

Contemporary Mathematical Approaches to Computability Theory

Luis Guilherme Mazzali

Undergraduate Student Research Internship

Western University

August 22, 2021

1

In this paper, I present an introduction to computability theory and adopt contemporary

mathematical definitions of computable numbers and functions to prove important theorems in

computability theory. I start by outlining the history of computability theory, followed by a brief

introduction to Turing Machines. These discussions will hopefully equip the reader with the

intuition associated with the concepts of computable numbers and computable functions. I then

present the partial recursive functions, which constitute a mathematical framework for the

computable functions. This will permit a discussion on computable numbers. Finally, I prove

important theorems in computable theory using the techniques and definitions presented in the

first three sections. This is intended to provide a motivation for computable analysis – a branch

of mathematical analysis based on computability theory that focuses exclusively on computable

objects.

The Entscheidungsproblem

 In the 1920’s, mathematician David Hilbert was interested in finding an effective

procedure (an algorithm) through which the validity – truth or falsehood – of any mathematical

statement could be determined. That is, he believed that mathematics could be reduced to a finite

list of axioms and that it was possible to find a procedure that, within a finite number of steps,

could decide whether any given mathematical statement was a logical consequence of the

axioms; that is, provable within the axiomatized mathematical language. He named this

hypothesis the Entscheidungsproblem (decision problem). According to the Stanford

Encyclopedia of Philosophy,

A positive answer to the Entscheidungsproblem could be interpreted as showing that it is

possible to mechanize the search for proofs in mathematics in the sense of allowing us to

algorithmically determine if a formula expressing an open question (e.g. the Riemann

Hypothesis) is a logical consequence of a suitably powerful finitely axiomatized theory

(e.g., Gödel-Bernays set theory)1.

 The hypothesis suffered its first blow in 1931, when mathematician Kurt Gödel posed his

incompleteness theorems. In summary, he concluded that a complete axiomatization of

mathematics was impossible; that is, that “there is no reasonable list of axioms from which we

can prove exactly all true statements of number theory”2. A few years later, mathematicians

Alonzo Church and Alan Turing, following Gödel’s results, independently developed theories

whose methods could be used to show that the Entscheidungsproblem was unsolvable.

1 Stanford Encyclopedia of Philosophy, “Recursive Functions”, Stanford University, accessed July 1, 2021,
https://plato.stanford.edu/entries/recursive-functions/.
2 Stanford Encyclopedia of Philosophy, “Computability and Complexity”, Stanford University, accessed July 1, 2021,
https://plato.stanford.edu/entries/computability/.

https://plato.stanford.edu/entries/recursive-functions/
https://plato.stanford.edu/entries/computability/

2

Their methods – the Turing Machine by Turing and λ-calculus by Church –, like many

that emerged during their era3, defined philosophical and mathematically rigorous notions of

calculability that encapsulated the full power of the human capacity to solve mathematical

problems by hand without the use of ingenuity4. Following the “Church-Turing Thesis”5, such

notions are now known as effective methods in logic, computer science, and mathematics. The

thesis implies that they are equivalent and can be used to define the same set of effectively

calculable, or computable, objects. Formally, a method is so-called effective if:

1. “it is set out in terms of a finite number of exact instructions (each instruction being

expressed by means of a finite number of symbols);

2. it will, if carried out without error, produce the desired result in a finite number of steps;

3. it can (in practice or in principle) be carried out by a human being unaided by any

machinery except paper and pencil;

4. it demands no insight, intuition, or ingenuity, on the part of the human being carrying out

the method.”6

Turing used his conceptual device, the Turing Machine, to show that the

Entscheidungsproblem was not solvable by an effective method. This means that there is no

procedure that, relying solely on the rules of logic and within a finite number of steps, can

determine whether any mathematical statement is a logical consequence of a finite list of axioms;

thus, Hilbert’s conquest to prove the completeness of mathematics was proved impossible, and a

new notion of undecidable (which cannot be solved by an effective method) problems emerged.

Turing Machines and Undecidability

 In this section, the most basic version of the Turing Machine, which is sufficient for our

purposes, is outlined. The purpose is for the reader to understand how mechanical calculations

done by humans can be replicated by automatic devices; that is, how algorithms can be

constructed to solve certain mathematical problems. A key takeaway is that, as mentioned in the

3 Such as Gödel’s Recursive Functions, Kleene’s Formal Systems, Markov’s Markov Algorithms, and Post’s Post
Machines. Obtained from Stanford Encyclopedia of Philosophy, “Computability and Complexity”, Stanford
University, accessed August 5, 2021, https://plato.stanford.edu/entries/computability/.
4 Before the emergence of modern computers, the word “computer” referred to people, mostly women, who
carried out laborious mathematical calculations by hand. Their work, often glossed over in accounts of the advent
of the digital era, was essential to the early days of astronomy and spaceflight, for example.
5 The thesis is based on both Turing’s Thesis and Church’s Thesis. The former states that “[Turing Machines] can do
anything that could be described as “rule of thumb” or “purely mathematical”;” the latter, that “A function of
positive integers is effectively calculable only if λ- definable (or, equivalently, recursive).” Church proved that the
set of functions computable by Turing Machines corresponds exactly to the set of λ- definable functions. Therefore,
a method is deemed effective by the Church-Turing Thesis if it can be shown, for example, that it has the full
computational power of a universal Turing Machine.
6 Stanford Encyclopedia of Philosophy, “The Church-Turing Thesis”, Stanford University, accessed July 1, 2021,
https://plato.stanford.edu/entries/recursive-functions/.

https://plato.stanford.edu/entries/computability/
https://plato.stanford.edu/entries/recursive-functions/

3

previous section, any problem whose solution can be found by an algorithm (an effective

procedure) can be solved by an appropriately defined Turing Machine7.

 A basic Turing Machine has three main parts: a finite control, a tape, and an input. The

tape is an infinite list of cells, each of which holds a single symbol. The input is a string of

symbols {X1, X2,…, Xn} of finite length that is initially placed on the tape. All other cells of the

tape that do not contain an input symbol hold a blank symbol, say “B”. Finally, the finite control

is placed above the tape and is always in any of a finite set of states {q1, q2,…, qm}. The finite

control is linked to the tape by the tape head, which is initially placed on top of the first input

symbol. The tape head is said to be “scanning” the cell on which it is placed, and always scans

only one cell at a time.

 The Turing Machine operates through “moves” that are determined by the current state of

the finite control and the symbol in the cell that the tape head is scanning. In one move, the

machine will: change or maintain the current state, write a tape symbol ∈ {X1, X2,…, Xn, B} in

the cell scanned, and move the tape head left or right. Formally, then, a Turing Machine (TM) M

can be described by the 7-tuple:

𝑀 = (𝑄, 𝛴, 𝑇, 𝛿, 𝑞0, 𝐵, 𝐹) (1)

where

𝑄 = {𝑞0, 𝑞1, … , 𝑞𝑚} (2)

is the finite set of states of the finite control,

𝛴 = {𝑋1, 𝑋2, … , 𝑋𝑛} (3)

is the finite set of input symbols,

𝑇 = 𝛴 ∪ {𝐵} (4)

is the complete set of tape symbols, and

𝛿(𝑞, 𝑋) = (𝑝, 𝑌, 𝐷) (5)

is the transition function of the current state q and scanned symbol X at a given point in time,

which describes a move of M. In the 3-tuple returned by the transition function, p is the new state

of the finite control, Y ∈ T is the tape symbol written in the scanned cell, and D is the direction,

left (L) or right (R), in which the tape head moves. Finally, q0 is the start state in which the finite

control is found initially, B is the blank symbol, and F ⊆ Q is the set of accepting states, which

cause the machine to halt (accept) upon achieving.8

7 Note, however, that not all decidable problems can be solved by the type of Turing Machine presented here. This
model is a deterministic one with a single input tape; variations include, for example, nondeterministic and multi-
tape Turing Machines. A more precise statement would be that any decidable problem can be solved by a universal
Turing Machine – one that simulates an arbitrary Turing Machine on arbitrary input.
8 Jeffrey D. Ullman, John E. Hopcroft, Rajeev Motwani, Introduction to Automata Theory, Languages, and
Computation, 2nd ed. (Boston, MA: Addison-Wesley, 2001), 307-327.

4

 At a given point in time, the machine M can be described graphically in the following

way:

Here, the tape head is scanning the cell holding the symbol Xi ∈ T and the finite control is in state

qj ∈ Q. The next image illustrates a possible move of M:

The move is represented by the transition function 𝛿(𝑞𝑗 , 𝑋𝑖) = (𝑞𝑧, 𝐵, 𝑅). That is, the

tape head replaced Xi by B in the cell being scanned, moved one cell to the right, and the finite

control changed to state qz. Note that the state of the finite control and the symbol in a cell need

not necessarily change after a move.

 After a move, one of three things will happen: the machine will perform another move

given the (possibly) new state and new symbol being scanned; the machine will reach an

accepting state and halt; or the machine will have no possible moves given the new state and

symbol (the transition function is undefined on that 2-tuple) and halt without accepting.

 Here is an outline of how addition of positive integers can be performed by this type of

TM. Let 𝑀𝐴 be the TM that performs positive integer addition. Denote each positive integer by a

string of zeroes containing as many zeroes as the value of that integer (e.g., 1 by 0, 2 by 00, 3 by

000, etc.). Denote the addition symbol “+” by a letter, say “a”. Let 𝑞𝑎 be the accepting state only

reachable after replacing a by a blank symbol B.

Let us compute 2 + 3. The sum 2 + 3 is represented by 00𝑎000. Place this string on

𝑀𝐴′𝑠 input tape and the tape head above the first zero. Replace this zero by a symbol, say “Y”,

5

and move the tape head to the right until it finds a blank, then replace that blank by a zero. Then

move the tape head leftward until it reaches the first Y, and move one cell to the right, finding a

zero. Repeat the previous step. Now, after returning leftward and reaching the first Y, the tape

head moves right and finds a. Replace a by a blank symbol, thus reaching 𝑞𝑎, and accept. The

tape now contains the string YYB00000B. The number of zeroes correspond to the result of the

sum: 5.9

Note that every move described above can be replicated by a transition function and that

for any sum of positive integers, 𝑀𝐴 will eventually accept and halt. Moreover, check that the

algorithm described above requires no use of ingenuity, but simply the following of a well-

defined finite list of rules. Thus, integer addition is clearly effectively calculable, that is,

decidable.

Formally, a TM that eventually halts (regardless of whether it accepts) on a given input

may be called an algorithm. Also, if there exists a TM (algorithm) to solve a given mathematical

(determine truth or falsehood10) problem, then the problem is called decidable. Accordingly, a

statement whose truth or falsehood cannot be determined by any TM within a finite number of

moves is called undecidable.11

The Partial Recursive Functions

 Turing’s abstract device is the most widely used tool to define computability. In fact, all

procedures calculable by modern computers are, in principle, also calculable by appropriately

defined TMs. The main advantage of Turing Machines is that they are very intuitive: they allow

for the easy visualization of computable objects. Therefore, they are often useful for analysis

when referring to the computational properties of TMs, as opposed to that of other

mathematically rigorous methods, more easily demonstrates certain examples.

However, in general, other methods are preferred for the analysis of computable objects.

These attempt to provide a mathematically rigorous foundation for computable functions, and, by

extension, computable numbers. The method adopted in this paper is the partial recursive

functions12.

9 This algorithm was obtained from the website GeeksforGeeks, “Turing Machine for Addition”, accessed August 6,
2021, https://www.geeksforgeeks.org/turing-machine-addition/.
10 Note that any mathematical problem can be reframed in terms of a true-or-false question, even if this is not
immediately obvious. For example, in the case of integer addition, the value of 2 + 3 can be determined by using
𝑀𝐴 to compute it and then comparing the resulting number of zeroes on the tape to each positive integer and
asking whether the numbers are the same. The only case in which the answer will be “yes” or “true” is when
comparing the number of zeroes to 5. In this sense, 𝑀𝐴 can be used to determine truth or falsehood of integer
addition.
11 Jeffrey D. Ullman, John E. Hopcroft, Rajeev Motwani, Introduction to Automata Theory, Languages, and
Computation, 2nd ed. (Boston, MA: Addison-Wesley, 2001), 307-327.
12 Also known as the general recursive functions or μ-recursive functions.

https://www.geeksforgeeks.org/turing-machine-addition/

6

 As the name suggests, the recursive functions are those functions defined by the repeated

application of certain rules. They can be constructed from a finite list of basic functions and

composition rules (functionals). This intuitively shows that these functions are calculable by an

effective process; that is, they resemble an algorithm. The term partial, as opposed to total, is

used to include functions which are effectively calculable but not necessarily defined on all

points of their domains. The Church-Turing Thesis confirms that the set of partial recursive

functions correspond exactly to the set of functions computable by TMs; thus, as will become

clear, the partial recursive functions can simply be called the computable functions. Then,

informally, a function is computable if there is an effective process (e.g., a Turing Machine that

eventually halts or a definition in terms of partial recursive functions) that, given input n ∈ ℕ,

returns f(n)13.

 The partial recursive functions are an extension of the primitive recursive functions. The

latter are based on three basic functions:

1. the successor function 𝑠𝑢𝑐𝑐: ℕ → ℕ defined by 𝑠𝑢𝑐𝑐(𝑥) = 𝑥 + 1;

2. the zero function 𝑧𝑒𝑟𝑜𝑛: ℕ𝑛 → {0} defined by 𝑧𝑒𝑟𝑜𝑛(𝑥1, … , 𝑥𝑛) = 0;

3. and the projection function 𝑝𝑟𝑜𝑗𝑖
𝑛: ℕ𝑛 → ℕ defined by 𝑝𝑟𝑜𝑗𝑖

𝑛(𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛) = 𝑥𝑖.

And two functionals:

1. Composition, defined in the following sense: let 𝑓: ℕ𝑛 → ℕ and 𝑔𝑖: ℕ𝑚 → ℕ, i = 1,…,n.

Then the functional 𝐶𝑜𝑚𝑝𝑛
𝑚[𝑓, 𝑔1, … , 𝑔𝑛] denotes the function

𝑓(𝑔1(𝑥1, … , 𝑥𝑚), … , 𝑔𝑛(𝑥1, … , 𝑥𝑚))

of type ℕ𝑚 → ℕ. 14

2. And primitive recursion, defined in the following sense: fix a base case function 𝑓: ℕ𝑛 →

ℕ and a recursive case function 𝑔: ℕ𝑛+2 → ℕ. Then the function ℎ = 𝜌𝑛(𝑓, 𝑔): ℕ𝑛+1 →

ℕ is the primitive recursion with base case function f and recursive function g. The

function h is defined by the scheme:

ℎ(𝑥1, . . . , 𝑥𝑛, 0) = 𝑓(𝑥1, . . . , 𝑥𝑛)

13 This is more precisely stated as follows: the claim is true if there is an effective process that given a
representation of input n ∈ ℕ, returns a representation of f(n). As it is shown later in the paper, there exist
computable real numbers which have infinite decimal representations; thus, they cannot be completely described
by a computing device (e.g., a TM), if not by means of some alternative finite representation.
14 Stanford Encyclopedia of Philosophy, “Recursive Functions”, Stanford University, accessed July 1, 2021,
https://plato.stanford.edu/entries/recursive-functions/.

https://plato.stanford.edu/entries/recursive-functions/

7

ℎ(𝑥1, . . . , 𝑥𝑛, 𝑦 + 1) = 𝑔(𝑥1, . . . , 𝑥𝑛, 𝑦, ℎ(𝑥1, . . . , 𝑥𝑛, 𝑦))15

Primitive recursion allows for the definition of functions whose value on input y ∈ ℕ (the

recursion variable) is determined by their values on [0, . . . , 𝑦 − 1] ∩ ℕ. Since the base

case (input y = 0) is completely determined by the function f, the value of h on any 𝑦 ∈ ℕ

can be computed by primitive recursion. The x inputs are called parameters and depend

on the function specified. For example, let add be the function that adds two natural

numbers. Then add can be defined by add(x,y), where x is the only parameter and y is the

recursion variable allowed to vary.

 Now, let us examine how the operations of addition, subtraction, multiplication, and

exponentiation can be constructed from the building blocks defined above. Starting with

addition, define add: ℕ2 → ℕ by 𝑎𝑑𝑑(𝑥, 𝑦) = 𝑥 + 𝑦. As mentioned above, add can be defined

through primitive recursion. Define the base case function 𝑓: ℕ1 → ℕ by 𝑓(𝑥) = 𝑎𝑑𝑑(𝑥, 0).

Clearly, we want 𝑎𝑑𝑑(𝑥, 0) = 𝑥 + 0 = 𝑥, and so 𝑓(𝑥) = 𝑥. Using the projection function, it

follows that 𝑓 = 𝑝𝑟𝑜𝑗1
1. Define the recursive function g: ℕ3 → ℕ by 𝑔(𝑥, 𝑦, 𝑎𝑑𝑑(𝑥, 𝑦)) =

 𝑎𝑑𝑑(𝑥, 𝑦 + 1). Clearly, we want 𝑎𝑑𝑑(𝑥, 𝑦 + 1) = 𝑥 + 𝑦 + 1 = 𝑎𝑑𝑑(𝑥, 𝑦) + 1. Using

the successor function, 𝑔(𝑥, 𝑦, 𝑎𝑑𝑑(𝑥, 𝑦)) = 𝑠𝑢𝑐𝑐(𝑎𝑑𝑑(𝑥, 𝑦)). But 𝑎𝑑𝑑(𝑥, 𝑦) =

 𝑝𝑟𝑜𝑗3
3(𝑥, 𝑦, 𝑎𝑑𝑑(𝑥, 𝑦)) and so 𝑔 = 𝐶𝑜𝑚𝑝[𝑠𝑢𝑐𝑐, 𝑝𝑟𝑜𝑗3

3]. Finally, we have that 𝑎𝑑𝑑 =

 𝜌1(𝑝𝑟𝑜𝑗1
1, 𝐶𝑜𝑚𝑝[𝑠𝑢𝑐𝑐, 𝑝𝑟𝑜𝑗3

3]), and so addition is primitive recursive.16

 Next, let us define subtraction recursively. Define 𝑠𝑢𝑏: ℕ2 → ℕ+ by 𝑠𝑢𝑏(𝑥, 𝑦) =

max(𝑥 − 𝑦, 0). Define the base case 𝑓: ℕ1 → ℕ by 𝑓(𝑥) = 𝑠𝑢𝑏(𝑥, 0). We want 𝑠𝑢𝑏(𝑥, 0) = 𝑥 −

0 = 𝑥 and so 𝑓(𝑥) = 𝑝𝑟𝑜𝑗1
1(𝑥). Define the recursive function 𝑔: ℕ3 → ℕ by

𝑔(𝑥, 𝑦, 𝑠𝑢𝑏(𝑥, 𝑦)) = 𝑠𝑢𝑏(𝑥, 𝑦 + 1). We want 𝑠𝑢𝑏(𝑥, 𝑦 + 1) = 𝑥 − 𝑦 − 1 = 𝑠𝑢𝑏(𝑥, 𝑦) − 1 =

𝑝𝑟𝑒𝑑(𝑠𝑢𝑏(𝑥, 𝑦)), where 𝑝𝑟𝑒𝑑 = 𝜌0(𝑧𝑒𝑟𝑜0, 𝑝𝑟𝑜𝑗1
2) is the predecessor function defined by

𝑝𝑟𝑒𝑑(𝑥) = 𝑥 − 1; 𝑝𝑟𝑒𝑑(0) = 0. Then 𝑔(𝑥, 𝑦, 𝑠𝑢𝑏(𝑥, 𝑦)) = 𝐶𝑜𝑚𝑝[𝑝𝑟𝑒𝑑, 𝑝𝑟𝑜𝑗3
3]. Finally, we

have that 𝑠𝑢𝑏 = 𝜌1(𝑝𝑟𝑜𝑗1
1, 𝐶𝑜𝑚𝑝[𝑝𝑟𝑒𝑑, 𝑝𝑟𝑜𝑗3

3]), and so subtraction is primitive recursive.17

 Multiplication can be defined similarly. Define 𝑚𝑢𝑙𝑡: ℕ2 → ℕ by 𝑚𝑢𝑙𝑡(𝑥, 𝑦) = 𝑥 ∙ 𝑦.

Define the base case 𝑓: ℕ1 → ℕ by 𝑓(𝑥) = 𝑚𝑢𝑙𝑡(𝑥, 0). We want 𝑚𝑢𝑙𝑡(𝑥, 0) = 𝑥 ∙ 0 = 0 and

so 𝑓(𝑥) = 𝑧𝑒𝑟𝑜1(𝑥). Define the recursive function 𝑔: ℕ3 → ℕ by 𝑔(𝑥, 𝑦, 𝑚𝑢𝑙𝑡(𝑥, 𝑦)) =

 𝑚𝑢𝑙𝑡(𝑥, 𝑦 + 1). We want 𝑚𝑢𝑙𝑡(𝑥, 𝑦 + 1) = 𝑥 ∙ 𝑦 + 𝑥 = 𝑚𝑢𝑙𝑡(𝑥, 𝑦) + 𝑥. It follows that

𝑔(𝑥, 𝑦, 𝑚𝑢𝑙𝑡(𝑥, 𝑦)) = 𝑎𝑑𝑑(𝑚𝑢𝑙𝑡(𝑥, 𝑦), 𝑥). But 𝑚𝑢𝑙𝑡(𝑥, 𝑦) = 𝑝𝑟𝑜𝑗3
3(𝑥, 𝑦, 𝑚𝑢𝑙𝑡(𝑥, 𝑦)) and 𝑥 =

 𝑝𝑟𝑜𝑗1
3(𝑥, 𝑦, 𝑚𝑢𝑙𝑡(𝑥, 𝑦)); thus, we get 𝑔(𝑥, 𝑦, 𝑚𝑢𝑙𝑡(𝑥, 𝑦)) = 𝐶𝑜𝑚𝑝[𝑎𝑑𝑑, (𝑝𝑟𝑜𝑗1

3, 𝑝𝑟𝑜𝑗3
3)].

15 Hackers at Cambridge, January 21, 2018, Partial Recursive Functions 4: Primitive Recursion [Video]. YouTube.
https://www.youtube.com/watch?v=cjq0X-vfvYY&ab_channel=HackersatCambridge.
16 Hackers at Cambridge, January 21, 2018, Partial Recursive Functions 4: Primitive Recursion [Video]. YouTube.
https://www.youtube.com/watch?v=cjq0X-vfvYY&ab_channel=HackersatCambridge.
17 Hackers at Cambridge, January 21, 2018, Partial Recursive Functions 4: Primitive Recursion [Video]. YouTube.
https://www.youtube.com/watch?v=cjq0X-vfvYY&ab_channel=HackersatCambridge.

https://www.youtube.com/watch?v=cjq0X-vfvYY&ab_channel=HackersatCambridge
https://www.youtube.com/watch?v=cjq0X-vfvYY&ab_channel=HackersatCambridge
https://www.youtube.com/watch?v=cjq0X-vfvYY&ab_channel=HackersatCambridge

8

Finally, we have that 𝑚𝑢𝑙𝑡 = 𝜌1(𝑧𝑒𝑟𝑜1, 𝐶𝑜𝑚𝑝[𝑎𝑑𝑑, (𝑝𝑟𝑜𝑗1
3, 𝑝𝑟𝑜𝑗3

3)]), and so multiplication is

also primitive recursive.18

Lastly, let us define exponentiation recursively. Define exp: ℕ2 → ℕ by exp(𝑥, 𝑦) = 𝑥𝑦 .

Define the base case function by 𝑓(𝑥) = exp(𝑥, 0). We want 𝑒𝑥𝑝(𝑥, 0) = 𝑥0 = 1 and so 𝑓(𝑥) =

 1 = 𝐶𝑜𝑚𝑝[𝑠𝑢𝑐𝑐, 𝑧𝑒𝑟𝑜1]. Define the recursive function by 𝑔(𝑥, 𝑦, exp(𝑥, 𝑦)) = exp(𝑥, 𝑦 + 1).

We want exp(𝑥, 𝑦 + 1) = 𝑥𝑦+1 = 𝑚𝑢𝑙𝑡(exp(𝑥, 𝑦) , 𝑥) and so 𝑔(𝑥, 𝑦, exp(𝑥, 𝑦)) =

𝐶𝑜𝑚𝑝[𝑚𝑢𝑙𝑡, (𝑝𝑟𝑜𝑗3
3, 𝑝𝑟𝑜𝑗1

3)]. It follows that

exp = 𝜌1(𝐶𝑜𝑚𝑝[𝑠𝑢𝑐𝑐, 𝑧𝑒𝑟𝑜1], 𝐶𝑜𝑚𝑝[𝑚𝑢𝑙𝑡, (𝑝𝑟𝑜𝑗3
3, 𝑝𝑟𝑜𝑗1

3)]) and so exponentiation is primitive

recursive.

 Other examples of primitive recursive functions include, but are not limited to, maximum

and minimum, order and identity, and functions that return positive integers (constant

functions).19 A common property of these functions is that they are total, that is, they are defined

on all tuples from their domain. However, Turing-computable functions are not limited to total

functions. For example, the integer division function 𝑑𝑖𝑣(𝑥, 𝑦) = 𝑞, where 𝑥 = 𝑞 ∙ 𝑦 + 𝑟,

which returns the integer part of a division of two integers is computable by a TM, but it is

clearly not defined on all 2-tuples of positive integers, such as (10,0); thus, there must be

recursive functions that are not primitive recursive. To define them, we introduce a third

functional: minimisation. The set of functions definable by means of the three basic functions and

the three functionals is called the partial recursive functions.

 The minimisation operator, or 𝜇-operator, applied to a primitive recursive function

f:ℕ𝑘 → ℕ, returns the first (in the order of the natural numbers) 𝑦 ∈ ℕ such that

𝑓(𝑥1, … , 𝑥𝑘, 𝑦) = 0. This property can be manipulated to simulate the search for an input that

satisfies some relevant condition for a recursive function f. For example, fix the division function

defined previously. The q that satisfies 𝑑𝑖𝑣(𝑥, 𝑦) = 𝑞 is the greatest q such that 𝑞 ∙ 𝑦 ≤ 𝑥. We

know that (𝑞 + 1) ∙ 𝑦 = 𝑞 ∙ 𝑦 + 𝑦 > 𝑞 ∙ 𝑦 + 𝑟 = 𝑥, and so (𝑞 + 1) ∙ 𝑦 > 𝑥. The problem is now

one of finding the lowest q such that (𝑞 + 1) ∙ 𝑦 > 𝑥. Integer division is therefore a minimisation

problem. In this way, by a process involving primitive recursion and minimisation, which we

omit, integer division can be defined as:

𝑑𝑖𝑣 = 𝜇2(𝐶𝑜𝑚𝑝[𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛𝐸𝑞𝑢𝑎𝑙, (𝐶𝑜𝑚𝑝[𝑚𝑢𝑙𝑡, (𝐶𝑜𝑚𝑝[𝑠𝑢𝑐𝑐, 𝑝𝑟𝑜𝑗3
3], 𝑝𝑟𝑜𝑗2

3), 𝑝𝑟𝑜𝑗1
3))

where LessThanEqual is a primitive recursive function that takes two arguments and outputs 1 if

the first argument is less than or equal to the second, and 0 otherwise. It follows that integer

division is a partial recursive function.20

18 Hackers at Cambridge, January 21, 2018, Partial Recursive Functions 4: Primitive Recursion [Video]. YouTube.
https://www.youtube.com/watch?v=cjq0X-vfvYY&ab_channel=HackersatCambridge.
19 Stanford Encyclopedia of Philosophy, “Recursive Functions”, Stanford University, accessed July 1, 2021,
https://plato.stanford.edu/entries/recursive-functions/.
20 This discussion on integer division was completely obtained from Hackers at Cambridge, February 17, 2018,
Partial Recursive Functions 5: Minimisation [Video]. YouTube. https://www.youtube.com/watch?v=bFkU-
qV2Ioo&ab_channel=HackersatCambridge.

https://www.youtube.com/watch?v=cjq0X-vfvYY&ab_channel=HackersatCambridge
https://plato.stanford.edu/entries/recursive-functions/
https://www.youtube.com/watch?v=bFkU-qV2Ioo&ab_channel=HackersatCambridge
https://www.youtube.com/watch?v=bFkU-qV2Ioo&ab_channel=HackersatCambridge

9

 It might seem odd that the partial recursive functions, or simply the computable functions,

are exclusively of type ℕ → ℕ. However, as will be shown in the next section, every computable

object can be described in terms of a list of positive integers, either directly or indirectly by

means of some bijection. For example, the decidable sets and the computable real functions of

type ℝ → ℝ, which are defined below, are based on the computable functions. This is also true

for the computable real numbers – the subject of the next section.

Definition 1: A set A ⊆ ℕ is decidable (or computable) if there exists a computable function f

such that for any 𝑥 ∈ ℕ, 𝑓(𝑥) = 1 if 𝑥 ∈ 𝐴 or 𝑓(𝑥) = 0 if 𝑥 ∉ 𝐴. That is, the characteristic

function of A is computable.

Definition 2: Let 𝑓: ℝ → ℝ be a function defined on a closed interval [𝑎, 𝑏]. Then f is called a

computable real function if there exists a computable sequence21 of rational polygons22 (𝑝𝑔𝑛)

which converges to f in the sense that |𝑝𝑔𝑛(𝑥) − 𝑓(𝑥)| < 2−𝑛 holds for all 𝑛 ∈ ℕ and 𝑥 ∈

[𝑎, 𝑏].23

The Computable Numbers

 Like computable functions, computable numbers can be defined in a variety of ways.

Trivially, a real number a is computable if there exists a TM M and a finite string of symbols w

such that M, when running on input w, eventually halts and outputs a. That is, a can be computed

by a finite, terminating algorithm. This already implies that numbers that can be defined by

means of the partial recursive functions are computable. If the latter is true for a, then a can be

said to be recursively definable.

 In this section, I first prove an important theorem about the computable numbers that

shows that most real numbers are in fact non-computable. I then proceed to show how the natural

numbers and the integers can be defined recursively, followed by three general and equivalent

definitions of computability for the real numbers. I finish by showing that the rational numbers

are computable.

 Recall that a set H is countable if: (1) it is finite; or (2) it is countably infinite, that is, H is

infinite and there exists a bijective map 𝑓: ℕ+ → 𝐻. Then:

Theorem 1: If Σ is a finite alphabet (a set containing finitely many symbols), then Σ∗, the set of

finite strings that can be written with the symbols from Σ, is countable.

Proof:

21 A computable sequence is a sequence whose elements can be defined recursively; that is, if (𝑎𝑛) is a computable
sequence, then for all n, 𝑎𝑛 can be described in terms of its index n and some natural number m.
22 A rational polygon is a piecewise linear function which connects a finite set of rational turning points on a closed
interval. That is, it is a function whose graph is a polygon with rational vertices. Obtained from Bauer, M. S., &
Zheng, X. (2010). On the weak computability of continuous real functions. arXiv preprint arXiv:1006.0394.
23 This definition was given by Bauer, M. S., and Zheng, X. in Bauer, M. S., & Zheng, X. (2010). On the weak
computability of continuous real functions. arXiv preprint arXiv:1006.0394.

10

Let Σ be a finite alphabet. For each 𝑛 ∈ ℕ, let Σ𝑛 ⊆ Σ∗ be the set of strings of length n.

Clearly, |Σ𝑛| = |Σ|𝑛 and since Σ is finite, Σ𝑛 is also finite for each n, and thus countable.

 It is trivial that ∪𝑛∈ℕ Σ𝑛 = Σ∗. Also, {Σ𝑛 | 𝑛 ∈ ℕ} is countable since 𝑓: ℕ+ → {Σ𝑛 | 𝑛 ∈

ℕ} is bijective. It follows that Σ∗ is a union of countably many countable sets, and thus

countable24.

∎

Corollary 1: The computable numbers form a countable subset of the real numbers.

Proof:

 Define a “Turing program” to be the collection of all the moves performed by a TM after

some finite input is placed on its tape. Then, any Turing program that describes a TM M which

eventually halts on some input w can be described as a finite string of symbols. This follows

from a TM’s nature as a finite algorithm: it has finitely many states, tape symbols, and actions it

can perform. To see this, choose a TM M and an input string w such that M eventually halts when

w is initially placed on its tape. Assign a unique symbol to each of M’s states, tape symbols and

actions (move left or right, and rewrite symbol), and let 𝛽 be the set containing exactly those

symbols. Each move of M can thus be described as a finite string of symbols from 𝛽. Since M

eventually halts, it only performs finitely many moves; thus, the program M(w), which lists all

the moves of M in order, is a finite string of symbols.

 Next, assign a unique finite binary string to each symbol in 𝛽, and let 𝛴 = {0,1}. Replace

each symbol in M(w) by its corresponding binary string. Then 𝑀(𝑤) ∈ Σ∗. But M and w were

arbitrary and so the collection of all Turing programs that describe a TM that eventually halts,

{𝑀(𝑤)|𝑀 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑠𝑜𝑚𝑒 𝑖𝑛𝑝𝑢𝑡 𝑤}, is contained in Σ∗. But Σ∗ is countable by

Theorem 1, and so {𝑀(𝑤)|𝑀 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑠𝑜𝑚𝑒 𝑖𝑛𝑝𝑢𝑡 𝑤} is also countable.

 Therefore, there are at most countably many Turing Machines that eventually halt. It

follows that there are at most countably many real numbers that can be generated by a Turing

program; that is, the computable numbers form a countable subset of the real numbers.

∎

Recall that ℝ is uncountable by Cantor’s diagonal argument25; thus, it is a direct

consequence of Corollary 1 that there exist real numbers that are not computable, and the set

containing all non-computable real numbers is uncountable.

 But what are the computable numbers? Informally, they are the numbers that can be

represented in a finite way; either directly, such as the integers and the rational numbers, whose

representations in the decimal numeral system are already finite strings of symbols (e.g., -1, 2,

24 This last statement is proved in Miklós Laczkovich, Vera T. Sós, Real Analysis: Foundations and Functions of One
Variable, (Berlin, Germany: Springer, 2014), 99.
25 Miklós Laczkovich, Vera T. Sós, Real Analysis: Foundations and Functions of One Variable, (Berlin, Germany:
Springer, 2014), 99-100.

11

5/4), or indirectly, such as by means of nested intervals which contain that number. In fact, any

number whose complete description can be thought of is computable (e.g., √2 and 𝜋), which

implies that prior to studying computability theory, one is very unlikely to have faced any non-

computable number at all. As it turns out, we have not discovered many non-computable

numbers. A few examples of this mysterious class of real numbers include Chaitin’s constant26,

the limit of Specker sequences27, and the solution of the Busy Beaver Problem BB(n)28.

I now give a proof for the computability of natural numbers. This is easily done using the

partial recursive functions.

Theorem 2: The natural numbers are computable.

Proof:

 The proof involves showing that natural computers can be computed by a finite,

terminating algorithm. Choose 𝑛 ∈ ℕ and define a function 𝑓: ℕ → ℕ by 𝑓(𝑛) = 𝑛. Using the

methods of the previous section, it can be easily shown that 𝑓 = 𝜌0(𝑧𝑒𝑟𝑜1, 𝐶𝑜𝑚𝑝[𝑠𝑢𝑐𝑐, 𝑝𝑟𝑜𝑗1
2]);

thus, n can be defined recursively. But n was arbitrary and so the natural numbers are

computable.

∎

Corollary 2: The negative integers are computable.

Proof:

 This corollary is not given a formal proof, but an intuitive one: if the natural numbers are

computable, then, for all 𝑛 ∈ ℕ, there exists a Turing Machine M that on some finite input w

writes n on its output tape after finitely many steps. But n is a finite string of symbols, and so -n

is also a finite string of symbols. Modify M to write the symbol “-“ in front of the first digit of n

after computing n. Then -n is computable.

∎

 I now present three equivalent definitions that can be used to determine whether an

arbitrary real number is computable. The proof of their equivalence is omitted.

26 That is, the probability that a randomly constructed program will halt. Obtained from WolframMathWorld,
“Chaitin’s Constant”, WolframMathWorld, accessed August 6, 2021.
https://mathworld.wolfram.com/ChaitinsConstant.html.
27 These are increasing and bounded computable sequences of rational numbers. A proof that the limits of Specker
sequences are non-computable is given in Klaus Weihrauch, Computable Analysis: An Introduction, (Berlin,
Germany: Springer, 2000), 5.
28 This problem was proposed by Tibor Radó in 1962 and it consists in “finding the largest finite number of 1s that
can be produced on blank tape using a Turing Machine with n states.” Obtained from Jorgen Veisdal,
“Uncomputable Numbers”, Jorgen Veisdal, accessed August 7, 2021.
https://jorgenveisdal.medium.com/uncomputable-numbers-ee528830d295.

https://mathworld.wolfram.com/ChaitinsConstant.html
https://jorgenveisdal.medium.com/uncomputable-numbers-ee528830d295

12

Definition 3(a): A real number a is computable if there exists some computable function 𝑓: ℕ →

ℕ such that for any 𝑛 ∈ ℕ, f produces a natural number f(n) such that:

𝑓(𝑛) − 1

𝑛
≤ 𝑎 ≤

𝑓(𝑛) + 1

𝑛

The function f is said to approximate a in this way.29

 This definition is instrumental in showing that a is computable if it is possible to get an

arbitrarily precise approximation for a without reference to itself. This intuitively defines the

computable numbers: a is computable if it can be computed (or approximated within arbitrary

precision) from a list of positive integers by means of an effective method. A natural

consequence of this is that through an effective method, a finite portion (approximation) of a can

be computed from a finite list of positive integers. Moreover, note that for each natural number n,

the above definition gives two rational numbers, one greater than a and one smaller than a. In

other words, a is computable if it has arbitrarily tight lower and upper rational bounds30 that can

be computed by an effective method. This is formalized in the following definitions:

Definition 3(b): A real number a is computable if there exists a computable real function 𝑓: ℕ →
ℚ such that for all rational numbers 휀 > 0, |𝑓(𝑛) − 𝑎| ≤ 휀 for some 𝑛 ∈ ℕ. 31

 This definition can be reformulated in terms of nested intervals, yielding a third

equivalent definition of computable numbers that is very useful for analysis:

Definition 3(c): Choose 𝑎 ∈ ℝ such that {𝑎} =∩𝑛∈ℕ 𝐼𝑛 where (𝐼0, 𝐼1, …) is a sequence of closed

intervals with rational endpoints and 𝐼𝑛+1 ⊆ 𝐼𝑛 for all 𝑛 ∈ ℕ. Then (𝐼0, 𝐼1, …) is a name for a and

a is computable if and only if for each 𝑛 ∈ ℕ, the endpoints of 𝐼𝑛 are completely determined by

n; that is, the endpoints of 𝐼𝑛 are computable real functions of type ℕ → ℚ.32

 The fact that the rational numbers are computable follows directly from Definition 3(c):

Theorem 4: The rational numbers are computable.

Proof:

 Choose 𝑞 ∈ ℚ and set 𝐼𝑛 = [𝑞 − 2−𝑛, 𝑞 + 2−𝑛]. Then (𝐼0, 𝐼1, …) is a sequence of nested

intervals and {𝑞} =∩𝑛∈ℕ 𝐼𝑛; thus, q is computable by Definition 3(c).33

29 Wikipedia, “Computable number”, Wikipedia, accessed July 1, 2021,
https://en.wikipedia.org/wiki/Computable_number
30 This statement was obtained from Klaus Weihrauch, Computable Analysis: An Introduction, (Berlin, Germany:
Springer, 2000), 86.
31 Wikipedia, “Computable number”, Wikipedia, accessed July 29, 2021,
https://en.wikipedia.org/wiki/Computable_number
32 This is the same definition given in Klaus Weihrauch, Computable Analysis: An Introduction, (Berlin, Germany:
Springer, 2000), 4.
33 This proof was obtained directly from Klaus Weihrauch, Computable Analysis: An Introduction, (Berlin, Germany:
Springer, 2000), 4.

https://en.wikipedia.org/wiki/Computable_number
https://en.wikipedia.org/wiki/Computable_number

13

 ∎

Properties of Computable Functions and Computable Numbers:

 I now turn to important theorems about the computable functions and computable

numbers that follow from the theorems and definitions presented in the last three sections. Some

of them are fundamental to computable analysis, such that the computable real functions are

continuous and that the computable numbers form a field.

 However, computable analysis is scarcely practiced using the methods presented in this

paper. In fact, mathematicians working in this field make use of various representations of real

numbers34 and topology, which have not been explored here.

Theorem 5: If 𝑐 ∈ ℝ is a computable number, then 𝑓: ℝ → ℝ defined by 𝑓(𝑥) = 𝑐 is a

computable real function.

Proof:

 Let 𝑐 ∈ ℝ be a computable number and define 𝑓: ℝ → ℝ by 𝑓(𝑥) = 𝑐. Choose 𝑛 ∈ ℕ and

define the rational polygon 𝑝𝑔𝑛 piecewise in the following way: for each 𝑥 ∈ ℝ, choose some

𝛿 > 0 and two intervals with rational endpoints, [𝑟1, 𝑟2] ⊆ (𝑥 − 𝛿, 𝑥 + 𝛿) and [𝑟3, 𝑟4] ⊆ (𝑥 −

𝛿, 𝑥 + 𝛿), such that 𝑟2 > 𝑟4 > 𝑟1 > 𝑟3. Define the following functions:

 𝑔1 by 𝑔1(𝑥) = 𝑐 + 2−𝑛 for all 𝑥 ∈ [𝑟1, 𝑟2];

𝑔2 by 𝑔2(𝑥) = 𝑐 − 2−𝑛 for all 𝑥 ∈ [𝑟3, 𝑟4];

𝑔3 to be the line connecting 𝑟1 and 𝑟2; and

𝑔4 to be the line connecting 𝑟3 and 𝑟4.

Let 𝑝𝑔𝑛 =∪𝑖=1
4 𝑔𝑖. Construct a sequence (𝑝𝑔𝑛) in this way. Then |𝑝𝑔𝑛(𝑥) − 𝑐| =

|𝑝𝑔𝑛(𝑥) − 𝑓(𝑥)| < 2−𝑛 for all 𝑛 ∈ ℕ and 𝑥 ∈ ℝ, and the theorem is proved.

∎

Recall that a function f is continuous if it is continuous at every point on which it is

defined. A function f is continuous at a point a if for all 휀 > 0 there exists a 𝛿 > 0 such that if

|𝑥 − 𝑎| < 𝛿 then |𝑓(𝑥) − 𝑓(𝑎)| < 휀. Informally, this means that if x is arbitrarily close to a, then

f(x) is arbitrarily close to f(a). Then:

Theorem 6: Every computable real function is continuous.

34 One of such representations are nested sequences of intervals with rational endpoints, as defined in the previous
section. Other equally useful representations make use of Dedekind cuts, Cauchy sequences, and b-adic
expansions. More in Chen, Q., Su, K., & Zheng, X. (2007). Primitive recursiveness of real numbers under different
representations. Electronic Notes in Theoretical Computer Science, 167, 303-324.

14

Proof:

 Let 𝑓: ℝ → ℝ be a computable real function defined on some closed interval [𝑎, 𝑏] . Fix a

sequence of rational polygons (𝑝𝑔𝑛) such that 𝑝𝑔𝑛 → 𝑓 in the sense of Definition 2. Choose 휀 >

0 and 𝑐 ∈ [𝑎, 𝑏]. Choose a 𝑛 ∈ ℕ such that 𝑝𝑔𝑛 has at least two vertices in (𝑓(𝑐) − 휀, 𝑓(𝑐) + 휀),

say 𝑝𝑔𝑛(𝑟1) and 𝑝𝑔𝑛(𝑟2), such that 𝑟2 > 𝑐 > 𝑟1 and (𝑝𝑔𝑛(𝑟2) − 2−𝑛, 𝑝𝑔𝑛(𝑟1) + 2−𝑛) ⊆
(𝑓(𝑐) − 휀, 𝑓(𝑐) + 휀).

 Let 𝑔: [𝑟2, 𝑟1] → [𝑝𝑔𝑛(𝑟2), 𝑝𝑔𝑛(𝑟1)] be the line that connects 𝑝𝑔𝑛(𝑟2) and 𝑝𝑔𝑛(𝑟1). Then,

for any 𝑥 ∈ 𝑑𝑜𝑚(𝑔) = [𝑟2, 𝑟1], we have 𝑓(𝑥) ∈ (𝑝𝑔𝑛(𝑟2) − 2−𝑛, 𝑝𝑔𝑛(𝑟1) + 2−𝑛) ⊆ (𝑓(𝑐) −

휀, 𝑓(𝑐) + 휀). Pick a rational number 𝛿 > 0 such that (𝑐 − 𝛿, 𝑐 + 𝛿) ⊆ [𝑟2, 𝑟1]. We conclude that

if |𝑥 − 𝑐| < 𝛿, then |𝑓(𝑥) − 𝑓(𝑐)| < 휀, and the theorem is proved.

∎

 The following theorems are presented without proof35:

Theorem 7: The function 𝑓: ℝ → ℝ defined by 𝑓(𝑥) = 𝑥𝑖 is a computable real function for all

𝑖 ∈ ℕ.

Theorem 8: The function 𝑓: ℝ2 → ℝ defined by 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 is a computable real function.

Theorem 9: The function 𝑓: ℝ2 → ℝ defined by 𝑓(𝑥, 𝑦) = 𝑥 ∙ 𝑦 is a computable real function.

Recall that a number field is a subset of ℝ closed under addition and multiplication36 and

which conforms with the following additive and multiplicative rules: commutativity,

associativity, additive identity, additive inverse, multiplicative identity, and multiplicative

inverse. Let 𝐹𝑐 be the set of computable numbers. Then:

Theorem 10: The computable numbers form a field.

Proof:

1. Closure under addition and multiplication:

Choose computable functions f and g that satisfy Definition 3(a) for x and y, respectively.

It follows that

𝑓(𝑛) − 1

𝑛
+

𝑔(𝑛) − 1

𝑛
≤ 𝑥 + 𝑦 ≤

𝑓(𝑛) + 1

𝑛
+

𝑔(𝑛) + 1

𝑛
(6)

that is,

(𝑓(𝑛) + 𝑔(𝑛)) − 2

𝑛
≤ 𝑥 + 𝑦 ≤

(𝑓(𝑛) + 𝑔(𝑛)) + 2

𝑛
(7)

35 See Klaus Weihrauch, Computable Analysis: An Introduction, (Berlin, Germany: Springer, 2000), 109-111 for
proofs of these theorems.
36 This means that if F is a number field and 𝑎, 𝑏 ∈ 𝐹, then 𝑎 + 𝑏 ∈ 𝐹 and 𝑎 ∙ 𝑏 ∈ 𝐹.

15

but 𝑓(𝑛), 𝑔(𝑛) ∈ ℕ and so the function h defined by ℎ(𝑛) = 𝑎𝑑𝑑(𝑓(𝑛), 𝑔(𝑛)) is a computable

function of type ℕ → ℕ. Thus,

ℎ(𝑛) − 2

𝑛
≤ 𝑥 + 𝑦 ≤

ℎ(𝑛) + 2

𝑛
(8)

Note that
1

𝑛
→ 0 and

2

𝑛
→ 0 as 𝑛 → ∞; therefore, inequality (8) gets very close to

ℎ(𝑛) − 1

𝑛
≤ 𝑥 + 𝑦 ≤

ℎ(𝑛) + 1

𝑛
(9)

as 𝑛 → ∞ − as the approximation gets more precise; thus, 𝑥 + 𝑦 ∈ 𝐹𝑐 by Definition 3(a), and we

conclude that 𝐹𝑐 is closed under addition.

 Now, choose sequences of nested intervals (𝐼0, 𝐼1, …), (𝐽0, 𝐽1, …) that satisfy Definition

3(c) for x and y, respectively. We intend to show that 𝑥 ∙ 𝑦 ∈ 𝐹𝑐 according to Definition 3(c).

Choose 𝑛 ∈ ℕ and fix 𝐼𝑛 = [𝑓1(𝑛), 𝑔1(𝑛)] and 𝐽𝑛 = [𝑓2(𝑛), 𝑔2(𝑛)], where 𝑓1, 𝑔1, 𝑓2, 𝑔2 are

computable real functions of type ℕ → ℚ. Clearly,

𝑓1(𝑛) ∙ 𝑓2(𝑛) ≤ 𝑥 ∙ 𝑦 ≤ 𝑔1(𝑛) ∙ 𝑔2(𝑛) (10)

And so (𝐼0 ∙ 𝐽0, 𝐼1 ∙ 𝐽1, …) is a sequence of nested intervals such that {𝑥 ∙ 𝑦} = ∩𝑛∈ℕ 𝐼𝑛 ∙ 𝐽𝑛, where

𝐼𝑛 ∙ 𝐽𝑛 = [𝑓1(𝑛) ∙ 𝑓2(𝑛), 𝑔1(𝑛) ∙ 𝑔2(𝑛)].

 Each of 𝑓1, 𝑔1, 𝑓2, 𝑔2 can be written as a ratio of two computable functions of type ℕ → ℤ.

Let 𝑓1(𝑛) =
𝑢(𝑛)

𝑣(𝑛)
 and 𝑓2(𝑛) =

𝑖(𝑛)

𝑙(𝑛)
. Then 𝑓1(𝑛) ∙ 𝑓2(𝑛) =

𝑢(𝑛)∙𝑖(𝑛)

𝑣(𝑛)∙𝑙(𝑛)
, where 𝑢(𝑛) ∙ 𝑖(𝑛) and 𝑣(𝑛) ∙

𝑙(𝑛) are of type ℕ → ℤ since ℤ is a field. Clearly, then, 𝑓1 ∙ 𝑓2 is a computable function of type

ℕ → ℚ. An analogous argument can be given for 𝑔1 ∙ 𝑔2. We conclude that 𝑥 ∙ 𝑦 ∈ 𝐹𝑐 by

Definition 3(c) and 𝐹𝑐 is closed under multiplication.

2. Commutativity and associativity of addition and multiplication:

 Note that 𝐹𝑐 ⊆ ℝ and that ℝ is a field. Since commutativity and associativity of addition

and multiplication hold for the real numbers, they must also hold for the computable numbers.

3. Additive identity:

 We know that 𝑧𝑒𝑟𝑜1(𝑛) = 0 for all 𝑛 ∈ ℕ; thus, 0 can be defined recursively and so 0 ∈

𝐹𝑐 . Let 𝑥 ∈ 𝐹𝑐. Clearly, 𝑥 + 0 = 𝑥 since 𝑥 ∈ ℝ. Since x was arbitrary, 0 is the additive identity of

𝐹𝑐.

4. Additive inverse:

 Let 𝑥 ∈ 𝐹𝑐 . It follows from 𝑥 ∈ ℝ that if 𝑥 + 𝑤 = 0 then 𝑤 = −𝑥; thus, it suffices to

show that −𝑥 ∈ 𝐹𝑐. Choose a computable function 𝑓: ℕ → ℕ that satisfies Definition 3(a) for x.

Then

𝑓(𝑛) − 1

𝑛
≤ 𝑥 ≤

𝑓(𝑛) + 1

𝑛
(13)

16

And so

−𝑓(𝑛) + 1

𝑛
≥ −𝑥 ≥

−𝑓(𝑛) − 1

𝑛
(14)

By Corollary 2, −𝑓(𝑛) is computable since −𝑓(𝑛) ∈ ℤ. So, there exists a computable function g

such that 𝑔(𝑛) = −𝑓(𝑛). It follows that

𝑔(𝑛) + 1

𝑛
≥ −𝑥 ≥

𝑔(𝑛) − 1

𝑛
(15)

And so -x is computable by Definition 3(a). Hence 𝐹𝑐 possesses an additive inverse.

5. Multiplicative identity:

 Clearly 𝐶𝑜𝑚𝑝[𝑠𝑢𝑐𝑐, 𝑧𝑒𝑟𝑜𝑛] = 1 for any n-tuple of natural numbers; thus, 1 can be

defined recursively and so 1 ∈ 𝐹𝑐. For any 𝑥 ∈ 𝐹𝑐, 𝑥 ∙ 1 = 𝑥 since 𝑥 ∈ ℝ. It follows that 𝐹𝑐 has a

multiplicative identity.

6. Multiplicative inverse:

 Let 𝑥 ∈ 𝐹𝑐 . We know that if 𝑥 ∙ 𝑤 = 1 then 𝑤 = 𝑥−1 =
1

𝑥
 because 𝑥 ∈ ℝ; so, it suffices to

show that 𝑥−1 ∈ 𝐹𝑐.

Choose a sequence of closed intervals with rational endpoints (𝐼0, 𝐼1, …) such that {𝑥} =

∩𝑛∈ℕ 𝐼𝑛 which satisfies Definition 3(c) for x. This sequence is used to construct another which

satisfies the relevant conditions for 𝑥−1. Choose a 𝑛 ∈ ℕ and pick 𝐼𝑛 = [𝑟1, 𝑟2], 𝐼𝑛+1 = [𝑟3, 𝑟4] ∈

(𝐼0, 𝐼1, …). We know 𝐼𝑛+1 ⊆ 𝐼𝑛 and so

𝑟1 < 𝑟3 < 𝑥 < 𝑟4 < 𝑟2 (16)

Clearly,

1

𝑟1
>

1

𝑟3
>

1

𝑥
>

1

𝑟4
>

1

𝑟2

(17)

Let 𝐼𝑛
∗ = [

1

𝑟2
,

1

𝑟1
] and 𝐼𝑛+1

∗ = [
1

𝑟4
,

1

𝑟3
]. Then both intervals have rational endpoints; 𝑥−1 ∈

𝐼𝑛
∗ , 𝐼𝑛+1

∗ ; and 𝐼𝑛+1
∗ ⊆ 𝐼𝑛

∗ . Construct a new sequence (𝐼0
∗, 𝐼1

∗, …) in this way. Since n was arbitrary in

the previous step, we know {𝑥−1} =∩𝑛∈ℕ 𝐼𝑛
∗.

Recall that the endpoints of 𝐼𝑛 can be described by computable real functions of type ℕ →

ℚ, that is, 𝐼𝑛 = [
𝑓(𝑛)

𝑔(𝑛)
,

ℎ(𝑛)

𝑒(𝑛)
]. Clearly, the endpoints of 𝐼𝑛

∗ can also be described by computable real

functions of type ℕ → ℚ since 𝐼𝑛
∗ = [

𝑔(𝑛)

𝑓(𝑛)
,

𝑒(𝑛)

ℎ(𝑛)
] ; then, 𝑥−1 is computable by Definition 3(c).

∎

17

Theorem 11: If p is a polynomial of one variable with computable real coefficients, then p is a

computable real function.

Proof:

 Define a polynomial p as 𝑝(𝑥) = 𝑎0 ∙ 𝑥0 + 𝑎1 ∙ 𝑥1 + ⋯ + 𝑎𝑚 ∙ 𝑥𝑚, where 𝑎𝑖 is

computable for all 𝑖 = 0,1, … , 𝑚. The fact that p is a computable real function follows directly

from theorems 8 and 9.

∎

18

References

Bauer, M. S., & Zheng, X. (2010). On the weak computability of continuous real functions. arXiv

preprint arXiv:1006.0394.

Chen, Q., Su, K., & Zheng, X. (2007). Primitive recursiveness of real numbers under different

representations. Electronic Notes in Theoretical Computer Science, 167.

GeeksforGeeks, “Turing Machine for Addition”, accessed August 6, 2021,

https://www.geeksforgeeks.org/turing-machine-addition/.

Hackers at Cambridge, February 17, 2018, Partial Recursive Functions 5: Minimisation [Video].

YouTube. https://www.youtube.com/watch?v=bFkU-

qV2Ioo&ab_channel=HackersatCambridge.

Hackers at Cambridge, January 21, 2018, Partial Recursive Functions 4: Primitive Recursion

[Video]. YouTube. https://www.youtube.com/watch?v=cjq0X-

vfvYY&ab_channel=HackersatCambridge.

Hopcroft J., Motwani R., Ullman, J. (2001). Introduction to Automata Theory, Languages, and

Computation, 2nd ed. Addison-Wesley.

Laczkovich, M., Sós, V. (2014). Real Analysis: Foundations and Functions of One Variable.

Springer.

Stanford Encyclopedia of Philosophy, “Computability and Complexity”, Stanford University,

accessed July 1, 2021, https://plato.stanford.edu/entries/computability/.

Stanford Encyclopedia of Philosophy, “Formalism in the Philosophy of Mathematics”, Stanford

University, accessed August 16, 2021, https://plato.stanford.edu/entries/formalism-

mathematics/#ForPos.

Stanford Encyclopedia of Philosophy, “Recursive Functions”, Stanford University, accessed July

1, 2021, https://plato.stanford.edu/entries/recursive-functions/

Stanford Encyclopedia of Philosophy, “The Church-Turing Thesis”, Stanford University,

accessed July 1, 2021, https://plato.stanford.edu/entries/recursive-functions/.

Veisdal, J, “Uncomputable Numbers”, Jorgen Veisdal, accessed August 7, 2021.

https://jorgenveisdal.medium.com/uncomputable-numbers-ee528830d295.

Weihrauch, K. (2000). Computable Analysis: An Introduction. Springer.

Wikipedia, “Computable number”, Wikipedia, accessed July 1, 2021,

https://en.wikipedia.org/wiki/Computable_number.

WolframMathWorld, “Chaitin’s Constant”, WolframMathWorld, accessed August 6, 2021.

https://mathworld.wolfram.com/ChaitinsConstant.html.

https://www.geeksforgeeks.org/turing-machine-addition/
https://www.youtube.com/watch?v=bFkU-qV2Ioo&ab_channel=HackersatCambridge
https://www.youtube.com/watch?v=bFkU-qV2Ioo&ab_channel=HackersatCambridge
https://www.youtube.com/watch?v=cjq0X-vfvYY&ab_channel=HackersatCambridge
https://www.youtube.com/watch?v=cjq0X-vfvYY&ab_channel=HackersatCambridge
https://plato.stanford.edu/entries/computability/
https://plato.stanford.edu/entries/formalism-mathematics/#ForPos
https://plato.stanford.edu/entries/formalism-mathematics/#ForPos
https://plato.stanford.edu/entries/recursive-functions/
https://plato.stanford.edu/entries/recursive-functions/
https://jorgenveisdal.medium.com/uncomputable-numbers-ee528830d295
https://en.wikipedia.org/wiki/Computable_number
https://mathworld.wolfram.com/ChaitinsConstant.html

