, fn,x ≡ f ◦ pn,x and γn,x ≡ γ ◦ pn,x.
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Example 7.2.2. Consider the SDE in (7.2.1), with parameters (µ, σ, Y0, T) = (2, 2, 1, 1). The diffusion

function is Lipschitz continuous and we apply the discretisation scheme in Definition 7.2.2. Fix α = 0

and β = 1/2 as the scheme parameters, and choose k = 1 (the upper bound, since 2κβ ≤ 1), and

k′ = 10 (arbitrary choice).

Figure 7.2: Example 7.2.2: Mean absolute error and MSE for process Y, using different step
sizes.

In Figure 7.2, we show the rates of convergence for the mean absolute error (MAE) and the

MSE, using a reference solution with 216 steps. The rates obtained are 0.45 and 0.90.

7.3 Discontinuous drift function

We consider the stochastic differential equation

dYt = µ f (Yt)dt + σdWt, Y0 ∈ R, (7.3.1)

where µ and σ are strictly positive parameters and f (x) = 2(1/2 − 1x≥0). Clearly, we have a

discontinuity at x = 0 for the drift function; more so, the function is one-sided Lipschitz.

We consider an approximation using the drift function, fε, using a cubic spline in an ε-
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neighbourhood of the discontinuity at the origin. We define this approximation by

fε(x) =















1 if x ≤ −ε,
x3

2ε3 − 3x
2ε if − ε < x < ε,

−1 if x ≥ ε.

Note that f ′ε(x) ≤ Cε(1+ |x|2). For this example the locally Lipschitz parameters are α = 2 and

β = 0. Fix the explicit Euler scheme parameters such that 0 < k′ ≤ 1/4, and k arbitrarily. For

ε = n−k, the map pn,x will project points in E0
n to D+

n or D−
n . We consider the SDE in (7.3.1)

with parameters (µ, σ, Y0, T) = (2, 2, 1, 1). The MAE and MSE rates for this example are 0.47

and 0.96.
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8. Monte Carlo Acceleration

We present applications using the strong rate of convergence for the modified Euler scheme

introduced in Chapter 6. We consider the multilevel Monte Carlo (MLMC) technique which

requires this strong rate of convergence, and an accelerating scheme for a stochastic volatility

model.

8.1 MLMC

We combine the modified Euler scheme and the multilevel Monte Carlo approach introduced

by Giles [Gil08b, GS12]. The original paper focused on approximating the expected value of

Lipschitz continuous payoffs. The MLMC method has also been justified for digitals, lookback

and barrier options [GHM09]. Multischeme MLMC techniques use different discretisation

schemes in order to further improve the computational efficiency [Abe11]. The use of MLMC

techniques has also been applied to compute Greeks [BG12].

We target a root mean squared error (RMSE) of O(ε) for the option price. Using an Euler-

Maruyama scheme, the MSE of an option price is C1/N + C2h2, where N is the number of

Monte Carlo paths, and h is the step size of the discretisation. By choosing N := O(ε−2), and

h := O(ε), the total cost is O(ε−3).

The idea behind MLMC is to use different time steps, at different levels of the simulation. We

increase the number of time steps at each level by a factor M, where level l uses Ml steps of

size hl := T/Ml. We define Pl to be the numerical approximation of the payoff at level l, for

l = 0, . . . , L, where L is the maximum number of levels. By linearity of the expectation operator

we note that

E [PL] = E [P0] +
L

∑
l=1

E [Pl − Pl−1] , (8.1.1)

where the difference in the payoff approximation on levels l and l − 1 is estimated using

the same Brownian path, for both levels. The variance of the payoff difference, Vl :=

V(Pl − Pl−1), decreases quickly with increasing levels, and it has been shown that for

European options with Lipschitz continuous payoffs, Vl converges to zero twice as fast as
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the strong convergence rate of the scheme. At each level l, we simulate Nl paths and

estimate E [Pl − Pl−1]. The multilevel estimator has variance 1/Nl ∑
L
l=0 Vl, and Nl := C

√
Vlhl

minimises the computational cost [Gil08b], to achieve a RMSE of O(ε). The strong convergence

rate is required for the MLMC techniques, and the complexity theorem provides a general

result for the computational cost of the MLMC method [Gil08b]. MLMC methods have been

shown to improve the computational efficiency using an Euler-Maruyama discretisation to

O
�

ε−2(log ε)2
�

, and O(ε−2) for a Milstein scheme [Gil08b, Gil08a].

8.1.1 CIR model ZCB with MLMC

We consider the Cox-Ingersoll-Ross model (6.4.1) for the process (vt)t≥0 [CIR85]; the price of a

zero-coupon bond (ZCB) with maturity T, at time t, reads

B(t, T) = E

�

exp
�

−
� T

t
vsds

� �

�

�

�

Ft

�

,

which admits a closed-form solution [CIR85, BM07]. This solution at time zero is B(0, T) =

A exp(−Cv0), where Λ :=
�

κ2 + 2ξ2 and

A :=
�

2Λ exp [(κ + Λ)T/2]
2Λ + (κ + Λ)(exp TΛ − 1)

�2κθ/ξ2

, C :=
2(exp(TΛ)− 1)

2Λ + (κ + Λ)(exp(TΛ)− 1)
.

We consider a CIR model with parameters (κ, θ, ξ, v0, T) = (2, 1, 0.5, 1, 1), (N, M, L) =

(2000000, 4, 5), and RMSE thresholds (0.001, 0.0005, 0.0002, 0.0001, 0.00005).

In Figure 8.1, we compute the standard Monte Carlo, and MLMC approximations for the ZCB.

The first plot demonstrates the average variance for the approximations Pl and the differences

Pl − Pl−1. Observe that the variance of the differences decreased roughly twice as fast as the rate

of weak convergence of an Euler scheme. Also, the variance of Pl is asymptotically a constant.

The second plot shows the mean of Pl and the mean of Pl − Pl−1. The third plot shows how

decreasing the target ε, require more steps Nl and the number of levels increasing from 3 to

5. The fourth plot shows the ratio of savings between the standard Monte Carlo approach for

approximating the bond price (Std MC), and the MLMC counterpart. The ratio of savings is a

factor of 27 for ε = 0.00005 between the standard Monte Carlo and the MLMC approach. We

adapt code freely available from [Gil08b].
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Figure 8.1: CIR model, and ZCB pricing using MLMC.

8.2 Accelerating the modified Euler-Maruyama scheme

Accelerated Euler-Maruyama schemes are studied in [TY12]. Suppose that the process Xε

depends on some small parameter ε, and consider a discretisation X̂ε. Let X0 be another

process with parameter ε = 0, and let X̂0 be its discretised process. Suppose that the bias

of the process Xε − X̂ε is similar to the bias of X0 − X̂0; then we can consider X̂ε − X̂0 + X0 as

an approximation of Xε, which is a control variate method.

Example 8.2.1. Consider the solution to the stochastic differential equations

dSt =
√

αtS
β
t dB1

t , S0 = s0 > 0 ,

dαt = εαt(ρdB1
t +
�

1 − ρ2dB2
t ) , α0 > 0 .

(8.2.1)

We define Śε
t := Ŝε

t − Ŝ0
t + S0

t , where Ŝε is the discretised version using the modified Euler

scheme, for some ε, and (S0
t )t≥0 is simulated using the Milstein scheme. We compare (Ŝε

t)t≥0

and the accelerated (Śε
t)t≥0 against Sε

t (using a large number of time steps and the Milstein

scheme). In Figure 8.2, we consider the model with with parameters (S0, β, α0, ε, ρ, T) =
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(100, 0.9, 0.4, 0.1,−0.7, 1). We compute the strong error using M = 10000 and 211 steps for

the Milstein scheme which is used as a reference solution. The constant for the accelerated

scheme is much smaller, demonstrating the merit of this approach.
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Figure 8.2: Strong convergence for the modified Euler and the Accelerated scheme.



189

Appendices
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A. A class of approximate Greek weights

A.1 Proofs from Chapter 2

Proof of Proposition 2.2.1: We show the d = m = 2 case, which naturally extends to the d-

dimensional case. Note that uϑ = E [g(XT)|Fϑ] from the conditional expectation. Multiplying

the Itô expansion of uϑ by weights I
(1)
ϑ and I

(2)
ϑ , taking expectations and using Lemma 2.2.1

yields

E

�

uϑ I
(1)
ϑ

�

= E

�

I
(1)
ϑ

�

u
(1)
0

�

I
(1)
ϑ

�

+E

�

I
(0,0)
ϑ

�

u(0,0)
.

�

I
(1)
ϑ

�

+ E

�

I
(0,1)
ϑ

�

u(0,1)
.

�

I
(1)
ϑ

�

+ E

�

I
(1,0)
ϑ

�

u(1,0)
.

�

I
(1)
ϑ

�

= ϑu
(1)
0

+E

�

I
(0,0)
ϑ

�

u
(0,0)
0 + I

(0)
s

�

u(0,0,0)
.

�

+ I
(1)
s

�

u(1,0,0)
.

�

+ I
(2)
s

�

u(2,0,0)
.

��

I
(1)
ϑ

�

+E

�

I
(0,1)
ϑ

�

u
(0,1)
0 + I

(0)
s

�

u(0,0,1)
.

�

+ I
(1)
s

�

u(1,0,1)
.

�

+ I
(2)
s

�

u(2,0,1)
.

��

I
(1)
ϑ

�

+E

�

I
(1,0)
ϑ

�

u
(1,0)
0 + I

(0)
s

�

u(1,0,1)
.

�

+ I
(1)
s

�

u(1,1,0)
.

�

+ I
(2)
s

�

u(2,1,0)
.

��

I
(1)
ϑ

�

= hu
(1)
0 + ϑ2

2

�

u
(0,1)
0 + u

(1,0)
0

�

+E

�

I
(0,0,1)
ϑ

�

u(0,0,1)
.

�

I
(1)
ϑ

�

+ E

�

I
(0,1,0)
ϑ

�

u(0,1,0)
.

�

I
(1)
ϑ

�

+ E

�

I
(1,0,0)
ϑ

�

u(1,0,0)
.

�

I
(1)
ϑ

�

= ϑu
(1)
0 +O(ϑ2).

Dividing through by ϑ yields the first result E[uϑ I
(1)
ϑ /ϑ] = u

(1)
0 +O(ϑ). Similar analysis yields

E[uϑ I
(2)
ϑ /ϑ] = u

(2)
0 +O(ϑ) and this completes the proof of Proposition 2.2.1.

Proof of Proposition 2.3.1: Using Lemma 2.2.1 and an expansion similar to (2.2.7), with β = (l)

and kj(β) = 0 (for j=0,1), it follows that

E

�

g(XT)
W

(l)
ϑ
ϑ

�

= u
(l)
0 + 1

ϑ

�

∑
k
i=2 ∑α∈Mi,1,l

uα
0

ϑw(α,β)

w(α,β)! ∏
l(α+)
j=0 C

kj(α)

kj(α)+kj(β)

�

+O
�

ϑk
�

= u
(l)
0 + 1

ϑ

�

∑
k
i=2 ∑α∈Mi,1,l

uα
0

ϑi

i! ∏
l(α+)
j=0 C

kj(α)

kj(α)

�

+O
�

ϑk
�

= u
(l)
0 + 1

ϑ

�

∑
k
i=2 ∑α∈Mi,1,l

uα
0

ϑi

i!

�

+O
�

ϑk
�

,

where the convention ∑
1
i=2 i = 0 is used. The proof is completed by noting that u

α∗(0)
0 is equal
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to zero for all α ∈ M, from the partial differential equation (2.1.1).

Proof of Proposition 2.3.2: By continuing from (2.2.7) and recalling the hierarchical set D2, uϑ has

the following Itô-Taylor expansion:

uϑ = ∑
α∈D2

Iα
ϑ [u

α
0 ] + ∑

α∈B(D2)

Iα
ϑ [u

α
· ] . (A.1.1)

Using Lemma 2.2.1 to simplify the expectation of E[uϑ Iα
ϑ ], for α = (1, 1), it follows that

E

�

uϑ I
(1,1)
ϑ

�

= E

�

I
(1,1)
ϑ

�

u
(1,1)
0

�

I
(1,1)
ϑ

�

+ E

�

I
(0,0,0)
ϑ

�

u(0,0,0)
.

�

I
(1,1)
ϑ

�

+ E

�

I
(1,0,0)
ϑ

�

u(1,0,0)
.

�

I
(1,1)
ϑ

�

+E

�

I
(0,0,1)
ϑ

�

u(0,0,1)
.

�

I
(1,1)
ϑ

�

+ E

�

I
(1,0,1)
ϑ

�

u(1,0,1)
.

�

I
(1,1)
ϑ

�

+E

�

I
(0,1,0)
ϑ

�

u(0,1,0)
.

�

I
(1,1)
ϑ

�

+ E

�

I
(1,1,0)
ϑ

�

u(1,1,0)
.

�

I
(1,1)
ϑ

�

+E

�

I
(0,1,1)
ϑ

�

u(0,1,1)
.

�

I
(1,1)
ϑ

�

= E

�

I
(1,1)
ϑ

�

u
(1,1)
0

�

I
(1,1)
ϑ

�

+ ∑
α∈M3,2,1

E

�

Iα
ϑ [u

α
. ] I

(1,1)
ϑ

�

.

In addition, the following equalities can be shown

E

�

I
(1,1)
ϑ I

(1,1)
ϑ

�

=
ϑ2

2!
, E

�

I
(1,1,0)
ϑ I

(1,1)
ϑ

�

= E

�

I
(1,0,1)
ϑ I

(1,1)
ϑ

�

= E

�

I
(0,1,1)
ϑ I

(1,1)
ϑ

�

=
ϑ3

3!
,

E

�

I
(1,1,0,0)
ϑ I

(1,1)
ϑ

�

= E

�

I
(1,0,1,0)
ϑ I

(1,1)
ϑ

�

= . . . = E

�

I
(0,0,1,1)
ϑ I

(1,1)
ϑ

�

=
ϑ4

4!
,

and the expansion of E[uϑ I
(1,1)
ϑ ] simplifies to ϑ2

2 u
(1,1)
0 +O(ϑ3). It follows that

E

�

uϑ
2I

(1,1)
ϑ

ϑ2

�

= u
(1,1)
0 +O(ϑ). (A.1.2)

We can continue to do further expansions, in addition to noting that u
α∗(0)
0 is equal to zero for

all α ∈ M. This concludes the proof of Proposition 2.3.2.
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A.2 Proofs from Chapter 4

Proof of Theorem 4.3.1: i) By a telescoping sum it follows that

E

�

Γ
φ
h g(X̂T)

�

= E

�

Γ
φ
h u(tn, X̂tn)

�

= E

�

Γ
φ
h

n−1

∑
i=1

�

u(ti+1, X̂ti+1)− u(ti, X̂ti
)

�

�

+ E

�

Γ
φ
h u(t1, X̂t1)

�

,

(A.2.1)

from the second part of Lemma 4.1.4 note that E

�

Γ
φ
h u(h, X̂h)

�

= L̂
(1,1)
x u(0, x) + C1h + O(h2),

where h = t1.

ii) We recall (3.3.2). For (s, x) ∈ [0, T]× R
d, define

φ1
e (s, x) :=

1
2

L̂
(0,0)
x u(s, x) , φ2

e (s, x) :=
1
6

L̂
(0,0,0)
x u(s, x).

With this notation, we obtain,

E

�

Γ
φ
h{g(X̂T)− u(h, X̂h)}

�

= E

�

Γ
φ
h

�

n−1

∑
i=1

Et1

�

h2φ1
e (ti, X̂ti

) + h3φ2
e (ti, X̂ti

)
�

+O(h4)

��

. (A.2.2)

From [TT90, Theorem 1], we know that

Et1

�

φ1
e (ti, X̂ti

)
�

= Et1

�

φ1
e (ti, X

t1,X̂t1
ti

)

�

+ hφ̃1
e,i(t1, X̂t1) +O(h2) ,

for some bounded function φ̃1
e,i, and

Et1

�

φ2
e (ti, X̂ti

)
�

= Et1

�

φ2
e (ti, X

t1,X̂t1
ti

)

�

+O(h).

Combining these equalities with (A.2.2), we obtain

E

�

Γ
φ
h{g(X̂T)− u(h, X̂h)}

�

= O(h2) + h3
E

�

Γ
φ
h ∑

n−1
i=1 φ̃1

e,i(t1, X̂t1)
�

+E

�

Γ
φ
h

�

∑
n−1
i=1 Et1

�

h2φ1
e (ti, X

t1,X̂t1
ti

) + h3φ2
e (ti, X

t1,X̂t1
ti

)

���

,

(A.2.3)

using the Cauchy-Schwarz inequality and the variance of weight Γ
φ
h . Using a natural extension

to Lemma 3.2.1, observe that

E

�

Γ
φ
h

n−1

∑
i=1

φ̃1
e,i(t1, X̂t1)

�

=
n−1

∑
i=1

�

L(j,j)φ̃1
e,i(0, x) +O(h)

�

= O
�

1
h

�

.
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We also compute

n−1

∑
i=1

hEt1

�

φ2
e (ti, X

t1,X̂t1
ti

)

�

= Et1

�

� T

t1

φ2
e (s, X

t1,X̂t1
s )ds

�

+O(h) = ϕ2
e (t1, X̂t1) +O(h),

leading to

h2
E

�

Γ
φ
h h

n−1

∑
i=1

φ2
e (ti, X

t1,X̂t1
ti

)

�

= h2
�

L(j,j)ϕ2
e (0, x) +O(1)

�

= O(h2),

where ϕ2
e (t, x) := E

�

� T
t φ2

e (s, Xs)ds
�

. Now we have, using Lemma 3.3.1,

n−1

∑
i=1

hEt1

�

φ1
e (ti, X

t1,X̂t1
ti

)

�

= Et1

�

� T

t1

φ1
e (s, X

t1,X̂t1
s )ds

�

+
h

2
Et1

�

� T

t1

L(0)φ1
e (s, X

t1,X̂t1
s )ds

�

+O(h2)

= ϕ1
e (t1, X̂t1) + ϕ̃1

e (t1, X̂t1)h +O(h2),

such that ϕ1
e ∈ G2

b and ϕ̃1
e ∈ G1

b . We compute

hE

�

Γ
φ
h h

n−1

∑
i=1

φ1
e (ti, X

t1,X̂t1
ti

)

�

= hL(j,j)ϕ1
e (0, x) +O(h2);

combining the above results yields

E

�

Γ
φ
h{g(X̂T)− u(h, X̂h)}

�

= hL(1,1)ϕ1
e (0, x) +O(h2). (A.2.4)

The proof is completed since (A.2.1) and (A.2.4) justify the extrapolation.

A.3 Proofs from Chapter 5

Proof of Corollary 5.1.1: Multiplying the value function by I
(1)
ϑ and I

(2)
ϑ , taking expectations,

applying Lemma 2.2.1, and expansion in ε yield

E

�

uε
ϑ I

(1)
ϑ

�

= E

�

I
(1)
ϑ

�

L(1)uε
0

�

I
(1)
ϑ

�

+ E

�

I
(1,0)
ϑ

�

L(1,0)uε
.

�

I
(1)
ϑ

�

+ E

�

I
(0,1)
ϑ

�

L(0,1)uε
.

�

I
(1)
ϑ

�

= ϑL(1)u0
0 +O(ϑε) +O(ϑ2) +O(ϑ2ε),

E

�

uε
ϑ I

(2)
ϑ

�

= E

�

I
(2)
ϑ

�

L(2)uε
0

�

I
(2)
ϑ

�

+ E

�

I
(2,0)
ϑ

�

L(2,0)uε
.

�

I
(2)
ϑ

�

+ E

�

I
(0,2)
ϑ

�

L(0,2)uε
.

�

I
(2)
ϑ

�

= ϑL(2)uε
0 + E

�

I
(0,2)
ϑ

�

L(0,2)uε
.

�

I
(2)
ϑ

�

, (A.3.1)
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since uε
0 satisfies (2.1.1): L(0)uε

0 = 0. Thus, the Delta of the perturbed system reads

Δ := ∂xu0
0 = E

�

g(Xε
T)

I
(1)
ϑ

ϑθ

�

+O(ε) +O(ϑ) +O(ϑε).

To compute the Vega, one needs an expansion of E

�

g(Xε
T)

I
(2)
ϑ
ϑε

�

= E

�

uε
ϑ

I
(2)
ϑ
ϑε

�

obtained by

expanding (A.3.1) up to at least orders O(ϑε2), O(ϑ2ε) and O(ϑ2ε2) terms. First,

L(2)uε
0 = ε∂θuε

0 = ε

�

∂θu0
0 + ε∂θ (∂εu

ε
0)

�

�

�

�

ε↓0
+O(ε2)

�

, (A.3.2)

then
L(0,2)uε

0 = L(0) [ε∂θuε
0]

= ∂t (ε∂θuε
0) +

1
2 θ2∂xx (ε∂θuε

0) +
1
2 ε2∂θθ (ε∂θuε

0) + θε∂xθ (ε∂θuε
0)

= ε∂tθuε
0 +

1
2 εθ2∂xxθuε

0 +O(ε2)

= ε∂tθu0
0 +

1
2 εθ2∂xxθu0

0 +O(ε2),

and similarly L(0)L(0)L(2)uε
0 = O(ε), thus

E

�

I
(0,2)
ϑ

�

L(0,2)uε
.

�

I
(2)
ϑ

�

= ϑ2

2

�

L(0,2)uε
0

�

+ E

�

I
(0,0,2)
ϑ

�

L(0,0,2)uε
.

�

I
(2)
ϑ

�

= ϑ2ε
2

�

∂tθu0
0 +

1
2 θ2∂xxθu0

0 +O(ε)
�

+ ϑ3

3! L(0,0,0)uε
0 +O(ϑ4ε).

(A.3.3)

Therefore, combining (A.3.2) and (A.3.3), it follows that

E

�

uε
ϑ

I
(2)
ϑ
ϑε

�

= 1
ϑε

�

ϑL(2)uε
0 + E

�

I
(0,2)
ϑ

�

L(0,2)uε
.

�

I
(2)
ϑ

��

= ∂θu0
0 +O(ε) + 1

ϑε

�

O(ϑ2ε) +O(ϑ2ε2)
�

= ∂θu0
0 +O(ε) +O(ϑ) +O(ϑε).

Thus, the Vega of the perturbed system is V := E

�

g(Xε
T)

I
(2)
ϑ
ϑε

�

+O(ϑ) +O(ε).

For higher-order Greeks, multiply the Itô-Taylor expansion of uε
ϑ by I

(1,1)
ϑ to obtain

E

�

uε
ϑ I

(1,1)
ϑ

�

= E

��

I
(1,1)
ϑ

�

L(1,1)uε
.

��

I
(1,1)
ϑ

�

+ E

��

I
(0,0)
ϑ

�

L(0,0)uε
.

��

I
(1,1)
ϑ

�

+E

��

I
(0,1)
ϑ

�

L(0,1)uε
.

��

I
(1,1)
ϑ

�

+ E

��

I
(1,0)
ϑ

�

L(1,0)uε
.

��

I
(1,1)
ϑ

�

= E

��

I
(1,1)
ϑ

�

L(1,1)uε
.

��

I
(1,1)
ϑ

�

+ E

��

I
(0,1)
ϑ

�

L(0,1)uε
.

��

I
(1,1)
ϑ

�

.

(A.3.4)
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The following expansions,

L(1,1)uε
0 = θ2∂xxuε

0 = θ2∂xxu0
0 + θ2ε∂ε (∂xxuε

0)

�

�

�

�

ε↓0
+O(ε2)

and L(0,1,1)uε
0 = θ2∂txxu0

0 +
1
2 θ2∂xxxxu0

0 +O(ε), yield

E

�

I
(1,1)
ϑ

�

L(1,1)uε
.

�

I
(1,1)
ϑ

�

= E

�

I
(1,1)
ϑ

�

L(1,1)uε
0

�

I
(1,1)
ϑ

�

+ E

�

I
(0,1,1)
ϑ

�

L(0,1,1)uε
.

�

I
(1,1)
ϑ

�

= ϑ2

2 L(1,1)uε
0 +O(ϑ3).

(A.3.5)

Rearranging (A.3.5) yields an expression for the Gamma:

Γ := ∂xxu0
0 = E

�

g(Xε
T)

2I
(1,1)
ϑ

ϑ2θ2

�

+O(ϑ) +O(ε) +O(ϑε).

Now, multiply uε
ϑ by I

(2,2)
ϑ , and consider the non-zero terms in the following expansion

E

�

uε
ϑ I

(2,2)
ϑ

�

= E

��

I
(2,2)
ϑ

�

L(2,2)uε
.

��

I
(2,2)
ϑ

�

+ E

��

I
(0,0)
ϑ

�

L(0,0)uε
.

��

I
(2,2)
ϑ

�

+E

��

I
(0,2)
ϑ

�

L(0,2)uε
.

��

I
(2,2)
ϑ

�

+ E

��

I
(2,0)
ϑ

�

L(2,0)uε
.

��

I
(2,2)
ϑ

�

= E

��

I
(2,2)
ϑ

�

L(2,2)uε
.

��

I
(2,2)
ϑ

�

+ E

��

I
(0,2)
ϑ

�

L(0,2)uε
.

��

I
(2,2)
ϑ

�

.

(A.3.6)

Consider the expansion

I
(2,2)
ϑ

�

L(2,2)uε
.

�

= I
(2,2)
ϑ

�

L(2,2)uε
0

�

+ I
(0,2,2)
ϑ

�

L(0,2,2)uε
.

�

+ I
(1,2,2)
ϑ

�

L(1,2,2)uε
.

�

+ I
(2,2,2)
ϑ

�

L(2,2,2)uε
.

�

,

and multiplying it by I
(2,2)
ϑ yields

E

��

I
(2,2)
ϑ

�

L(2,2)uε
.

��

I
(2,2)
ϑ

�

=
ϑ2

2
L(2,2)uε

0 + E

�

I
(0,2,2)
ϑ

�

L(0,2,2)uε
.

�

I
(2,2)
ϑ

�

.

Use the following expansions,

L(2,2)uε
0 = ε2∂θθuε

0 = ε2

�

∂θθu0
0 + ε∂ε(∂θθuε

0)

�

�

�

�

εց0
+O(ε2)

�

,

and

L(0,2,2)uε
0 = ∂t

�
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0

�

+ 1
2 θ2∂xx

�

L(2,2)uε
0

�

+ θε∂xθ

�

L(2,2)uε
0

�

+ 1
2 ε2∂θθ

�

L(2,2)uε
0

�

= ε2
�

∂tθθu0
0 +

1
2 θ2∂xxθθu0

0

�

+O(ε3),
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it can be shown that the expansion of E

��

I
(2,2)
ϑ

�

L(2,2)uε
.

��

I
(2,2)
ϑ

�

is

ϑ2ε2

2

�

∂θθu0
0 +O(ε)

�

+ E

�

I
(0,2,2)
ϑ

�

L(0,2,2)uε
.

�

I
(2,2)
ϑ

�

= ϑ2ε2

2

�

∂θθu0
0 +O(ε)

�

+ ϑ3

3! L(0,2,2)uε
0 + E

�

I
(0,0,2,2)
ϑ

�

L(0,0,2,2)uε
.

�

I
(2,2)
ϑ

�
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We now consider the second term in (A.3.6), after expanding and taking expectation with I
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ϑ ,

to obtain
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With the aid of the expansions
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one can obtain the following expansion for (A.3.6):
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For cross-terms, multiply the value function by I
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ϑ and consider the expectation
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(A.3.8)

By considering the expansions,
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the expansions of the two terms in (A.3.8) are computable. Using
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we can express (A.3.8) as
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(A.3.9)

The following expansions hold:
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Now consider the two terms in (A.3.9) and compute their expansion. Using
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we can expand (A.3.9) as
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By recalling Remark 2.3.1, the cross-term sensitivity can be approximated by
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