5 research outputs found

    Using polyhedral models to automatically sketch idealized geometry for structural analysis

    Get PDF
    Simplification of polyhedral models, which may incorporate large numbers of faces and nodes, is often required to reduce their amount of data, to allow their efficient manipulation, and to speed up computation. Such a simplification process must be adapted to the use of the resulting polyhedral model. Several applications require simplified shapes which have the same topology as the original model (e.g. reverse engineering, medical applications, etc.). Nevertheless, in the fields of structural analysis and computer visualization, for example, several adaptations and idealizations of the initial geometry are often necessary. To this end, within this paper a new approach is proposed to simplify an initial manifold or non-manifold polyhedral model with respect to bounded errors specified by the user, or set up, for example, from a preliminary F.E. analysis. The topological changes which may occur during a simplification because of the bounded error (or tolerance) values specified are performed using specific curvature and topological criteria and operators. Moreover, topological changes, whether or not they kept the manifold of the object, are managed simultaneously with the geometric operations of the simplification process

    Using polyhedral models to automatically sketch idealized geometry for structural analysis

    Get PDF
    Simplification of polyhedral models, which may incorporate large numbers of faces and nodes, is often required to reduce their amount of data, to allow their efficient manipulation, and to speed up computation. Such a simplification process must be adapted to the use of the resulting polyhedral model. Several applications require simplified shapes which have the same topology as the original model (e.g. reverse engineering, medical applications, etc.). Nevertheless, in the fields of structural analysis and computer visualization, for example, several adaptations and idealizations of the initial geometry are often necessary. To this end, within this paper a new approach is proposed to simplify an initial manifold or non-manifold polyhedral model with respect to bounded errors specified by the user, or set up, for example, from a preliminary F.E. analysis. The topological changes which may occur during a simplification because of the bounded error (or tolerance) values specified are performed using specific curvature and topological criteria and operators. Moreover, topological changes, whether or not they kept the manifold of the object, are managed simultaneously with the geometric operations of the simplification process

    Efficient computation of discrete Voronoi diagram and homotopy-preserving simplified medial axis of a 3d polyhedron

    Get PDF
    The Voronoi diagram is a fundamental geometric data structure and has been well studied in computational geometry and related areas. A Voronoi diagram defined using the Euclidean distance metric is also closely related to the Blum medial axis, a well known skeletal representation. Voronoi diagrams and medial axes have been shown useful for many 3D computations and operations, including proximity queries, motion planning, mesh generation, finite element analysis, and shape analysis. However, their application to complex 3D polyhedral and deformable models has been limited. This is due to the difficulty of computing exact Voronoi diagrams in an efficient and reliable manner. In this dissertation, we bridge this gap by presenting efficient algorithms to compute discrete Voronoi diagrams and simplified medial axes of 3D polyhedral models with geometric and topological guarantees. We apply these algorithms to complex 3D models and use them to perform interactive proximity queries, motion planning and skeletal computations. We present three new results. First, we describe an algorithm to compute 3D distance fields of geometric models by using a linear factorization of Euclidean distance vectors. This formulation maps directly to the linearly interpolating graphics rasterization hardware and enables us to compute distance fields of complex 3D models at interactive rates. We also use clamping and culling algorithms based on properties of Voronoi diagrams to accelerate this computation. We introduce surface distance maps, which are a compact distance vector field representation based on a mesh parameterization of triangulated two-manifolds, and use them to perform proximity computations. Our second main result is an adaptive sampling algorithm to compute an approximate Voronoi diagram that is homotopy equivalent to the exact Voronoi diagram and preserves topological features. We use this algorithm to compute a homotopy-preserving simplified medial axis of complex 3D models. Our third result is a unified approach to perform different proximity queries among multiple deformable models using second order discrete Voronoi diagrams. We introduce a new query called N-body distance query and show that different proximity queries, including collision detection, separation distance and penetration depth can be performed based on Nbody distance query. We compute the second order discrete Voronoi diagram using graphics hardware and use distance bounds to overcome the sampling errors and perform conservative computations. We have applied these queries to various deformable simulations and observed up to an order of magnitude improvement over prior algorithms

    Skeletal representations of orthogonal shapes

    Get PDF
    Skeletal representations are important shape descriptors which encode topological and geometrical properties of shapes and reduce their dimension. Skeletons are used in several fields of science and attract the attention of many researchers. In the biocad field, the analysis of structural properties such as porosity of biomaterials requires the previous computation of a skeleton. As the size of three-dimensional images become larger, efficient and robust algorithms that extract simple skeletal structures are required. The most popular and prominent skeletal representation is the medial axis, defined as the shape points which have at least two closest points on the shape boundary. Unfortunately, the medial axis is highly sensitive to noise and perturbations of the shape boundary. That is, a small change of the shape boundary may involve a considerable change of its medial axis. Moreover, the exact computation of the medial axis is only possible for a few classes of shapes. For example, the medial axis of polyhedra is composed of non planar surfaces, and its accurate and robust computation is difficult. These problems led to the emergence of approximate medial axis representations. There exists two main approximation methods: the shape is approximated with another shape class or the Euclidean metric is approximated with another metric. The main contribution of this thesis is the combination of a specific shape and metric simplification. The input shape is approximated with an orthogonal shape, which are polygons or polyhedra enclosed by axis-aligned edges or faces, respectively. In the same vein, the Euclidean metric is replaced by the L infinity or Chebyshev metric. Despite the simpler structure of orthogonal shapes, there are few works on skeletal representations applied to orthogonal shapes. Much of the efforts have been devoted to binary images and volumes, which are a subset of orthogonal shapes. Two new skeletal representations based on this paradigm are introduced: the cube skeleton and the scale cube skeleton. The cube skeleton is shown to be composed of straight line segments or planar faces and to be homotopical equivalent to the input shape. The scale cube skeleton is based upon the cube skeleton, and introduces a family of skeletons that are more stable to shape noise and perturbations. In addition, the necessary algorithms to compute the cube skeleton of polygons and polyhedra and the scale cube skeleton of polygons are presented. Several experimental results confirm the efficiency, robustness and practical use of all the presented methods

    A novel geometry based approach for casting process optimisation.

    Get PDF
    The work presented in this thesis constitutes the main body of research carried out to develop a new technique for solidification simulation by using the Medial Axis Transformation (MAT) technique in combination with other geometric reasoning and numerical methods. The aspects of casting solidification researched include a review of existing geometric reasoning techniques and employability of MAT in combination with other methods. In the first phase of research, MAT was used to present a one-dimensional interpolation scheme that provided quick results compared to the numerical methods and evolving temperature solutions in time when compared to modulus method. The scheme successfully predicted the location of hotspots and provided an acceptable temperature distribution. Learning from, and owing to limitations posed by the interpolation scheme, a new innovative and hybrid technique was then proposed that for the first time unifies geometric and numerical methods, thereby inheriting their advantages and overcoming their respective limitations. The inscribed radius and other relevant geometric information were extracted from MAT. This was then combined with the Heuvers' Circle method. A new equation, based on Chvorinov's classic rule and modulus method, was derived that enabled the proposed technique to utilise the radius information of the casting to obtain effective interface boundary conditions for an optimal solution. The proposed method was then tested on a range of casting geometries, including those from the foundries. The problems arising from complexity of the medial axes were resolved by developing a sorting technique to select the most effective Heuvers' radii and a scaling framework was also developed to obtain realistic values. Finally the application of this technique to 3D castings was conceptualised and demonstrated through a case study. Thus an effective technique has been developed that not only retains the simplicity, ease of use, speed of the conventional geometric reasoning techniques but also the accuracy and sensitivity to material properties and boundary conditions offered by the numerical methods. The proposed method is capable of providing optimal solutions in two FE simulations
    corecore