
HAL Id: inria-00421561
https://hal.inria.fr/inria-00421561

Submitted on 5 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic Characterizations of Complexity-Theoretic
Classes of Real Functions

Olivier Bournez, Walid Gomaa, Emmanuel Hainry

To cite this version:
Olivier Bournez, Walid Gomaa, Emmanuel Hainry. Algebraic Characterizations of Complexity-
Theoretic Classes of Real Functions. [Research Report] 2009. �inria-00421561�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50140527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00421561
https://hal.archives-ouvertes.fr

ALGEBRAIC CHARACTERIZATIONS OF COMPLEXITY-THEORETIC

CLASSES OF REAL FUNCTIONS

OLIVIER BOURNEZ 1 AND WALID GOMAA 2,3 AND EMMANUEL HAINRY 2,4

1 Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France
E-mail address: Olivier.Bournez@lix.polytechnique.fr

2 Loria, BP 239 - 54506 Vandœuvre-lès-Nancy Cedex, France

3 Alexandria University, Faculty of Engineering, Alexandria, Egypt
E-mail address: walid.gomaa@loria.fr

4 Nancy Université, Université Henri Poincaré, Nancy, France
E-mail address: Emmanuel.Hainry@loria.fr

Abstract. Recursive analysis is the most classical approach to model and discuss compu-
tations over the reals. It is usually presented using Type 2 or higher order Turing machines.
Recently, it has been shown that computability classes of functions computable in recur-
sive analysis can also be defined (or characterized) in an algebraic machine independent
way, without resorting to Turing machines. In particular nice connections between the
class of computable functions (and some of its sub- and sup-classes) over the reals and
algebraically defined (sub- and sup-) classes of R-recursive functions à la Moore 96 have
been obtained. However, until now, this has been done only at the computability level,
and not at the complexity level. In this paper we provide a framework that allows us to
dive into the complexity level of functions over the reals. In particular we provide the
first algebraic characterization of polynomial time computable functions over the reals.
This framework opens the field of implicit complexity of functions over the reals, and also
provide a new reading of some of the existing characterizations at the computability level.

1. Introduction

Building a well founded theory of computation over the reals is a crucial task. However,
computability over the reals is not as well understood as the corresponding notion over
discrete objects. In particular, unlike what happens in the latter where the Church-Turing
thesis yields a clear equivalence between different computational models, when talking about
continuous computation several approaches have been developed with various motivations
but without so-clear relationships. Models include the Blum-Shub-Smale BSS model [3, 4],
Shannon’s General Purpose Analog Computer (GPAC) [25], algebraically defined classes of
functions over the reals à la Moore 96 (R-recursive functions) [23], as well as the recursive
analysis approach.

1998 ACM Subject Classification: Computational and structural complexity.
Key words and phrases: Recursive Analysis, Polynomial Time, Algebraic Characterization, Real Compu-

tation, Oracle Turing Machines.

c© O. Bournez, W. Gomaa, and E. Hainry

2 O. BOURNEZ, W. GOMAA, AND E. HAINRY

Recursive analysis was introduced by Turing [26], Grzegorczyk [16], and Lacombe [21].
It can be considered as the most classical approach to talk about computability and com-
plexity of functions over the real numbers, as its foundations are already present in Alan
Turing’s 1936 seminal paper. In recursive analysis, a function f : R → R is computable
if there exists some computable functional, or Type 2 machine, that maps any sequence
quickly converging to some x to a sequence quickly converging to f(x), for all x. That
means that this notion of computability requires a priori to deal with functionals, or higher
order Turing machines.

There is no hope to unify all approaches of computations over the reals: for example the
BSS approach can not be conciliated with the recursive analysis point of view, as a non-
continuous function can be computed in the BSS approach. However, if we put aside this
latter model, which is more motivated by discussing algebraic complexity of problems rather
than being a universal model for computations over the reals, some recent works have shown
strong connections between recursive analysis, Shannon’s GPAC, and R-recursive functions.
These results basically state that all these paradigms are more or less equivalent: see [6, 7]
or survey [5]. This can be considered somehow as yielding a kind of phenomenon for analog
computations like Church’s thesis for discrete computations.

However, up till now discussions have mainly been restricted to the computability level,
and not to the complexity level.

Relating models, known to be related at the computability level, at the complexity level
is an even more ambitious goal. A first immediate deep problem, is that defining time and
space complexity for some of the models, such as for the GPAC is very hard. One reason
is that there is no robust and well defined notions of time and space for these models, as
shown by several attempts [23, 1, 24, 5].

We prove in this paper that this is indeed possible to relate models at the complexity
level when restricting to the recursive analysis and R-recursive functions approaches. There
is indeed an unambiguous and well developed and rather well understood theory of complex-
ity for real computations in recursive analysis [20]. We relate it in this paper to a subclass
of R-recursive functions, that is to say to machine-independent algebraically defined classes
of functions over the reals à la Moore 96 [23].

In particular, and in other words, this paper presents the first algebraic machine-
independent characterization of polynomial-time computable functions in the sense of re-
cursive analysis.

We actually provide a whole framework for implicit complexity in recursive analysis,
that gives a way to relate computability and complexity over the reals to computability and
complexity over the integers. As we said, we apply this framework to get a characterization
of polynomial time computability over the reals. Besides, we also apply this framework
to re-obtain or extend results at the computability level: We extend [14], and prove that
computable functions over the reals correspond to functions generable by Shanon’s GPAC;
we extend [7, 9, 6] and prove that computable functions and elementarily time computable
functions correspond to natural subclasses of R-recursive functions. In particular, unlike
[14, 7, 9, 6], we provide characterizations that work even for non-Lipschtiz functions (and
that differ slightly for Lipschtiz functions).

This well founded framework may be a significant step towards a sane computability
and complexity theory of functions over the reals.

Potential applications of polynomial-time characterizations include the possibility of
proving whether a given function can be computed in polynomial time without resorting

ALGEBRAIC CHAR. OF COMPLEXITY CLASSES OF REAL FUNCTIONS 3

to effectively program it, as well as the possibility of building methods to automatically
derive computational properties of programs/systems, in the lines of [17, 18, 22] for discrete
programs.

We also believe in the pedagogical value of our characterizations. They yield ways to
define computability and complexity over the reals without resort to any kind of machinery
in the spirit of (Type 1 or Type 2) Turing machines. This might be considered as very
natural avoiding discrete machinery when talking about computation of real functions.

The paper is organized as follows. Section 2 discusses some related work. Section 3
introduces a preliminary background in recursive analysis. Section 4 gives some relationships
between polynomial time real computability (and other computability/complexity classes)
and approximate computability over the integers, starting from the special case of Lipschtiz
functions moving on to the general case. Section 5 applies the results obtained in Section 4
to characterize different real computability and complexity classes by function algebras.

2. Related Work

We prove our results by relating the notion of (polynomial-time) computable functions
over the integers to the corresponding notion over the reals. This gives a direct way to
lift algebraic characterizations of computability and complexity classes over the integers to
algebraic characterizations of the corresponding classes over the reals.

Our setting is actually proved to be robust to approximations: one does not need to be
able to compute exactly the corresponding class over the integers, but only some defined
approximation of it in order to be able to compute the corresponding class over the reals.
This can be seen as a way to reformulate/reprove/reread very nicely some constructions
already used in [6, 7].

Hence, this framework gives a way to rely on algebraic machine-independent character-
izations of computable functions over the integers. Several such characterization are known
[11]: in particular, Kleene’s functions are well known to capture exactly the discrete func-
tions computable by Turing machines. Cobham [12], and later Bellantoni and Cook [2],
were among the first to propose algebraically defined characterizations of polynomial time
computable discrete functions. Our main theorem relies on Bellantoni and Cook’s ideas in
[2]. Other machine independent characterizations of classical computability and complexity
classes (see survey [11]) over the integers could perhaps be considered.

Notice that our framework is different from the one proposed by Campagnolo and
Ojakian in [10]: in particular, it has the main advantage of allowing to talk not only about
the computability level but also about the complexity level. It should be also noted our
characterization is machine-free and relies exclusively on functions over the reals, hence it
can not be compared with approaches such as [19]. Algebraic characterizations of functions
over more general domains, including the reals, have been obtained in [8]. However, the
obtained characterization in this latter paper is rather different in spirit to the ones dis-
cussed here: on one hand, a more abstract setting that is not restricted to real functions is
considered there, but on the other hand the discussion is also restricted to the computability
level, and less close in spirit to the above mentioned models of continuous computation.

In this paper, for ease of presentation, we are restricting to functions over compact do-
mains. The constructions described here can indeed be extended to functions over arbitrary
domains.

4 O. BOURNEZ, W. GOMAA, AND E. HAINRY

3. Essentials of Recursive Analysis

In this section, we recall some basic definitions from recursive analysis: see [27, 20] for
a full detailed presentation. Let D = { a

2b : for integers a, b and b ≥ 0} be the set of dyadic
rationals. These are the rationals with finite binary notations.

Definition 3.1. Assume x ∈ R. A Cauchy sequence representing x is a function ϕx : N → D

that converges at a binary rate:

∀n ∈ N : |x− ϕx(n)| ≤ 2−n (3.1)

Given x ∈ R, let CFx denote the class of Cauchy functions that represent x.

Definition 3.2 (Computability of real functions). Assume a function f : D ⊆ R → R,
where D has only one connected component (on the following discussion we deal almost
exclusively with either D = [0, 1] or D = R). We say that f is computable if there exists

a function-oracle Turing machine M
()

such that for every x ∈ D, for every ϕx ∈ CFx, and
for every n ∈ N the following holds:

|M
ϕx

(n) − f(x)| ≤ 2−n. (3.2)

If D = [0, 1], then we say f is polytime computable (or polynomial-time computable) if
the computation time of M

ϕx
(n) is bounded by p(n) for some polynomial p. In case D = R,

we say f is polytime computable if the computation time of M
ϕx

(n) is bounded by p(k, n)
for some polynomial p where k = min{j : x ∈ [−2j , 2j]}.

It is well known that continuity is a necessary condition for real computation, though
it is not sufficient. A derived notion of continuity that plays an essential role in the inves-
tigation of real computation is the modulus of continuity [13].

Definition 3.3 (Modulus of continuity). Assume a function f : R → R. Then f has a
modulus of continuity if there exists a function m : N

2 → N such that for all k, n ∈ N and
for all x, y ∈ [−2k, 2k] the following holds: if |x−y| ≤ 2−m(k,n), then |f(x)−f(y)| ≤ 2−n. If
f is defined over [0, 1] the same definition holds except that the parameter k is not necessary
anymore, that is m : N → N.

In analogy with [20, corollary 2.14], computability over unbounded domains can be
characterized as indicated by the following proposition [13].

Proposition 3.4. Assume a function f : R → R. Then f is computable iff there exist two
computable functions m : N

2 → N and ψ : D × N → D such that

(1) m is a modulus of continuity for f ,
(2) ψ is an approximation function for f , that is, for every d ∈ D and every n ∈ N the

following holds: |ψ(d, n) − f(d)| ≤ 2−n.

When restricting attention to polytime computability two additional requirements need
to be added to the previous proposition: (1) the modulus m is a polynomial function, that
is m(k, n) = (k+n)b for some b ∈ N and (2) ψ(d, n) is computable in time p(length(d)+n)
for some polynomial p.

ALGEBRAIC CHAR. OF COMPLEXITY CLASSES OF REAL FUNCTIONS 5

4. Characterizing Polytime Real Complexity over Compact Domains

In this section, we prove that it is possible to relate computability over the reals to
computability over the integers. We do it in two steps. In the first step, we consider the
special case of Lipschtiz functions. In the second step, we discuss how to avoid the Lipschtiz
hypothesis, and we consider general functions. Proofs can be found in the appendix.

Without loss of generality we will assume in this section that the compact domain is
always the unit interval [0, 1]. Actually, before all that, let’s first provide a preliminary first
result to help to explain what we would like to get.

4.1. A preliminary first result

A real function over a compact interval can be characterized by the discrete projection
of a function with domain [0, 1] × R. The extra dimension can be viewed as compensating
for the precision of the computed approximation.

Proposition 4.1 (Complexity over [0, 1] vs Complexity over [0, 1]× R). The following are
equivalent:

(1) a function f : [0, 1] → R is polytime computable,
(2) there exists a polytime computable function g : [0, 1] × R → R such that:

∀x ∈ [0, 1],∀y ∈ N : |g(x, y) − yf(x)| ≤ 1 (4.1)

We would like to talk of functions g with assertions like above but where quantifiers
are only about integers, that is to say about assertions like (4.1) but with something like
∀x ∈ N instead of ∀x ∈ [0, 1].

To move to such a full integer characterization we are faced with the problem of how
the notion of continuity, which is exclusive to real computable functions, can be transferred
to the integer domain.

4.2. Lipschtiz functions

For Lipschtiz functions this is facilitated by the fact that such functions provide us with
free information about their continuity properties. A real function f : [0, 1] → R is Lipschtiz
if there exists a constant K ≥ 0 such that for all x1, x2 ∈ [0, 1] the following holds:

|f(x1) − f(x2)| ≤ K|x1 − x2| (4.2)

We can now state:

Proposition 4.2 (Complexity over [0, 1] vs Complexity over R×R). Assume an arbitrary
constant ǫ ≥ 0 is fixed. Assume a function f : [0, 1] → R that is Lipschtiz. Then the
following are equivalent:

(1) f is polytime computable,
(2) there exists a polytime computable function g : R × R → R such that:

∀x ∈ N,∀y ∈ N
≥1, x ≤ y : |g(x, y) − yf(

x

y
)| ≤ ǫ (4.3)

In order to interrelate with discrete complexity classes we suggest to employ some notion
of approximation.

6 O. BOURNEZ, W. GOMAA, AND E. HAINRY

Definition 4.3 (Approximation). Let C be a class of functions from R
2 to R. Let D be a

class of functions from N
2 to N. We say that C approximates D if for any function g ∈ D,

there exists some function g̃ ∈ C such that for all x, y ∈ N we have

|g̃(x, y) − g(x, y)| ≤ 1/4

We then have the following result.

Theorem 4.4 (Complexity over [0, 1] vs approximate complexity over N
2). Consider a

class C of polytime computable real functions that approximates polytime computable discrete
functions. Assume that f : [0, 1] → R is Lipschtiz. Then the following are equivalent:

(1) f is polytime computable,
(2) f is C-definable:

that is to say, there exists a function g̃ ∈ C such that the following holds

∀x ∈ N,∀y ∈ N
≥1, x ≤ y : |g̃(x, y) − yf(

x

y
)| ≤ 3 (4.4)

For the purposes of this article the choice of the constant 1
4 in the previous definition,

and of the constant 3 in last theorem can be arbitrary.
In the direction (2) ⇒ (1), Eq. (4.4) implicitly provides a way to efficiently approximate

f from g ↾ N
2. Computability of f is possible, in particular at the limit points, from the fact

that it is Lipschtiz, and efficiency is possible by the fact that g is polytime computable. The
direction (1) ⇒ (2) relates polytime computability of real functions to the corresponding
discrete notion.

Remark 4.5. Note that all the previous results still hold if we replace ‘polytime com-
putable’ by just ‘computable’.

4.3. Avoiding the Lipschtiz hypothesis

The major obstacle to avoid the Lipschtiz hypothesis is how to implicitly encode the
continuity of f in discrete computations. This is done in two steps: (1) encoding the
modulus of continuity which provides information at arbitrarily small rational intervals,
however, it does not tell anything about the limit irrational points and (2) bounding the
behavior of the characterizing function g both at small unit intervals and with respect to
its integer projection.

Let’s first define the following class of functions.

Definition 4.6 (#k). Fix some k ∈ N. Denote by #k the function #k : R
≥1 → R defined

by #k[x] = 2((log2 x)k).

We need another approximation notion that is a kind of converse to that given in
Definition 4.3.

Definition 4.7 (Polytime computable integer approximation). A function g : R
d → R

is said to have a polytime computable integer approximation if there exists some polytime
computable function h : N

d → N with |h(x̄) − g(x̄)| ≤ 1 for all x̄ ∈ N
d.

A sufficient condition is that the restriction of function g to integers is polynomial time
computable. The choice of the constant 1 is then due to the fact that this is the best
estimated error when trying to compute the floor of a real function.

The following proposition is then the non-Lipschtiz version of Proposition 4.2.

ALGEBRAIC CHAR. OF COMPLEXITY CLASSES OF REAL FUNCTIONS 7

Proposition 4.8 (Complexity over [0, 1] vs Complexity over R
2). Assume an arbitrary

constant ǫ ≥ 0 is fixed. The following are equivalent:

(1) a function f : [0, 1] → R is polytime computable,
(2) there exists some function g : R × R → R such that

(a) g has a polytime computable integer approximation,
(b) for some integer k,

∀x ∈ [0, 1],∀y ∈ R
≥1 : |g(x.#k[y], y) − yf(x)| ≤ ǫ, (4.5)

(c) for some integer M ,

∀x1, x2 ∈ R
≥0, y ∈ R

≥1 : |x1 − x2| ≤ 1 ⇒ |g(x1, y) − g(x2, y)| ≤M (4.6)

We need to consider real functions that are well behaved with respect to their restriction
to N

2. For ease of notation, we will use [a, b] to denote [a, b], when a < b, and [b, a] otherwise.

Definition 4.9 (Peaceful functions). A function g : R
2 → R is said to be peaceful if

∀x ∈ R
≥0,∀y ∈ N

≥1, : g(x, y) ∈ [g(⌊x⌋, y), g(⌈x⌉, y)] (4.7)

We say that a class C of real functions peacefully approximates some class D of integer
functions, if the subclass of peaceful functions of C approximates D.

Now we can have the non-Lipschtiz version of Theorem 4.4.

Theorem 4.10. (Complexity over [0, 1] vs approximate complexity over N
2) Consider a

class C of real functions that peacefully approximates polytime computable discrete functions,
and whose functions have polytime computable integer approximations.1 Then the following
are equivalent:

(1) a function f : [0, 1] → R is polytime computable,
(2) there exists some integer k such that

(a) f is nk-C-definable:
that is to say, there exists some peaceful function g ∈ C such that

∀x ∈ N,∀y ∈ N
≥1, x ≤ #k[y] : |g(x, y) − yf(

x

#k[y]
)| ≤ 2, (4.8)

(b) f is nk-smooth:
that is to say, there exists some integer M such that

∀x, x′ ∈ R
≥0,∀y ∈ R

≥1, x, x′ ≤ #k[y], |x− x′| ≤ 1:

y|f(
x

#k[y]
) − f(

x′

#k[y]
)| ≤M (4.9)

Remark 4.11. Condition (2b) is a property of function f , and hence is a necessary condi-
tion for the computability of f . This condition is also needed for the continuity of f at the
irrational points.

Proof. (1) ⇒ (2) : Assume a function f : [0, 1] → R that is polytime computable. By
Proposition 4.8 for ǫ = 3/4, there exists some function g with a polytime computable
integer approximation h such that (4.5) holds. Now, by the hypothesis of this theorem,

there exists some peaceful h̃ ∈ C such that

∀x, y ∈ N : |h̃(x, y) − h(x, y)| ≤ 1/4

1A sufficient condition for that is restrictions to integers of functions from C are polytime computable.

8 O. BOURNEZ, W. GOMAA, AND E. HAINRY

Hence

∀x, y ∈ N : |h̃(x, y) − g(x, y)| ≤ 1 +
1

4
=

5

4
(4.10)

Finally, we have (through change of variables in Eq. (4.5) and restricting the domains
of the variables to N)

∀x ∈ N,∀y ∈ N
≥1, x ≤ #k[y] : |h̃(x, y) − yf(

x

#k[y]
)| ≤

5

4
+

3

4
= 2 (4.11)

Hence, condition 2a holds. Now, by (2c) of Proposition 4.8, we know that for all x ∈ R,
y ∈ R

≥1, and δ ∈ [0, 1]: |g(x+ δ, y) − g(x, y)| ≤M for some integer M . Then by using Eq.
(4.5) (after variable change and renaming), condition (2b) is satisfied.

(2) ⇒ (1) : This follows by applying Proposition 4.8 as follows. From the hypothesis of
this theorem g has a polytime computable integer approximation, hence condition 2a of
Proposition 4.8 is satisfied. Condition 2a of the current theorem is equivalent to condition
2b of Proposition 4.8 by: (1) letting ǫ = 2, (2) renaming of the variables, and (3) observing
that the proof of Proposition 4.8 can be adapted to a new version of condition 2b for which x
and y assume only integer values. Using the fact that g is peaceful (controlling the behavior
of g between integer points) condition (2c) of Proposition 4.8 can be easily verified.

Remark 4.12. Note that all the previous results still hold if we replace ‘polytime com-
putable’ by just ‘computable’.

The previous theorem can be generalized to any complexity class as indicated by the
following corollary.

Corollary 4.13. Let D be some class of time-constructive functions from N to N that
includes polynomial functions and closed under composition. For a function T ∈ D, de-
fine #T : R

≥1 → R by #T [x] = 2T (log2 x). Consider a class C of functions that peacefully
approximates discrete functions computable in time D; and whose functions have integer
approximations computable in time D.2 Then the following are equivalent.

(1) a function f : [0, 1] → R is computable in time D,
(2) there exists some T ∈ D such that

(a) f is T -C-definable:
that is to say, there exists some peaceful function g ∈ C such that

∀x ∈ N,∀y ∈ N
≥1, x ≤ #T [y] : |g(x, y) − yf(

x

#T [y]
)| ≤ 2, (4.12)

(b) f is T -smooth:
that is to say, there exists some integer M such that

∀x, x′ ∈ R
≥0,∀y ∈ R

≥1, x, x′ ≤ #T [y], |x− x′| ≤ 1:

y|f(
x

#T [y]
) − f(

x′

#T [y]
)| ≤M (4.13)

Proof. The proof is similar to that of the previous theorem. It should be noted that if f is
computable in time bounded by D then it has a modulus in D. This is a direct consequence
of [20, Theorem 2.19].

2A sufficient condition for that is restrictions to integers of functions from C are computable in time D.

ALGEBRAIC CHAR. OF COMPLEXITY CLASSES OF REAL FUNCTIONS 9

5. Applications

In this section we apply the above results to algebraically characterize some computabil-
ity and complexity classes of real functions. We first obtain some restatements and exten-
sions of already known results, using our framework. We then provide new results, in par-
ticular, the main result given by theorems 5.12 and 5.13 which provide algebraic machine
independent characterizations of polynomial time computable functions.

5.1. GPAC-generable functions

The General Purpose Analog Computer, introduced by Claude Shannon in [25] to model
a mechanical device, can be seen in a modern perspective as what can be computed using
analog electronics. It consists of circuits interconnecting basic blocks that can be constants,
adders, multipliers, and integrators. GPAC-computable functions have been characterized
in different ways since the introduction of this model. In the following, we will use Graça
and Costa’s characterization by PIVP (Polynomial Initial Value Problems) [15]. A function
is said to be PIVP if it is a component of the solution of a differential equation of the
following form:

{

y(t0) = y0

y′(t) = p(t, y)

with y : R
n → R and p is a vector of polynomial functions.

Next lemma follows from the constructions in [14]:

Lemma 5.1. PIVP functions is a class of computable functions that peacefully approximate
total (discrete) recursive functions.

We can then furthermore obtain the following resultas a direct application of Theorem
4.4 and Corollary 4.13 (and Remark 4.12).

Proposition 5.2 (Variation of [6]). A Lipschtiz function f : [0, 1] → R is computable iff it
is PIVP-definable.

Proposition 5.3 (Extension of [6]). Let f : [0, 1] → R be some T -smooth function, for
some total recursive function T : N → N. Then f is computable iff it is T -PIVP-definable.

5.2. Particular classes of R-recursive functions

A function algebra F = [B;O] is the smallest class of functions containing a set of basic
functions B and their closure under a set of operations O.

5.2.1. Elementarily computable functions: class L. Let us now consider the class L defined
in [9]: L = [0, 1,−1, π, U, θ3;COMP,LI], where U is the set of projection functions, θ3(x) =
max{0, x3}, COMP is the classical composition operation, LI is Linear Integration. From
the constructions of [9], we know that this class matches discrete elementary functions.

Lemma 5.4. L is a class of real functions computable in elementary time that peacefully
approximates total discrete elementarily computable functions.

Again using the above results we can obtain characterizations of the class of elementarily
computable analysis functions:

10 O. BOURNEZ, W. GOMAA, AND E. HAINRY

Proposition 5.5 (Variation of [9]). A Lipschtiz function f : [0, 1] → R is computable in
elementary time iff it is L-definable.

Proposition 5.6 (Extension of [9]). Let f : [0, 1] → R be some T -smooth function, for
some elementary function T : N → N. Then f is computable in elementary time iff it is
T -L-definable.

As in [9, 7], we can also characterize in a similar way the functions computable in time
En for n ≥ 3, where En represents the n-th level of the Grzegorczyk hierarchy.

5.2.2. Recursive functions: class Lµ. Let us now consider the class Lµ defined in [7]: Lµ =
[0, 1, U, θ3;COMP,LI, UMU], where a zero-finding operator UMU has been added. This
class is known from the constructions of [7] to extend the class of total (discrete) recursive
functions:

Lemma 5.7. Lµ is a class of computable functions that peacefully approximate total discrete
recursive functions.

And hence, as a consequence to Theorem 4.4 and Corollary 4.13, we obtain:

Proposition 5.8 (Variation of [7]). A Lipschtiz function f : [0, 1] → R is computable iff it
is Lµ-definable.

Proposition 5.9 (Extension of [7]). Let f : [0, 1] → R be some T -smooth function, for
some total recursive function T : N → N. Then f is computable iff it is T -Lµ-definable.

5.3. Main Result: polytime computable functions

We are now ready to provide our main result: an algebraic characterization of polyno-
mial time computable functions over the reals.

To do so, we define a class of real functions which are essentially extensions to R of
the Bellantoni-Cook class [2]. This latter class was developed to exactly capture discrete
polytime computability in an algebraic machine-independent way. In the next definition any
function f(x1, . . . , xm; y1, . . . , yn) has two types of arguments: normal arguments which
come first followed by safe arguments using ‘;’ for separation. For any n ∈ N we call
[2n, 2n + 1] an even interval and [2n + 1, 2n + 2] an odd interval.

Definition 5.10. Define the following class of real functions

W = [0, U, s0, s1, pr0, pr1, θ1, e, o;SComp, SI, Lin] (5.1)

(1) a zero-ary function for the constant 0: 0(;) = 0,
(2) a set of projection functions Um+n

i (x1, . . . , xm;xm+1, . . . , xm+n) = xi,
(3) successor functions, si(;x) = 2x+ i for i ∈ {0, 1},
(4) two predecessor functions

pr0(;x) =

{

n 2n ≤ x ≤ 2n+ 1, n ∈ Z

n+ (ǫ− 1) 2n + 1 ≤ x ≤ 2n + ǫ, 1 ≤ ǫ ≤ 2

pr1(;x) =

{

n+ ǫ 2n ≤ x ≤ 2n+ ǫ, 0 ≤ ǫ ≤ 1

n+ 1 2n+ 1 ≤ x ≤ 2n+ 2

ALGEBRAIC CHAR. OF COMPLEXITY CLASSES OF REAL FUNCTIONS 11

So the function pr0 acts as ⌊x
2 ⌋ over even intervals and piecewise linear otherwise;

whereas the function pr1 acts as ⌈x
2 ⌉ over odd intervals and piecewise linear other-

wise.
(5) a continuous function to sense inequalities, θ1(;x) = max{0, x},
(6) parity distinguishing functions

e(;x) =
π

2
θ1(sinπx)

o(;x) =
π

2
θ1(−sinπx)

The function e is non-zero only over even intervals and conversely o is non-zero
only over odd intervals. On the integer values e(; k) = o(; k) = 0. Note that
∫ 2n+2
2n

e(;x)dx =
∫ 2n+2
2n

o(;x)dx = 1.
(7) safe composition operator SComp: assume a vector of functions ḡ1(x̄;) ∈ W, a

vector of functions ḡ2(x̄; ȳ) ∈ W, and a function h ∈ W of arity len(ḡ1) + len(ḡ2),
where len denotes the vector length. Define new function f

f(x̄; ȳ) = h(ḡ1(x̄;); ḡ2(x̄; ȳ))

It is clear from the asymmetry in this definition that normal arguments can be
repositioned in safe places whereas the opposite can not happen.

(8) safe integration operator SI: assume functions g, h0, h1 ∈ W, define a new function
f satisfying3

f(0, ȳ; z̄) =g(ȳ; z̄)

∂xf(x, ȳ; z̄) = e(x;)[h1(pr0(x;), ȳ; z̄, f(pr0(x;), ȳ; z̄))

− h0(pr0(x;), ȳ; z̄, f(pr0(x;), ȳ; z̄))]

+ o(x;)[h0(pr1(x;), ȳ; z̄, f(pr1(x;), ȳ; z̄))

− h1(pr1(x;) − 1, ȳ; z̄, f(pr1(x;) − 1, ȳ; z̄))]

Note that at the integer points this definition reduces to some sort of recursion on
the binary notation of the input.

(9) A linearization operator Lin: given functions g, hW, define a new function f by

f(x, ȳ; z̄) =

{

δh(2pr0(x;) + 1, ȳ; z̄) + (1 − δ)g(2pr0(x;), ȳ; z̄) e(;x) ≥ o(;x)

δ′g(2pr1(x;), ȳ; z̄) + (1 − δ′)h(2pr1(x;) − 1, ȳ; z̄) o(;x) ≥ e(;x)

where δ = x− 2pr0(x;), δ
′ = x+ 1− 2pr1(x;). Note that at even integers f reduces

to g whereas at odd integers it reduces to h.

This class W is based on Bellantoni-Cook’s constructions and normal/safe arguments
ideas in order to have the following true.
Proposition 5.11.

(1) Class W preserves the integers, that is for every f ∈ W, f ↾ N : N → N.
(2) Every polytime computable discrete function has a peaceful extension in W.
(3) Every function in W is polytime computable.

3For simplicity we misused the basic functions so that their arguments are now in normal positions (the
alternative is to redefine a new set of basic functions with arguments in normal positions).

12 O. BOURNEZ, W. GOMAA, AND E. HAINRY

The proof of above proposition (in appendix) follows from induction. The existence of
a peaceful extension in part 2 of the proposition is due to the possible application of the
linearization operator. The proposition indicates that W is a class of polytime computable
real functions that approximates polytime computable discrete functions. Hence, using
Theorem 4.4 the following result is obtained.

Theorem 5.12. A Lipschtiz function f : [0, 1] → R is polytime computable iff it is W-
definable.

Additionally, the previous proposition implies that any function in W has polytime
computable integer approximation, hence using Corollary 4.13, we get to the following
result.

Theorem 5.13. Let f : [0, 1] → R be some nk-smooth function for some k. Then f is
polytime computable iff it is nk-W-definable.

Notice that C-definability of a function can be seen as a schema that builds a function
f from a function g̃ in class C (see definition of C-definability). In other words,

Corollary 5.14. The class of polynomial time computable functions can be characterized
algebraically in a machine-independent way:

(1) A Lipschtiz function f : [0, 1] → R is polytime computable iff it belongs to

Def [0, U, s0, s1, pr0, pr1, θ1, e, o;SComp, SI, Lin]

(2) A nk-smooth function f : [0, 1] → R for some k is polytime computable iff it belongs
to

Def [0, U, s0, s1, pr0, pr1, θ1, e, o;SComp, SI, Lin]

where Def [C] stands for C-definability.

References

[1] Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science, 138(1):35–65, February 1995.

[2] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the polytime func-
tions. Computational Complexity, 2:97–110, 1992.

[3] Lenore Blum, Felipe Cucker, Mike Shub, and Steve Smale. Complexity and Real Computation. Springer,
1998.

[4] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American
Mathematical Society, 21(1):1–46, 1989.

[5] Olivier Bournez and Manuel L. Campagnolo. New Computational Paradigms. Changing Conceptions of
What is Computable, chapter A Survey on Continuous Time Computations, pages 383–423. Springer,
New York, 2008.

[6] Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça, and Emmanuel Hainry. Polynomial differ-
ential equations compute all real computable functions on computable compact intervals. Journal of
Complexity, 23(3):317–335, June 2007.

[7] Olivier Bournez and Emmanuel Hainry. Recursive analysis characterized as a class of real recursive
functions. Fundamenta Informaticae, 74(4):409–433, December 2006.

[8] Vasco Brattka. Computability over topological structures. In S. Barry Cooper and Sergey S. Goncharov,
editors, Computability and Models, pages 93–136. Kluwer Academic Publishers, New York, 2003.

[9] Manuel L. Campagnolo, Cristopher Moore, and José Félix Costa. An analog characterization of the
Grzegorczyk hierarchy. Journal of Complexity, 18(4):977–1000, 2002.

ALGEBRAIC CHAR. OF COMPLEXITY CLASSES OF REAL FUNCTIONS 13

[10] Manuel L. Campagnolo and Kerry Ojakian. The methods of approximation and lifting in real compu-
tation. In Computability and Complexity in Analysis (CCA 2006), volume 167 of Electronic Notes in
Theoretical Computer Science, pages 387–423, 2007.

[11] Peter Clote. Computational models and function algebras. In Edward R. Griffor, editor, Handbook of
Computability Theory, pages 589–681. North-Holland, Amsterdam, 1998.

[12] Alan Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor, Proceedings
of the International Conference on Logic, Methodology, and Philosophy of Science, pages 24–30. North-
Holland, Amsterdam, 1965.

[13] Walid Gomaa. Characterizing polynomial time computability of rational and real functions. To appear
in EPTCS.

[14] Daniel S. Graça, Manuel L. Campagnolo, and Jorge Buescu. Robust simulations of Turing machines
with analytic maps and flows. In S. B. Cooper, B. Löwe, and L. Torenvliet, editors, CiE 2005: New
Computational Paradigms, volume 3526 of Lecture Notes in Computer Science, pages 169–179. Springer,
2005.

[15] Daniel S. Graça and José Félix Costa. Analog computers and recursive functions over the reals.
19(5):644–664, 2003.

[16] A. Grzegorczyk. Computable functionals. Fundamenta Mathematicae, 42:168–202, 1955.
[17] M. Hofmann. Type systems for polynomial-time computation, 1999. Habilitation.
[18] Neil D. Jones. The expressive power of higher-order types or, life without CONS. Journal of Functionnal

Programming, 11(1):5–94, 2001.
[19] Bruce M. Kapron and Stephen A. Cook. A new characterization of type-2 feasibility. SIAM Journal on

Computing, 25(1):117–132, 1996.
[20] Ker-I Ko. Complexity Theory of Real Functions. Birkhäuser, 1991.
[21] D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables

réelles III. Comptes Rendus de l’Académie des sciences Paris, 241:151–153, 1955.
[22] Jean-Yves Marion and Jean-Yves Moyen. Efficient first order functional program interpreter with

time bound certifications. In LPAR, volume 1955 of Lecture Notes in Computer Science, pages 25–
42. Springer, Nov 2000.

[23] Cristopher Moore. Recursion theory on the reals and continuous-time computation. Theoretical Com-
puter Science, 162(1):23–44, 1996.

[24] Keijo Ruohonen. Event detection for ODEs and nonrecursive hierarchies. In Proceedings of the Collo-
quium in Honor of Arto Salomaa. Results and Trends in Theoretical Computer Science (Graz, Austria,
June 10-11, 1994), volume 812 of Lecture Notes in Computer Science, pages 358–371. Springer, Berlin,
1994.

[25] Claude E. Shannon. Mathematical theory of the differential analyzer. J. Math. Phys. MIT, 20:337–354,
1941.

[26] Alan. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceed-
ings of the London Mathematical Society, 2(42):230–265, 1936.

[27] Klaus Weihrauch. Computable Analysis: an Introduction. Springer, 2000.

14 O. BOURNEZ, W. GOMAA, AND E. HAINRY

Appendix A. Proofs

A.1. Proof of Proposition 4.1

Proof. (1) ⇒ (2) : is obtained directly by letting g(x, y) = yf(x). Note that multiplication
can be done in polynomial time.

(2) ⇒ (1) : Since g is polytime computable, there exists an oracle machine N
()

which
efficiently computes g. Assume an input x ∈ [0, 1] and a Cauchy sequence ϕx ∈ CFx.
Assume n ∈ N and consider an oracle machine M

ϕx
(n) that does the following:

(1) Simulate the operation of N
ϕx,ϕy

(0) (for any oracle ϕy),

(2) Whenever N
()

queries ϕx(i), M
()

queries its own oracle and returns d = ϕx(i).

Whenever N
()

queries ϕy(j), M
()

returns 2n+1,

(3) Repeat the last step as long as N
()

keeps querying,

(4) Let e be the output of N
()
. Output 2−(n+1)e.

First note that M
ϕx

(n) operates in polytime. Next we need to verify its correctness.
We have

|e− g(x, 2n+1)| ≤ 1

|2−(n+1)e− 2−(n+1)g(x, 2n+1)| ≤ 2−(n+1) (A.1)

From the proposition hypothesis:

|g(x, 2n+1) − 2n+1f(x)| ≤ 1

|2−(n+1)g(x, 2n+1) − f(x)| ≤ 2−(n+1) (A.2)

Then

|M
ϕx

(n) − f(x)| ≤ |M
ϕx

(n) − 2−(n+1)g(x, 2n+1)| + |2−(n+1)g(x, 2n+1) − f(x)|

= |2−(n+1)e− 2−(n+1)g(x, 2n+1)| + |2−(n+1)g(x, 2n+1) − f(x)|

≤ 2−(n+1) + |2−(n+1)g(x, 2n+1) − f(x)| from Inequality A.1

≤ 2−(n+1) + 2−(n+1) from Inequality A.2

≤ 2−n

A.2. Proof of Proposition 4.2

Proof. (1) ⇒ (2) : Define g on the integer points as follows:

g(x, y) =

0 y = 0

yf(x
y
) x ≤ y, y ≥ 1

yf(1) otherwise

(A.3)

and piecewise linear for non-integer values. Clearly, g is polytime computable and sat-
isfies (4.3).

(2) ⇒ (1) : Without loss of generality assume ǫ = 1. Since f is Lipschtiz there exists
a computable non-negative constant M such that for all x, y ∈ [0, 1] the following holds:

ALGEBRAIC CHAR. OF COMPLEXITY CLASSES OF REAL FUNCTIONS 15

|f(x) − f(y)| ≤ M |x − y|. Let a ∈ N such that M ≤ 2a. Hence, for all x, y ∈ [0, 1] the
following holds: |f(x) − f(y)| ≤ 2a|x− y|. Since g is polytime computable, there exists an

oracle machine N
()

which efficiently computes g. Assume an input x ∈ [0, 1] and a Cauchy
function ϕx ∈ CFx. Assume n ∈ N and consider an oracle machine M

ϕx
(n) that does the

following:

(1) Let n′ = n+ 2 + a and let d = ϕx(n′),

(2) Then |d − x| ≤ 2−n′
, hence, it can be assumed without loss of generality that (for

example by truncating extra bits), d = k1

2n′ for some k1 ∈ N,

(3) Simulate the operation of N
ϕx,ϕy

(0) (for any oracle ϕy),

(4) Whenever N
()
(0) queries ϕx(i), M

()
returns k1. Whenever N

()
queries ϕy(j), M

()

returns 2n′
,

(5) Repeat the last step as long as N
()

keeps querying,

(6) Let e be the output of N
()
. Output 2−n′

e.

It is clear that M
ϕx

(n) operates in polynomial time with respect to n. Now verifying
the correctness of the above procedure. We have

|e− g(k1, 2
n′

)| ≤ 1

|2−n′

e− 2−n′

g(k1, 2
n′

)| ≤ 2−n′

(A.4)

From Eq. (4.3) with ǫ = 1

|g(k1, 2
n′

) − 2n′

f(
k1

2n′)| ≤ 1

|2−n′

g(k1, 2
n′

) − f(
k1

2n′)| ≤ 2−n′

(A.5)

From Inequalities (A.4) and (A.5) we have

|2−n′

e− f(
k1

2n′)| ≤ 2−(n′−1) (A.6)

From the fact that f is Lipschtiz we have

|f(
k1

2n′) − f(x)| ≤ 2a2−n′

= 2−(n+2) (A.7)

From Inequalities (A.6) and (A.7) we have

|2−n′

e− f(x)| ≤ 2−(n′−1) + 2−(n+2) ≤ 2−n (A.8)

This completes the proof that f is polytime computable.

A.3. Proof of Theorem 4.4

Proof. (1) ⇒ (2) : Assume an Lipschtiz function f : [0, 1] → R that is polytime computable,
then by Proposition 4.2, there exists some polytime computable g such that (4.3) holds with
ǫ = 3

4 . Computing g with precision 1/2 , one can easily build some polytime computable

16 O. BOURNEZ, W. GOMAA, AND E. HAINRY

discrete function h : N
2 → N such that |h(x, y) − ⌊g(x, y)⌋| ≤ 1. From the theorem

hypothesis there exists some g̃ ∈ C such that

∀x, y ∈ N : |g̃(x, y) − h(x, y)| ≤ 1/4

Hence

∀x, y ∈ N : |g̃(x, y) − ⌊g(x, y)⌋| ≤ 1 +
1

4
=

5

4
(A.9)

We have |g(x, y) − ⌊g(x, y)⌋| ≤ 1, then |g̃(x, y) − g(x, y)| ≤ 9
4 . Finally, we have the desired

result

∀x ∈ N,∀y ∈ N
≥1, x ≤ y : |g̃(x, y) − yf(

x

y
)| ≤

9

4
+

3

4
= 3 (A.10)

(2) ⇒ (1) : This follows from Proposition 4.2 with ǫ = 3, observing that functions from C
are assumed polytime computable.

A.4. Proof of Proposition 4.8

Proof. (2) ⇒ (1) : For simplicity, assume ǫ = 1. Assume there exists a function g that
satisfies the above conditions. Assume some x ∈ [0, 1] and n ∈ N. Let y = 2n. From
condition (2b) we have

|g(2nk

x, 2n) − 2nf(x)| ≤ 1

|2−ng(2nk

x, 2n) − f(x)| ≤ 2−n (A.11)

Let h be some polytime computable discrete function with |h(x, y)− g(x, y)| ≤ 1 for all
x, y ∈ N that exists by (2a).

Then
|g(⌊2nk

x⌋, 2n) − h(⌊2nk

x⌋, 2n)| ≤ 1 (A.12)

From (2c) we have

|g(⌊2nk

x⌋, 2n) − g(2nk

x, 2n)| ≤M (A.13)

From the previous two equations

|g(2nk

x, 2n) − h(⌊2nk

x⌋, 2n)| ≤M + 1

|2−ng(2nk

x, 2n) − 2−nh(⌊2nk

x⌋, 2n)| ≤ 2−n(M + 1) (A.14)

From Equations (A.11) and (A.14)

|f(x) − 2−nh(⌊2nk

x⌋, 2n)| ≤ 2−n(M + 2) (A.15)

This last equation characterizes the computation of the real function f by the compu-
tation of the integer function h. Furthermore, it provides information about the precision
of the approximation. We can build a polytime oracle Turing machine that computes f .
Assume some ϕ ∈ CFx. Consider a machine M

ϕ
(n) that does the following:

(1) let d = ϕ(nk + 1),

(2) let j = h(⌊2nk
d⌋, 2n),

(3) output 2−nj.

ALGEBRAIC CHAR. OF COMPLEXITY CLASSES OF REAL FUNCTIONS 17

Since h is polytime computable, M
ϕ

(n) operates in polynomial time with respect to
the precision parameter n. Verifying the correctness of M

ϕ
(n) we have

|d− x| ≤ 2−(nk+1)

|2nk

d− 2nk

x| ≤ 1/2

|⌊2nk

d⌋ − ⌊2nk

x⌋| ≤ 1

Then by 2c

|g(⌊2nk

d⌋, 2n) − g(⌊2nk

x⌋, 2n)| ≤M (A.16)

By 2a and the choice of h

|g(⌊2nk

d⌋, 2n) − h(⌊2nk

d⌋, 2n)| ≤ 1 (A.17)

From Equations A.12, A.16, and A.17 we have

|h(⌊2nk

d⌋, 2n) − h(⌊2nk

x⌋, 2n)| ≤M + 2

|2−nh(⌊2nk

d⌋, 2n) − 2−nh(⌊2nk

x⌋, 2n)| ≤ 2−n(M + 2) (A.18)

From the last equation and Eq. A.15 we have the required conclusion

|f(x) − 2−nh(⌊2nk

d⌋, 2n)| ≤ 2−n(2M + 4) (A.19)

(1) ⇒ (2) : Assume that f : [0, 1] → R is polytime computable. Hence f has a polynomial
modulus m(n) = nk for some constant k ∈ N. Define g as follows:

g(x, y) =

{

yf(x
#k[y]) x ≤ #k[y]

yf(1) otherwise
(A.20)

Then for every x ∈ [0, 1] and y ∈ R
≥1 we have

|g(x.#k[y], y) − yf(x)| = 0 ≤ 1,

hence condition (2b) is satisfied. Now assume x1, x2 ∈ R
≥0, y ∈ R

≥1 such that |x1−x2| ≤ 1.
There are three cases.
case 1: x1 ≤ #k[y] and x2 ≤ #k[y], then

|g(x1, y) − g(x2, y)| = |yf(
x1

#k[y]
) − yf(

x2

#k[y]
)|

= y|f(
x1

#k[y]
) − f(

x2

#k[y]
)|

We have | x1
#k[y] −

x2
#k[y] | = 1

#k[y] |x1 −x2| ≤
1

#k[y] = 2−(log2 y)k
. Hence, using the modulus

of continuity of f , |f(x1
#k[y])− f(x2

#k[y])| ≤ 2− log2 y = 1
y

implying |g(x1, y)− g(x2, y)| ≤ 1 and

condition (2c) is satisfied for M = 1.
case 2: x1 ≥ #k[y] and x2 ≥ #k[y], then

|g(x1, y) − g(x2, y)| = |yf(1) − yf(1)| = 0

18 O. BOURNEZ, W. GOMAA, AND E. HAINRY

and condition (2c) is satisfied for M = 1.
case 3: x1 ≤ #k[y] and x2 > #k[y], then

|g(x1, y) − g(x2, y)| ≤ |g(x1, y) − g(#k[y], y)| + |g(#k[y], y) − g(x2, y)|

≤ 1 + 0 = 1

by the above two cases, and hence condition (2c) is satisfied for M = 1.
Note that division, multiplication, and f are all computable. Hence, g is computable.

Assume i, j ∈ N such that i ≤ #k[j]. Then g(i, j) = jf(i
#k[j]). The computation of ⌊g(i, j)⌋

involves the following:

(1) Shift right the binary representation of i by |j|k positions. The result would be a
dyadic rational d.

(2) Simulate the computation of f(d) assuming large enough precision that is at least
the length of d. When simulating the oracle, d is presented exactly.

(3) Multiply the output of the previous step by j. Finally, truncate the result to extract
the integer part.

All of these steps can be performed in polynomial time in terms of the lengths of i and
j. Since the output of step 2 is an approximation there is a possibility that the floor is
computed with an error that can be bounded by 1. The case when i > #k[j] is similar.
Hence, Condition (2a) is satisfied.

A.5. Proof of Proposition 5.11

Proof. Proof is by induction on the construction of functions in W. Note that for integer
values the parity functions e and o are always 0. It is easy to see that the other basic
functions preserve the integers and that composition preserves this property. Assume two
functions g, h ∈ W that preserve N and consider the application of linearization. Given an
input x = 2n any of the two cases of the definition of f can be applied (with δ = 0 and
δ′ = 1) to give f(2n, ȳ; z̄) = g(2n, ȳ; z̄) which is integer. Alternatively, given x = 2n+1 then
again any of the two cases can be applied (with δ = 1 and δ′ = 0) to give f(2n+ 1, ȳ; z̄) =
h(2n + 1, ȳ; z̄) which is again an integer by the induction hypothesis. Assume functions
g, h0, h1 ∈ W that preserve N and consider the application of the safe integration operator
to define a new function f ∈ W. We then use strong induction over the integration variable
to show f preserves N. The base case f(0, ȳ; z̄) = g(ȳ; z̄) holds by assumption on g. Assume
f(j, ȳ; z̄) ∈ N for every integer j ≤ 2n and consider an input x ∈ [2n, 2n + 1]. Then
o(;x) = 0, e(;x) 6= 0, and

h1(pr0(x;), ȳ; z̄, f(pr0(x;), ȳ; z̄)) − h0(pr0(x;), ȳ; z̄, f(pr0(x;), ȳ; z̄)) =

h1(n, ȳ; z̄, f(n, ȳ; z̄)) − h0(n, ȳ; z̄, f(n, ȳ; z̄))

This latter difference is independent of the integration variable x. Furthermore, by the
hypotheses of the main and secondary inductions it is an integer value. Notice also that

∫ 2n+1

2n

e(;u)du =
π

2

∫ 2n+1

2n

θ1(; sin πu)du

=
π

2

∫ 2n+1

2n

sinπu du = 1

ALGEBRAIC CHAR. OF COMPLEXITY CLASSES OF REAL FUNCTIONS 19

This implies that

f(2n+ 1, ȳ; z̄) = f(2n, ȳ; z̄) + h1(n, ȳ; z̄, f(n, ȳ; z̄)) − h0(n, ȳ; z̄, f(n, ȳ; z̄))

which is an integer value. Similarly for doing induction over odd intervals. Hence,
the safe integration operator preserves N. This completes the proof of the first part of the
proposition.

For the second part we prove that dp(W) = {f : N → N : ∃f̃ ∈ W such thatf̃ ↾ N = f}
captures polytime discrete computability by showing that this class coincides with the
Bellantoni-Cook class. Then by the linearization operator we obtain the desired result.
The Bellantoni-Cook class is defined as: B = [0, U, s0, s1, pr, cond;SComp, SRec], where
cond is the conditional function cond(;x, y, z) outputs y if x is even and z otherwise and
SRec is the safe recursion operator [2].

B ⊆ dp(W) : Proof is by induction on the construction of functions in B. It is obvious
that the basic functions 0, U, s0, s1 exist in dp(W). The function pr0 from W acts exactly
like pr when restricted to N. Using U we can define the identity function inside W. Then
using linearization we can define the function:

f(;x, y, z) =

{

δz + (1 − δ)y e(;x) ≥ o(;x)

δ′y + (1 − δ′)z o(;x) ≥ e(;x)
(A.21)

where δ = x− 2pr0(;x), δ
′ = x+ 1− 2pr1(;x). It can be easily verified that f(; 2n, y, z) = y

and f(; 2n+1, y, z) = z for every n ∈ N, hence f ↾ N = cond. The case for safe composition
is easy. Now assume f ∈ B that is defined from g, h0, h1 by safe recursion. Then by the
induction hypothesis there exist g̃, h̃0, h̃1 ∈ W such that g̃ ↾ N = g, h̃0 ↾ N = h0, and
h̃1 ↾ N = h1. Define the function f̃ ∈ W using safe integration from g̃, h̃0, and h̃1. We claim
that f̃ ↾ N = f . Proof is by strong induction over the recursion variable. For readability we
will exclude the ȳ and z̄ arguments. At the base case we have f̃(0;) = g̃(;) = g(;) = f(0;).
From the proof of the first part of the proposition we have

f̃(2n+ 1;) = f̃(2n;) + h̃1(n; f̃(n;)) − h̃0(n; f̃(n;))

= f(2n;) + h̃1(n; f(n;)) − h̃0(n; f(n;)), by induction hypothesis

= f(2n;) + h1(n; f(n;)) − h0(n; f(n;)), by assumption

= h0(n; f(n;)) + h1(n; f(n;)) − h0(n; f(n;)), by safe recursion

= h1(n; f(n;))

= f(2n+ 1;), by safe recursion

Similarly, it can be shown that f̃(2n+ 2;) = f(2n+ 2;).

dp(W) ⊆ B : Proof is by induction on the construction of functions in W. The case for
the basic functions 0, U, si, pr0 is obvious. For x ∈ N we have (pr1 ↾ N)(;x) = ⌈x

2 ⌉ which
is polynomial time computable. θ1 ↾ N is the identity function. For all x ∈ N we have
e(;x) = o(;x) = 0. Safe composition sustains polynomial time computability. Assume a
function f ∈ W defined by linearization from g and h. At integer values f reduces either
to h or g, hence by the induction hypothesis f ↾ N is polynomial time computable. Finally,
assume a function f ∈ W defined by safe integration from g, h0, and h1. Let ĝ = g ↾ N,
ĥ0 = h0 ↾ N, and ĥ1 = h1 ↾ N. Then by the induction hypothesis we have ĝ, ĥ0, ĥ1 ∈ B.
Define f̂ ∈ B by safe recursion from ĝ, ĥ0, ĥ1. We claim that f ↾ N = f̂ ; proof is by

20 O. BOURNEZ, W. GOMAA, AND E. HAINRY

strong induction on the integration variable and is similar to that given in the proof that
B ⊆ dp(W). This completes the proof of the second part of the proposition.

It is easy to see that the basic functions 0, U, si, pri, and θ1 are all polynomial time com-
putable. The constant π is polynomial time computable. The trigonometric sine and cosine
functions are computable in polynomial time using, for example, Taylor series expansion as
an approximation. Hence, the parity functions e and o are polynomial time computable.
Composition preserves polynomial time computability. Given polynomial time computable
functions g and h, then clearly their linearization is polynomial time computable. Assume a
function f ∈ W that is defined by safe integration from g, h0, h1 where these latter functions
are polynomial time computable. Then from part 2 of the proposition we have f ↾ N is
polynomial time computable. As can be seen from the proof of part 1 of the proposition
the function f is piecewise trigonometric with breakpoints at N, hence it is also polynomial
time computable at non-integer points. This completes the proof of the proposition.

