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ABSTRACT This article is an introduction to Malliavin Calculus for prac-
titioners. We treat one speci…c application to the calculation of greeks in
Finance. We consider also the kernel density method to compute greeks
and an extension of the Vega index called the local vega index.
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1 Introduction

The purpose of this expository article is to give a basic introduction to
Malliavin Calculus and its applications within the area of Monte Carlo
simulations in Finance. Instead of giving a general exposition about this
theory we will concentrate on one application. That is, the Monte Carlo
calculation of …nancial sensitivity quantities called greeks where the inte-
gration by parts of Malliavin Calculus can be successfully used. Greeks are
the general name given to any derivative of a …nancial quantity with respect
to any of its underlying parameters. For example, Delta of an option is the
derivative of the current option price with respect to the current value of
the underlying. Greeks have various uses in Applied Finance such as risk
assessment and replication of options between others.

The examples given in this article are derivatives of option prices (mostly
European and Asian options) where the payo¤ function has restricted
smoothness. In this case, one is able to carry out the necessary deriva-
tives supposing that the law of the underlying is regular enough. In order
to be able to introduce the derivative inside the expectation one needs to
use an integration by parts with respect to the law of the underlying. This
is easily done when the law of the underlying is explicitly known (e.g. ge-
ometric Brownian motion). But not so easily done if the law is not known
(e.g. the integral of a geometric Brownian motion). Here is where Malliavin
Calculus has been found to be successful, allowing for explicit expressions
of an integration by parts within the expectation although the density is
not explicitly known. In this article we stress the applicability rather than
the mathematical theory and therefore our discussion will be rather in-
formal as we want to reach also the community of practitioners and we
encourage them to try these techniques in their own problems. As with any
other technique this one is not the solution to all problems but it could be
a helpful tool in various speci…c problems.

We treat the one dimensional case for ease of exposition and assume
knowledge of basic Itô calculus. Most of the results can be generalized to
multi-dimensions. In Section 9.2 we brie‡y describe how to carry out this
extension. The article can be divided in the following way

Index
1. Introduction.
2. Greeks. An Introduction and Examples. Here we give a general de…-

nition of greeks.
3. The kernel density estimation method. We describe a general method

of estimation of greeks which is the natural extension of the …nite di¤erence
method. In this section we obtain the optimal values of parameters to carry
out this estimation. These results seem to be new.

4. The likelihood method and the integration by parts formula. In this
section we start with the description of the likelihood method as described
by Broadie and Glasserman. This method can be considered as a mid-point
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between the kernel density method and the integration by parts formula
method of Malliavin Calculus.

5. Malliavin Calculus. An introduction and examples. Here we give an
informal introduction to Malliavin Calculus and describe its application to
greeks of European, Asian and lookback/barrier type options.

6. Comparison and e¢ciency. In this section we compare the two methods
introduced and we discuss some practical aspects of its implementation.

7. Other extensions. In this section we discuss the interpretation of the
greek called Delta as the quantity that allows replications of payo¤s as an
application of the stochastic derivative. We also discuss the case of options
based on the maximum of the path of an geometric Brownian motion.

8. The local Vega index. Properties and computation. In this section we
describe an extension of the Vega index which measures changes of …nancial
quantities locally which are independent of the perturbation model.

9. Appendices. Brie‡y we describe the extension of the integration by
parts to many dimensions and how to di¤erentiate di¤usions in general.

10. Conclusions and Comments.

2 Greeks

A greek is the derivative of a …nancial quantity with respect to any of
the parameters in the problem. This quantity could serve to measure the
stability of the quantity under study (e.g. vega is the derivative of an option
price with respect to the volatility) or to replicate a certain payo¤ (e.g. delta
is the derivative of the option price with respect to the original price of the
underlying. This quantity serves to describe the replicating portfolio of an
option. For more on this, see Section 7.1). As these quantities measure risk,
it is important to measure them quickly and with a small order of error.
For a careful description of greeks and its uses, see Hull (2000).

One can describe the general problem of greek calculation as follows. Sup-
pose that the …nancial quantity of interest is described by E (©(X (®)) Y )
where © : R ! R is a measurable function and X(®) and Y are two random
variables such that the previous expectation exists. ® denotes the param-
eter of the problem. Here we assume that © and Y do not depend on ®
but the general case follows in the same manner as in this simpli…ed case.
Now the greek which we will denote by # is the derivative of the previous
expectation with respect to the parameter ®. That is,

#(®) =
@

@®
E (© (X(®))Y ) = E

µ
@
@®

© (X(®))Y
¶

:

We will mostly be interested in the case when © is a non-smooth function.
In our study we will use ©(x) = 1(x ¸ K) but other functions follow
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similarly as well. Nevertheless an argument that we will frequently use is
to assume that © is smooth and then take limits. This argument is usually
valid when the densities of X(®) are smooth.

There are essentially three methods to compute the greek #. They are the
kernel density estimation method, the integration by parts (ibp) method
of Malliavin Calculus and the …nite element method.

The …nite element method is a numerical method to approach solutions
of partial di¤erential equations (pde’s). Essentially the method requires
to characterize …rst # as the solution of a pde then one discretizes the
di¤erential operators to obtain a system of di¤erence equations that can
be solved. This method is entirely deterministic. Although the system of
di¤erence equations can be usually solved quickly in low dimensions, the
method is not suitable to generate greeks that are not directly related to the
derivatives computed in the pde. Cases where it can be applied successfully
are the calculation of delta and gamma. In other cases it involves increasing
amounts of recalculations which can be cleverly reduced in certain cases. We
will not comment further on this method referring the reader to Wilmott
(1998).

A very popular method to compute greeks is the …nite di¤erence method.
This method only requires to compute the …nancial quantity of interest at
two nearby points and compute the approximative di¤erential. The problem
is that the de…nition of “two nearby points” is not completely clear. An
attempt to resolve the issue asymptotically was addressed by L’Ecuyer
and Perron (1994) who suggest to use h » N¡1=5 where h is the distance
between points and N the amount of simulations used in the …nite di¤erence
method. This method is deeply related with the kernel density estimation
method in Statistics. We draw this relationship in the next section.

The third method, usually called the integration by parts of Malliavin
Calculus method or the likelihood method, consists of considering

#(®) = E
µ

©0(X(®))
@X (®)

@®
Y

¶

=
Z

©0(x)E
µ

@X(®)
@®

Y
¯̄
¯̄ X(®) = x

¶
p(x)dx:

Here p(x) is the density of X(®). Then if © is irregular one can perform
an ibp in order to regularize the integrand. If one can rewrite the integral
as an expectation then one can use the Monte Carlo method in order to
approximate #. The success of this method is that the terms within the
expectation can be written even in the case that the density p or the con-
ditional expectation are not explicitly known. This will be explained in
Section 5.

A method that is in between the previous two methods is the likeli-
hood method. This method is an ibp when the density is explicitly known.
Otherwise one applies the kernel density estimation method in order to
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approximate the density.
With these estimations methods one can use various variance reduction

techniques to achieve better results. We will not discuss them here. For
an exposition on the matter, see Kohatsu-Pettersson (2002) or Bouchard-
Touzi-Ekeland (2002).

2.1 Examples
Here we brie‡y describe the examples we will deal with through the arti-
cle. Consider call (put) binary options (for details, see Hull (2000)) which
endows an indicator function as payo¤. Let us take, for instance1 ,

©(X) = 1(X > K);
X(®) = ®Z and

Y = e¡rT :

We will treat two examples with the same underlying asset. That is, we
let the underlying asset S be described by a geometric Brownian motion
under the risk neutral probability P :

St = S0 +
Z t

0
rSsds +

Z t

0
¾Ss dWs;

where r is the interest rate and ¾ is the volatility and fWtgt2[0;T ] is the
Wiener process. This model is typically used to describe stock prices or
stock indices. To simplify the exposition we have assumed that the prob-
ability P is the equivalent martingale measure and we compute all expec-
tations with respect to this measure unless stated otherwise. Then we set
Z = ST =S0, ® = S0 where

ST = S0ef¹T+¾WTg ;

where ¹ = r ¡ ¾2=2. Z follows the lognormal distribution which can be
written as

p(x) =
1

x
p

2¼¾2T
expf¡[log(x) ¡ ¹T ]2=2¾2T g: (1)

This example is of educational interest as all greeks have closed formulas.
In fact the option price (¦) and delta (¢) are given by

¦(S0) = e¡rT E(1(ST ¸ K)) = e¡rT
Z +1

K=S0

p(x)dx

¢ =
@¦
@S0

(S0) = e¡rT K
S2

0
p
³ K

S0

´
:

1 Without loss of generality we set the future income equal to one currency unit.
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As a second example of real application we use the case of greeks for digital
Asian options. That is, we will have

Z =
1

S0T

Z T

0
S(s)ds:

In this case the density of Z is not explicitly known.

3 The kernel density estimation and the …nite
di¤erence method

In this section we will deduce a generalized …nite di¤erence method using
ideas taken from kernel density estimation methods. Recall that the goal
is to estimate the greek

# =
@
@®

E (©(X(®))Y )
¯̄
¯̄
®=®0

where the payo¤ function © is not regular. To solve the problem one con-
volutes © with a regular approximation of the identity (i.e. Dirac’s delta
function) and then use methods applicable to regular payo¤ functions. This
argument introduces an approximation parameter as in the …nite di¤erence
method. Consider …rst the following alternative expressions for the greek
#, if © is di¤erentiable P ± X(®)¡1 a.s.

# = E
µ

@ f©(X(®))g
@®

Y
¶¯̄

¯̄
®=®0

= E
µ

©0(X(®))
@X(®)

@®
Y

¶¯̄
¯̄
®=®0

:

These two formulas help us introduce the following estimators

#̂ =
1

Nh

NX

i=1

Z

R

@ f©(X(®))gi

@®
G

µ
® ¡ ®0

h

¶
d®Y i

e# =
1

Nh

NX

i=1

Z

R
©0(x)G

µ
x ¡ X(®0)i

h

¶
dx

@X(®)
@®

i

Y i:

Both estimators are constructed using an approximation for the derivative
using the kernel function G : R ! R+ which we assume that it satis…es thatR

R G(u)du = 1 and
R

R uG(u)du = 0. The second condition is the parallel to
the use of symmetric di¤erences. h is a parameter usually called window size
(because it corresponds in a particular case to the interval width used in
histograms). These two estimators lead to similar results, therefore we will
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only consider #̂ because this estimator corresponds to the …nite di¤erence
estimator when G(x) = 1(jxj · 1=2). To simplify our exposition further
we consider the case that ©(x) = 1(x ¸ K) and X(®) = ®Z where (Z; Y )
has a density p(z; y) which is smooth. The following arguments also follow
when p is degenerate with the appropriate modi…cations. Now, the greek
can be written as

#(®) = E(±K (®Z)ZY ) =
Z

R2
±K(®z)zyp(z; y)dzdy = e¡rT K

®2

Z

R
p(

K
®

; y)dy:

Therefore the estimator reduces to

#̂ =
1

Nh

NX

i=1

Z

R
±K (®Z i)G

µ
® ¡ ®0

h

¶
d®Z iY i :

Here ±x stands for Dirac’s delta function. We recall that this generalized
functional satis…es that

R
R ±x(u)f (u)du = f (x) for f a di¤erentiable func-

tion with at most polynomial growth at in…nity. First we compute the
asymptotic bias of this estimator:

E(#̂) =
1
h

Z

R3
±K(®z)G

µ
® ¡ ®0

h

¶
zyp(z; y)d®dzdy

= K
Z

R2
G(u)

y
(®0 + uh)2

p
µ

K
®0 + uh

; y
¶

dudy:

Next in order to expand the bias we use Taylor expansion formulas for 1=x2

and p(K=x; y) around x = ®0 we assume that
¯̄
@j

z p(z; y)
¯̄
· ¹(y)(1 + jzj)¡p

for some p > 0 and j = 0; :::; 3 where ¹ is the Radon-Nikodym density of a
positive measure with …nite expectation. Therefore one obtains that

E(#̂) = K
Z

R

y
®2

0
p

µ
K
®0

; y
¶

dy + h2f (K; ®0) + O(h3)

= # + h2f(K; ®0) + O(h3);

where

f (K; ®0) =
K
2®4

0

Z

R
u2G(u)du

Z

R

"µ
K
®0

¶2 @2p
@z2 + 6

K
®0

@p
@z

+ 6p

# µ
K
®0

; y
¶

ydy:

Similarly, one proves that

E(#̂2) =
K

Nh®2
0

Z

R
G(u)2du

Z

R
y2p

µ
K
®0

; y
¶

dy + O(N¡1) +
µ

1 ¡ 1
N

¶ ³
E(#̂)

´2

V ar(#̂) =
C1

Nh
+ O(N¡1):
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Therefore one can minimize the …rst order terms in the mean square error

"2 = E
³
#̂ ¡ #

´2
=

C1

Nh
+ h4f (K; ®0)2 + O(N¡1) + O(h3)

to obtain that the optimal value for h is

h0 =
µ

C1

4Nf (K; ®0)2

¶1=5

:

Writing explicitly all the terms in the particular case that p(z;y) = p(z)±e¡rT (y)
one obtains the following formula

µ
h0

®0

¶5

=
CGp( K

®0
)

N K
®0

½³
K
®0

´2
@2p
@x2

³
K
®0

´
+ 6 K

®0

@p
@x

³
K
®0

´
+ 6p

³
K
®0

´¾2 ; (2)

with

CG =
Z

R
G(u)2du

µZ

R
u2G(u)du

¶¡2

:

Note that the dependence of the error on the kernel G is through the term
µZ

R
G(u)2du

¶2 Z

R
u2G(u)du:

One can therefore carry out the usual variational method to minimize this
expression with respect to G sub jected to

R
R G(u)du = 1 and

R
R uG(u)du =

0: This leads to the classical Epanechnikov kernel

G0(x) =
3
4
1(jxj · 1)(1 ¡ x2):

Other usual choices are G1(u) = 1(jxj · 1=2) (this generates the …nite
di¤erence method) and G2(u) = (2¼)¡1=2 exp

³
¡x2

2

´
: In each case we have

that CG0 = 15, CG1 = 144, CG2 = (2
p

¼)¡1 : Nevertheless one should note
that in practice the choice of the kernel is not as important as the value of
h taken.

In the case of a European call binary option one can obtain explicitly
the asymptotically optimal value of h0. Suppose that log(Z) » N (¹T; ¾2T ),
d = ln(x)¡¹T

¾
p

T
then

µ
h0

®0

¶5

=
CG

p
2¼¾

p
T exp

³
d2

2

´

N
³
2 ¡ 1

¾2T ¡ 3 d
¾

p
T

+ d2

¾2T

´2 : (3)
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In various cases (in particular for options) one usually has that d ¼ 0 and
¾
p

T is small. In such a case an approximate value for h0 is

h0 ¼ ¾
p

T

Ã
CG

p
2¼

N

!1=5

: (4)

In Figure 1 (a) we have plotted the simulation results for three choices of
h for the Delta of a uropean option. The parameters used are S0 = 100
(in arbitrary cash units), r = 0:05, ¾ = 0:2 and T = 0:25 (in years). The
results will be displayed in terms of the present moneyness, S0=K . The ker-
nel used is G1 for the European binary and the Epanechnikov kernel G0 for
the binary Asian. In the …rst case, this kernel generates the …nite di¤erence
method in the second the kernel chosen is the asymptotically optimal ker-
nel. We have restricted the plots to a moneyness window which enhances the
di¤erences between the three outputs. The results were obtained through
direct simulation using Monte Carlo techniques and N = 105.

The solid line represents the exact value in the case of the European
binary, which can be directly computed in the present case. The estimate
that uses h = 3:247 (empty boxes) is the asymptotically optimal h obtained
in (4). This is almost indistinguishable from the optimal one (black boxes)
which is obtained in (3), and both behave better than the heuristic choice
of a small h (circles), h = 0:01S0 = 1:0. Therefore one may conclude that
the choosing h according to (4) is not too far from the optimal.

(a)
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2.6 x 10-2
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FIGURE 1. Estimated values of ¢ for three di¤erent choices of h. (a) European
binary option (b) Asian binary option

In the case of Asian binary options it is clear that in order to compute the
value of h one needs to know the density of (Z; Y ) which is not available.
In fact this is deeply related with the answer itself, a remark that will be
recurrent throughout.

In order to give an estimate of h, one uses qualitative information about
the random variables Z . To illustrate this suppose that Y = e¡rT and
that Z = T¡1

R T
0 S(s)ds where S(s) = S(0) exp

³³
r ¡ ¾2

2

´
s + ¾W (s)

´
is

a geometric Brownian motion. It is well known that the random variable
Z has a density that is close to a lognormal density. Therefore we estimate
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the values related with p(z) using a lognormal density with the same mean
and standard deviation as Z . Much more sophisticated approximations can
be obtained using results of Dufresne (2000) or Geman and Yor (1993). In
our case, this gives that

p1(z) =
1p

2¼T¾1z
exp

Ã
¡ (ln(z) ¡ ¹1)

2 T
2¾2

1T

!

r1 =
1
T

ln
µ

erT ¡ 1
rT

¶

¾ 2
1 =

1
T

ln

(
2r2

(erT ¡ 1)2(r + ¾2)

Ã
e(2r+¾2)T ¡ 1

2r + ¾2
¡ erT ¡ 1

r

!)
:

Here ¹1 = r1 ¡ 1
2¾2

1.
In this case the solid line in Figure 1 (b) represents the output of a more

precise simulation, since the exact value is not at hand in this case. We
have used Malliavin calculus and variance reduction techniques, such as
localization (for more on this see the next sections). We have increased the
number of simulations to N = 5 £ 105. In this case the conclusion is the
same as in the binary European case: the estimate that uses h = 1:1937
(empty boxes) is almost indistinguishable from the (quasi) optimal one
(black boxes), and both behave better than the choice of a small h (circles),
h = 2:5 £ 10¡3S0 = 0:25.

Remark 1 1. Note that without the condition
R

R uG(u)du = 0 then the or-
der of the error in the bias is h instead of h2 therefore proving the advantage
of using symmetric kernels in front of non-symmetric ones. This explains
in particular why one has to take symmetric di¤erences when performing
the …nite di¤erence method.

2. The bias can also be estimated with similar methods. In general, bias
tends to be signi…cantly smaller than the variance of the estimator.

3. If © is a di¤erentiable function P ±X(®)¡1 a.e. then the optimal value
of h is zero. This obviously corresponds to taking the derivative operator
inside the expectation. This is the case of the European call or put option.

4. It is well known that the kernel density estimation method increases its
bias and increases its variance as the dimension where the random variable
leaves Z (here we have considered only dimension one) becomes higher .
This is also expected here and is a drawback in comparison with the methods
to follow.

For more comments on practical aspects of the kernel density estima-
tion method and its comparison with the integration by parts method see
Section 6
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4 The likelihood method

The likelihood method as baptized by Broadie and Glasserman is one way
of calculating the greeks in cases where the joint density of the random
variables involved in the problem are explicitly known or can be approxi-
mated. The method was proven to be highly e¤ective when applicable. In
cases where the density is not known then a kernel type approximation
of the joint density was used. This is obviously related with our previous
discussion on the kernel density estimation method. In certain situations
it can be considered as a simpler version of the integration by parts of
Malliavin Calculus.

Suppose that the vector (X(®); Y ) has a joint density p(x; y; ®).Then

#(®) =
@

@®

Z

R2
©(x)yp(x; y;®)dxdy (5)

=
Z

R2
©(x)y

@p
@®

(x; y; ®)dxdy:

Here, we suppose that one can introduce the derivative in the integrand.
Then if the density p is explicitly known one can use numerical integration
techniques if the integral can not be computed directly. In the case that p
is not explicitly known one can use kernel density estimation techniques to
approximate it through Monte Carlo methods to carry out the integration
in (5). This corresponds to the estimator ~# introduced in Section 3.

Now we will take this method as a gate to the integration by parts
method of Malliavin Calculus. Suppose then that one is interested in using
a Monte Carlo method together with the likelihood method. Then we have
to rewrite the previous expression (5) using a expectation. To do this we
divide and multiply by p(x;y; ®) to obtain that

#(®) =
Z

R2
©(x)y

@ log(p)
@®

p(x; y; ®)dxdy

= E(©(X(®))Y
@ log(p)

@®
(X(®); Y; ®))

The key point in this argument is that we need to know p in order to carry
out the Monte Carlo simulation. The goal of the ibp formula of Malliavin
Calculus is to rewrite the previous expression using processes related to
X(®) and Y without p. This is related to the following alternative expres-
sion

#(®) = E

Ã
©(X(®))Y

@ log E 0 ¡±X(®)(X 0(®0))±Y (Y 0)
¢

@®0

!
:

Here X 0(®) and Y 0 are independent copies of X(®) and Y respectively.
Making sense of the expression E 0 ¡±X(®)(X 0(®0))±Y (Y 0)

¢
is also one of the
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goals of the ibp formula. We start with the following general de…nition of
ibp formula. From now on, we will not make any reference to the parameter
® as the arguments are valid in general.

De…nition 2 We will say that given two random variables X and Y , the
integration by parts (ibp) formula is valid if for any function f in a certain
subspace A of di¤erentiable functions we have that

E(f 0(X)Y ) = E(f (X)H)

for some random variable H ´ HX;Y (this last notation will be used in the
case we want to make clear the dependence of the random variable H upon
X and Y ).

As it is transparent from this de…nition, the goal of an integration by
parts formula is to convert the derivative f 0 into its antiderivative f . Note
that part of the de…nition requires the characterization of the subspace A
so that the expectations in the de…nition are …nite. We see that if such a
formula is valid then one could also say that one has an integration by parts
formula on (­; F ). Sometimes this is also called an in…nite dimensional ibp
formula in the case ­ is in…nite dimensional as is the case when ­ = C[0; T ]
(the space of continuous functions) endowed with the Wiener measure.

Most of the application will need to apply this ibp for f measurable.
Therefore the ibp formula has to be generalized to include this case. This
is generally done via a limit argument.

Let us analyze this de…nition in more detail with a simple example.

Example 3 For example, consider f 2 C1
p = ff 2 C 1; jf (x)j + jf 0(x)j ·

Cf (1+jxjp(f)) for some constants Cf and p(f )g (i.e. the space of continuous
di¤erentiable functions with at most polynomial growth at in…nity). Let
(­; F ; P ) be the canonical Wiener space and W denote the Wiener process
in this space. Recalling that WT has a N (0; T ) distribution one can do the
following integration by parts

E(f 0(WT )) =
1p
2¼T

Z

R
f 0(x) exp(¡ x2

2T
)dx

=
1p
2¼T

Z

R
f (x) exp(¡ x2

2T
)
x
T

dx

= E(f (WT )
WT

T
)

= E(f (WT )
Z T

0

1
T

dWs)

So in this case we can say that we have an integration by parts formula for
the random variables X = WT , Y = 1 and f 2 C 1

p . That is,

E(f 0(X)) = E(f (X)H )
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for H =
R T

0
1
T dWs = WT

T .

As noted before, the problem of …nding an explicit expression for H is
somewhat trivial if the joint density of (X; Y ) is known. That is,

E(f 0(X)Y ) =
Z

R
f 0(x)yp(x; y)dxdy

= ¡
Z

R
f (x)y

@ log p(x; y)
@x

p(x; y)dxdy

= ¡E(f (X)Y
@ log p(X; Y )

@x
)

Therefore

H = Y
@ log p(X; Y )

@x
.

The above de…nition is meaningful when p or some of its properties are
known. In particular, suppose the situation where the function p is known
but the integral has to be evaluated numerically. Then the above integration
by parts formula allows the evaluation through Monte Carlo methods of
the expectation.

This argumentation is just for educational purposes as this has a reason-
able practical ‡aw: That is, in most situations f (x) = 1(x ¸ a) (almost all
other variants follow the same logic) then one obviously has that

E(f 0(X)Y ) =
Z

R
yp(a; y)dy = pX (a)

Z

R
ypY=X=a(y)dy

therefore an integration by parts is not needed. At most a Monte Carlo
simulation to compute the expectation of Y conditioned to X = a solves
the problem. Therefore using Monte Carlo simulations in such a situation
is not needed.

On the other hand, as we will see in Section 5.6, Malliavin Calculus
allows writing the above formula in an explicit form, even in situations
where the density function is not explicitly known or (X; Y ) does not have
a joint density, using quantities related to X and Y: This will allow the
Monte Carlo simulation of the quantity E(f 0(X)Y ) using Monte Carlo
methodology when f is not smooth.

4.1 An application to European options
Here we compare the close formulae for greeks of European options with
the likelihood method described previously.

Let © denote the payo¤ function and P , the price of the European option.
Then one has

¦ = E(e¡rT ©(ST )) =
Z 1

0
e¡rT ©(x)p(x)dx;
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where p is given by (1). We can now compute the value of ¢ (in which case
® = S0) in terms of the derivatives of p(x):

¢ =
@

@S0
E(e¡rT ©(ST )) = E(e¡rT ©0(ST )

ST

S0
):

The likelihood method can be applied in this case which gives

¢ =
Z 1

0
e¡rT ©(x)

@p(x)
@S0

dx =
Z 1

0
e¡rT ©(x)

@ log p(x)
@S0

p(x)dx

= e¡rT
Z 1

0
©(x)

log(x=S0) ¡ ¹T
S0¾2T

p(x)dx:

Then we have

¢ = E
µ

e¡rT ©(ST )
WT

S0¾T

¶
:

This also gives the integration by parts formula for X = ST , Y = e¡rT ST
S0

and © 2 C 1
p . This gives

H = e¡rT WT

S0¾T
:

A similar procedure applies to the other greeks. We will obtain Vega as

V = E

Ã
e¡rT ©(ST )

µ
@ log p(x)

@¾

¶

x=ST

!
:

These formulae coincide with the exact formulas given in Section 2.1.

5 Malliavin Calculus in …nite dimensions

In this setting we have to keep in mind that the density of X is not explicitly
known anymore and that we are trying to …nd a setting where we can
write the integration by parts formula in general. One can easily think
of examples where this theory can be applied. For example, greeks for
Asian options, stochastic volatility models or interest rate models where
the densities are not explicitly known.

Here we intend to give a short and basic presentation of Malliavin Calcu-
lus. The presentation here is rather informal and does not intend to replace
any of the authoritative books on the topic of Malliavin Calculus. See the
references for serious mathematical treatment on the topic and for exact
statements of the results given here. Similarly, all the results that appear
here can be improved as far as hypothesis are concerned. We have preferred
to strive for simplicity rather than generality.
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In various areas of application one has to use stochastic processes that
are generated using one basic stochastic process. This is the case of the
abstract Wiener space. To make the presentation simple suppose that on
­ = C [0; T ] (the space of continuous functions) endowed with the sigma
…eld F generated by the Borel cylindrical sets, one de…nes the Wiener mea-
sure P such that on it the canonical process W (t), t 2 [0; T ] has Gaussian
independent increments with mean zero and variance given by the length
of the time interval.

In such a space we can talk of all the random variables generated through
various operations of these random variables. Such a space is so rich that
includes all the previous examples mentioned before and in general solutions
of stochastic di¤erential equations.

The approach we follow here is through a sequence of extensions of the
example 3. Consider the following extension of the ibp formula:

Example 4 Let X = F (W (T )) with F 2 C2
p and Y ´ 1. We want to …nd

an ibp formula. Suppose that there exists a positive constant c such that
jF 0(x)j ¸ c > 0 and let f 2 C1

p then

E(f 0(F (WT ))) =
1p
2¼T

Z

R
f 0(F (x))

F 0(x)
F 0(x)

exp(¡ x2

2T
)dx

=
1p
2¼T

Z

R
f (F (x)) exp(¡ x2

2T
)
µ

x
T F 0(x)

¡ F 00(x)
F 0(x)2

¶
dx

= E
µ

f (F (WT ))
µ

WT

TF 0(WT )
¡ F 00(WT )

F 0(WT )2

¶¶

= E

Ã
f (F (WT ))

Ã
1

T F 0(WT )

Z T

0
1dWs ¡ F 00(WT )

F 0(WT )2

!!
:

Therefore the integration by parts formula for X is valid if jF 0(x)j ¸ c > 0
for all x 2 R and

HX =
1

T F 0(WT )

Z T

0
1dWs ¡ F 00(WT )

F 0(WT )2
:

The condition jF 0(x)j ¸ c > 0 is natural as it implies that F is monotone
and therefore the density of F (WT ) exists. For example, in the case that F
is a constant one can not expect an integration by parts formula as F (WT )
does not have a density. This example reveals that it is important that
some condition relating to the non-degeneracy of F 0(x) is needed. This will
be later related to the Malliavin derivative of X = F (WT ). In fact, the
Malliavin derivative of X will be F 0(WT ). The term written as

R T
0 1dWs =

W (T) is used to recall the notion of stochastic integral. Another way of
writing H is

HX =
µ

1
F 0

¶
(WT )

Z T

0
T¡1dWs +

µ
1
F 0

¶0
(WT ):
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This formula stresses the fact that H is composed of two terms. The …rst
is the product of a stochastic integral with the inverse of the derivative of
F and the second is the derivative of the term (F 0)¡1. Later we will see
that this structure repeats in other situations.

Example 5 Let X = F (W (t1); :::; W (tn) ¡ W (tn¡1)) for a partition ¼ :
0 = t0 < ::: < tn = T and F : Rn ! R so that F 2 C2

p (Rn) then we can
also perform the ibp if for some i = 1; :::; n one has that for all x 2 Rn

j@iF (x)j ¸ c > 0

and the ibp is obtained doing the ibp with respect to the i-th variable. In
order to simplify the notation let W ¼ = (W (t1); :::; W (tn) ¡ W (tn¡1)) and
W ¼

i (x) = (W (t1); :::; x; :::; W (tn) ¡ W (tn¡1)) where x is in the i-th compo-
nent of the vector. Then we have

E(f 0(F (W ¼)))

=
1p

2¼(ti ¡ ti¡1)

Z

R
E(f 0(F (W ¼

i (xi)))) exp
µ

¡ x2
i

2(ti ¡ ti¡1)

¶
dxi

=
1p

2¼(ti ¡ ti¡1)

Z

R
E

µ
f (F (W ¼

i (xi)))
µ

xi

(ti ¡ ti¡1)@iF (W¼
i (xi))

£

¡ @2
i F (W ¼

i (xi))
@iF (W ¼

i (xi))2

¶¶
£ exp

µ
¡ x2

i
2(ti ¡ ti¡1)

¶
dxi

= E
µ

f (F (W ¼))
µ

W (ti) ¡ W (ti¡1)
(ti ¡ ti¡1)@iF (W¼)

¡ @2
i F (W¼ )

@iF (W¼)2

¶¶
:

Therefore in this case we have an ibp formula for F (W¼ ) and

H =
W (ti) ¡ W (ti¡1)

(ti ¡ ti¡1)@iF (W¼)
¡ @2

i F (W¼ )
@iF (W¼)2 :

Here we have n di¤erent ibp formulae. This is natural if one compares
with the usual ibp formulae in calculus. The general theory should be ob-
tained by taking limits when the norm of ¼ goes to zero so that F (W ¼)
converges to some random variable in an appropriate topology as to allow
to take limits in the ibp formula. For this reason we call the space of all ran-
dom variables satisfying the conditions in example 2 the space of smooth
random variables and denote it by S . That is,

S = fX 2 L2(­); X = F (W (t1); :::; W (tn ) ¡ W (tn¡1)) with F 2 C2
p (Rn)g:

There is one important problem left:
Note that in the previous formula taking the limit is not advisable be-

cause in general W (ti)¡W (ti¡1 )
(ti¡ti¡1)

does not converge (see e.g. the law of iterated
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logarithm for the Wiener process Karatzas-Shreve, Section 2.9.E). Still one
may think that this is part of a Riemman sum if one considers instead the
sum

Pn
i=1(ti ¡ ti¡1)H . But let us deal with the problems slowly. First we

consider a lemma where one obtains the Riemman approximation sums.

Lemma 6 Let F 2 C2
p (Rn), G 2 C1

p (Rn) and let f 2 C1
p (R). Suppose that

for all x 2 Rn and all i = 1; :::;n

j@iF (x)j ¸ c > 0: (6)

Then we have an ibp formula with X = F (W ¼), Y = G(W¼ ) and

H =
1
T

G(W ¼)

Ã
nX

i=1

W (ti) ¡ W (ti¡1)
@iF (W¼)

¡
nX

i=1

@2
i F (W ¼)

@iF (W ¼)2
(ti ¡ ti¡1)

!

+
1
T

nX

i=1

@iG(W ¼)
@iF (W ¼)

(ti ¡ ti¡1):

This formula shows that there is hope in taking limits with respect to
n if the random variables X and Y have some stability properties. Here
we also see that the second and third sum will converge to Lebesgue inte-
grals of derivatives of the random variables X and Y while the …rst seems
to be an approximation of some kind of extended stochastic integral as
@iF (W ¼)¡1 is not necessarily Fti¡1 measurable as in general it still de-
pends on W (tj ) ¡ W (tj¡1) for j ¸ i. This is related with the problem
of de…ning the Itô integral for a general class of integrands (or sometimes
called anticipating integrals). On the other hand this result is quite restric-
tive because it requires the non-degeneracy condition (6) in all directions
(usually this condition is called strong ellipticity) in comparison with the
previous example where only one direction is required but no limit is fore-
seen.

Proof. First, one generalizes the previous example to obtain that

E(f 0(F (W ¼))G(W¼))

=
1p

2¼(ti ¡ ti¡1)

Z

R
E (f 0(F (W ¼

i (xi)))G(W ¼
i (xi))) exp

µ
¡ x2

i

2(ti ¡ ti¡1)

¶
dxi

= E
µ

f (F (W ¼))G(W¼)
µ

W (ti) ¡ W (ti¡1)
(ti ¡ ti¡1)@iF (W¼)

¡ @2
i F (W ¼)

@iF (W¼ )2

¶¶

+E
µ

f (F (W¼))
@iG(W ¼)
@iF (W ¼)

¶
:

If we multiply the previous equality by (ti ¡ ti¡1) and sum for i = 1; :::; n
then we obtain the result.

Now we consider the problem of extending this result to allow for a
much more general condition for nondegeneracy in the ibp formula and at
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the same time keeping a formula where one can take limits. It is natural
to expect that in some cases the nondegeneration may come from di¤erent
indexes i in di¤erent parts of the whole space Rn for this reason one needs
to develop a theory where one can put all these terms together.

In order to do this we need to practice the previous trick in a reverse
way. This may look odd but it does work nicely.

Lemma 7 Let F , G and f be as in Lemma 6. Suppose the following non-
degeneracy condition

j¢1(F )(x)j =

¯̄
¯̄
¯

nX

i=1

@iF (x)(ti ¡ ti¡1)

¯̄
¯̄
¯ ¸ c > 0;

then the ibp formula is valid with

H = (¢1(F )(W¼))¡1

Ã
G(W ¼)W (T) +

Ã
nX

i=1

@iG(W¼)(ti ¡ ti¡1)

!!

¡G(W¼) (¢1(F )(W¼))¡2
nX

j;k=1

@2
jkF (W ¼)(tj ¡ tj¡1)(tk ¡ tk¡1):

Proof. First consider I : Rn ! R be a C 1
p (Rn ) function

E(f (F (W ¼))I(W ¼)(W (ti) ¡ W (ti¡1)))

=
1p

2¼(ti ¡ ti¡1)

Z

Rn
E (f (F (W ¼

i (xi)))I(W ¼
i (xi)))xi exp

µ
¡ x2

i

2(ti ¡ ti¡1)

¶
dxi:

Applying an ibp with respect to the variable xi one has that

E(f (F (W¼))I(W¼)(W (ti) ¡ W (ti¡1)))
= E (f 0(F (W¼))@iF (W¼)I(W ¼) + f (F (W¼ ))@iI(W¼)) (ti ¡ ti¡1):

Then one passes the last term on the right of the above equation to the left
to obtain the following ibp formula

E (f (F (W¼ )) (I(W ¼)(W (ti) ¡ W (ti¡1)) + @iI(W¼)(ti ¡ ti¡1))))
= E (f 0(F (W¼))@iF (W¼)I(W ¼)(ti ¡ ti¡1)) : (7)

Note that this gives exactly the same formula as in the example 5 if one
takes I(x) = (@iF (x)(ti ¡ ti¡1))¡1 : Similarly one can also obtain Lemma
6 (exercise). Now sum both sides in (7) from i = 1 to N to obtain that

E

Ã
f (F (W ¼))

Ã
I(W¼ )W (T ) +

nX

i=1

@iI(W ¼)(ti ¡ ti¡1)

!!

= E

Ã
f 0(F (W¼ ))I(W¼ )

nX

i=1

@iF (W ¼)(ti ¡ ti¡1)

!
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Now we let I(x) = G(x) (
Pn

i=1 @iF (x)(ti ¡ ti¡1))
¡1 to obtain the ibp for-

mula.
This is the an ibp formula where one can take limits and the non-

degeneracy condition is quite general. In fact, one just need to de…ne the
right concept of derivative and a topology on the space of random vari-
ables so that all the partial derivatives above converge. This will be done
in the next section. Another way of interpreting the condition (6) is that
the derivative of F in one particular direction does not cancel. This gives
enough room to perform an ibp with respect to that direction. We leave as
an exercise to obtain a similar result as in the previous lemma under the
condition

j¢®(F )(x)j =

¯̄
¯̄
¯

nX

i=1

®i@iF (x)(ti ¡ ti¡1)

¯̄
¯̄
¯ ¸ c > 0:

Here ® = (®1; :::; ®n) 2 Rn.
In the next section we will deal in general with any direction. That is,

we explain how to obtain an ibp even when the direction wrt which F has
an inverse can change according to the value of its argument. This may
happen in various di¤usion cases.

Lemma 8 F , G and f be as in Lemma 6. Suppose the following nonde-
generacy condition

¢2(F )(x) =
nX

i=1

(@iF (x))2 (ti ¡ ti¡1) ¸ c > 0;

then the ibp formula is valid with

H = (¢2(F )(W ¼))¡1

Ã
G(W¼)(W (tj ) ¡ W (tj¡1))

+
nX

j=1

@jF (W¼ )@jG(W¼ )(tj ¡ tj¡1)

1
A ¡ G(W ¼) (¢2(F )(W ¼))¡2 £

£
nX

j;k=1

2@jF (W¼)@2
jkF (W¼)(tj ¡ tj¡1)(tk ¡ tk¡1):

Proof. We choose I ´ Ii in (7) as

Ii(W ¼) =
@iF (W ¼)G(W¼)Pn

j=1 (@jF (x))2 (tj ¡ tj¡1)

as before we sum all the equations for i = 1; :::; n to obtain the result.
This is the formula where one can take limits if the right topology (or

norm) is taken on the space S of smooth random variables. In particu-
lar it is interesting to look at the approximation to a stochastic integral
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in the term
Pn

j=1 @jF (W ¼)(W (tj) ¡ W (tj¡1)), the problem here is that
as explained before @jF (W¼) is not necessarily adapted as it may depend
on (W (tk) ¡ W (tk¡1)) for k ¸ j. This generates a generalization of the
stochastic integral. In particular note that one does not have that the ex-
pectation of this Riemman sum is zero as there may be correlations between
@jF (W¼) and (W (tj) ¡ W (tj¡1)) which does not happen in the usual Itô
integral. This generalization is usually called the Skorohod integral.

5.1 The notion of stochastic derivative
Here we de…ne a derivative with respect to the Wiener process which in
the particular case of the previous section will coincide with the partial
derivatives. Loosely speaking, we have that for each time t, the r.v. Wt , is
the sum of an in…nite number of independent increments dWs for s · t. In
the previous sections we had decomposed W (T ) =

Pn
i=1(W (ti)¡W (ti¡1))

for a partition 0 = t0 < t1 < ::: < tn = T . This decomposition de…ned
n derivatives with respect to each component. Therefore in order to take
limits, we have to de…ne a derivative in an in…nite dimensional space. To
explain this better, remember that our purpose here is to do integration
by parts for random variables X that has been generated by the Wiener
process. Therefore the random variable X is in general a functional of
the whole Wiener path W: One way to approach such functional is to
consider that the random variables that we want to consider are limits
of functions of increments of the Wiener path. That is, one may suppose
that X = F (W (t1); :::; W (T) ¡ W (tn¡1)). Therefore if one wants to do
an integration by parts for (here p(t;x) stands for the density of a N (0; t)
random variable)

E(f 0(X)) =
Z

Rn¡1
f0(F (x1; :::; xn¡1))p(t1; x1):::p(T ¡ tn¡1; xn¡1)dx1:::dxn¡1

then one can do integration by parts with respect to any of the increment
variables xi as they are independent (this is the case of Example 5. There-
fore one needs to have at hand any of the any n possible derivatives. In
general, as limits are taken one needs an in…nite number of derivatives.
Therefore stochastic derivatives will be derivatives in in…nite dimensional
spaces under Gaussian measures. To do this heuristically note that …rst we
need to decompose the process W in independent pieces. So …rst we make
an independent decomposition of the type

Wt =
X

s·t

dWs
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We will denote the derivative of a random variable wrt to dWs , when it
exists by Ds . In heuristic terms we have

Ds =
@

@dWs

This derivative could be de…ned using some sort of Fréchet derivative in
certain particular directions. Therefore is only de…ned in weak sense. In
particular, the de…nition can be changed at one point for a subset of ­ of
null probability without any change in the functional value of the derivative
itself.

De…nition 9 Let X : ­ ! R be a random variable where ­ = C[0; T ]
then we de…ne the stochastic derivative operator (also known as Malliavin
derivative), DX; as the Fréchet derivative of X with respect to the sub-
space H = fh 2 C[0; 1]; h0 2 L2[0; T ]g. That is, DX is de…ned through the
following equation

< DX; h >L2[0;T ]= lim
²!0

X(! + ²h) ¡ X(!)
²

:

Note that the above de…nition is local in the sense that is done for each !.
The reason for de…ning the directional derivative only with respect to the
directions in H is because most functionals involving stochastic integrals
are not continuous in all directions of the space ­.

Still the idea underneath this stochastic derivative operator D is the
limit of the partial di¤erentiation used in the previous section. That is, one
starts by considering smooth functionals of W (tn) ¡ W (tn¡1),...., W (t2)¡
W (t1); W (t1) for a partition 0 < t1 < ::: < tn and then takes limits.
Instead of taking this long road which can be carried out mathematically
with the previous de…nition, we give some examples that illustrate the
intuition behind the operator D . We start with the most simple example
of a derivative and the chain rule for s · t:

DsWt = 1 (here X = Wt),
Dsf (Wt) = f 0(Wt) (here X = f (Wt)).

Note that the derivative DsX “measures” the change of the random vari-
able X wrt ¢Ws in the sense that X can be written as a functional of the
increments of W . This statement can be demonstrated with some examples,
let t0 < s < t and let h 2 L2[0; T ]; then

DsWt 0 = 0
Ds(Wt ¡ Ws) = 0

DsWt = Ds(Wt ¡ Ws) + DsWs = 1

Ds

ÃZ T

0
h(u)dWu

!
= h(s)
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This last formula follows because h being deterministic is independent of
Ws and furthermore dWu will be independent of Ws unless u = s and
DsdWs = 1: Finally applying the product formula one obtains that

Ds (h(u)dWu) = Dsh(u)dWu + h(u)DsdWu

= 0 ¢ dWu + h(u)1(s = u):

From here the formula follows. Similarly one also obtains that

Ds

ÃZ T

0
f (Wu)dWu

!
=

Z T

0
Dsf (Wu)dWu + f (Wu)DsdWu

=
Z T

0
f 0(Wu)DsWudWu + f (Wu)1(s = u)

=
Z T

0
f 0(Wu)1(s · u)dWu + f (Ws)

=
Z T

s
f 0(Wu)dWu + f (Ws)

One can also perform high order di¤erentiation as in the case of

DsDtW 3
u = 6Wu1(s _ t · u):

All the properties we have used so far can be proven using the de…nition
of stochastic derivative. One important aspect to have in mind is that
the stochastic derivative is well de…ned as a random variable in the space
L2(­; L2[0; T ]) and therefore will be well de…ned in the a.s. sense. Therefore,
the derivatives Ds are de…ned only a.s. with respect to the time variable
s for almost all ! 2 ­: Leaving the technicalities aside one can de…ne the
derivative as an operator on random variables.

To generate the ibp formula one way to proceed is to prove that the
adjoint operator D¤ exists. In order to do this one su¢cient condition is to
prove that the the operator D is closable. In such a case we can de…ne the
adjoint operator, denoted by D¤ through the formula:

E
¡
< DZ; u >L2[0;T ]

¢
= E(ZD¤(u))

Here, D : L2(­) ! L2(­; L2[0; T ]), u is a stochastic process and D¤ :
dom(D¤) µ L2(­; L2[0; T ]) ! L2(­). The above formula is in fact an inte-
gration by parts formula! We will show this in Section 5.3. The procedure
described here is the most classical.

Instead, we will take a di¤erent approach. We will use the previous results
for random variables depending on only a …nite number of increments of
W and take limits in the ibp formulas in order to de…ne D¤ . At various
points we will make reference to the classical approach so that the reader
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can refer to the textbooks mentioned in the references. To motivate our
approach, let us reconsider Example 3:

Let Z = f (WT ) and u ´ 1: Then we have for s · T

DsZ = Ds (f (WT )) = f 0(WT )DsWT

= f 0(WT ):

Also

< DZ; u > =
Z T

0
DsZusds =

Z T

0
f 0(WT ) ¢ 1ds

= Tf 0(WT ):

Therefore we have

T E (f 0(WT )) = E (< DZ; u >) = E(ZD¤(u)) = E(f (WT )D¤(1))

The conclusion of this small calculation if one compares with Example 3 is
that D¤(1) = WT =

R T
0 1dW (s). In fact, one can easily prove via a density

argument that D¤ (h) =
R T
0 h(s)dWs for h 2 L2[0; T ]. We will be able to

say more about this in the next section.

5.2 A proof of the duality formula
Here we give a sketch of the proof of the duality principle. This section
only gives a mathematical idea of how the duality formula is proved. It is
not essentially required to understand the calculations to follow in future
sections (except for remark 12).

We de…ne the norms for X 2 S

kXk1;2 =

Ã
E

Ã
jX j2 +

Z T

0
jDsX j2 ds

!!1=2

;

and let D1;2 = S where the completion in taken in L2(­) under the norm
k¢k1;2. In other words, X is an element of D1;2 if there exists a sequence

of smooth random variables Xn such that E
³
jXn ¡ X j2

´
! 0 and there

exists a process Y 2 L2(­ £ [0; T ]) such that E
R T
0 jDsXn ¡ Y (s)j2 ds ! 0.

In such a case, X is a di¤erentiable random variable and DX = Y .
Similarly, we de…ne the parallel concept for stochastic processes. First,

we say that a stochastic process u is a smooth simple process if

u(t) = u¡1 +
NX

i=1

ui¡11(ti¡1 < t · ti)
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for some partition 0 = t0 < t1 < ::: < tN = T and where the random
variables uj 2 S for j = ¡1; :::; N ¡ 1. We denote the space of smooth
simple processes by Sp. Next we de…ne the norm

kuk1;2 =

Ã
E

ÃZ T

0
ju(t)j2 dt +

Z T

0

Z T

0
jDsu(t)j2 dsdt

!!1=2

:

Here there is a slight abuse of notation as there are two norms k¢k1;2,
one for random variables and another one for processes. The nature of the
argument will determine the norm we are referring to.

As in the case of random variables we de…ne L1;2 = Sp (the closure of Sp
with respect to the norm k¢k1;2). u is an element of L1;2 if there exists a se-

quence of simple smooth processes un such that E
³R T

0 ju(t) ¡ un(t)j2 dt
´

!
0 and the sequence Dun converges in L2(­ £ [0; T ]2). In such a case
u(t) 2 D1;2 for almost all t.

With these de…nitions we can state the duality principle.

Theorem 10 Let X 2 D1;2 and u 2 L1;2 then there exists a random vari-
able D¤(u) 2 L2(­) such that

E
¡
< DX; u >L2[0;T ]

¢
= E(XD¤(u)): (8)

In the particular case that u is an adapted process then D¤(u) =
R T
0 u(s)dW (s):

In functional analytic terms D¤ is the adjoint operator of D. The prop-
erty X 2 D1;2 implies that X is di¤erentiable and that is derivative can be
obtained as limit of the derivatives of the smooth approximating random
variables. u 2 L1;2 implies that u 2 dom(D¤).

In the proof one can also see the properties of D¤. In particular D¤ is an
extension of the Itô stochastic integral in the sense that if u is an adapted
process then

D¤(u) =
Z T

0
u(t)dW (t):

Idea of the proof of (8):
Step 1: The idea is to prove that (8) is true for smooth random variables

Xn and simple smooth processes u. Then …nish the proof using a limiting
procedure. That is, let us assume that Xn = F (W¼ ) and u(s) = u¡1 +Pn

i=1 ui¡11(ti¡1;ti](s). As before, let W ¼ = (W (t1); :::; W (tn) ¡ W (tn¡1)),
W ¼

i (x) = (W (t1); :::; x; :::; W (tn)¡W (tn¡1)) and W ¼
i = (W (t1); :::; W (ti)¡
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W (ti¡1)). Then

DsXn =
NX

i=1

@iF (W¼ )1(ti¡1 < s · ti)

< DXn; u > =
X

i;j

Z T

0
@iF (W¼)1(ti¡1 < s · ti)uj1(tj¡1;tj ](s)ds

=
NX

i=1

@iF (W¼ )ui¡1(ti¡1 ¡ ti):

Now we take expectations and integrate by parts to get rid of the partial
derivative in the above sum. To do this we also assume that ui¡1 = hi(W¼)
with hi : Rn ! R, hi 2 C 2

p (Rn ). One then obtains

E (@iF (W¼ )hi(W¼ ))

= ¡E
µZ

R
F (W ¼

i (xi)) (@ihi(W¼
i (xi))

¡hi(W ¼
i (xi))xi

(ti ¡ ti¡1)

¶
e

¡ x2
i

2(ti¡ti¡1)
p

2¼ (ti ¡ ti¡1)
dxi

1
CA

Therefore one …nally has

E (< DXn; u >)

= E

Ã
nX

i=1

@iF (W¼ )ui¡1(ti¡1 ¡ ti)

!

=
nX

i=1

E
µ

F (W¼)
µ

hi(W¼)(Wti ¡ Wti¡1) ¡ @hi

@xi
(W ¼) (ti ¡ ti¡1)

¶¶

= E (XnD¤(u))

where

D¤(u) =
nX

i=1

µ
hi(W ¼)(Wti ¡ Wti¡1) ¡ @hi

@xi
(W¼) (ti ¡ ti¡1)

¶
: (9)

The above formula proves our statement in the smooth and simple case.
Next we take limits with respect to Xn to obtain that

E
¡
< DX;u >L2 [0;T ]

¢
= E (XD¤(u)) ;

for simple, smooth processes u:To …nish we need to take limits in u. For
this we use that if un is a sequence of simple smooth processes converging
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to u in L1;2 then D¤(un ) converges in L2(­) to a random variable which
we denote by D¤(u). This result is proven in Lemma 11. Therefore we can
take limits again in the duality formula to …nish the proof.

Next we will prove that D¤(u) coincides with the Itô integral when u is
adapted. To prove this is enough to consider the case when ui¡1 is Fti¡1

adapted in the previous argument. In such a case it is obvious that hi(x) =
hi(x1; :::; xi¡1). Therefore @hi

@xi
(W ¼) = 0 and

D¤(u) =
nX

i=1

hi(W¼)(Wti ¡ Wti¡1)

which is the Riemman sum that leads to the Itô integral. This …nishes the
proof. ¤

Some researchers prefer to use the notation ±(u) instead of D¤(u) to
stress the quality of stochastic integral of ± . ± de…nes what is called the
Skorohod integral. When u is not an adapted process then ±(u) is not an
Itô stochastic integral. Nevertheless in various situations one can …nd ways
to compute such integrals as we will see later.

Lemma 11 Let un be a simple smooth process converging to u in L1;2.
Then D¤(un) converges in L2(­) to a random variable which we denote by
D¤(u):

Proof. It is enough to prove that D¤(un) is a Cauchy sequence in L2(­).
This will follow immediately if we compute the L2(­)¡norm of D¤(un):
This is done as follows

E
¡
D¤(un)2

¢
= E

0
@

nX

i=1

A2
i + 2

X

i<j

AiAj

1
A

Ai = hi(W¼)(Wti ¡ Wti¡1) ¡ @hi

@xi
(W¼ ) (ti ¡ ti¡1) :

We start computing

E
¡
A2

i
¢

= E
µ

@hi

@xi
(W¼ )

¶2

(ti ¡ ti¡1)
2 ¡ 2E

µ
@hi

@xi
(W¼ )hi(W¼ )(Wti ¡ Wti¡1)

¶
£

£(ti ¡ ti¡1) + E
¡
hi(W¼)2(Wti ¡ Wti¡1)

2¢ :

Applying again ibp we have that

E
¡
hi(W ¼)2(Wti ¡ Wti¡1)2

¢

= 2E
µ

@hi

@xi
(W¼)hi(W¼)(Wti ¡ Wti¡1)

¶
(ti ¡ ti¡1)

+E
¡
hi(W¼)2

¢
(ti ¡ ti¡1):
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Therefore one has that

E
¡
A2

i
¢

= E
¡
hi(W ¼)2

¢
(ti ¡ ti¡1) + Bi(ti ¡ ti¡1);

where Bi converges to zero as n ! 1. Similarly one computes AiAj for
i < j to obtain after some calculations

E (AiAj ) = E
µ

@hi

@xj
(W¼)

@hj

@xi
(W¼ )

¶
(ti ¡ ti¡1)(tj ¡ tj¡1):

Therefore we have that

E
¡
D¤(un)2¢

=
nX

i=1

¡
E

¡
hi(W¼)2

¢
(ti ¡ ti¡1) + Bi(ti ¡ ti¡1)

¢

+2
X

i<j

E
µ

@hi

@xj
(W¼)

@hj

@xi
(W¼)

¶
(ti ¡ ti¡1)(tj ¡ tj¡1)

= E

ÃZ T

0
un(t)2dt +

Z T

0

Z T

0
Dsun(t)Dtun(s)dsdt

!
+

nX

i=1

Bi(ti ¡ ti¡1):

From here the argument is standard. That is, consider the di¤erence be-
tween simple smooth processes and use the above equality to prove that
their di¤erence goes to zero. Therefore the sequence D¤(un) is a Cauchy
sequence which should then converge. This …nishes the proof.

Remark 12 We have various remarks on the proofs we have sketched.
1. One sees that for u 2 L1;2

¡
E

¡
D¤(u)2

¢¢1=2 · kuk1;2 : (10)

Therefore the space L1;2 is smaller than the domain of the operator D¤.
2. In general, if u is not adapted, the classical Riemman sum

nX

i=1

u(ti¡1)(W (ti) ¡ W (ti¡1))

does not converge to D¤(u). As it can be seen from (9), this converges to the
Skorohod integral of u plus a trace term generated by

P
i

@hi
@xi

(W¼) (ti ¡ ti¡1)
which is due to the non-adaptedness of the process u and converges to a
Lebesgue integral

Z T

0
Dsu(s)ds
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although this derivative is not well de…ned. In fact, note that

lim
v#s

DvWs = 0

lim
v"s

DvWs = 1:

For this reason one needs to de…ne

Ds+u = lim
v#s

Dvu(s)

Ds¡u = lim
v"s

Dvu(s)

and therefore the above formula has to be understood as
Z T

0
Ds+uds

so that Ds+u = 0 if the process is adapted.
3. Maybe for the reader it may feel natural to de…ne the extended stochastic
integral as the limit (if it exists) of

P
i u(ti¡1)(Wti ¡Wti¡1). First note that

the duality formula can obviously be written as

E
³
hDZ; uiL2[0;T ]

´
= E (ZD¤(u)) :

In contrast with this opinion, if the previous limit exists its expectation is
not zero in general, while E(D¤(u)) = 0 as it can be seen using Z = 1 in
the duality formula. In terms of approximations we mean that

E
X

i

µ
hi(W ¼)(Wti ¡ Wti¡1) ¡ @hi

@xi
(W¼) (ti ¡ ti¡1)

¶
= 0

while one does not have that

E
X

i

hi(W ¼)(Wti ¡ Wti¡1)

is necessarily equal to 0: Obviously, there is no martingale property associ-
ated with these integrals as the adaptedness is completely lost. Also there is
no L2-isometry that could help us here. The closest to this property is the
inequality (10). The continuity property and other related properties can
also be studied using this property.
4. To some it may seem that de…ning stochastic integrals of anticipating
processes is just an exercise of generalization. To motivate this issue we
will later show the formula

F
Z T

0
dW (s) = D¤(F ) +

Z T

0
DsFds:
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Here F 2 D1;2 is a random variable. The problem is the natural extension
of the linearity property of integrals extended to random variables.
This problem was …rst studied by K. Itô. Note that on the right one needs
to use an anticipating type of integral in order to make sense of the integral
as F is not adapted to the …ltration (except in the trivial case that F is
a constant). This formula also helps to compute integrals of non-adapted
processes using adapted ones. For more on this, see Section 7 in Kohatsu-
Pettersson (2002).
5. Another approach to the de…nition of the stochastic derivative and the
adjoint operator is through chaos decompositions of functionals. This ap-
proach which is morally equivalent to the one presented here is based in
some kind of approximations for functionals. Nevertheless its applications
have been limited to very speci…c cases such as calculations regarding local
times.

5.3 Obtaining the ibp formula from the duality formula
Now to obtain an ibp formula, we consider the random variable Z = f (X)
with X 2 D1;2, f 2 C1

b ; Y 2 L2(­). Then Z 2 D1;2 and

DsZ = f 0(X)DsX

From here we multiply the above by Y DsX . Then we obtain that

DsZY DsX = f 0(X)DsXY DsX

integrating this for s 2 [0; T ], we have that
Z T

0
DsZY DsXds =

Z T

0
f 0(X) (DsX)2 Y ds = f 0(X )Y

Z T

0
(DsX)2 ds

so that …nally we have that
Z T

0

Y DsZDsXR T
0 (DvX)2 dv

ds = f 0(X)Y

E
¡
< DZ; u >L2[0;T ]

¢
= E (f 0(X)Y )

with

us =
Y DsXR T

0 (DvX)2 dv
:

Finally, we have the following result:
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Theorem 13 Assume that f 2 C 1
b , X 2 D1;2, Y 2 L2 and u 2 L1;2 then

we have that

E(f (X)D¤(u)) = E (f 0(X)Y )

E

Ã
f(X)D¤

Ã
Y D¢XR T

0 (Dv X)2 dv

!!
= E (f 0(X)Y ) (11)

In other words, the ibp formula is valid with

H ´ HX Y = D¤
Ã

Y D¢XR T
0 (Dv X)2 dv

!
:

As we have seen in Remark 12, this is again another situation where one
…nds naturally the stochastic integral of an anticipating process u. In fact
in the above integral if Y 2 FT then the integral is in fact an anticipative
integral. Even if Y ´ 1 then A =

R T
0 (DvX)2 dv 2 FT in general.

Note that for the above formulas to hold one needs that the variable A
(the so called Malliavin variance) has to be di¤erent from zero. This is the
nondegeneracy condition that we have required through the Example 4 and
Lemma 8. In fact in the case of Example 2, we have that X = F (WT ) and
A = F 0(WT )2T ¸ c2T > 0. Therefore the condition u 2 L1;2 contains in
itself the non-degeneracy condition.

It is known that in the case that X is a di¤usion with su¢ciently smooth
coe¢cients evaluated at a positive time, the Hörmander condition implies
that A is well de…ned and that the anticipating stochastic integral of u is
well de…ned.

The above formulas are useful because they give a general explicit expres-
sion for integration by parts of smooth variables without using explicitly
the density of (X; Y ). That is, we are giving an explicit formula for the
ibp formula which was not generally possible with the likelihood method.
Furthermore it has enough ‡exibility as to give di¤erent versions of the
integration by parts. Let us discuss one of the many di¤erent possibilities
available. As before let’s start with

DsZ = f0(X)DsX

Now we only integrate both sides without multiplication by DsX as we
did before. Supposing that the random variable

R T
0 DsXds 6= 0 a.s., besides

other smooth properties we have that

E (f 0(X)Y ) = E

ÃZ T

0

Y DuZ
R T
0 DsXds

du

!
(12)

= E

Ã
f (X)D¤(

YR T
0 DsXds

)

!
:
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Remark 14 There are other possible variations that can be applied accord-
ing to the situation at hand. These include the following:
1. One can do various combinations of components in the case that the
driving process is multidimensional as well as obtaining integration by parts
formulae for partial derivatives. Here is where the so called Malliavin co-
variance matrix appears. In fact, a more general formula of integration by
parts is given by

E

Ã
f (X)D¤

Ã
Y h(¢)

R T
0 h(v)DvXdv

!!
= E (f 0(X)Y ) : (13)

As before, this formulae makes sense if
R T
0 h(v)DvXdv is di¤erent from

0 and has the necessary properties so that all terms make complete sense.
Sometimes this is called the non-degeneracy condition. Previously we had
taken in the Theorem h(v) = DvX and in the previous discussion h ´ 1.
3. Perform various time changes so that one obtains a variation of the above
formula. That is, using an interval [a; b] instead of the standard [0; T ].
4. One can do various localizations before the stochastic integration by parts
is done so that one does not need to integrate in a big portion of the state
space.
5. Perform a change of measure so that the integration by parts formula
could be weighted as desired.
6. Change the random variables in the problem by others which have the
same law but can be di¤erentiated easily or where the non-degeneracy is
easier to obtain.
7. Changing the function f by f + c for a constant c so that certain optimal
property is achieved (e.g. variance reduction).

5.4 Extracting r.v.’s from anticipating stochastic integrals
Before tackling the problem of greek estimation we will prove a formula
to extract random variables out of anticipating integrals. This is another
interesting application of the integration by parts formula and in particular
the interpretation of D¤. This is a non-trivial generalization of the following
formula

Z T

0
Xusds = X

Z T

0
usds

to the case when Lebesgue integrals are replaced by stochastic integrals.
The following formula, for u an adapted process, is not true in general

Z T

0
XusdWs = X

Z T

0
usdWs

unless X is a constant. First, the integral on the left has to be re-interpreted
as a Skorohod integral because Xus is not necessarily adapted to Fs unless
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X is constant. The integral on the right has the usual meaning of stochastic
integral for adapted process as u is adapted. This problem has been studied
by many authors and it seems to go back to K. Itô.

The formula we will prove is

D¤(Xu) = XD¤(u)¡ < DX; u > :

This formula will be applied many times in order to carry out simulations
of H . In other words, this is equivalent to say

Z T

0
XusdWs = X

Z T

0
usdWs ¡

Z T

0
DsXusds

Therefore the random variables can be taken out of the stochastic integrals
but an extra term appears. This extra terms disappears if X is constant
as DX ´ 0. Obviously there are other situations when the extra termR t

0 DsXusds = 0: (Exercise for the reader: Find some examples!)

Theorem 15 Let Xu, u 2 L1;2 and X 2 D1;2 then D¤ (Xu) = XD¤(u)
¡ < DX; u > :

Proof. To prove this formula one proceeds as follows: Let Y be any
smooth random variable then using the duality formula we have

E (Y D¤(Xu)) = E < DY; Xu >L2[0;T ]

= E < XDY; u >L2[0;T ]

= E < D(XY ); u >L2 [0;T ] ¡EY < DX; u >L2[0;T ]

= E
¡
Y

¡
XD¤(u)¡ < DX; u >L2[0;T ]

¢¢
.

As the above formula is satis…ed for any Y then the formula follows.
With this formula and under appropriate conditions we have that (12)

can be written as

E (f 0(X)Y ) = E

Ã
f (X)

Ã
Y W (T )

R T
0 DsXds

¡
Z T

0
Dt

Ã
Y

R T
0 DsXds

!
dt

!!
:

(14)

Therefore if one has explicit expressions for DsX , DtY and DtDsX one
can hope to be able to simulate H in this case.

5.5 Ibp formula for irregular functions
So far we have considered functions f 2 C1

b . Nevertheless, in applications
one is interested in functions f that are irregular. Therefore we need a
density argument to obtain the ibp formula in such a case. This is the
following result:
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Theorem 16 Assume the same conditions as in Theorem 13. Then X has
a density and furthermore

E (±a(X)Y ) = E(Y jX = a)pX (a) = E

Ã
1(X ¸ a)D¤

Ã
Y D¢XR T

0 (DvX)2 dv

!!
:

This theorem also shows that one can give mathematical meaning to ex-
pectations of generalized functions such as Dirac delta functions multiplied
by smooth random variables. In the rest of the article we use this notation
with the understanding that the expectation operator has been generalized
to include this situation.

Proof. To prove the existence of the density one has to prove that the
law of X is absolutely continuous with respect to the Lebesgue measure.
For this we have using the ibp formula

E (1(a · X · b)) = E (((X ¡ a) ^ b)H) :

The right side converges to zero if b ¡ a converges to zero. Therefore
the law of X is absolutely continuous and has a density. Let Áh(x) =
(2¼h)¡1=2 exp

³
¡ x2

2h

´
. Then applying Theorem 13 for ©h(x) =

R x
¡1 Áh(y)dy

we have that
Z

R
Áh(x ¡ a)E(Y=X = x)pX (x)dx = E (Áh(X ¡ a)Y ) = E (©h(X ¡ a)H) :

Taking limits the result follows.
The result in this theorem can obviously be stated for generalized func-

tions with a similar argument. Similarly, one can also prove that the density
function is bounded and smooth with bounded derivatives under the ap-
propriate hypotheses. In order to apply this theorem we need to check the
conditions stated in Theorem 13. If X and Y can be di¤erentiated enough
number of times with their derivatives in Lp(­) for p big enough and im-

portantly
³R T

0 (DsX)2ds
´¡1

2 Lp(­) for p big enough then the conditions
in Theorem 13 are satis…ed. We brie‡y sketch this in the next lemma.
The generalization of the spaces Dn;pand Ln;p are de…ned as the natural
extension of spaces previously de…ned. For example,

kXkn;p =

0
@E

0
@jX jp +

nX

j=1

°°DjX
°°p

L2[0;T ]j

1
A

1
A

1=p

:
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Lemma 17 Assume that X 2 D2;16 and
³R T

0 h(v)DvXdv
´¡1

2 L16(­),

Y 2 D1;16 and h 2 L1;16 Let

u(t) =
Y h(t)R T

0 h(v)Dv Xdv

Then u 2 L1;2.

Proof. First, we need to compute the derivative of u which gives

Dsu(t) =
DsY h(t) + Y Dsh(t)

R T
0 h(v)DvXdv

¡ Y h(t)
R T
0 (Dsh(v)DvX + h(v)DsDvX)dv

³R T
0 h(v)Dv Xdv

´2 :

Then is a matter of using Holder’s inequality to obtain the result.
Obviously the above result is not optimal.

5.6 Greeks for options using the ibp formula
As an application of the previous integration by parts formula we will
obtain the same formulas for the greeks of European options as the one
obtained through the …nite di¤erence or the likelihood method. In the case
of digitals of asians we provide formulas that are not available using other
methods.

As before X(®) = ST , ® = S0. Here, the payo¤ © is di¤erentiable a.e.
such as (x ¡ K)+ or 1(x ¸ K). Therefore when applying the ibp formula
we need to use the results in the previous section.

Let us start computing Delta for a European digital option.

¢ =
@

@S0
E

¡
e¡rT ©(ST )

¢
=

e¡rT

S0
E

µ
@ST

@S0
©0(ST )

¶
=

e¡rT

S0
E (©0(ST )ST ) :

We intend to apply the ibp formula given in (12) with X = ST and Y =
ST . Therefore we need to check the hypotheses which require that enough
derivatives exits with a right amount of moments as in Lemma 17 . In fact,
if one di¤erentiates S(T ) one has

DuST = ¾ST DuWT = ¾ST 1(u · T);

Therefore is clear that DuDvS(T ) = ¾ST 1(u _ v · T )and that S(T ) 2
D2;16. Furthermore,

R T
0 DvST dv = ¾T ST and E(S(T)¡16) < 1. Therefore

we can apply the ibp formula to obtain that

¢ =
e¡rT

S0
E

Ã
©(ST )D¤

Ã
STR T

0 DvST dv

!!
: (15)
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Then we are able to perform the stochastic integral in (15),

D¤
Ã

STR T
0 DvST dv

!
= D¤

Ã
STR T

0 ¾ST dv

!
= D¤

µ
1

¾T

¶
=

WT

¾T
:

Then the expression for ¢ reads,

¢ = E
µ

e¡rT ©(ST )
WT

S0¾T

¶
:

One can also compute Gamma to obtain that (we leave the details of the
calculation to the reader)

¡ =
e¡rT

S2
0

E

Ã
©0(ST )D¤

Ã
S2

TR T
0 Dv ST dv

!!

= E
µ

e¡rT

S2
0¾T

½
WT

¾T
¡ WT ¡ 1

¾

¾
©(ST )

¶
:

Simulations that show their performance in Monte Carlo simulations can
be seen in Fournié et. al. (1999).

Now we consider greeks for options written on the average of the stock
price 1

T

R T
0 Ssds. Note that in this particular case the density function of

the random variable does not have a known closed formula. Delta in this
case is given by

¢ =
@

@S0
E

Ã
e¡rT ©

Ã
1
T

Z T

0
Ssds

!!

=
e¡rT

S0
E

Ã
©0

Ã
1
T

Z T

0
Ssds

!
1
T

Z T

0
Sudu

!
:

In this example we will show the versatility of the integration by parts
formula (see Remark 14 1.), obtaining di¤erent expressions for ¢. First of
all, we …nd in Fournié et. al. (1999) the following expression:

¢ =
2e¡rT

S0¾2 E

Ã
©

Ã
1
T

Z T

0
Ssds

! Ã
ST ¡ S0R T

0 Stdt
¡ ¹

!!
: (16)

Proof. To obtain this expression one uses (13) with X = 1
T

R T
0 Ssds,

Y = 1
T

R T
0 Sudu, ht = St so that one has that

E

Ã
©0

Ã
1
T

Z T

0
Ssds

!
1
T

Z T

0
Sudu

!
= E

Ã
©(X)D¤

Ã
Y S¢

¾
R T

0 S(v)
R T

v S(u)du

!!

= E

Ã
©(X)

2
¾

Z T

0
StdWt

!
:
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Now one can deduce a di¤erent expression using the ibp formula (11). In
such a case one obtains

e¡rT

S0
E

Ã
©

Ã
1
T

Z T

0
Ssds

! µ
1

< S >

½
WT

¾
+

< S2 >
< S >

¾
¡ 1

¶!
(17)

where < S >=
³R T

0 tStdt
´ ³R T

0 Ssds
´¡1

and < S2 >=
³R T

0 t2Stdt
´ ³R T

0 Ssds
´¡1

.
In the next section, we will show some simulations of these ibp methods.

Other simulation results can be seen in Fournié et. al. (1999), (2001).

6 Comparison and e¢ciency of the estimation
methods

Now that we have introduced both methods of estimating a greek, kernel
density estimation and the integration by parts of Malliavin Calculus, we
can carry out a comparison between them to discern when to use a par-
ticular method. This also implies that we have to discuss some practical
aspects of each method. Let us start with some comments about the ker-
nel density method. We illustrate the case of estimating the value of Delta
for a European and an Asian binary option, within the following scenario:
S0 = 100 (in arbitrary cash units), r = 0:05, ¾ = 0:2 and T = 0:25 (in
years). In Figure 2 (a), we plot the value of the absolute bias and the root
of the variance of the …nite-di¤erence estimate for the European binary ¢,
in the case that we choose h = h0. Let us observe that in spite of the fact
that variance carries the main contribution to the total error, the e¤ect
of the bias is not negligible. The variance error can be evaluated through
the sampling variance of the ¢ estimate, but the value of the bias is not
directly measurable from the estimate itself. Thus, is general, we should
consider a new estimate for the bias in order to compute the magnitude of
the total error. In this example, however, one is able to compute exactly
both bias and variance contribution. In the case of Asians one can see that
the estimate of the bias is not reliable. Therefore it is necessary to study
this problem further.

The criteria that one can choose to do the comparison between the kernel
density method and the ibp method may be varied. Here we narrow this
discussion to the bias and the variance. The bias of the kernel density esti-
mation method can already be seen in Figure 1. As we have said previously
the integration by parts method does not create any bias (at least theo-
retically). Therefore our comparison can now be restricted to the variance.
In the case of the kernel density estimation method the mean square error
can be measured and the result is in Figure 3.
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FIGURE 2. Relative weight of the bias and the variance in the total error. The
value of parameters are —S0 = 100 (in arbitrary cash units), r = 0:05, ¾ = 0:2,
T = 0:25 (in years), and N = 105. (a) European binary option (b) Asian binary
option.

We consider the same example as in Fig. 1. The curves depict the root
of the mean squared error, "2 in Section 3, corresponding to N = 105 and
the respective selection for h.

In the case of the European binary option the asymptotically optimal
value of h0 (2) and h = 3:247 (3), di¤er signi…cantly only in the values
of the moneyness for which the bias is close to zero. In any case, both of
them are signi…cantly lower that the error level that we achieve considering
a smaller choice for h, h = 1:0. This result contradicts the naive rule that
dictates that h should be chosen as small as possible so that the simulations
lead to a stable result.

The results for the digital Asian are similar. Again h0 and its at-the-
money approximation h = 1:1937 di¤er only in the low bias regions. In
any case, both of them show a better performance than the third proposal,
h = 2:5 £ 10¡3S0 = 0:25, which represents a very small value for the
parameter.
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FIGURE 3. Statistical errors associated to the ¢ estimate for three di¤erent
choices of h. (a) European binary option (b) Asian binary option.

An issue related with the choice of h is that of the three possible choices
proposed in Figure 1 (a) the asymptotically best one is not constant and
sometimes may have a non-smooth behavior. We have computed the be-
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havior of these choices of h in Figure 4. We consider di¤erent contract
speci…cations K, ranging from K = 2S0=3 to K = 2S0, and the results will
be displayed in terms of the so-call present moneyness, S0=K . We use in
this case the kernel that conduces to the classical …nite di¤erences method,
G1. The curve labelled h0 corresponds to the optimal value for h (2). It
is notorious that in the vicinity of S0=K = 0:893 and S0=K = 1:087 the
value of h0 grows dramatically. The presence of these two critical points is
a consequence of the existence of two particular values of the moneyness
that make unbiased the estimate. For binary options, the leading term of
the bias in computing ¢ is proportional to @2

z (z3p(z)), where p(z) is the
probability density function of Z . Whenever p(z) is a bell-shaped function
and limz!§1 @z(z3p(z)) = 0, there will always be two and only two values
z1;2 such that @2

z (z3p(z))jz=z1;2 = 0. The straight line h = 3:247 corre-
sponds to the asymptotically optimal value of h0, mostly valid when d and
¾

p
T are small. The third proposal, marked as h = 1:0, will enlighten the

fact that reducing the value of h, h = 0:01S0 within our setup, is not a
good procedure in this case.

The results for Asians are similar, although the involved probability func-
tion has no closed expression. In fact, when dealing with binary options,
the ¢ itself is proportional to this unknown density function. Of course
we could proceed in a recursive way: we can estimate a probability density
function, then we can use it to compute h, and with this value we can start
the whole process anew.
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FIGURE 4. Three criteria for choosing the value of parameter h in the kernel
density estimation framework. (a) European binary option (b) Asian binary op-
tion.

Now we compare the results and variances of the various kernel density
estimation methods together with Malliavin type estimators. Before that
we recall that the payo¤ function being ©(x) = 1(x > K) one can do the
integration by parts to recover the same function. We call this integration
by parts, the Malliavin method or plain/non-symmetrical integration by
parts method. In the case that the integration by parts is done in such
a way as to recover the function 1(x > K) ¡ 0:5 (see Remark 14.7) then
the method is called the symmetric Malliavin/integration by parts method.
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This method as it will shown shortly introduces some variance reduction
and is the parallel of the control variate method.

Another interesting method of variance reduction is localization which
can be brie‡y introduced as follows. Suppose that we want to perform an
integration by parts for E(±K(X)Y ). Then one can use a smooth even
function ' such that '(0) = 1, ', '0 2 L2(R) as a localizator to obtain

E(±K (X)Y ) = E(±K(X)Y '(
X ¡ K

r
))):

One can then compute through variational calculus the optimal values for
' and r as to obtain an e¤ective reduction of variance. These give '(x) =
exp(¡jxj) and an explicit expression for r. For details, see either Kohatsu-
Pettersson (2002) or Bermin et. al. (2003). This method has been shown
to be quite e¤ective and we call it the localization method.

In Figure 5 we observe the superposition of several estimates for the Euro-
pean (a) and Asian (b) binary option, and di¤erent values of the moneyness.
In this plot we put together the output of …ve di¤erent estimates of Delta :
…nite di¤erences, gaussian kernel, Epanechnikov kernel (all of them use the
corresponding optimal value of parameter h0), Malliavin and symmetrical
Malliavin. All the estimations are good enough to be indistinguishable from
the exact value, depicted in the graph with empty boxes.

In Figure 5 (b), we have used the corresponding approximation to the
optimal value of parameter h0, Malliavin, Symmetrical Malliavin. In general
all the estimations give similar results, except in two regions well apart of
the at-the-money range. The discrepancy appear in the three kernel-related
estimates, and it is originated in the choice of h0. We must remember that in
the Asian framework the exact value of h0 is as unknown as the greek itself.
The approximation that we have introduced works better when dealing with
values of K near S0. If we disregard this disfunction, all the methods closely
reproduces the exact value, depicted again in the graph with empty boxes.
Obviously, since no closed expression for the Asian Delta exists, we have
simply used a better estimate (the localization method for the Malliavin
integration by parts method with N = 5 £ 105) in order to simulate it.

We have introduced the localization method, as a way to obtain an
accurate answer. Also as means to show that if the integration by parts
method is used appropiately it gives very accurate answers as we will also
see shortly.

In the next Figure 6 we show the statistical errors associated to the
previous estimates. In the case of the European binary ¢ estimates, it is
clear that the kernel-based methods give worse estimations for the greek if
the moneyness is near the at-the-money value. Even if we are interested in
values of the moneyness that are either in the in-the-money or in the out-
of-the-money range, we can pick the appropriate nonsymmetrical Malliavin
estimate which show a similar degree of accuracy.

In the case of binary Asians, we must remember that all the kernel-
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FIGURE 5. Comparison between the kernel density estimates and the Malliavin
estimates for the (a) European binary option (b) Asian binary option.

based estimates are biased estimates, and that the exact amount of bias
they present is also unknown. This means that these three estimates will
show an even higher level of error that the one depicted here. With this
feature in mind, it is clear that the kernel-based methods give de…nitively
worse estimations for the greek if the moneyness is near the at-the-money
value. Again, even in the case we are interested in values of the moneyness
that are either in the in-the-money or in the out-of-the-money range, we can
pick the appropriate nonsymmetrical Malliavin estimate, or even better the
localized Malliavin estimate in order to achieve a similar degree of accuracy.
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FIGURE 6. Statistical errors of the kernel density estimates and the Malliavin
estimates for the (a) European binary option (b) Asian binary option

Next we show a table that describes times of computation. These experi-
ments were carried out in a desktop PC with a Pentium III-500 MHz, runing
under Windows 2000 Professional. The programs were written in ANSI C,
and compiled with Microsoft Visual Studio C++ 6.0, in “Release" mode.

We present the mean time associated to each numerical method which
we have previously used when obtaining the value of Delta . As there is no
seemingly variation in the times of computation as the moneyness changes
we present here an average of computation times ratios for di¤erent degrees
of moneyness.

Let us start analyzing the results for the European option. As it can
be seen, among the kernel-related methods, the gaussian one, is the most
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time-consuming, whereas the other two are very similar. This is certainly
due to the more intricate form of the kernel itself. It is also evident that the
use Malliavin techniques does not lead in this case to slower estimates of
the greek. Both Malliavin-based proposals defeat the previous algorithms.
The fastest is also the simplest estimate, the plain Malliavin estimate, al-
though the more elaborate “Symmetrical Malliavin" is better than any of
the kernel-based procedures. These results go against the typical argument
that the use of Malliavin calculus leads to cumbersome estimates. Time
units have been chosen in such a way the time corresponding to …nite dif-
ferences is set to one.

In the case of the digital Asian, the higher complexity in the simulation
of the involved random variable Z = 1

T

R T
0 S(t)dt, virtually eliminates any

di¤erential behaviour arising from the functional form of the kernel. In this
case, these kernel-oriented algorithms work faster than the Malliavin ones.
We must point out, however, than both Malliavin estimates, the nono-
symmetric and the symmetrical one, are based upon the Malliavin formula
(17) which showed a lower variance than (asian1) (see discussion below).
This expression involves the computation of several additional integrals
which increase the computational time. We can follow a alternative path
instead. We can use the simplest Malliavin estimate, and upgrade it using
localization. With this approach we improve the estimate with no time
penalty.

Numerical method Computational time

Finite Di¤erences (European option) 1.00
Gaussian Kernel (European option) 1.45
Epanechnikov Kernel (European option) 1.11
Malliavin (European option) 0.87
Symmetrical Malliavin (European option) 0.95
Finite Di¤erences (Asian option) 24.2
Gaussian Kernel (Asian option) 24.5
Epanechnikov Kernel (Asian option) 23.2
Malliavin (Asian option) 31.3
Symmetrical Malliavin (Asian option) 30.4
Localized Malliavin (Asian option) 23.9

TABLE 1. Comparison between computational times.

Now we discuss the two formulae obtained in Section 5.6 for Asian op-
tions. The fact that there are two di¤erent ibp formulas for the same greek
may seem strange at …rst but these two formulae are di¤erent and therefore
their simulation will lead to di¤erent estimators with di¤erent variances.
We can observe these features in Fig. 7, where we show the outcome of
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the Monte Carlo simulation using these estimators. The two graphs were
obtained with the two di¤erent estimates presented in the Section 5.6, and
the same ensemble of random variables. The thin one corresponds to the
…rst estimate, and the thick one to the second, and more complex, estimate.
It is clear that they numerically di¤er, and that the second one display a
lower level of variance. This fact is in contradiction with what is claimed
in Fournié et.al. (2001).
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FIGURE 7. Computed value of Delta for an Asian call (the parameters are the
same as in Figure 2), using Monte Carlo techniques (N is the number of simu-
lations of the integral), for the estimators presented in the Section 5.6. We have
broken the interval of integration in 60 pieces, representing the approximate num-
ber of trading days in three months (T = 0:25). The exact result is represented
by the dotted line.

A general rule of thumb is that if the estimator used invokes a higher
number of statistics then the estimator will have smaller variance. An open
problem is how to obtain the most signi…cant statistics in order to optimize
the integration by parts formula. Therefore one can not expect that all ibp
formulae will lead to the same estimator. The main reason being that this
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is equivalent to knowing the probability density of the random variable in
question. To expose the main ideas that also appear in Fournié et. al. (2001)
one can note …rst that there is an integration by parts that is the “most”
straightforward but highly unrealistic. For this, consider the generalized
problem

E

Ã
©0

ÃZ T

0
Ssds

! Z T

0
Ssds

!
=

Z

R
©0(x)xp(x)dx:

Here p denotes the density of
R T
0 Ssds which exists and is smooth (it is an

interesting exercise of Malliavin Calculus). Therefore one can perform the
integration by parts directly in the above formula thus obtaining that

E

Ã
©0

ÃZ T

0
Ssds

! Z T

0
Ssds

!
=

Z

R
©(x)(p(x) + xp0(x))dx

= E

Ã
©(

Z T

0
Ssds)

Ã
1 +

R T
0 Ssdsp0(

R T
0 Ssds)

p(
R T
0 Ssds)

!!
:

Now we proceed to prove that the above gives the minimal integration by
parts in the sense of variance. Obviously it is not possible to carry out the
simulations unless p0=p is known. Let us construct the set of all possible
integration by parts. Suppose that Y is a random variable such that

E

Ã
©0

ÃZ T

0
Ssds

! Z T

0
Ssds

!
= E

Ã
©

ÃZ T

0
Ssds

!
Y

!
;

for any function © 2 C+1
p , then it is not di¢cult to deduce that

E

Ã
Y

,
¾

ÃZ T

0
Ssds

!!
= 1 +

R T
0 Ssdsp0(

R T
0 Ssds)

p(
R T
0 Ssds)

:

Therefore the set of all possible integration by parts can be characterized
as

M =

(
Y 2 L2(­); E

Ã
Y

,
¾

ÃZ T

0
Ssds

!!
= 1 +

R T
0 Ssdsp0(

R T
0 Ssds)

p(
R T

0 Ssds)

)
:

Next in order we want to …nd the element in Y that minimizes

inf
Y 2M

E

0
@©

ÃZ T

0
Ssds

!2

Y 2

1
A :
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As in Fournié et. al. (2001) is not di¢cult to see which Y achieves the
minimum. This is done as follows:

E

Ã
©(

Z T

0
Ssds)2Y 2

!
= E

0
@©(

Z T

0
Ssds)2

Ã
Y ¡ 1 ¡

R T
0 Ssdsp0(

R T
0 Ssds)

p(
R T
0 Ssds)

!2
1
A

+E

0
@©(

Z T

0
Ssds)2

Ã
1 +

R T
0 Ssdsp0(

R T
0 Ssds)

p(
R T
0 Ssds)

!2
1
A ;

since the cross product is 0, due to the property of the set M. Therefore
the minimum is achieved at Y =

³
1 +

R T
0 Ssdsp0(

R T
0 Ssds)

p(
R T
0 Ssds)

´
. This is clearly

impossible to write explicitly as p is unknown in the case of Asian options.
Therefore it is still an open problem to devise good ways to perform an
e¢cient integration by parts so that the variance is made small rapidly
and e¢ciently.

7 Other examples of applications

7.1 The Clark-Ocone formula
As another application of stochastic derivatives we discuss the Clark-Ocone
formula that can be used to obtain replicating hedging strategies for op-
tions. As before let X 2 D1;2 then the problem consists in …nding an
adapted process u such that

X = E(X) +
Z T

0
usdWs

To …nd u, di¤erentiate the above equation to obtain

DtX = ut +
Z T

t
DtusdWs

Next take the conditional expectation with respect to Ft , which gives

E(DtX=Ft) = ut :

In Finance one actually has that X is a contingent claim and one wants to
…nd u in the expression

e¡rT X = E(e¡rT X) +
Z T

0
usd bSs
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where bS(t) = S0 exp
³
¡ ¾2

2 s + ¾W (s)
´

represents the discounted stock and
r is the interest rate. In this case, we have that

e¡rT X = E(e¡rT X) +
Z T

0
E

¡
e¡rT DtX

±
Ft

¢
dW (t)

= E(e¡rT X) +
Z T

0

³
¾bS(t)

´¡1
E

¡
e¡rT DtX

± Ft
¢

d bS(t):

Then it is not di¢cult to prove that the integrand corresponds to the greek
¢ (we leave this as an exercise for the reader).

7.2 Ibp for the maximum process
In this section we are interested in an application of the ibp formula where
the properties of di¤erentiability of the processes at hand are limited. This
is the case of the maximum process. In this section we consider the inte-
gration by parts formula of Malliavin Calculus associated to the maximum
of the solution of a one dimensional stochastic di¤erential equation. The
problem of obtaining such an integration by parts formula has already been
considered by Nualart and Vives (1988) where the absolute continuity of
the maximum of a di¤erentiable process is proven. Later in Nualart (1995),
the smoothness of the density of the Wiener sheet was obtained.

The ideas presented here have appeared in Gobet-Kohatsu (2001) and
Bernis et. al. (2003). In the following example we consider the Delta of
an up in & down in Call option. That is, let 0 < t1 < ::: < tN = T be
monitoring times for the underlying S. Then the payo¤ of the up in & down
out Call option is

© = 1( min
i=1;:: :;N

Sti · D)1( max
i=1;:::;N

Sti ¸ U)1(ST < K)

The payo¤ in this case is path-dependent as in the case of Asian options.
Nevertheless the maximum function is not as smooth (in path space) as
the integral function. Therefore this example lays in the boundaries of ap-
plication of Malliavin Calculus. Interestingly, the law of the minimum and
maximum processes are smooth enough therefore the calculations are still
possible (this is related with our remark 14.6). In this case one could also
apply the likelihood method although the problem involves a cumbersome
expression. First ¢ = e¡rT limn!1 E(©n) where

S0©n = ¡Án

µ
min

i=1;:::;N
Sti ¡ D

¶
min

i=1;::: ;N
Sti1( max

i=1; :::;N
Sti ¸ U)1(ST < K)

+1( min
i=1; :::;N

Sti > D)Án

µ
max

i=1; :::;N
Sti ¡ U

¶
max

i=1;:::;N
Sti1(ST < K)

¡1( min
i=1; :::;N

Sti > D)1( max
i=1;:: :;N

Sti ¸ U )Án(ST ¡ K)ST
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where Án(x) = n¡1Á(nx) with Á a positive smooth function with support in
[¡1; 1] satisfying that

R
R Á(x)dx = 1. In other words Án is an approximation

of the Dirac delta function at zero (previously we had used the density of a
normal random variable). We can therefore apply the ibp (12) with X = ©,
Y = 1 and T = t1 (see Remark 14 3.). Then we have that

¢ = e¡rT E
µ

©
Wt1

¾S0t1

¶
: (18)

To obtain this formula we have used that for t < t1 (the formula is not
valid for t > t1)

Dt min
i=1;:::;N

Sti = ¾ min
i=1;:::;N

Sti

Dt max
i=1;:::;N

Sti = ¾ max
i=1;:::;N

Sti :

This ibp avoids the non-smoothness of X but the problem with the simu-
lation of this expression is the instability of Wt1

t1
when t1 is close to zero.

Therefore the ideas exposed up to this point have to be revised to try to
improve this formula.

Instead, we will use a localization process h (see Remark 14 1.) in order
to integrate by parts the processes involved in the whole time interval [0; T ]
therefore avoiding the instability mentioned previously.

In order to do this, we …rst compute in general the formula for the
stochastic derivative of ©. Using the local property of the derivative we
have that

Dt min
i=1;::: ;N

Sti = Dt

NX

j=1

Stj1
µ

min
i=1;: ::;N

Sti = Stj

¶

=
NX

j=1

DtStj1
µ

min
i=1;:: :;N

Sti = Stj

¶

= ¾
NX

j=1

Stj 1(t · tj )1
µ

min
i=1;:::;N

Sti = Stj

¶

= ¾S¿1(t · ¿);

where ¿ = inffti; Sti = mini=1;::: ;N Stig. Similarly,

Dt max
i=1;::: ;N

Sti = ¾S¿ 0

with ¿ = inf fti; Sti = maxi=1;::: ;N Stig: Now we can see the non-smoothness
of the maximum or minimum process. A second derivative of the maximum
will involve the di¤erentiation of 1(t · ¿ 0) which is not a di¤erentiable
random variable (exercise for the reader). Now, to do the integration by
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parts we perform the integration by parts using what we call a dominating
process.

Let Y be de…ned as

Yt =
vuutN

X

1·i·N
ti·t

(Sti ¡ Sti¡1)2:

Lemma 18 Suppose that U > S0 > D. Then one has:

i) For any t 2 fti : 0 · i · Ng, one has jSt ¡ S0j · Yt:

ii) There exists a positive function ® : N 7! R+, with limq!1 ®(q) = 1,
such that, for any q ¸ 1, one has:

8 t 2 [0; T ] E(Y q
t ) · Cqt®(q):

iii) For any q ¸ 1, choose a C1
b function ª : [0; 1) 7! [0; 1], with

ª(x) =
½

1 if x · a=2
0 if x ¸ a

with U > S0 + a
2 > S0 ¡ a

2 > D. The random variable ª(Yt) belongs
to Dq;1 = \p>1Dq ;p for each t. Moreover, for j = 1; ¢ ¢ ¢ ;q , one has

8 p ¸ 1 sup
r1;¢ ¢¢ ;rj2[0;T ]

E

Ã
sup

r1_¢¢¢_rj·t·T
kDj

r1;¢ ¢¢ ;rj
ª(Yt)kp

!
· Cp:

Proof. For t = tj , one has jSt ¡ S0j · Pj
i=1 jSti ¡ Stj¡1 j · Yt; using

Jensen’s inequality: this proves Assertion i). Others assertions are also easy
to justify, we omit details.

Now we are ready to perform the integration by parts. That is, we com-
pute the stochastic derivative of © in general to obtain

¾¡1Dt©n

= ¡1(t < ¿)S¿ Án

µ
min

i=1;:: :;N
Sti ¡ D

¶
1( max

i=1;: ::;N
Sti ¸ U )1(ST < K)

+1(t < ¿ 0)S¿ 01( min
i=1;:: :;N

Sti · D)Án

µ
max

i=1;: ::;N
Sti ¡ U

¶
1(ST < K )

¡1( min
i=1;: ::;N

Sti · D)1( max
i=1;::: ;N

Sti ¸ U )Án(ST ¡ K)ST



xlix

We multiply this expression by ª(Yt) to obtain that

¾¡1Dt©nª(Yt)

= ¡ª(Yt)S¿ Án

µ
min

i=1; :::;N
Sti ¡ D

¶
1( max

i=1; :::;N
Sti ¸ U)1(ST < K )

+ª(Yt)S¿ 0 1( min
i=1;:::;N

Sti · D)Án

µ
max

i=1;:::;N
Sti ¡ U

¶
1(ST < K)

¡1( min
i=1;: ::;N

Sti · D)1( max
i=1;::: ;N

Sti ¸ U )Án(ST ¡ K)ST ª(Yt):

Note that in this expression we have deleted the indicator functions. The
reason for this is that if ª(Yt) 6= 0 then Yt · a=2 and therefore Sti ¸
S0 ¡ a=2 for all ti · t and if we also assume that mini=1;: ::;N Sti · D + 1

n
then it means that t < ¿ for n big enough. In all other cases this term is
zero.

Similarly for the second term we have that if ª(Yt) 6= 0 then if maxi=1;:::;N Sti >
U ¡ 1

n then t < ¿ 0. Now we can perform the integration by parts to obtain
that

¢ =
S0

¾
E

"
©D¤

Ã
ª(Y¢)R T

0 ª(Yt)dt

!#
:

Here it should be clear that the integration by parts is carried out in the
whole time interval therefore allowing for stable simulations. The simula-
tions results which appear in Gobet-Kohatsu (2001) show that this last
methodology gives better results than the …nite di¤erence and the previous
integration by parts formula (18).

8 The local Vega index

In this section we introduce a generalization of the Vega index which we call
the local Vega index (lvi) which measures the stability of option prices in
complex models. In other words, the lvi weights the local e¤ect of changes
in the volatility structure of a stochastic volatility model. This index comes
naturally under the general framework introduced in Section 3.3 in Fournié
etal (1999).

The …rst natural interpretation of the lvi measure is to consider them
as the Fréchet derivatives of option prices with respect to a changes in the
volatility structure, therefore naturally generalizing the concept of greek.
The Vega index measures the perturbations of the option prices under per-
turbations of volatility structure. In the particular case that this volatility
is constant then this sensibility index is characterized by a classical deriva-
tive. If instead one wants to consider general volatility models then one has
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to consider Fréchet derivatives. These derivatives therefore become also
functions which are parametrized as the perturbations themselves.

Here let " denote the perturbation parameter and ¾̂ (t; x) is the direction
of perturbation. Then the goal is to obtain the corresponding sensibility
weight that corresponds to this direction. For this, let’s suppose that we
want to test the robustness of our original model for S and consider S" to
be a positive di¤usion process, de…ned as the solution to:

½
dS"(t) = r(t; S" (t))dt + ¾"(t; S"(t))dW (t)
S"(0) = S0

where ¾";r : R+£R ! R are smooth functions with bounded derivatives. W
is a one dimensional Brownian motion. Here we assume that the equivalent
martingale measure is independent of ". Furthermore, suppose that ¾" is
of the form ¾" (t; x) = ¾ (t; x) + "¾̂ (t; x) : S0 is the basic model which we
are perturbing, we will use S0 or just S to denote our base model. .

De…nition 19 Given a …nancial quantity ¦" based on S", we say that it
has a local Vega index if

@¦"

@"

¯̄
¯̄
"=0

=
Z T

0
E

£
¹(s; T; S0(s))¾̂(s; S0(s))

¤
ds:

In most applications ¦" = E (©(F (S"))) where © : R !R is the payo¤
function and F is a functional. For general results on the existence of the
lvi for option prices see Bermin et. al. (2003).

The kernel ¹(s; T; x) measures the importance or the e¤ect of the local
changes in volatility of the underlying and of the noise at time s and value
of the underlying x standardized in perturbation units:If such a weight
is comparatively big then small changes in volatility will be important.
The most important point is the fact that this formula gives quantitative
meaning to various expected qualitative behavior of option prices.

A way to de…ne a global Vega index rather than a local one is to choose
a uniform deformation of volatility. That is, ¾̂ ´ 1. Suppose we denote this
global index by @¦

@¾ , then we have the following relationship

@¦"

@"

¯̄
¯̄
"=0

=
Z T

0
E

£
¹̂(s; T; S0(s))¾̂(s; S0(s))

¤
ds

@¦
@¾

The only formal di¤erence with respect to the expression in the previous
theorem is that now the weights ¹̂ integrate to one and therefore one can
interpret the comparative values of these indices easily.

The ibp formula plays a role in the construction of the lvi index. In
fact, in most situations ¹ involves the conditional expectation of the sec-
ond derivative of the payo¤ function and therefore to give meaning and to
compute such a term one needs to use the integration by parts formula.
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Example 20 Let us consider a standard call option with payo¤ G" =
max (S" (T) ¡ K; 0) for some constant strike price K and assume ¾" (t; x) =
¾x + "¾̂ (t) x and r(t; x) = rx. It is easily veri…ed that at time 0 the price
is given by

¦" = S0N (d"
1) ¡ e¡rT KN

³
d"

1 ¡
p

§"
´

;

where N (¢) denotes the cumulative distribution function of a standard nor-
mal random variable, and d"

1 is de…ned by

d"
1 =

ln (S0=K) + rT + 1
2§"

p
§"

; §" =
Z T

0
(¾ + "¾̂ (t))2dt:

Straightforward calculations then gives, denoting ' (¢) = dN
dx (¢), that

@¦"

@"

¯̄
¯̄
"=0

= S0'
¡
d0

1
¢ 1p

T

Z T

0
¾̂ (t) dt:

Final ly, denoting @¦
@ ¾ (0) = @¦0

@¾ (0), we get the relationship

@¦"

@"

¯̄
¯̄
"=0

=
1
T

Z T

0
¾̂ (t) dt

@¦
@¾

(0) :

Therefore we see here that @¦"

@ " (0) is the measure of robustness of the quan-
tity ¦0 as long as volatility perturbations are concerned.
In order to explain how the ibp formula of Malliavin Calculus can help gen-
eralize this calculation we repeat this deduction using a di¤erent argument.
That is,

@¦"

@"
= e¡rT E

·
1(S" (T) ¸ K )

dS" (T )
d"

¸
:

In our case we have that

S" (T ) = S0 exp

Ã
rT ¡ 1

2
§" +

Z T

0
(¾ + "¾̂ (t))dW (t)

!

therefore

dS" (T )
d"

= S" (T )

Ã
¡

Z T

0
(¾ + "¾̂ (t)) ¾̂ (t)dt +

Z T

0
¾̂ (t)dW (t)

!
:

We can then rewrite using the duality formula (8) together with a density
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argument as in Section 5.5

@¦"

@"

¯̄
¯̄
"=0

= ¡e¡rT E

"
1(S (T ) ¸ K )S (T )

Z T

0
¾¾̂ (t) dt

#

+e¡rT E

"
1(S (T ) ¸ K )S (T )

Z T

0
¾̂ (t) dW (t)

#

= e¡rT E
h
±K(S (T))S (T)2

i
¾

Z T

0
¾̂ (t) dt

= ¾e¡rT
Z T

0
E

h
E

h
±K(S (T ))S (T)2 S(t)¡1

.
S(t)

i
¾̂ (t)S(t)

i
dt

Therefore ¹(s; T; x) = ¾e¡rT E
h
±K(S (T ))S (T)2 S(t)¡1

.
S(t) = x

i
and

obviously E(¹(s; T; S(s))S(s)) = S0'
¡
d0

1
¢ 1p

T
.

One can generalize the previous discussion to obtain that if we consider a
European contingent claim with payo¤ © (S" (T )) where © is di¤erentiable
once a.e. and option price ¦" = e¡rT E (© (S" (T))), r > 0. Then if the
coe¢cients of S" do not depend on the time variable we assume that the
Hörmander condition for the di¤usion S(T ) is satis…ed otherwise we assume
the restricted Hörmander condition (see Cattiaux and Mesnager (2002)).
Under any of these two assumptions one has that the Malliavin covariance
matrix of S(T ) is non degenerate and therefore one can integrate by parts
and we have that

¹(u; T; x) = E
h
©00(S(T ))

¡
U(T )U (u)¡1¢2 ¾(u; x)

.
S(u) = x

i
:

Here U denotes the stochastic exponential associated with the derivative
of S with respect to its initial value S0 (for a speci…c de…nition, see Section
9.1). From this formula we can conclude that ¹ (¢; T ; x) is a positive kernel
if © is a convex function that is independent of ¾̂ (¢; ¢) but depends on S(¢),
© (¢) and its derivatives.
For example in the case of a plain vanilla call option with strike price K > 0
one has

¹(s; T; x) = e¡rT K2x¡1pT (K jS (s) = x ) :

The above result is also true for digital call options although the kernel ¹
is no longer positive. That is, © (x) = 1 fx ¸ Kg, one has

¹(s; T; x) = ¡e¡rT Kx¡1 (KpT (K jS (s) = x ) + 2p0
T (K jS (s) = x ))

where pT (¢ jS (s) = x ) denotes the conditional density of S (T) given S (s),
and p0

T (¢ jS (s) = x ) its derivative. Now we consider another example re-
lated to Asian options.
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Example 21 For Asian options, i.e. contingent claims with payo¤ ©(
R T
0 w(s)Sd(s)dº (s)),

where w 2 L2[0; T ], then

¹(s; T; x) = E

"
©00

ÃZ T

0
w(t)S (t)dº (t)

!Z T

s
w(t)U (t)U(s)¡1¾(s; x)dº (t)

Z T

s
w(u)U (u)U(s)¡1dº(u)

,
S(s) = x

#
:

Here we assume that the integration by parts can be performed. Now if
d = 1 and © is convex, we have that

@¦"

@"

¯̄
¯̄
"=0

=
Z T

0
E [¹(s; T; S(s))¾̂ (s; S(s))] ds;

where ¹ (¢; T ; x) is a positive kernel where

¹(s; T; x) = e¡rT ¾(s;x)E

2
4©00

ÃZ T

0
S (t)dº(t)

! ÃZ T

s

U (t)
U (s)

dº (t)

!2,
S(s) = x

3
5

This example therefore includes basket options as well as continuous Asian
options. Sometimes for practical purposes is better to condition not only
on the current value of the underlying but also on the current value of the
integral. We will do so in the examples to follow.

Although is not included in the above theorem, the principle given here
is far more general in various senses. In the case of lookback options we
have the following result:

Example 22 Under the Black-Scholes set-up and for lookback options, i.e.
contingent claims with payo¤ ©

¡
sup0·t·T S" (t)

¢
, we have that

@¦"

@"
(0)

¯̄
¯̄
"=0

=
Z T

0
¹(s; T )¾̂ (s)ds

where the density function ¹(¢; T) is given by

¹(s; T) = e¡rT E
·
©0

µ
sup

0·t·T
S (t)

¶
sup

0·t·T
S (t)

µ
2r
¾

1s·¿ + X
¶¸

:

The random time ¿ is implicitly de…ned by the relation sup0·t·T S (t) =
S (¿) and X is an appropriate random variable that belongs to Lp (­; F; P )
for any p. Furthermore, if © (¢) is monotone then ¹(¢; T ) is decreasing and
if ©0 (0) ¸ 0 then lims!T ¹ (s; T) ¸ 0.

Now we study another possible interpretation of the lvi provided by
quantile or VaR type problems.
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8.1 Asymptotic behavior of quantile hedging problems
Suppose that we have sold an option considering some volatility structure
that later is discovered to have been underestimated. In such a case, we ran
into the danger of not being able to replicate the option. Another similar
situation is when we are not willing to invest the full price of the option
and for a lower price we are willing to take some risk of not being covered.
These problems fall in the general category of quantile type problems.

As an example let us start with a simple goal problem in the Black-
Scholes set-up. Suppose that we have incurred in a misspeci…cation of
volatility which therefore implies that hedging is not possible. We want
to take the decision of either selling the option at loss or keep it under the
risk of not being able to hedge it. We want therefore to compute the prob-
ability of perfect hedging. We show that the local Vega index determines
how close this probability is to one. We refer to Karatzas (1996) for details
and further references. Let us recall that the discounted value process of a
self …nancing portfolio is given by the expression

e¡rtXx0;» (t) = x0 +
Z t

0
e¡rs» (s) ¾ (s) dW (s) ; ¾ (t) := ¾ + "¾̂ (t) :

Here x0 is the initial wealth in our portfolio and » (¢) is the portfolio or
strategy which represents the amount of money that is invested in the stock
at each point in time. Suppose that G" is the payo¤ of the option, hence
starting with the initial wealth u0 := ¦" = e¡rT EP ¤;" [G" ] there exists
a strategy ¹¼ (¢) which achieves a perfect hedge and P ¤;" is the equivalent
martingale measure associated with the problem.

Now, suppose that our initial wealth x0 is less than the money required to
obtain a perfect hedge, i.e. we assume 0 < x0 · u0, then as we can no longer
obtain a perfect hedge we will instead try to maximize the probability of a
perfect hedge:

p (") := sup
»(¢) tam e

Xx0+u0;»(T )¸G" a.s .

P
¡
X x0;» (T ) ¸ G"

¢
:

That is, the above is the probability that if given a loan of extra u0 mon-
etary units one can cover for the option considering that the loan has to
be returned at the end of the expiration time. Obviously as " ! 0 then
p(") ! 1. The following proposition gives the rate at which this quantity
converges.

Proposition 23 Assume that the perturbed price ¦" has a Taylor expan-
sion of order 2 around " = 0, in the sense that

¦" = ¦ +
@¦"

@"

¯̄
¯̄
"=0

" + G (") "2;
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where G (¢) is di¤erentiable around 0, and jG (")j · C1 for " · 1.
Then the maximal probability of obtaining a perfect hedge p("), has the

property

lim
"!0

1 ¡ p (")
" exp(¡cN¡1 (1 ¡ "))

= exp
¡¡c2=2

¢ @¦"

@"

¯̄
¯̄
"=0

=¦;

where c = j®¡r j
¾

p
T and ® is the stock appreciation rate under P .

Note that N¡1 (1 ¡ ") ¼
p

¡ ln ", hence exp
¡
¡cN ¡1 (1 ¡ ")

¢
goes to

zero slower than any polynomial.
The proof is done through an asymptotic study of the probability of

perfect hedging which can be obtained explicitly. In fact,

p (") = N

0
@N¡1

µ
x0

u0

¶
+ j® ¡ rj

sZ T

0
[¾ + "¾̂ (t)]¡2 dt

1
A ;

The main issue in the above proposition is that the lvi determines the
speed at which the probability of perfect hedging goes to 1. This principle
is a generalization of the interpretation of greeks. In fact in other similar
set-ups the same result seems to hold. For example, let us consider the
quantile hedging problem of Föllmer and Leukert (2000) with x0 = E

£
G0

¤

where we assume that r ´ 0 without loss of generality. Then de…ne the
probability of perfect hedging as

p(") = sup
»(¢) se lf-…nancing

P
¡
Xx0;» (T ) ¸ G"¢

Then it is known that the solution of the above problem supposing the
existence of a unique equivalent martingale measure P ¤;", is to replicate
G"1A" where

A" = fG" dP ¤;"

dP
< ag

and a ´ a(") is such that E [G"1A" ] = x0 and p(") = P (A"). The main
constant in the asymptotic behavior of 1 ¡p(") is C @¦"

@"

¯̄
"=0 for a positive

constant C independent of the lvi. In order to avoid long arguments and
conditions we give a brief heuristic argument of the idea of the proof.

First we consider the …rst order term of 1 ¡ p(") which is characterized
by the derivative of P (A") wrt ". Then we have that

1 ¡ p(") ¼ "E
·
±a

µ
G" dP ¤;"

dP

¶ µ
da
d"

¡ d
d"

µ
G" dP ¤;"

dP

¶¯̄
¯̄
"=0

¶¸
(19)

Here ± stands for the Dirac delta function. To compute da
d" , one di¤erentiates

implicitly the equation E [G"1A" ] = x0, obtaining that

da
d"

¼
E

h
d

d"

³
G" dP ¤;"

dP

¯̄́
¯
"=0

i

E
£
G±a

¡
G" dP ¤;"

dP

¢¤
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which replaced in (19) gives that the main error term is

1 ¡ p(") ¼ "
E

h
d
d"

³
G" dP ¤;"

dP

´¯̄
¯
"=0

i
E

h
±a

³
G dP ¤

dP

´i

E
£
G±a

¡
G dP ¤

dP

¢¤

= "
@¦"

@ "

¯̄
"=0

E
£
G=G dP ¤

dP = a(")
¤

Similar considerations can be used to analyze the shortfall risk (see Föllmer
and Leukert (2000)) if enough conditions on the loss function between other
assumptions are made. The same remark is also true for other quantile
hedging problems. For instance, it is easily shown that our results still hold
in the setting of Spivak and Cvitaníc (1999).

8.2 Computation of the local Vega index
So far we have discussed the issue of the theoretical properties and uses of
the lvi index. Here we will show some simulations of these quantities using
various techniques of Monte Carlo simulation. In particular we consider
the Black-Scholes set-up and then a stochastic volatility model for Asian
options. We will also show that these calculations can be performed in
various ways. One is using the integration by parts formula as proposed
by Fournié etal (1999) (2001) which not always gives reliable results unless
some variance reduction methods are performed.

Asian options within the Black-Scholes set-up

As stated before we plan to start the presentation of our numerical work
focusing the case of Asian options in the frame of the classical Black-Scholes
scenario. We also consider that the payo¤ function associated with a call
option with strike K. In terms of the notation we have:

r(t; x) = xr;
¾(t; x) = x¾;

dº (t) =
1
T

dt;

©(x) = e¡rT (x ¡ K)+ ;

and S is geometric Brownian motion which can be written as S(t) = S0U (t).
Then ¹(s; T; x) can be rewritten as:

¹(s; T; x) = e¡rT ¾xE

2
4 ±

Ã
1
T

Z T

0
S (t)dt ¡ K

! Ã
1
T

Z T

s

U (t)
U (s)

dt

!2,
S(s) = x

3
5 :
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In Figure 8 we have simulated the conditional expectation as above to
obtain ¹(s; T;x; S0; K):We have used g(x) = 1fx ¸ 0g ¡1=2 in this case as
this generates smaller variance (see Remark 14.7 and section 3.3 in Bermin
et. al. (2003)) .
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FIGURE 8. Estimated value of weight ¹(s; T; x;S0; K) of an Asian call with
global parameters r = 0:05, ¾ = 0:2, T = 0:2 (in years), for di¤erent values
of the present time and the initial moneyness (in, at and out the money): (a)
S0=K = 1:1, (b) S0=K = 1:0, (c) S0=K = 0:9. We also present in graph (d)
some plots showing the dependence of the results on the initial moneyness for a
given …xed time s = 0:1. The numerical simulations have been performed using
Malliavin Calculus and Monte Carlo techniques. We have broken the whole time
interval into 200 discrete time steps, and we have computed 10 000 paths at each
point.

The picture presented so far may be misleading for a practitioner, since
we are not including all the information we have at hand by the time s,
in the calculation of the weight. In particular we know the average of the
underlying up to that moment. Therefore we may de…ne a new weight
¹(s; T; x; y),

¹(s; T; x; y) = e¡rT ¾xE

"
±

Ã
1
T

Z T

0
S (t) dt ¡ K

!
¢

¢
Ã

1
T

Z T

s

U (t)
U(s)

dt

!2 Á
S(s) = x;

1
T

Z s

0
S (t)dt = y

3
5 ;

where the above information has been added. We show a this lvi index in
Figure 9 that shows an interesting pattern.
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FIGURE 9. Estimated value of weight ¹(s; T ;x; y) for an Asian call with parame-
ters r = 0:05, ¾ = 0:2, T = 0:2 (in years), for s = T=4. The numerical simulations
have been performed using Malliavin Calculus and Monte Carlo techniques as de-
scribed in Figure 1.

It is not di¢cult to see that there is a line that de…nes the maximum of
the index and in fact one can show that the lvi index depends on a single
parameter, which we denote by ®, ® = (K ¡ y)=x,

¹(s; T ; ®) = e¡rT ¾E

2
4±

Ã
1
T

Z T

s

U (t)
U(s)

dt ¡ ®

! Ã
1
T

Z T

s

U (t)
U (s)

dt

!2
3
5 : (20)

® represents the e¤ective remaining fraction of the integral we must ful…ll
in order to obtain some gross pro…t with the option. Its inverse would also
be linked to an e¤ective quantity, the e¤ective present moneyness, since
our contract is equivalent to another with maturity time equal to T ¡ s,
and strike price K ¡ y.

We can also analyze heuristically, the value ® = ®̂ which maximizes
result of ¹(s; T ; ®); that is, the value of e¤ective moneyness which is the
most sensible to changes in pricing. If we compute the …rst derivative of
equation (20), with respect to ®, we arrive to the following condition that
®̂ must ful…ll:

2®Ps;T (®) + ®2P 0
s;T (®)

¯̄
®=®̂

= 0; (21)
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where Ps;T (¢) is the probability density function of T¡1
R T

s U (t)=U (s)dt,
which does not depend neither on x, nor on y. The mean and variance of
this random variable are given by

a ´ E

"
1
T

Z T

s

U (t)
U(s)

dt

#
=

1
rT

³
er(T ¡s) ¡ 1

´
;

and its variance, b2,

b2 ´ 2
rT2

8
<
:

rer(T¡s)
³
e(r+¾2)(T ¡s) ¡ 1

´

(2r + ¾2)(r + ¾2)
¡

¡
er(T ¡s) ¡ 1

¢

2r + ¾2

9
=
; ¡ a2;

The asymptotic behavior of a and b when rT and ¾2T are small is:

a ¼ 1 ¡ s
T

; and

b2 ¼ ¾2(T ¡ s)3

3T2
:

Note in particular that b2 ¿ a2. In this case, we assume that we can take a
Gaussian approximation for the probability density function, at least in the
vicinity of a as we did for the kernel density estimation method in Section
3.

Ps;T (®) » 1p
2¼b2

e¡(®¡a)2

2b2 :

Now we can solve (21), and …nd that ®̂ ¼ a, and, since ¹(s; T ; ®̂) =
e¡rT ¾®̂2Ps;T (®̂), the maximum sensibility follows

¹(s; T ; ®̂) ¼ e¡rT

r
3(T ¡ s)

2¼T 2 :

The simulations to calculate the lvi are shown in Figure 10, for a variety of
values for the parameters. Note that the results show a very good agreement
with the outcome of our previous discussion.

Asian options within a stochastic volatility model

The purpose of this subsection is just to show that the lvi can be computed
in more complex …nancial models than the Black-Scholes model and that
some of the conclusions reached in previous sections seem to be also valid
here. Let us consider the Asian option with the same payo¤ function as
before but where the underlying process has a stochastic volatility driven
by the noise driving the stock and an independent noise. That is,

S(t) = S0 + r
Z t

0
S(u)du +

Z t

0
¾(u)S(u)dW (u)

¾(t) = ¾0 + a
Z t

0
(b ¡ ¾(u))du + ½1

Z t

0
¾(u)dW (u) + ½2

Z t

0
¾(u)dW 0(u);
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FIGURE 10. Estimated value of weight ¹(s;T ; ®) for an Asian call with parame-
ters r = 0:05, ¾ = 0:2, T = 0:2 (in years), for di¤erent values of the present time
and the parameter ®. We also display the approximate value of the maxima of the
weight, obtained in Section 8.2. The numerical simulations have been performed
using Malliavin Calculus and Monte Carlo techniques as described in Figure 1.

Here, W and W 0 are two independent Wiener processes. Once more the
weight ¹(s; T; x; y; z) can be constructed:

¹(s; T; x; y; z) = e¡rT zx½2
2 £

£E
·
A(s; T; ®; z)

Á
S(s) = x;

1
T

Z s

0
S (t)dt = y; ¾(s) = z

¸
;

where A is a stochastic process with a long explicit expression, that we will
not detail here. Prior to present the output of the simulation, let us note
that the variable ® = (K ¡ y)=x plays again an important role. We have
indeed that,

¹(s; T; x; y; z) = ¹(s; T; x; z; ®) = e¡rT zx½2
2f (®; z):

Unfortunately, the dependence in z cannot be fully factorized. We conclude
introducing Figure 11, where we plot ¹(s; T; x; z; ®) in terms of ®.
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FIGURE 11. Estimated value of the weight ¹(s;T; x; z; ®) for an Asian within
a stochastic volatility framework, in terms of ®. The selected values for the pa-
rameters were r = 0:05, a = 0:695, b = 0:1, ½1 = 0:21, ½2 = 0:9777, x = 100:0,
z = 0:2, T = 0:2 and s = 0:05 (in years). A Gaussian kernel with parameter
h = 0:02 was chosen when computing A. We have broken the whole time interval
into 20 discrete time steps, and we have simulated 10 000 paths at each point.

9 Appendix

9.1 Stochastic derivative of a di¤usion
Di¤erentiating a di¤usion is not so complicated from the heuristic point of
view. The ideas involved are the same as when di¤erentiating the solution
of an ordinary di¤erential equation with respect to a parameter. That is,
let X be the solution of the following stochastic di¤erential equation:

X(t) = x +
Z t

0
b(Xs)ds +

Z t

0
¾(Xs)dWs;
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where b, ¾ : R ! R are smooth functions with bounded derivatives. Then

DuX(t) = Du

½Z t

0
b(Xs)ds

¾
+ Du

½Z t

0
¾(Xs)dWs

¾

=
Z t

0
b0(Xs)DuXsds +

Z t

0
¾0(Xs)DuXsdWs +

Z t

0
¾(Xs)Du(dWs)

=
Z t

0
b0(Xs)DuXs1(u · s)ds +

Z t

0
¾0(Xs)DuXs1(u · s)dWs + ¾(Xu)

=
Z t

u
b0(Xs)DuXsds +

Z t

u
¾0(Xs)DuXsdWs + ¾(Xu):

If one regards the previous equation as a linear equation on DuXs with u
…xed and s 2 [u; T ] one obtains as an explicit solution that

DuXt = ¾(Xu)U (t)U (u)¡1

U(t) = exp
µZ t

0
b0(Xs) ¡ 1

2
(¾0(Xs))2ds +

Z t

0
¾0(Xs)dWs

¶
: (22)

Obviously the above argument is just heuristic. The mathematical proof is
much longer because one needs to prove that the process X is di¤erentiable.
This is done through an approximation procedure as in Theorem 10.

9.2 The multidimensional case
Here we deal with the task of repeating the previous steps in many dimen-
sions. In particular, we will show as before that there are many di¤erent
ways of performing the ibp. The most common one generates the Malliavin
covariance matrix.

Let suppose that W = (W 1; W 2; :::; W k ) is a k-dimensional Wiener pro-
cess. Then suppose that we want to …nd an integration by parts formula
for fi(W 1

T ; W 2
T ; :::;W k

T ) where fi denotes the partial derivative with respect
to the i¡th coordinate of the smooth function f . Then as before we have

E(fi(W 1
T ; W 2

T ; :::; W k
T ))

=
1

(2¼T )k=2

Z

Rk
fi(x1; :::; xk) exp(¡ 1

2T

kX

i=1

x2
i )dx1:::dxk

=
1p
2¼T

Z

Rk
f (x1; :::; xk ) exp(¡ 1

2T

kX

i=1

x2
i )

xi

T
dx1:::dxk

= E(f (W 1
T ; W 2

T ; :::; W k
T )

W i
T

T
)

= E(f (W 1
T ; W 2

T ; :::; W k
T )

Z T

0

1
T

dW i
s)
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Of course one could continue with this calculation and other similar ex-
amples as before. Instead of repeating all the argument in the previous
section, we just show informally how to deal with the ibp formula in mul-
tidimensional cases. We will consider an integration by parts formula for
rf for f : Rd ! R, smooth function and X a smooth random variable in
the Malliavin sense. First, let’s start by denoting Di , the derivative with
respect to the i-th component of the Wiener process W i . D = (D1; :::; Dk )
is the vector of derivatives. Then as before we have that

DsZ = DsXrf (X)

Dj
sZ =

dX

i=1

@if (X)Dj
sX

i

where in this case

DsX = (Dj
sX

i)

so that if we multiply the equation for DZ by a smooth d £ d-dimensional
matrix process u and integrate we have

hDZ;uiL2[0;T ] = h(DX) rf (X); uiL2[0;T ]

=
dX

i=1

kX

j=1

Z T

0
fi(X)Dj

sX
iujl

s ds

= Arf (X)

where Ail =
Pk

j=1
R T

0 Dj
sX iujl

s ds. Suppose that there exists a d £d matrix
B so that BA = I . Then one has for a d-dimensional random variable Y

E
h
(B hDZ; uiL2[0;T ])Y

i
= E [rf (X)Y ]

which after using an extension of the duality principle gives as a result

E [rf (X)Y ] =
dX

l;m=1

kX

j=1

E
£
ZD¤j (BmlYmujl)

¤

=
dX

l;m=1

kX

j=1

E
£
f (X)D¤j(BmlYmujl )

¤

Here D¤j stands for the adjoint of Dj which is the extension of the stochas-
tic integral with respect to W j . That is, D¤j (1) = W j

T and D¤j (u) =R T
0 usdW j

s if u is an F j
t ¡adapted process. As in Remark 14.1 the problem

is to …nd the right process B . In the particular case that ujl
s = Dj

sX l then
one obtains that B is the inverse of the Malliavin covariance matrix which
should belong to Lp(­) for p big enough in order for the integration by
parts formula to be valid. For details, see Malliavin (1997), Ikeda-Watanabe
(1989) or Nualart (1995).
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10 Conclusion and Comments

The goal of this article is to introduce Malliavin Calculus for practition-
ers and to show one of its applications compared with classical techniques.
Other applications of Malliavin Calculus in Finance and other areas appear
frequently in specialized journals. Such are the cases of models for asym-
metric information (see Imkeller et al (2001) and the references therein).
The Clark-Ocone formula has lead to various applications in …nancial eco-
nomics where it has become a natural tool. There are also applications in
asymptotic statistics, see Gobet (2001).

Other extensions of Malliavin Calculus for random variables generated
by Lévy processes are still under study with partial results available in
Bichteller, Gravereaux and Jacod (1987), Picard (1996) and Privault (1998).

The extension of the Itô stochastic integral, which in our exposition leads
to the Skorohod integral, is an independent area of study which has seen
various extensions de…ned (most of these extensions are related) through
the last 30 years.

In this article we have dealt with the simulation of greeks for binary type
options. In the original article of Fournié et.al. (1999), the ibp formula is
applied to European type options after a proper localization argument. Lo-
calizations for greeks of binary type options appear in Kohatsu-Pettersson
(2002) where it is proven that these lead to e¤ective variance reduction.
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