
A Proof of the Smn Theorem in CoqVincent ZammitMarch 1997AbstractThis report describes the implementation of a mechanisation of the theory of computation in theCoq proof assistant which leads to a proof of the Smn theorem. This mechanisation is based on amodel of computation similar to the partial recursive function model and includes the de�nition ofa computable function, proofs of the computability of a number of functions and the de�nition ofan e�ective coding from the set of partial recursive functions to natural numbers. This work formspart of a comparative study of the HOL and Coq proof assistants.1 IntroductionThis report illustrates the mechanisation in Coq of the theory of computation leading to the Smn theorem.This work is a case study using Coq and is part of a comparative study of the theorem proof assistantsCoq and HOL. The de�nitions and proofs of even the most trivial results of computability tend to beof a very technical nature much similar to the proofs of theorems one �nds in mathematical texts, andthus this theory o�ers an extensive case study for the analysis of the two approaches of mechanicalveri�cation.The implementation illustrated in this report is based on a model of computation similar to thede�nition of partial recursive functions found in the literature on computation (see for instance [3, 10, 12].)The next section introduces the de�nition of partial recursive functions and section 3 gives a briefoverview of the Coq theorem prover. A model of computation based on partial recursive functions andits formalisation in Coq is then given in section 4. In section 5, the key notion of a computable functionis de�ned, and several functions are proved to be computable according to this de�nition. The resultgiven in this section are then used in section 6 in the de�nition of an e�ective coding of partial recursivefunctions and the proof of the Smn theorem. Conclusions are �nally given in the last section of this report.A di�erent mechanisation of the theory of computation has also been implemented in HOL. Thismechanisation is based on the URM model of computation and includes a proof that partial recursivefunctions are URM computable. This mechanisation is illustrated separately in [13]. The results of thecomparative study will be published in [14].2 Partial Recursive FunctionsThe set of partial recursive functions is de�ned in the literature (see for instance [3, 10]) as the smallestset of n-ary partial functions on natural numbers which contains the three basic types of functions:� the zero functions: 8n; x0; : : : ; xn�1:Zn(x0; : : : ; xn�1) = 0,� the successor function: 8x0:S(x0) = x0 + 1,� and the projection functions: 8n; i < n; x0; : : : ; xn�1:U in(x0; : : : ; xn�1) = xi;and which is closed under the operations of:Substitution Given a k-ary function f , and k n-ary functions ~g = (g0; : : : ; gk�1), the substitution f �̂gis de�ned as the function which maps a vector ~x = (x0; : : : ; xn�1) into the application of f on the1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

result of the application of the functions in ~g on ~x:f �̂g(x0; : : : ; xn�1) =f(g0(x0; : : : ; xn�1); : : : ; gk�1(x0; : : : ; xn�1)).Recursion Given an n-ary base case function � and an (n + 2)-ary recursion step function �, the(n+ 1)-ary primitive recursive function R(�;�) is de�ned as follows:R(�;�)(0; x0; : : : ; xn�1) = �(x0; : : : ; xn�1)R(�;�)(x + 1; x0; : : : ; xn�1) = �(x;R(�;�)(x; x0 ; : : : ; xn�1); x0; : : : ; xn�1).Minimalisation Given an (n + 1)-ary function f , its unbounded minimalisation is the n-ary functiongiven by:�x(f(x; x0; : : : ; xn�1) = 0) = 8>><>>: the least x s:t: f(x; x0; : : : ; xn�1) = 0, and forall x0 � x, f(x0; x0; : : : ; xn�1)is de�nedunde�ned if no such x exists.It is shown that the set of partial recursive functions is equal to the set of computable functions de�nedaccording to any proposed model of computation [3, 10, 12]; and a mechanisation in HOL [5, 6] of theresult that any partial recursive function is computable according to the URM model of computation isillustrated in [13]. The mechanisation described in this report is based on a model of computation whichis very similar to the above de�nition of partial recursive functions. As a result proofs that particularfunctions are computable are relatively straightforward.3 An Overview of CoqThe Coq system is an implementation in CAML of the Calculus of Inductive Constructions (CIC) [1], avariant of type theory related to Martin-L�of's Intuitionistic Type Theory [7, 8] and Girard's polymorphic�-calculus F! [4]. Terms in CIC are typed and types are also terms. Such a type theory can be treatedas a logic through the Curry-Howard isomorphism (see [11, 8] for introductions of the Curry-Howardisomorphism) where propositions are expressed as types. For instance, a conjunction A^B is representedby a product type A � B, and an implication A) B is represented by a function type A ! B. Also,a term of type � can be seen as a proof of the proposition represented by � , and thus theorems in thelogic are nonempty types. For example, the functioncurry = �f:�x:�y:f(x; y)which has type ((A�B) ! C)! A! B ! C is a proof of the theorem ((A^B)) C)) (A) B) C).Objects which have the same normal form according to ���-conversion are called convertible, and aretreated as the same term by the logic. �-conversion involves the substitution of a constant by its de�ningterm and �-conversion is automation of inductive de�nitions. The CIC implemented in Coq di�ers fromthat of LEGO [9] by having two sorts of universes, an impredicative universe for sets in which functionsare computable, and a predicative universe for types and propositions in which functions (predicates)need not be computable (decidable).Due to the Curry-Howard isomorphism, theorem proving corresponds to the construction of welltyped terms and the core inference engine of Coq is basically a type checking algorithm of CIC terms.Terms whose type is a theorem are usually called proof objects and are stored in Coq theories. TheCoq system provides the speci�cation and proof language Gallina in which users perform the actualinteractive theorem proving. Gallina constructs include commands for specifying de�nitions and fortactic based theorem proving and Coq users can extend the Gallina language by implementing newcontructs in CAML. The �les which Gallina accepts during theorem proving are usually called scripts(or proof scripts). 2

4 Partial Recursive Functions as a Model of ComputationThe following section illustrates the syntax and semantics of PRF .4.1 The Syntax of PRFThe syntax of the language PRF is de�ned such that each language construct corresponds to one of thethree basic functions or to one of the three operators which build up partial recursive functions:prf ::= Zero: prf| Succ: prf| Proj: nat ! prf| Sub: prf ! prf ! nat ! nat ! prf| Rec: prf ! prf ! prf| Min: prf ! prfIt should be noted that a particular PRF program represents a di�erent partial function for eacharity. For example, although Succ is de�ned in order to represent the successor function S, it alsorepresents the n-ary functions which return the successor of the �rst number of their input:�(x0; x1; : : : ; xn�1):S(x0).The semantics of PRF programs is described in detail in the next section.The only major di�erence between the above syntax and that of the partial recursive functionsdescribed in the previous section is the construct Sub which denotes the substitution of a single functionrather than of a vector or list of functions. However it is shown (Sec. 4.3) that this construct can beused to de�ne a function Subl: prf ! list prf ! prf whose syntax and behaviour correspond to thesubstitution of a list of functions into a function.This syntax is de�ned in Coq as the inductive set prf.4.2 The Semantics of PRFAs it was stated above, programs in PRF are de�ned in order to compute n-ary partial functions whichmap natural numbers to natural numbers; and the semantics of such programs is given through thede�nition of a relation #� (PRF � list N � N). Given a program p, a list l and a natural number xsuch that (p; l; x) 2#, we say that p converges to x having the list l as its input, and we use the notationphli # x. Since a program p in PRF corresponds to some partial function f (n)p for each arity n, thebehaviour of p is de�ned such that phli # x if f (n)p v(n)l = x,where v(n)l denotes the vector with n components which corresponds to the list l. If the length of l,denoted by]l, is greater or equal to n, then v(n)l consists of the �rst n elements of l, otherwise it consistsof all the elements in l followed by (n�]l) zeros.The predicate converges_to: prf ! list nat ! nat ! Prop is inductively de�ned in Coq to repre-sent the relation #, and thus in this text # is no longer assumed to be a subset of the tuple (PRF�list N�N), and the symbol `#' is used only in the notation phli # x as an abbreviation for converges_to p l v.The semantics of PRF is illustrated below:Zero For any list l, Zero converges to 0. Zerohli # 0Successor Given any non-empty list x : l, Succ converges to the successor of x. In order that Succconverges for all lists, its semantics is de�ned such that it converges to (S 0) if its input is anempty list. Succh[]i # (S 0) Succhx : li # (S x)3

Projections Given a list l, the projection Proj i converges to zel i l. The function zel is de�ned suchthat zel i l returns the (i+ 1)th element in l if i <]l, otherwise it returns 0.(Proj i)hli # (zel i l)Substitution The substitution of two functions Sub f g n m is based on the notion of function com-position f 0 � g0 where the output of g0 is given as the input of f 0. However in the substitutionSub f g n m part of the input of g as well as its output is given as the input of f , If l is the inputof g then the sublist having the m elements starting at o�set n of the list l is given as input to gtogether with the output x where ghli # x. The program Sub f g n m converges to some value ygiven the input list l, if and only if:� The program g converges to some value x for the input l = [x0; x1; : : : ; xw],� f converges to y given the input [x0n; x0n+1; : : : ; x0n+m�1] ++[x], wherex0i = xi if i <= w= 0 if i > w.The semantics of substitution is given by the rule:ghli # x fhpcombine n m l xi # y(Sub f g n m)hli # ywhere pcombine n m l x represents the list made up by appending x at the end of the sublist of lcontaining the m elements starting at o�set n:pcombine n m l x = [zel n l; zel (n+ 1) l; : : : ; zel (n+m� 1) l; x]We use the notation f �nm g as an abbreviation for Sub f g n m.Recursion The behaviour of Rec � � corresponds to the de�nition of the recursion operator describedin section 2. If the empty list is given as the input of Rec � � then it is treated as the singletonlist containing 0 such that if � and � are total functions then so is Rec � �.�h[]i # x(Rec � �)h[]i # x �hli # x(Rec � �)h0 : li # x(Rec � �)hh : li # r �hh : r : li # x(Rec � �)h(S h) : li # xMinimalisation The behaviour of the minimalisation Min f is also de�ned such that it corresponds tothe de�nition of the minimalisation operator described in section 2.minl (�h.converges_to f h : l) x(Min f)hli # xThe term (�h.converges_to f h : l) denotes the binary relation between natural numbers suchthat h relates with y if fhh : li # y. The predicate minl: (nat ! nat ! Prop) ! nat ! Propis de�ned such that given a relation R and a natural number n, and using the notation x �R yto denote that (R x y) holds, then minl R n holds if n �R 0 holds and that for all m < n thereexists a j > 0 such that m �R j.A relation allsucs is �rst de�ned such that allsucs R n holds if for all m � n, there exists somek such that m �R (S k) 0 �R (S k)allsucs f 0 (S m) �R (S k) allsucs R mallsucs R (S m)4

and then minl is de�ned by the following two rules:0 �R 0minl R 0 (S n) �R 0 allsucs R nminl R (S n)If R is a single-valued relation then minl R n holds if n is the smallest number such that n �R 0and for all m � n, there exists a unique j (depending on m) such that m �R j. The predicateminl R is single-valued if R is a single-valued relation; and for any two relations, R and Q, ifthey are equivalent (8x; y:(x �Q y) , (x �R y)) then so are the predicates minl Q and minl R.The �rst result is proved by rule induction on minl and the second one is proved by applying theprinciple of mathematical induction on the proposition (8n:minl Q n, minl R n) assuming thatQ and R are equivalent.The language PRF is proved to be deterministic (i.e. the relation converges_to is single-valued) andin the next section it is shown how a function Subl: prf ! list prf ! prf which corresponds to thesubstitution of a list of functions is constructed in terms of Sub. It should be noted that the set prfcannot be de�ned such that it contains the construct Subl because the term prf does not occur strictlypositively in prf ! list prf ! prf (see [2] page 74).4.3 Substitution of a List of FunctionsGiven a program f and a list of programs gl = [g0; g1; : : : ; gk�1], Subl f gl should be a program suchthat for all lists of natural numbers l and values (x0; x1; : : : ; xk�1), (Subl f gl)hli # y if:� for all i < k, gihli # xi, and� fh[x0; x1; : : : ; xk�1]i # y.Given f and gl, the value y can be computed by substituting (using Sub) the programs g0; g1; : : : ; gk�1into each other so that the output of each program gm is passed, together with its input, to the nextprogram gm+1. Thus the input of each program gi is made up of the original input of g0 and all theoutputs of the previous programs gj for j < i; �nally the outputs of all the programs in gl are given asthe input to f . If for any program p, one can �nd a number np such that the behaviour of p dependsonly on the �rst np elements of the input list, then the required substitution can be constructed by:Subl f gl = (� � � (f �ngk�1 gk�1) �0ng+k�2 � � � �0ng+1 g1) �0ng g0where ng is max(ng0 ; : : : ; ngn�1) so that the behaviour of each program gi is not altered by appendingthe outputs of the substituting programs appended at the end of its input.The value of np can be given by a function �(p), which we call the natural arity of p. This functionis de�ned in Coq by:`def natarity Zero = 0Succ = (S 0)Proj i = (S i)Sub f g n m = max (natarity g) (n + m)Rec b s = max (S (natarity b) (pred (natarity s))Min f = pred (natarity f)and its signi�cance is given by the theorem` 8p l l0.(length nat l) = (natarity p))8x. (converges to p l x) ,(converges to p (l ++ l0) x)The function Subl is then de�ned recursively 5

`def Subl in f m [] n = Sub f Zero 0 0f m [g] n = Sub f g m nf m g1 : g2 : gl n = Sub (Subl in f m (g2 : gl) (S n)) g1 0 (m+ n)`def Subl f gl = (Subl in f (maxarity gl) gl 0)`def maxarity [g0; : : : ; gx] = max (natarity g0, : : :, natarity gx)and it is proved that its behaviour is as required.` 8f gl l x.(converges to (Subl f gl) l x) ,(9xl. (mapR prf nat (�xl. converges to g l) gl xl) ^(converges to f xl x))The relation mapR corresponds to the standard map function over lists, in the sense that given a relationR and two lists l = [x0; x1; : : : ; xn�1] and l0 = [x00; x01; : : : ; x0n0�1], mapR R l l0 holds (or, l �(mapR R) l0)if and only if]l =]l0 and all corresponding pairs of elements in l and l0 are related to each other, i.e.8i < n:xi �R x0i. [] �(mapR R) [] a �R b k �(mapR R) l(a : k) �(mapR R) (b : l)5 PRF ComputabilityIn this section we illustrate how PRF programs are used as a model of computation through the de�nitionof the notion of a computable function. The type of functions which are considered for computabilityare represented as single-valued relations between vectors of natural numbers and natural numbers. We�rst describe how vectors have been de�ned in Coq, then we illustrate the de�nition of a computablefunction and how particular functions can be proved to be computable.5.1 VectorsA vector of a set A is de�ned by the inductively de�ned set:vector A ::= Vnil: (vector A 0)| Vcons: (n: nat) ! A ! (vector A n) ! (vector A (S n))We use the notation () to represent the empty vector Vnil A and (x;~v(n)), or simply (x;~v), torepresent Vcons A n x ~v. Since the set vector A n depends on n, in general an expression of typevector A e1 cannot be de�ned to have the type vector A e2 even if it can be proved that e1 = e2. Forexample although for all n, m, one can prove that (n+m) = (m+n), a vector of type vector A (n +m)cannot be used as having type vector A (m+ n). However a function Change_arity has been de�nedsuch that given a vector ~v:(vector A n) and a proof t of (n = m), then Change_arity n m t A ~v hastype (vector A m); and it is proved that:` Change arity eq =8n (t: (n=n)) A ~v. (Change arity n n t A ~v) = ~vFor instance, if ~v(n+m) is a vector of type vector nat (n+m) then the termChange arity (n + m) (m + n) (plus_sym n m) nat ~v(n+m)has type vector nat (m+ n); and by rewriting with any theorem of type ((n+m) = (m+ n)) and thenby Change_arity_eq, one can substitute the above term with ~v(n+m) in any expression. The theoremplus_sym represents the commutativity of addition and has type 8n;m:(n+m) = (m+ n).The head, tail and any element of a vector is given by the relations:6

Vhd A (S n) (h;~t) h Vtl A (S n) n (h;~t) ~tVel A 0 (S n) (h;~t) h Vel A i n ~t xVel A (S i) (S n) (h;~t) xas well as by functions:� vhd: (A: Set) ! (n: nat) ! (vector A (S n)) ! A,� vtl: (A: Set) ! (n: nat) ! (vector A (S n)) ! (vector A n) and� vel: (A: Set) ! (i, n: nat) ! (Hl: i < n) ! (vector A n) ! A.In general, properties of vectors are easier to prove if they are speci�ed using the above relations,although terms written using the respective functions are more readable and are sometimes more usefulin the proof of theorems requiring rewriting. Thus, both sets of de�nitions are implemented in Coq andare proved to be equivalent, so that either one is used in making the mechanisation in Coq more elegantand less laborious.Finally a function vzel: (i, n: nat) ! (vector nat n) ! nat which corresponds to the functionzel over lists is also de�ned, and vectors are mapped into lists and vice-versa through the functions� listify: (A: Set) ! (n: nat) ! (vector A n) ! (list A) and� vectrify: (A: Set) ! (l: list A) ! (vector A (length A l)).5.2 Partial FunctionsThe type of partial functions of arity n mapping vectors into natural numbers, pfunc:nat ! Type isde�ned as the dependent product type of single-valued relations between vectors and numbers. This isgiven by the de�nition of the dependent record1`def pfunc arity := mk pfuncf reln : (Rel (vector nat arity) nat);One valued: (one valued2 (vector nat arity) nat reln)gwhere Rel A B is the type of the relations between the sets A and B.The �eld reln represents a relation between vectors having arity components and natural numbers,and the �eld One_valued is a proof that reln is single-valued.The type of all partial functions is then de�ned as the dependent product`def pfuncs ::= Pfuncs: (n: nat) ! (pfunc n) ! pfuncsA function g:(vector nat n) ! nat de�ned in Coq can be used to specify an object of type pfunc nsince f obviously describes a single-valued relation R such that 8~v; x:~v �R x, g(~v) = x. This is achievedthrough a function pfuncize:(arity: nat) ! ((vector nat arity) ! nat) ! (pfunc arity).5.3 Computable FunctionsA PRF program p is said to compute an n-ary partial function f:(pfunc n) if for all vectors ~v andnatural number x, the relation in f holds if and only if the program p converges to x with inputl~v = listify nat n ~v.`def computes p n f =8~v x. (reln n f ~v x) ,(converges to p (listify nat n ~v) x)1A record f of type pfunc n, is constructed by mk_pfunc R H where R has type Rel (vector nat n) nat and Hhas type (one_valued2 (vector nat n) nat R). The functions reln and One_valued select R and H respectivelyfrom f . 7

and a function is said to be computable if there is some program which computes it.`def computable n f = 9p. computes p n fA predicate P is proved to be decidable by showing that its characterstic function fP given by:fP (~v) = 1, if P (~v)= 0, otherwiseis computable.Given a single-valued relation Rf which constructs the partial function f: pfunc n, a proof that fis computable involves the construction of a PRF program p: prf such that:8~v; x:phlistify ~vi # x, ~v �Rf x.This proof is relatively straightforward if Rf is speci�ed through some Coq function gf (in the sensethat f = pfuncize n gf) since obviously8~v; x:~v �Rf x, reln n f ~v x, gf (~v) = xand the equivalence 8~v; x:phlistify ~vi # x, gf (~v) = xcan be proved by showing that: 8~v:phlistify ~vi # gf (~v).The required equivalence follows by applying the fact that Rf is total and that computes_to is a single-valued relation.The following tables list a number of functions which are proved to be computable.5.4 Basic FunctionsFunction name De�nition PRF programUnde�ned Undef (~v) =? Diverges_all = Min SuccZero Z(~v) = 0 ZeroSuccessor S(x) = x+ 1 SuccProjections U in(x0; : : : ; xn�1) = xi Proj i, if i < nDiverges_all, if i � n5.5 RearrangementThe function Rarr: prf ! list nat ! prf is de�ned by`def Rarr f [i0, i1, : : :, in�1] =Subl f [Proj i0, Proj i1, : : :, Proj in�1]such that if we de�ne the list li = [i0; i1; : : : ; in�1] then, if fh[x0; x1; : : : ; xm�1]i # r then Rarr f liconverges to the same value r if it is given the list which is made up by rearranging the elements in[x0; x1; : : : ; xm�1] according to the values in li:Rarr f lih[xi0 ; xi1 ; : : : ; xin�1]i # r.
8

5.6 ArithmeticIdentity �N(x) = x Identity = Proj 0Constants Cn (~v) = n Constant 0 = ZeroConstant (S n)= Subl Succ [Constant n]Addition 0 + x1 = x1 Add = Rec IdentityS(x0) + x1 = S(x0 + x1) Rarr Succ [1]Multiplication 0� x1 = 0 Multiply = Rec ZeroS(x0)� x1 = x1 + (x0 � x1) Rarr Add [2, 1]Power x01 = 1 Power' = Rec (Constant 1)xS(x0)1 = x1 � (xx01) Rarr Multiply [2, 1]Power = Rarr Power' [1, 0]Note that Power'h[x0; x1]i # xx01Predecessor pred(0) = 0 Pred = Rec Zeropred(S(x)) = x IdentitySubtraction x1 � 0 = x1 Subtract' = Rec Identityx1 � S(x0) = pred(x1 � x0) (Rarr Pred [1])Subtract = Rarr Subtract' [1, 0]Di�erence di�(0; x1) = x1 Differencedi�(S(x0); 0) = S(x0) = Subl Add [Subtract, Subtract']di�(S(x0);S(x1)) = S(x0) Since di�(x; y) = (x� y) + (y � x)5.7 Boolean OperationsConditional if 0 then x1 else x2 = x2 Cond = Rec (Proj 1)if S(x0) then x1 else x2 = x1 (Proj 2)Boolean identity �2(0) = 0 Bid = Subl Cond [Identity,�2(S(x)) = 1 Constant 1, Zero]Negation :N(0) = 1 Neg = Subl Cond [Identity,:N(S(x)) = 0 Zero, Constant 1]Conjunction 0 ^N x1 = 0 Conj = Subl Cond [Proj 0,S(x0) ^N x1 = �2(x1) Rarr Bid [1],Zero]Disjunction 0 _N x1 = �2(x1) Disj = Subl Cond [Proj 0,S(x0) _N x1 = 1 Constant 1,Rarr Bid [1]]

9

5.8 Predicates on Natural NumbersIs zero is0(0) = 1 Is0 = Negis0(S(x)) = 0Non zero non0(0) = 0 Non0 = Bidnon0(S(x)) = 1Equality 0 =N 0 = 1 Equal = Subl Is0 [Difference]0 =N S(x1) = 0S(x0) =N 0 = 0 Since x =N y = is0(di�(x; y))S(x1) =N S(x1) = x0 =N x1Inequality 0 6=N 0 = 0 Different = Subl Non0 [Difference]0 6=N S(x1) = 1S(x0) 6=N 0 = 1 Since x 6=N y = non0(di�(x; y))S(x1) 6=N S(x1) = x0 6=N x1Less than 0 <N 0 = 0 Less = Subl Non0 [Subtract']0 <N S(x1) = 1S(x0) <N 0 = 0 Since x <N y = non0(x� y)S(x1) <N S(x1) = x0 <N x1Greater than x0 >N x1 = x1 <N x0 Greater = Rarr Less [1, 0]Less or equal x0 �N x1 = :N(x0 >N x1) Less_eq = Subl Neg [Greater]Greater or equal x0 �N x1 = :N(x0 <N x1) Greater_eq = Subl Neg [Less]5.9 First OccurenceGiven a partial function f , (�rst f) is de�ned as the �rst natural number n such that f(n) > 0 and forall m � n, f(m) is de�ned. If no such number exists, (�rst f) is unde�ned. If fP is the characteristicfunction of some unary predicate P , then (�rst fP) returns the �rst number n such that P (n) holds.First that �rst f First_that p= minl (�m; n:is0(f(n)) = m) = Min (Subl Is0 [p])5.10 DivisionThe quotient and remainder of a division operator can be de�ned by the partial functions div : N2 ! Nand mod : N2 ! N such that:div (n;m) = q; if 9r < m:qm+ r = nmod (n;m) = r; if r < m and 9q:qm+ r = nOtherwise, one can de�ne total, primitive recursive functions:modt (0;m) = 0modt (S(n);m) = 0; if modt (n;m) + 1 = m= modt (n;m) + 1; if modt (n;m) + 1 6= mdivt (0;m) = 0divt (S(n);m) = divt (n;m) + 1; if modt (n;m) + 1 = m= divt (n;m); if modt (n;m) + 1 6= msuch that divt (n; 0) = 0 and modt (n; 0) = n.The partial functions div and mod are de�ned in Coq as the predicates div and mod respectively,and the above total functions as the functions modt and divt. The predicates are then used to specifythe partial functions pf_div:pfunc 2 and pf_mod:pfunc 2. The program Divide:prf`def Divide = Subl Pred [First (Subl Less [Proj 1, Rarr Multiply [0, 2]])]10

computes pf_div by calculating the predecessor of the �rst q such that n < qm, given a list n : m : l asinput. Also, since mod (n;m) = n� (m� div (n;m))the program`def Mod = Subl Subtract [Proj 0, Subl Multiply [Proj 1, Divide]]computes pf_mod.6 Coding Programs and the Smn Theorem6.1 Coding DomainsA coding of a set A can be obtained by de�ning two e�ective and injective functions � : A ! N and� : N ! A such that � is total, � and � are inverses of each other and the predicate n is in therange of � is decidable. By the term `e�ective', it is meant that the function is computable in someinformal sense, and such notion is not de�ned in the implementation in Coq; although if one de�nesa function f: A ! nat, it can be assumed that f is an e�ective mapping. Also given two functionsf: A ! B and g: B ! A, the predicate g is the inverse of f is de�ned such that it holds if and onlyif 8a:g(f(a)) = a. Since functions in Coq are necessarily well formed, if g is the inverse of f , then f isinjective and g is surjective. The predicate b is in the range of f is then given by 9a:f(a) = b. Thispredicate is speci�ed in Coq by in_range: (A, B: Set) -> (A -> B) -> B -> Prop, and the range of fis decidable if 8b:fin_range f bg + f:in_range f bg.The range of a function is obviously decidable if the function is surjective.6.2 Coding PairsThe bijection � : N2 ! N which maps pairs of natural numbers into natural numbers is represented inCoq by the curried function pi: nat ! nat ! nat de�ned as follows:`def pi 0 0 = 0(S n) 0 = S (S (pi n 0 + n)n (S m) = S (pi n m + n + m)The inverse of � is given by the two functions ��11 : N ! N and ��12 : N ! N de�ned mutuallyinductively in Coq by`def pi1 0 = 0(S n) = if equal nat (pi2 n) 0 0 (S (pi1 n))withpi2 0 = 0(S n) = if equal nat (pi2 n) 0 (S (pi1 n)) (pred (pi2 n))where the term if_equal A n m a b is equal to aA if n =nat m, and is equal to bA if n 6=nat m; and itis proved that` 8n. pi (pi1 n) (pi2 n)) = n` 8n m. pi1 (pi n m) = n` 8n m. pi2 (pi n m) = m
11

As a result, these functions are used to de�ne the bijective functions vf_pi: (vector nat 2) -> natand vf_invpi: nat -> (vector nat 2) which represent an e�ective coding of the set vector nat 2. Therelation pfuncize vf_pi is computable, and so are the objects of type pfunc (S 0) which represent pi1and pi2.Moreover, by nesting � (and ��11 and ��12) it is possible to de�ne e�ective codings for any size ofvectors. The function �(w; x; y; z) = �(�(w; x)); (�(y; z)))with inverse projections ��11 , ��12 , ��13 and ��14 is used in the following section.6.3 Coding ProgramsAn e�ective coding of PRF programs can be given by the functions : PRF ! N and P : N ! PRF : : Zero 7! 0Succ 7! 1Proj i 7! i� 4 + 2Sub f g n m 7! �((f); (g); n;m)� 4 + 3Rec f g 7! �((f); (g))� 4 + 4Min f 7! (f)� 4 + 5P : 0 7! Zero1 7! Succn+ 2 7! Proj d, if m = 07! Sub P(��11 (d)) P(��12 (d)) ��13 (d) ��14 (d), if m = 17! Rec P(��11 (d)) P(��12 (d)), if m = 27! Minl P(d), if m = 3where d = div (n+ 2; 4)m = mod (n+ 2; 4)We use the notation Pn to denote the program P(n). The function is clearly primitive recursiveand is de�ned in Coq by the function Godel: prf ! nat. Also, since P is applied recursively to valueswhich are always less than the original value (note that for all n, ��11 n � n and ��12 n � n), then it iswell formed and is de�ned as follows:`def Prog 0 = Zero(S 0) = Succ(S (S n)) = (�d, r.if equal prf r 0 (Proj d)if equal prf r 1 (Sub (calc Prog n (pi1 (pi1 d)) (Prog n))(calc Prog n (pi2 (pi1 d)) (Prog n))(pi1 (pi2 d)) (pi2 (pi2 d)))if equal prf r 2 (Rec (calc Prog n (pi1 d) (Prog n))(calc Prog n (pi2 d) (Prog n)))(Min (calc Prog n d (Prog n))))(divt n 4) (modt n 4)withcalc_Prog 0 r p = p(S m) r p = if equal prf r m (Prog m) (calc Prog m r p)such that` 8n m p. (m < n)) (calc Prog n m p) = Prog mand 12

` 8n m p. (n � m)) (calc Prog n m p) = pThe function Prog is proved to be the inverse of Godel by induction on the structure of prf; and Godelis proved to be the inverse of Prog by strong mathematical induction2 on n and by case analysis over themutually exclusive cases: 8n:(n = 0) _ (n = 1) _ ((n � 2) ^((mod (n; 4) = 0) _ (mod (n; 4) = 1) _(mod (n; 4) = 2) _ (mod (n; 4) = 3)))The functions Godel and Prog constitute an e�ective coding for the set prf. Note that all the functionsused in the de�nition of these two functions are proved to be computable; the computability of thesefunctions is required for the proof of the Smn theorem.We also de�ne the function �(n)e as the n-ary function which is computed by the program Pe. Since is surjective, any n-ary computable function is equivalent to some function �(n)e . This is representedin Coq by the partial function pf_compute_Prog: pfunc n e which is constructed from the single-valuedrelation fcompute_Prog:`def fcompute Prog n e = �~v. (converges to (Prog e) (listify nat n ~v))6.4 The Smn TheoremThe Smn theorem, also called the parametrisation theorem, states that for any (m + n)-ary function�(m+n)e , one can �nd an equivalent n-ary function �(n)s , such that s can be computed from m, n, e andthe �rst m parameters of �(m+n)e . In other words, for all m;n there is a total computable (m + 1)-aryfunction smn such that: 8e; ~x; ~y:�(m+n)e (~x; ~y) = �(n)smn (e;~x)(~y).Given the numbers m, n and e, and the vector ~x = (x0; x1; : : : ; xm�1), then the function �(n)smn (e;~x)can be computed by the program constructed by substituting the m constant programs Constant x0,Constant x1, : : : , Constant xm�1, and the projections Proj 0, Proj 1, : : : , Proj n � 1 into the programcoded by e, Pe. This program is de�ned in Coq by:`def smnprf m n e xl= Subl (Prog e) ((constants [xl0, xl1, : : : , xlm�1]) ++ (projections n)where xl is the list listify ~x and xli is the (i + 1)th element in xl. The functions constants andprojections are the lists of PRF programs de�ned such that:constants [x0, x1, : : :, xm�1] = [Constant x0, Constant x1, ..., Constant xm�1]projections n = [Proj 0, Proj 1, ..., Proj n� 1]The function smn is then de�ned as the function pf_smnprf: (pfunc m)`def vf smnprf m n ~v)= (Godel (smnprf m n (vhd nat m v) (listify nat m (vtl nat m v))))`def pf smnprf = �m,n.(pfuncize (S m) (vf smnprf m n))This function is obviously total since it is de�ned using the function pfuncize. Also, by proving thefollowing theorems expressing the behaviour of constants and projections` 8l lm. (mapR prf nat (�g.(converges to g l)) (constants lm) lm)` 8l n.]l = n)(mapR prf nat (�g.(converges to g l)) (projections n) l)28n:P (n) can be deduced from 8n:(8m:m < n) P (m))) P (n). This principle is given by the theorem lt_wf_indproved in Wf_nat.v. 13

the function pf_smnprf m n is proved to be as required:` �m n e ~x ~y k z.(reln (S m) (pf smnprf m n) (Vcons nat m e ~x) k))(reln (plus m n) (pf compute Prog (plus m n) e) (~x; ~y) z) ,(reln n (pf compute Prog n k) ~y z)Since the functions used in the de�nition of Godel are proved to be computable, the functionpf_smnprf m n is also computable. The proof of this results is done as follows:1. Since for all c, �(Constant c) = 0; and for all i, �(Proj i) = i, it can be shown that` 8m n. maxarity (pf smnprf m n) = n2. For any list l = [y0; y1; : : : ; yk�1], and natural numbers n; n0, there exists some PRF programwhich computes the function(Subl_in Pe n [Proj y0, Proj y1, : : :, Proj yk�1] n0).for any number e. This is proved by induction on l.3. For all c, the function (Constant c) is computable. This result is proved by mathematical inductionon c and is needed in the proof of the next step.4. For any list of projections programs lp, and for any list of natural numbers l, and numbers n, n0,there is some PRF program which computes the function(Subl_in Pe n ((constants l) ++ lp) n0).for any number e. This is proved by mathematical induction on the length of l, the base case beingstep 2 above.5. The required theorem is a generalisation of the previous step, where� lp = [Proj 0; Proj 1; : : : ; Proj n� 1]� n0 = maxarity (pf_smnprf m n) = n (by step 1)� l is the tail of the input of pf_smnprf m n` 8m n. computable (S m) (pf smnprf m n))The proof of the Smn theorem, as well as all the proofs implemented in the mechanisation in Coq,does not involve the axiom of the excluded middle. Other theorems in the theory of computationare also expected to be constructive, although however, the literature of computability does containtheorems whose proof requires classical reasoning. An example of this is the proof of the existence of anuncomputable function given in Cutland [3].7 ConclusionsThe mechanisation illustrated above includes the de�ntion of computable function, the proof of thecomputability of a number of particular functions, an e�ective coding of partial recursive functions onnatural numbers, and �nally the proof of the Smn theorem. The proofs of the theorems derived in thisimplementation tend to be quite elaborate and involve the consideration of details often omitted in proofsgiven in mathematical texts. However, this mechanisation shows that the Coq theorem prover is a robustsystem and is suitable for the mechanisation of mathematical and `real world' theories.An advantage of using a theorem prover based on a powerful type theory, like the calculus of con-structions in Coq, over a theorem prover which is based on a simpler logic (for example HOL whichis based on a polymorphic version of Church's simple theory of types) is the availability of dependenttypes. In this report we have seen how dependent types are used in the de�nition of partial functions14

as single valued relations (section 5.2) for instance, and in general, mathematical concepts can be nat-urally de�ned as dependent objects (e.g., vectors, matrices, etc.). An apparent disadvantage of usingCoqover HOL is the di�culty needed in extended the Gallina language. HOL users can implement theirown tactics and inference rules easily, however the implementation of a new tactic in Coq requires thenon-trivial task of extending the Gallina language with a new construct. The e�ect of this disadvantageis however relieved by the power of the calculus of constructions as the underlying logic of Coq. Infact, during the implementation described in this report, no need was felt for implementing new tacticswhich would somehow facilitate the mechanisation considerably. The results of the comparative studyof Coqand HOL will be published in more detail in [14].References[1] Thierry Coquand and G�erard Huet. The calculus of constructions. Rapport de Recherche 530,INRIA, Rocquencourt, France, May 1986.[2] C. Cornes et al. The Coq Proof Assistant Reference Manual, Version 5.10. Rapport techniqueRT-0177, INRIA, 1995.[3] N.J. Cutland. Computability: An introduction to recursive function theory. Cambridge UniversityPress, 1980.[4] J.-Y. Girard. Interpr�etation fonctionelle et �elimination des coupures dans l'arith�etique d'ordresup�erieur. PhD thesis, Universit�e Paris VII, 1972.[5] M. Gordon. HOL a machine oriented formulation of higher order logic. Technical Report TR-68,Computer Laboratory, Cambridge University, July 1985.[6] M.J.C. Gordon and T.F. Melham. Introduction to HOL: a theorem proving environment for higherorder logic. Cambridge University Press, 1993.[7] Per Martin-L�of. Intuitionistic Type Theory. Bibioplois, Napoli, 1984. Notes of Giowanni Sambinon a series of lectues given in Padova.[8] Bengt Nordstr�om, Kent Petersson, and Jan M. Smith. Programming in Martin-L�of type theory: anintroduction. Clarendon, 1990.[9] Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of Constructions.PhD thesis, University of Edinburgh, 1994.[10] H. Rogers. Theory of recursive functions and e�ective computability. McGraw-Hill, 1967.[11] Simon Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.[12] G.J. Tourlakis. Computability. Reston Publishing Company, 1984.[13] Vincent Zammit. A mechanisation of computability theory in HOL. In Proceedings of the 9thInternational Conference on Theorem Proving in Higher Order Logics, volume 1125 of Lecture Notesin Computer Science, pages 431{446, Turku, Finland, August 1996. Springer-Verlag.[14] Vincent Zammit. A comparative study of Coq and HOL. In Proceedings of the 10th InternationalConference on Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science, BellLabs, New Jersey, US, August 1997. Springer-Verlag.
15

