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 Abstract: Current Monte Carlo pricing engines may face computational challenge for the 
Greeks, because of not only their time consumption but also their poor convergence when using 
a finite difference estimate with a brute force perturbation. The same story may apply to 
conditional expectation. In this short paper, following Fournié et al. (1999), we explain how to 
tackle this issue using Malliavin calculus to smoothen the payoff to estimate. We discuss the 
relationship with the likelihood ration method of Broadie and Glasserman (1996). We show on 
numerical results the efficiency of this method and discuss when it is appropriate or not to use 
it. We see how to apply this method to the Heston model. 

 

1. Introduction 
The growing emphasis on risk management issues as well as the development of more and more 
complicated financial products have urged to develop efficient techniques for the computation of price 
sensitivities with respect to model parameters. Moreover, the computation is not only done as the trader 
or book(s) level but also at the firm level, especially for the global computation of VAR and credit charge 
valuation, leading to raising concern about computational time. 
 
In practice, generic Monte Carlo pricing engines may face computational challenge for the Greeks of 
discontinuous payoffs options, because of not only their time consumption but also their poor 
convergence when using a finite difference estimate with a brute force perturbation. In addition to the 
standard error on the numerical computation of the expectation, the finite difference Monte Carlo method 
contains another error on the approximation of the derivative function by means of its finite difference. 
This may give some hard time to the generic engine. The same story applies to conditional expectations 
where many paths might not be relevant. 
 
In this short note, we discuss various methods to get fast convergence and show how these methods can 
apply to a generic Monte Carlo pricing engines as opposed to particular methods that would only spice up 
certain types of payoff but may not apply in a general framework. Mainly, we present a method based on 
Malliavin calculus that enables to smoothen the function to simulate, following ideas first established by 
Fournié et al. (1999). We also explain how to use various homogeneity properties in order to get the 
different Greeks. This allows us to only compute a few of the Greeks. Last but not least, we show that the 
integration by parts can also be applied to conditional expectation. We give in the appendix section an 
introduction to the Malliavin calculus. 

2. Fast Greeks Computation 

Introduction to Malliavin weights 
We will fist see how to have smart Monte Carlo that compute fast Greeks. We will always assume that 
the functions are smooth enough to be able to perform the different computation referring to Benhamou 
(2000b) (2000c) and Fournié et al. (2001) for the technical assumptions required (mainly uniform 
ellipticity of the volatility operator). When using finite difference approximation for the Greeks, bumping 
the price and taking the sensitivity, one makes two errors: one on the numerical computation of the 
expectation via the Monte Carlo as for any simulations, and another one on the approximation of the 
derivative function by means of its finite difference. As of the gamma, this leads for example to 

( ) ( ) ( )
ε

εε
2

2 −+−+ xFxFxF
, which means that one approximate the second order derivative of the 

payoff function by ( ) ( ) ( ) ( )
ε

εε
2

2'' −+−+≈ xfxfxfxf . This is obviously very inefficient for 
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very discontinuous payoff like for binary, range accrual, barrier and other type of digital options for 
example. To overcome this inefficiency, Broadie and Glasserman (96) suggested using the likelihood 
ratio method. If we are interested in the sensitivity of the option price with respect to some parameter θ , 
and if we know explicitly the density function of the underlying variable and can expressed it in terms of 
the parameterθ  by ( )θ,xp , we can compute the Greek by: 

( )[ ] ( ) ( ) ( ) ( )






∂
∂=

∂
∂=

∂
∂

∫ θ
θ

θ
θθ

,ln, xpxfEdxxdpxfXfE T  (2.1) 

The interest of this approach was to come up with an efficient way of avoiding the differentiation of the 
payoff function. In fact, rewriting it more formally, the Greeks can be computed as the expectation of the 
original payoff times a weight: 

( )[ ]weightXfEGreek T=     (2.2) 
However, this method was quite restrictive since one needs to know explicitly the density function. This 
is precisely where M. calculus could provide a solution. In an inspiring article, Fournié et al. (1999) 
proved that any Greek could be expressed as an expectation of the payoff time a weight. They show that 
this weight could be expressed in terms of the Malliavin derivative (in the following M. derivative), 
without knowing explicitly the density function. Benhamou (2000b) (2000c) and Fournié et al. (2001) 
examined the different possible weights, mentioning that they exist an infinity of weighting function and 
proved that the weight of minimal total variance is precisely the one given by the likelihood ratio method. 
Benhamou (2000b) (2000c) also introduced the weighting function generator and showed that any weight 
could also be expressed as the Skorohod integral of the weighting function generator. We will now follow 
the presentation of Benhamou (2000c) for the delta (extensions to the other Greeks are easy and can be 
found in Benhamou (2000c)) 
 

We will denote in the following by TX the underlying, TT X
x

Y
∂
∂=  its first variation process 

(derivatives of TX  with respect to its initial condition x and ( ).∂  the Skorohod integral2. We want to 
take the derivative of the price with respect to the underlying initial condition: 

( )[ ] ( ) ( ) 
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∂
∂=
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tTTTT YXf
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Xf
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  (2.3) 

If this can be written as the expectation of the payoff function times a weight (expressed as a Skorohod 
integral ( )u∂ ). We have on the other hand 

( ) ( )[ ] ( )[ ] ( ) 






∂
∂==∂ ∫∫ udsXDXf
x

EudsXfDEuXfE TsTTsT   

 ( ) ( ) { } 






∂
∂= ∫ <

− udsYYXsXf
x

E TsstsT 1, 1σ    (2.4) 

where we have successfully used the integration by part formula (A.3), the chain rule (A.2) and the 
expression of the M. derivative with respect to its first variation process (A.6). Expressions (2.3) and (2.4) 

are equal if and only if ( ) ( ) ( ) { } 






∂
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∂
∂

∫ <
− udsYYXsXf

x
EYXf

x
E TsstsTtT 1, 1σ  for any 

function f . 

A trivial solution is given by ( )∫
−= udsYXs ss

1,1 σ  or  ( )TXs
Yu

s

s

,σ
= .  (2.5) 

Similarly, we can apply this for the gamma. We provide in table 1 a summary of the conditions required 
for the delta and gamma for European option. Extension to other payoff type can be found in Fournié et al 
(1999) and Benhamou (2000a) (Asian options) and in Gobet and Kohatsu Higa (2001) (barrier and 
lookback options). The definition of other Greeks, in particular the vega for stochastic volatility models, 
is very specific to the model. This is why we limit our study in this short note to the delta and gamma 
(more relationships to specific models can be found in Benhamou (2000b)). 

 
2 see the appendix for an introduction to Malliavin calculus. 
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Greek Weight 
Delta 
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Table 1: European Weight for a general diffusion. 
 
Let us say in passing that these relationships are very general and assume that the underlying is modeled 
by a jump diffusion model with the jump component independent from the Brownian motion. 

( ) ( ) ( ) ttttt dJtdWXtdtXtbdXX λσ ++= ,,:    (2.8) 
The jump part can be of course null, leading to standard SDE, and the volatility can be either 
deterministic or stochastic. It is then easy to apply this to specific model (table 2), using the fact that: 

( ) ( ) ( ) ( )∫∫ ∫∫ −









=

su uu
uvu duufdWufdWvfdWuf

,

2

2

    (2.9) 

Let us remind that Heston model is described by a stochastic volatility model given by 

( ) 2221 , ttttttttt dWvdtddWXdtrXdX σσθλσσ +−=+=  (2.10) 

with [ ]21
tt dWdWEdt =ρ     (2.11) 

The conditions of table 1 can be applied to many models. We have given in table 2 the explicit form of 
the weights for the Black Scholes and Heston model. 
 
Greek Black Scholes Heston 
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Table 2: European Weight for the Black Scholes and Heston model. 

Characteristics of Malliavin weights 
Let us now summarise some important results about Malliavin weights (keeping in mind for the design of 
a general Monte Carlo engine): 
♦  All Greeks can be written as the expected value of the payoff times a weight function. The weight 

functions are independent from the payoff function. This has two implications. 
� First, the Malliavin method will comparatively (to finite difference) increased its efficiency for 

discontinuous payoff options. As a rule of thumb, the Malliavin method is appropriate for option 
for which the mean-square convergence of a shifted option ( )ε+xP  to the normal one ( )xP  
is linear in ε  This is the case of any option with a payoff expressed as a probability that a 
certain event occurs conditionally to the underlying level at a certain time (case of any binary 
and corridor option). For a general pricing engine, using certain (numerical) criteria of 
smoothness, we shall be able to branch on the appropriate method. Because it is in a sense 
independent from the payoff function, the general implementation is simpler that the one of 
variance reduction technique that only apply to very specific payoff (like the use of control 
variate). 

� Second, no extra computation is required for other payoff function as long as the payoff is a 
function of the same points of the Brownian trajectory. This can be cached in memory to make it 
efficient. 

♦  There is an infinity of solutions for the generator function. However, the optimal weighting function 
is the one which is measurable with respect to the payoff variables. This means in practice that the 
weight functions will be expressed with the same points of the Brownian motion trajectory as the 
option payoff, therefore requiring no extra points computation.  
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♦  The weighting function smoothens the function to simulate (as the payoff function does not require to 

be numerically differentiated) but introduces some extra noise. It smoothens twice the payoff 
function in the case of the gamma as it reduces a second order differentiation to no differentiation, 
leading to high efficiency for the simulation of the gamma (see figure1 for the comparative efficiency 
of the Malliavin method in the case of the gamma of a corridor option). It introduces a lot of noise in 
the simulation as the weighting function explodes for small maturities, imposing some criteria for 
critical maturities. 

 
♦  For homogeneous model, like Black Scholes or Heston, we can derive some proportionality rules 

(see for example Reiss and Wystupe (2001)). In particular, there exists some relationship between the 
vega and the gamma in the Black Scholes model. This has two implications: the simulation of 
gamma and vega can be done at once and the performance of the vega computations is very similar to 
the one of the gamma. This can also be understood from the meaning of the vega. The vega in the 
case of Black Scholes is a compound differentiation. The smoothing introduced by Malliavin method 
is therefore twice for the vega. Using the homogeneity property of the Greeks makes sure that their 
computation is consistent and non arbitrageable. 

 
♦  The Malliavin method leads to weighting functions which are roughly (polynomial) functions of the 

Brownian motion. The variance of the weighting function increases for high values of the Brownian 
motion. This implies that if the payoff function is very small for high value of the Brownian motion, 
the variance is going to be low. This indicates that Malliavin formulae are more efficient for put than 
call options. Two remarks should be made. First, it is more appropriate to use the put-call parity and 
therefore to calculate Greeks only for a put, second, one should use a localization of the Malliavin 
weight only at the discontinuity of the payoff and elsewhere avoid introducing extra noise with the 
Malliavin weight. 
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Figure 1: Efficiency of the Malliavin weighted scheme for the computation of the gamma of a Corridor 
option. The parameters of this option are: 0S =100, r=5%, σ  =15%, T=1year, minS =95, maxS  =105 

 
In order to illustrate these remarks, we show two simulations done for the gamma of a European corridor 
and call option in a Black Scholes model. Figure 1 is a school case of an appropriate use of Malliavin 
method. It shows the gamma of a corridor option defined as an option to pay 1 if the underlying at 
maturity is between minS  and maxS . The payoff of a corridor option has two discontinuities, the mean 
square convergence of the bumped price is only linear in ε and the Malliavin method smoothens twice 
the Greek to simulate in the case of the gamma. Figure 2 is an example of inappropriate use of Malliavin 
method. The mean square convergence of the bumped price is quadratic, the payoff is not discontinuous, 
it is only its derivative function that has only one discontinuity at the strike. The Malliavin method 
introduces extra noise in the simulation with the weight to simulate. The call put parity has not be used, 
therefore creating high variance for high values of the Brownian motion. 
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Figure 2: Efficiency of the Malliavin weighted scheme for the computation of the delta of a call option. 

The parameters are similar to the corridor option with a strike of 100. 

Localisation of Malliavin weights 
What we have shown so-far is that any Greeks could be written as ( )[ ]weightXfEGreek T= . This 
formula holds for any payoff. This formula will help to smoothen the function to simulate (as the payoff 
function does not require to be numerically differentiated) but the weight will introduce some extra noise. 
A good way of limiting this extra noise is to “localise” the integration by parts. Let us explain on a simple 
example. If the payoff function has some discontinuity at a strike K, we can rewrite it as  

( ) ( ) ( ) ( )( ) ( )KXfXXKXfKXf TTTTT ,1,, φφ −+=    (2.16) 

where ( )tXφ  is a smooth localisation function (say Lipschitz) that has its support in [ ]αα +− KK , . 
We can now process to the integration by parts and come up with a formula of the type 

( ) ( )[ ] ( ) ( )( )[ ]TTTT XKXfE
x

weightXXfEGreek φφ −
∂
∂+= 1,   (2.17) 

where the second part can be computed via an appropriate finite difference scheme that introduces no 
extra noise or even better, via an explicit differentiation of the payoff. Let us also mention that the 
localisation formula can be also done by taking a smoother function that “approaches” in a sense the 
payoff function. If the payoff is very discontinuous, we can always find a function that is smoother and is 
a good approximation of the payoff. In the case of a digital option, a smooth approximation 

( )TXαφ could be a function that is piecewise linear, equal to 0 for. α−≤ KX T and 1 for 

α+≥ KXT  and linear in  between. The payoff of an up digital, { }KXT ≥1 can be rewritten in terms of 

the smooth function ( ) ( ) ( ) ( )TaTTT XXfXXf φφα −+= . In this expression, only the second terms 

( ) ( )TaT XXf φ−  is now discontinuous and will require a smoothen expression expressed in terms of 
the Malliavin weight. Obviously, this can be repeated many times and we can for instance expressed our 
discontinuous function in terms of smooth polynomial approximation functions. We shall not pursue here 
in that direction even if we believe that the efficient approximation of the discontinuous function will be 
an interesting area of research in the coming years. 

3. Conditional expectations and anticipative Monte Carlo 

Malliavin weights 
This section tackles what is believed to be one of the most promising application of Malliavin calculus to 
finance, namely the transformation of conditional expectation in non conditional ones and the use of 
Malliavin calculus for anticipative Monte Carlo. It is well known that conditional expectations offer the 
computational challenge to require a very high number of paths since “almost all” paths may miss the 
target event involved in the conditional expectations. In fact, at least when written formally, this problem 
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is very similar to the one above (the computation of the Greeks). A conditional expectation can be 
formally represented as the ratio of two conditional expectation. We will here follow the presentation of 
Fournié et al. (2001). Let us assume that the condition is expressed in terms of a constraint of the type 

( ) 0=TXG , of probability ( )( )[ ]00 =∂ TXGE  where 0∂  represents the Dirac function in zero. We 
have the symbolic calculation 

( ) ( )[ ] ( ) ( )( )[ ]
( )( )[ ]T

TT
TT XGE

XGXFEXGXFE
0

00|
∂

∂
==    (3.1) 

but of course the Dirac function is the derivative function of the Heavyside function ( ) { } kxH x += ≥01 , 
and using similar computation as in section 2, we can immediately see that we can integrate this by parts. 
Let us assume that there exists a weight expressed as a Skorohod integral ( )u∂  so that we have 

( ) ( )( )[ ] ( ) ( )( ) ( )[ ]uXGHXFEXGXFE TTTT ∂=∂ 0    (3.2) 
Using successively the integration by parts formula (A.3) and the rule for the M. derivatives of a product 
(A.8) and the chain rule (A.2), we get 

( ) ( )( ) ( )[ ] ( ) ( )( )( )[ ]∫=∂ dtuXGHXFDEuXGHXFE tTTtTT         (3.3) 

( ) ( )( ) ( )[ ] ( ) ( )( )[ ] ( ) ( )( ) ( )[ ]∫∫ ∂+=∂ dtuXGDXGXFEdtuXGHXDXFEuXGHXFE tTtTTtTTtTTT 0'
(3.4) 

If we want this to be true for any payoff function, we see that in fact the equation (3.2) cannot hold 
directly. In fact, we can rather remove the first term of the integration by part and impose the second term 
to be equal to ( ) ( )( )[ ]TT XGXFE 0∂ . A sufficient condition is 

( )∫ =1dtuXGD tTt      (3.5) 

We then have the following very important way of computing conditional expectation. If we can find a 
weighting function generator u  that satisfies the condition (3.5), we have immediately the obvious result 

( ) ( )[ ]
( ) ( )[ ] ( ) ( ) ( )[ ]{ }

( ) ( )( )[ ]uXGHE

dtuXDXGHXFuXGHXFE
XGXFE

T

tTtTTTT
TT ∂

−∂
== ∫'

0|   (3.6) 

Moreover, if we can find an orthogonal weight satisfying both (3.5) and the following orthogonality 

condition              ( )[ ] 0=∫ dtuXFDE tTt         (3.7) 

We then have that the conditional expectation is even simpler and equal to 

( ) ( )[ ] ( ) ( )[ ] ( ){ }
( ) ( )( )[ ]uXGHE

uXGHXFEXGXFE
T

TT
TT ∂

∂
== 0|        (3.8) 

Obviously, imposing the two conditions (3.5) and (3.7) may impose some restrictions on the two 
stochastic variables GF ,  and may not hold for any function GF , . This part is the subject of a small 
digression in the section below called “Functional dependence and Malliavin calculus“, just after the 
numerical example. However, before embarking into a numerical example, we will see the explicit 
expression of the weight when we know the density function. This follows the same line as the 
comparison of the likelihood ration method and the M. weights for the Greeks.  

Weights for explicit densities 
Interestingly, when we know the density function, we can express explicitly the weight with respect to the 
density. In fact, there is two ways of doing it: 
♦  If the function ( )TXF  is smooth, we may want to use it and shift the derivation operator on this 

function to inherit a formula with some smoothness. This integration by part is formally equal to 

( ) ( )( )[ ] ( ) ( )( ) ( ) ( ) ( )( ) ( )( )∫∫ ∂
∂−=∂=∂ dxxGHxpxF
x

dxxpxGxFXGXFE TT 00      (3.9) 

( ) ( )( )[ ] ( ) ( )[ ] ( )( ) ( ) ( ) ( ) ( )( )[ ]∫ =








∂
∂−=∂ πTTTT XGHXFEdxxpxFxGHxFxp
x

XGXFE ln0

(3.10) 

 with the weight    ( ) ( )[ ]TT XFXp
x

ln
∂
∂−=π       (3.11) 
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♦  If the function ( )TXF  is not smooth at all but independent from the function ( )TXG  we may 
want to split the expression in independent terms. 

( ) ( )( )[ ] ( ) ( ) ( ) ( ) ( )( ) ( )∫∫ ∂
∂−=∂=∂ dxyxp
y

xGHxFdxyxpyxFXGXFE TT ,,00    (3.12) 

( ) ( )( )[ ] ( ) ( )( ) ( ) ( ) ( ) ( )( )[ ]πTTTT XGHXFEdxyxpyxqxGHxFXGXFE =−=∂ ∫ ,,0    (3.13) 

with the weight    ( )TTt YXp
y

,ln
∂
∂−=π        (3.14) 

Numerical experiments and implementation rules 
Conditional expectations are of great importance for calibration. For example, we may need to compute 
the overall volatility knowing the final value. Conditional expectations shall also change the 
understanding of Monte Carlo method. Usually, Monte Carlo methods are thought to be forward looking3. 
One gives an initial point and diffuses the underlying. Standing on the other extreme, PDEs methods are 
thought to be backward looking. One gives a final point and back propagates. This allows computing 
American and Bermudean option with the second method while path dependent products for the first one. 
But if one knows how to express any conditional expectation where the condition is that the underlying 
price is equal to a given value at a given time, one can also do some backward looking computation with 
Monte Carlo. This shows that the overall accepted separation between Monte Carlo and PDEs methods is 
too simplistic and misses some recent development (see Fournié et al (2001), Lions and Régnier (2001) 
for a deeper discussion on this). 
 
Let us take again the Heston model described by (2.10) and (2.11). We are interested in computing the 
conditional volatility 

[ ]SSE TT =|2σ      (3.15) 

We have in this case that the underlying is a two dimensional process with ( )ttt SX σ,= , 

( ) 2
TtXF σ= , while ( ) SSXG TT −=  

 
In order to simplify the computation of the Skorohod integral, we will assume zero correlation between 
the underlying and its stochastic volatility. We can easily apply the calculation of the previous paragraph. 

First, because of the independence of 1
tW  and 2

tW , we have that 0=TsD σ  and therefore 

( ) 0=Ts XFD , so that the orthogonality condition (2.7) holds for any weight. Moreover, using the 
relationship between the M. derivatives and its first variation process (A.6), we get that the condition 
(3.5) is equal to 

1
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where we have used the rule for the Skorohod integral of a product (A.5), with 
t

u
σΤ

= 1
and 

TS
F 1= . 

We have finally the following formula 
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σ

σ
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σ   (3.17) 

The numerical experiment has been to compute the conditional expectation given by formula (3.17) for 
1000 =S , %5=r , %1=λ %300 =σ , %25.2=θ , %5=v . We have displayed for T =0 to 6 

 
3 Even if there has been some recent development for American Monte Carlo 
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months and for value of the spot between minS =70. Obviously, we get the characteristic U shape of 
Heston model with zero correlation. 
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Figure 3: Example of Conditional expectation computed via Malliavin calculus. In this case,  

We computed in a Heston model the conditional volatility [ ]SSE TT =|2σ  

Functional dependence and Malliavin calculus 
We have seen in the previous section that the colinearity between the two functions, the one to estimate 

( )TXF  and the one of the condition ( )TXG  plays a role in the weight. This was obvious when 
knowing explicitly the density, as we had to split the integration by parts into two cases. In fact, when 
looking at the two relationships (3.5) and (3.7), we could already realize that they could not hold both if 
the two functions FDt  and GDt  were proportional. This leads us to look at the notion of dependence 

between the two M. derivatives of ( )TXF and ( )TXG . We believe that the concept of functional 
dependence using M. derivative is very general and could be useful in finance to extend notion of non-
linear correlation for any stochastic variables GF , . This could have certainly some influence over non-
linear VAR approach. We will just briefly introduce the subject as this is slightly out of the scope of this 
short note. 
We call functional dependence the function  

( )
















=
∫∫

∫
dtGDdtFD

GdtFDD
essGFC

tt

tt

22

2

sup,
ω

   (3.18) 

Obviously, we have ( ) 1,0 ≤≤ GFC  (the notion of sign for functional dependence is meaningless 

since the orientation of the vectorial functional space has no sense). ( ) 0, =GFC  means that the two M. 
derivatives are orthogonal, which can be shown to be equivalent to the independence of GF , . 
Intuitively, the orthogonality of the stochastic gradient of the two functions means that their evolution is 
unrelated, or equivalently that these two variables evolve independently. ( ) 1, =GFC  is equivalent to 
the two M. derivatives being co-linear. One can show that if F  is G -measurable, the two M. derivatives 
will be co-linear. In a sense the M. derivatives functional dependence measure how a given variable F  is 
G -measurable and vice versa. 
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4. Conclusion 
In this paper, we have shown that there exist various tricks to enhance the performance of general pricing 
Monte Carlo. Using appropriate expression of the expectation to simulate is crucial for fast and accurate 
result. We have explained how to use Malliavin calculus to explicitly do some integration by parts when 
not knowing the density function of the underlying diffusion. We have applied this to two main 
applications: computation of the Greeks and of conditional expectations. 
We believe that this is a very promising area of research and will progressively change the understanding 
of Monte Carlo methods as it paves the path for very generic forward/backward Monte Carlo, following 
the recent trend of improvement of American Monte Carlo. 

Appendix: a primer on Malliavin calculus 
The objective of this short primer is to give an intuitive presentation of Malliavin calculus. For a more 
rigorous and detailed explanation, we refer the reader to the exhaustive book of Nualart (1995). 
Malliavin calculus is a synonym of calculus of variation of stochastic processes. Even if its original 
motivation was to provide a probabilistic proof of the existence and smoothness of solutions of particular 
PDEs (the of Hormander's sum of squares theorem), M. calculus has turned out to be a very powerful tool 
for giving other representation of stochastic processes, allowing to prove certain properties of stochastic 
processes (especially smoothness conditions).  Because the Brownian motion is not differentiable in the 
traditional sense, M. calculus defines a derivative, using a local perturbation on the Brownian motion and 
more generally on a martingale process. It measures in a sense the impact of bumping locally the 
Brownian path. Let us take a function of the Brownian motion ( ) 0≥ttW , ( )tWFtF →: . Let us bump 
the Brownian motion only locally at a time s. In mathematical terms, the perturbed Brownian motion is 
the superposition of the original Brownian motion and a Kronecker function of total measure ε : 

stW εδ+ , where ( ) { }uss u ==1δ .  The M. derivative is defined intuitively as 

( ) ( )
ε

εδ
ε

tst
s

WFWFtFD −+
→

→0
lim:    (A.1) 

where the limit can usually be interpreted as a.s. This trivially leads to the M. derivative of a Brownian 
motion given by the indicative function: { }tstsWD ≤=1  
The interest of the M. calculus is to satisfy usual derivation rules: 
•  Chain rule for compound function, ( ) ( )( )tt WFWFGt 21 ,: →Φ  

∑ ∂
∂=Φ

i
is

i
s FDG

x
D .     (A.2) 

•  Integration by parts, (or duality between the M. derivative and the Skorohod integral).  

[ ] ( )[ ]uFEFudsDE s ∂=∫     (A.3) 

where ( )u∂  is called the Skorohod integral. This relation is the cornerstone formula as it enables to 
smoothen the function inside the expectation. Intuitively, the Skorohod integral could be compared to the 

divergence operator4 (up to the minus sign) as for deterministic function on ( )nnR λ, , we have 

( )∫∫ −=∇
nn

n

R

n

R

n
R

ddivufduf λλ, . 

•  Skorohod integration: for adapted processes, the Skorohod integral coincides with the Ito integral 

( ) ∫=∂ tudWu     (A.4) 

 Moreover, the Skorohod integral satisfies some interesting properties 

( ) ( ) ∫−∂=∂ FudtDuFFu t     (A.5) 

•  M. derivatives of a jump-diffusion: Let ( ) 0≥ttX  defined by its jump-diffusion equation: 

 ( ) ( ) ( ) ttttt dJtdWXtdtXtbdXX λσ ++= ,,:  with initial condition xX =0  

 
4 Some authors refer to the Skorohod integral as the stochastic divergence operator. 



Smart Monte Carlo page 11 

And let us define its first variation process (also called the tangential process) ( ) 0≥ttY  defined as 

tt X
x

Y
∂
∂= , obviously 10 =Y  and 

( ) ( ) tttttt dWYXt
x

dtYXtb
x

dYY ,,: σ
∂
∂+

∂
∂=     

The M. Derivatives of ( ) 0≥ttX  is then given by 

( ) { }tsststs YYXsXD ≤
−= 1, 1σ     (A.6) 

Let us conclude by saying in passing that the M. derivative satisfies standard rule of derivation, namely 
for a product, we have  ( ) GDFGFDFGD ttt .. +=        (A.7) 
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