7,399 research outputs found

    Contemporary Mathematical Approaches to Computability Theory

    Get PDF
    In this paper, I present an introduction to computability theory and adopt contemporary mathematical definitions of computable numbers and computable functions to prove important theorems in computability theory. I start by exploring the history of computability theory, as well as Turing Machines, undecidability, partial recursive functions, computable numbers, and computable real functions. I then prove important theorems in computability theory, such that the computable numbers form a field and that the computable real functions are continuous

    A Proof of the S-m-n theorem in Coq

    Get PDF
    This report describes the implementation of a mechanisation of the theory of computation in the Coq proof assistant which leads to a proof of the Smn theorem. This mechanisation is based on a model of computation similar to the partial recursive function model and includes the definition of a computable function, proofs of the computability of a number of functions and the definition of an effective coding from the set of partial recursive functions to natural numbers. This work forms part of a comparative study of the HOL and Coq proof assistants

    Algebraic Characterizations of Complexity-Theoretic Classes of Real Functions

    Get PDF
    Recursive analysis is the most classical approach to model and discuss computations over the reals. It is usually presented using Type 2 or higher order Turing machines. Recently, it has been shown that computability classes of functions computable in recursive analysis can also be defined (or characterized) in an algebraic machine independent way, without resorting to Turing machines. In particular nice connections between the class of computable functions (and some of its sub- and sup-classes) over the reals and algebraically defined (sub- and sup-) classes of R\R-recursive functions à la Moore 96 have been obtained. However, until now, this has been done only at the computability level, and not at the complexity level. In this paper we provide a framework that allows us to dive into the complexity level of functions over the reals. In particular we provide the first algebraic characterization of polynomial time computable functions over the reals. This framework opens the field of implicit complexity of functions over the reals, and also provide a new reading of some of the existing characterizations at the computability level

    Sub-computable Boundedness Randomness

    Full text link
    This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-L\"of tests, (2) Kolmogorov complexity, and (3) martingales. We show these notions can be equivalently defined with prefix-free Kolmogorov complexity. We prove that one direction of van Lambalgen's theorem holds for relative computability, but the other direction fails. We discuss statistical properties of these notions of randomness

    Formalizing Computability Theory via Partial Recursive Functions

    Get PDF
    We present an extension to the mathlib\mathtt{mathlib} library of the Lean theorem prover formalizing the foundations of computability theory. We use primitive recursive functions and partial recursive functions as the main objects of study, and we use a constructive encoding of partial functions such that they are executable when the programs in question provably halt. Main theorems include the construction of a universal partial recursive function and a proof of the undecidability of the halting problem. Type class inference provides a transparent way to supply G\"{o}del numberings where needed and encapsulate the encoding details.Comment: 16 pages, accepted to ITP 201

    Approximation systems for functions in topological and in metric spaces

    Full text link
    A notable feature of the TTE approach to computability is the representation of the argument values and the corresponding function values by means of infinitistic names. Two ways to eliminate the using of such names in certain cases are indicated in the paper. The first one is intended for the case of topological spaces with selected indexed denumerable bases. Suppose a partial function is given from one such space into another one whose selected base has a recursively enumerable index set, and suppose that the intersection of base open sets in the first space is computable in the sense of Weihrauch-Grubba. Then the ordinary TTE computability of the function is characterized by the existence of an appropriate recursively enumerable relation between indices of base sets containing the argument value and indices of base sets containing the corresponding function value.This result can be regarded as an improvement of a result of Korovina and Kudinov. The second way is applicable to metric spaces with selected indexed denumerable dense subsets. If a partial function is given from one such space into another one, then, under a semi-computability assumption concerning these spaces, the ordinary TTE computability of the function is characterized by the existence of an appropriate recursively enumerable set of quadruples. Any of them consists of an index of element from the selected dense subset in the first space, a natural number encoding a rational bound for the distance between this element and the argument value, an index of element from the selected dense subset in the second space and a natural number encoding a rational bound for the distance between this element and the function value. One of the examples in the paper indicates that the computability of real functions can be characterized in a simple way by using the first way of elimination of the infinitistic names.Comment: 21 pages, published in Logical Methods in Computer Scienc

    Computability of probability measures and Martin-Lof randomness over metric spaces

    Get PDF
    In this paper we investigate algorithmic randomness on more general spaces than the Cantor space, namely computable metric spaces. To do this, we first develop a unified framework allowing computations with probability measures. We show that any computable metric space with a computable probability measure is isomorphic to the Cantor space in a computable and measure-theoretic sense. We show that any computable metric space admits a universal uniform randomness test (without further assumption).Comment: 29 page
    • …
    corecore