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—— Abstract

We present an extension to the mathlib library of the Lean theorem prover formalizing the foundations

of computability theory. We use primitive recursive functions and partial recursive functions as the
main objects of study, and we use a constructive encoding of partial functions such that they are
executable when the programs in question provably halt. Main theorems include the construction
of a universal partial recursive function and a proof of the undecidability of the halting problem.
Type class inference provides a transparent way to supply Godel numberings where needed and
encapsulate the encoding details.
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1 Introduction

Computability theory is the study of the limitations of computers, first brought into focus in
the 1930s by Alan Turing by his discoveries on the existence of universal Turing machines
and the unsolvability of the halting problem [16], and Alonso Church with the A-calculus as
a model of computation [3]. Together with Kleene’s p-recursive functions [10], that these all
give the same collection of “computable functions” gave credence to the thesis [3] that this is
the “right” notion of computation, and that all others are equivalent in power. Today, this
work lies at the basis of programming language semantics and the mathematical analysis
of computers.

Like many areas of mathematics, computability theory remains somewhat “formally
ambiguous” about its foundations, in the sense that most theorems and proofs can be stated
with respect to a number of different concretizations of the ideas in play. This can be
considered a feature of informal mathematics, because it allows us to focus on the essential
aspects without getting caught up in details which are more an artifact of the encoding than
aspects that are relevant to the theory itself, but it is one of the harder things to deal with
as a formalizer, because definitions must be made relative to some encoding, and this colors
the rest of the development.
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In computability theory, we have three or four competing formulations of “computable,”
which are all equivalent, but each present their own view on the concept. As a pragmatic
matter, Turing machines have become the de facto standard formulation of computable
functions, but they are also notorious for requiring a lot of tedious encoding in order to
get the theory off the ground, to the extent that the term “Turing tarpit” is now used for
languages in which “everything is possible but nothing of interest is easy.” [14] Asperti and
Riccioti [1] have formalized the construction of a universal Turing machine in Matita, but the
encoding details make the process long and arduous. Norrish [13] uses the lambda calculus
in HOL4, which is cleaner but still requires some complications with respect to the handling
of partiality and type dependence.

Instead, we build our theory on Kleene’s theory of p-recursive functions. In this theory,
we have a collection of functions N¥ — N, in which we can perform basic operations on
N, as well as recursive constructions on the natural number arguments. This produces the
primitive recursive functions, and adding an unbounded recursion operator pz.P(x) gives
these functions the same expressive power as Turing-computable functions. We hope to show
that the “main result” here, the existence of a universal machine, is easiest to achieve over
the partial recursive functions, avoiding the complications of explicit substitution in the
A-calculus and encoding tricks in Turing Machines, and moreover that the usage of typeclasses
for Godel numbering provides a rich and flexible language for discussing computability over
arbitrary types.

This theory has been developed in the Lean theorem prover, a relatively young proof
assistant based on dependent type theory with inductive types, written primarily by Leonardo
de Moura at Microsoft Research [4]. The full development is available in the mathlib standard
library (see the Supplemental Material). In Section 2 we describe our extensible approach to
Godel numbering, in Section 3 we look at primitive recursive functions, extended to partial
recursive functions in Section 4. Section 5 deals with the universal partial recursive function
and its properties, including its application to unsolvability of the halting problem.

2 Encodable sets

As mentioned in the introduction, we would like to support some level of formal ambiguity
when encoding problems, such as defining languages as subsets of N vs. subsets of {0, 1}*,
or even X* where ¥ is some finite or countable alphabet. Similarly, we would like to talk
about primitive recursive functions of type Z x Z — Z, or the partial recursive function
eval : code x N -+ N that evaluates a partial function specified by a code (see Section 5).

Unfortunately it is not enough just to know that these types are countable. While the
exact bijection to N is not so important, it is important that we not use one bijection in a
proof and a different bijection in the next proof, because these differ by an automorphism of
N which may not be computable. (For example, if we encode the halting Turing machines
as even numbers and the non-halting ones as odd numbers, and then the halting problem
becomes trivial.) In complexity theory it becomes even more important that these bijections
are “simple” and do not smuggle in any additional computational power.

To support these uses, we make use of Lean’s typeclass resolution mechanism, which is a
way of inferring structure on types in a syntax-directed way. The major advantage of this
approach is that it allows us to fix a uniform encoding that we can then apply to all types
constructed from a few basic building blocks, which avoids the multiple encoding problem,
and still lets us use the types we would like to (or even construct new types like code whose
explicit structure reflects the inductive construction of partial recursive functions, rather
than the encoding details).
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Figure 1 The pairing function mkpair a b = if a < b then b*b + a else a*a + a + b.

class encodable (o : Type u) :=

(encode : o — nat)

(decode : nat — option «)

(encodek : V a, decode (encode a) = some a)

variables {a (5} [encodable «] [encodable []
def encode_sum : a @& [ — N

| (inl a) := 2 * encode a

| (inr b) := 2 * encode b + 1

def encode_prod : a x 8 — N
| (a, b) := mkpair (encode a) (encode b)

def encode_option : option a@ — N
| none =0
| (some a) := succ (encode a)

Figure 2 The encodable typeclass, and some example definitions of the encoding functions for
the disjoint sum and product operators on types. (The corresponding decode functions are omitted.)

At the core of this is the function mkpair : N x N — N, and its inverse unpair : N -+ N x N
forming a bijection (see Figure 1). There is very little we need about these functions except
their definability, and that mkpair and the two components of unpair are primitive recursive.

We say that a type « is encodable if we have a function encode : & — N, and a partial
inverse decode : N — option « which correctly decodes any value in the image of encode.
Here option « is the type consisting of the elements some a for a : «, and an extra element
none representing failure or undefinedness. If the decode function happens to be total (that
is, never returns none), then « is called denumerable. Importantly, these notions are “data”
in the sense that they impose additional structure on the type — there are nonequivalent ways
for a type to be encodable, and we will want these properties to be inferred in a consistent
way. (This definition does not originate with us; Lean has had the encodable typeclass almost
since the beginning, and MathComp has a similar class, called Countable.)

Classically, an encodable instance on « is just an injection to N, and a denumerable
instance is just a bijection to N. But constructively these are not equivalent, and since these
notions lie in the executable fragment of Lean (they don’t use any classical axioms), one can
actually run these encoding functions on concrete values of the types, i.e. we can evaluate
encode (some (2,3)) = 12.
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inductive primrec : (N — N) — Prop
zero : primrec (A n, 0)
succ : primrec succ

right : primrec (A n, snd (unpair n))
pair {f g} : primrec f — primrec g —
primrec (A n, mkpair (f n) (g n))

| comp {f g} : primrec f — primrec g —
primrec (f o g)

| prec {f g} : primrec f — primrec g —
primrec (unpaired (\ z n, nat.rec_on n (f z)

(A y IH, g (mkpair z (mkpair y IH)))))

|
|
| left : primrec (A n, fst (unpair n))
|
|

Figure 3 The definition of primitive recursive on N in Lean. The unpaired function turns a function
N — N — N into N — N by composing with unpair, and natrec_on:N—a—- (N—a—a) —> a
is Lean’s built-in recursor for N.

3 Primitive recursive functions

The traditional definition of primitive recursive functions looks something like this:

» Definition 1. The primitive recursive functions are the least subset of functions N¥ — N
satisfying the following conditions:

The function n — 0 is prim. rec.

The function n+— n + 1 is prim. rec.

The function (ng,...,ng—1) — n; is prim. rec. for each 0 <1i < k.

If f :N* — N and g; : N™ — N for i < k are prim. rec., then so is the n-way composition

v f(go(v);- -5 ge-1(v)).

If f :N™ = N and g : N™*t2 — N are prim. rec., then the function h : N™*1 — N defined

s also prim. rec.

CIC is quite good at expressing these kinds of constructions as inductively defined predicates.
See Figure 3 for the definition that appears in Lean. But there is an important difference in
this formulation: rather than dealing with n-ary functions, we utilize the pairing function on
N to write everything as a function N — N with only one argument. This drastically simplifies
the composition rule to just the usual function composition, and in the primitive recursion
rule we need only one auxiliary parameter z : N rather than Z: N™. Then the projection
functions are replaced with the left and right cases for the components of unpair : N — N x N,
and in order to express composition with higher arity functions, we need the pair constructor
to explicitly form the map = — (f x,g9 ). (See Section 3.1 if you think this definition
is a cheat.)

Now that we have a definition of “primitive recursive” that works for functions on N, we
would like to extend it to other types using the encodable mechanism discussed in Section 2.
There is a problem though, because given an arbitrary encodable instance we can combine
the decode : N — option o with the function encode : option @ — N defined on option «
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induced by this encodable instance to form a new function encode o decode : N — N, which
may or may not be primitive recursive. If it is not, then it brings new power to the primitive
recursive functions and so it is not a pure translation of primrec to other types. To resolve
this, we define primcodable a to mean exactly that « has an encodable instance for which
this composition is primitive recursive. All of the encodable constructions we have discussed
(indeed, all those defined in Lean) are primcodable, so this is not a severe restriction.

Now we can say that a function between arbitrary primcodable types is primitive recursive
if when we pass f through the encode and decode functions we get a primitive recursive
function on N:

def primrec {a B} [primcodable a] [primcodable 3] (f : « — () : Prop :=
nat.primrec (A n, encode (option.map f (decode « n)))

Note. The function option.map lifts f to a function on option types before applying it to
decode. The result has type option 3, which has an encode function because 8 does.

Now we are in a position to recover the textbook definition of primitive recursive, because
N is primcodable, so we have the language to say that f : N¥ — N is primitive recursive,
and indeed this is equivalent to Definition 1.

But we can now say much more: the some : & — option « function is primitive recursive
because it is just encoded as succ. The constant function Aa.b: o — § is primitive recursive
because it encodes to some constant function (composed with a function that filters out
values not in the domain «). The composition of prim. rec. functions on arbitrary types
is prim. rec. The pair of primitive recursive functions Aa. (f a,g a), where f : a« —  and
g 1« — 7y, is primitive recursive.

Indeed all the usual basic operations on inductive types like sum, prod, and option are
primitive recursive. We define convenient syntax primrec, for prim. rec. binary functions
a —  — v (a common case), expressed by uncurrying to a X 5 — ~y, and primrec__pred for
primitive recursive predicates o — Prop, which are decidable predicates which are primitive
recursive when coerced to bool (which is encodable).

The big caveat comes in theorems like the following:

If o and § are primcodable types and f: o« — fand g : « - N — 8 — [ are prim.
rec., then the function i : @« -+ N — ( defined by
haO=fa
ha(n+1)=gan(han)

is also prim. rec.

This is of course just the generalization of the primitive recursion clause to arbitrary types,
but it requires that the target type be primcodable, which means in particular that it is
countable, so we cannot define an object of function type by recursion. (The universal partial
recursive function will give us a way to get around this later.) But this is in some sense
“working as intended,” since this is exactly why the Ackermann function

A(0,n) =n-+1
A(m +1,0) = A(m, 1)
Am+1,n+1)=A(m,A(m+1,n))

is not primitive recursive.

ITP 2019
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Another restriction placed on us relative to Lean’s built-in notion of primitive recursion on
N is that that while nat.rec_on has a dependent type, we have no mechanism for supporting
dependent types via encodable. We follow the tradition of HOL based provers here and
encode dependencies using option types so we can fail on a garbage input. However, it is
possible to support a dependent family via a separate typeclass. For example we could define
primcodable, F', where F': & — Type and « is encodable, to mean that Ila,encodable (F' a),
and moreover this family of encode/decode functions is prim. rec. jointly in both arguments.
In the end we did not pursue this because of the added complexity and lack of compelling
use cases.

One other primcodable type we have not yet discussed is list «, the type of finite lists of
values of type a. The encode and decode functions are defined recursively via the bijection
list « ~ option (a x list ). (Note that this is not a particularly good encoding for complexity
theory, as it grows super-exponentially in the length of the list.) Even without using this
instance, we can prove that any function f : o — § is prim. rec. when « is finite, by getting
the elements of « as a list, and writing f as the composition of an index lookup of a; in
[ag,...,an—1] and the ith element function in [f ag,..., f an—1] to map a; to f a;.

The proof that primcodable (list ) is a bit delicate. The definition of the encode/decode
functions in Lean is a well-founded recursion, but to show it is primitive recursive we
must construct the function without any higher-order features. First, we prove that the
foldl : (¢ = 8 — a) — a — list 8 — « function is prim. rec. when its arguments are. To do
this, given f : @« — [ — «a, we construct an accumulator « X list 8 with the initial inputs,
and then repeatedly transform it so that (a,[]) — (a,[]) and (a,b:: 1) — (f a b,1). Since the
encoding scheme satisfies encode [ > length [ for all lists [, if we iterate this map encode [
times, we exhaust the input list and the accumulator will contain the desired result. We can
then use foldl to define reverse, and combine them to define foldr, which is what we need to
define the primcodable function for list a.

Complicating matters, we needed a primcodable instance for primcodable (list «) to state
the original theorem that foldl is prim.rec., so we have a circularity. To resolve this, we use
list N as a bootstrap, which is trivially primcodable because it is denumerable.

Once we allow the list itself to be an input, we get some more interesting possibilities. In
particular, the function list.nth : list @« — N — option «, which gets an element from a list
by index (or returns none if the index is out of bounds), is primitive recursive, and this fact
expresses an equivalent of Godel’s sequence number theorem [8] (for a different encoding
than Godel’s original encoding). From this we can prove the following “strong recursion”
theorem:

theorem nat_strong_rec
(f:a > N=0)
{g : « — list 0 — option o}
(hg : primrecs g)
(H:Van, ga (map (f a) (range n)) = some (f a n))
primrecy f

Ignoring the parameter a, the main hypothesis says essentially that f(n) = g(f [ [0,...,n—1]),
where the first n values of f have been written in a list (and the length of the list tells g
what value of f we are constructing). The reason g has optional return value is to allow for
it to fail when the input is not valid.

Once we have lists, the dependent type vector a m is just a subtype of list o, so it has an
easy primcodable instance, and most of the vector functions follow from their list counterparts.
Similarly for functions fin n — «, which are isomorphic to vector « n.
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def unpair (n : N) : N x N :=
let s := sqrt n in
if n - s*s < s then (n - s*s, s) else (s, n - s*xs - 8)

Figure 4 The function unpair : N — N x N. (Here sqrt : N — N is actually the function

n— Vil

3.1 The textbook definition

Now that we have a proper theory, we can return to the question of how to show equivalence
to Definition 1. We do this by defining nat.primrec’ : Vn, (vector N n — N) — Prop with only
5 clauses matching Definition 1. It is easy to show at this point that primrec’ implies primrec,
since all of the functions appearing in Definition 1 are known to be primitive recursive. For
the converse, most of the clauses are easy, but our earlier cheat was to axiomatize that mkpair
and unpair are primitive recursive, even though the definition involves addition, multiplication
and case analysis in mkpair and even square root in the inverse function (see Figure 4). So

we must show that all these operations are primitive recursive by the textbook definition.

The square root case is not as difficult as it may sound; since it grows by at most 1 at each
step we can define it by primitive recursion as

VO] =0
|[Vn+ 1] =ifn+1< (y+1)? then y else y + 1
where y = |v/n].

This alternate basis for primrec is useful for reductions, for example, to show that some
other basis for computation like Turing machines can simulate every primitive recursive
function.

4 Partial recursive functions

The partial recursive functions are an extension of primitive recursive functions by adding
an operator un. p(n), where p : N — bool is a predicate, which denotes the least value of n
such that p(n) is true. Intuitively, this value is found by starting at 0 and testing ever larger
values until a satisfying instance is found. This function is not always defined, in the sense
that even when all the inputs are well typed it may not return a value — it can result in an
“infinite loop.”

Before we tackle the partial recursive functions we must understand partiality itself, and
in particular how to represent unbounded computation, computably, in a proof assistant that
can only represent terminating computations. As Lean is based on dependent type theory,
which is strongly normalizing, all expression evaluation terminates, and so the problem is

prima facie unsolvable — we may as well turn to functional relations as a representation.

However, as we shall see, it is actually possible with no additional modifications to CIC or
extra axioms.

4.1 The partiality monad

We have already discussed the option « type for representing a possible failure state, but
nontermination is a slightly different kind of “failure” in that the program is not able to tell
that it has failed while executing, and this difference makes itself known in the type system.
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To address this distinction, we introduce the part o type:

def part (a : Type*) := X p : Prop, (p — )

That is, an element p : part « is a dependent pair of a proposition p; and a function
p2 : p1 — « from proofs of p; to a. A value of type part a is a nondecidable optional value,
in the sense that there is not necessarily a decision procedure for determining if the part «
contains a value, but if it does then you can extract the value using the function component.
This type has a monad structure, as follows:

pure : o — part «

pure a = (true, \_. a)

bind : part @ — (o — part 8) — part 8

bind (p, f) 9 = (Bh: p, (g (f h))1), (Ah- (g (f ha1))2 h2))

Also, there is an element | = (false, exfalso) : part « representing an undefined value. We can
map option @ — part a by sending some a to pure a and none to L, and assuming the law of
excluded middle in Type we can also define an inverse map and show option @ =~ part «, but
this breaks the computational interpretation of part c.

The definition of bind, also written in Haskell style as the infix operator »=, is slightly
intricate but is “exactly what you would expect” in terms of its behavior. Given a partial
value p : part a and a function f : o — part 3, the resulting partial value p »= f : part 8 is
defined when p is defined to be some a : o, and f a is defined, in which case it evaluates to f a.

It is convenient to abstract from the definition to a relational version, where a € p means
3h : p1,p2 h = a — that is, a € p says that p is defined and equal to a. (This relation is
functional because of proof irrelevance.) With this definition the bind operator can be much
more easily expressed by the theorem

bep»=f<daepbe fa

which is shared with many other collection-based monad structures. Also, like every other
monad there is a map operator, written <$>, which applies a pure function to a partial value:

map : (o« — ) — part a« — part 8
f<$>p=(p1,fopa)

Because they come up often, we will use the notation o + 8 = a — part 5 for the type of all
partial functions from « to 5.

One important function that is (constructively) definable on this type is fix, which has
the following properties:

fix(fra+»fda):a+wf
befix fasrinlbe favId,inrad € fanbefix fad

Given an input a, it evaluates f to get either inl b or inr a’. In the first case it returns b, and
in the second case it starts over with the value a’. The function fix f is defined when this
process eventually terminates with a value, if we assume this then we can construct the value
that fix f returns. So even though Lean’s type theory does not permit unbounded recursion,
by working in this partiality monad we get computable unbounded recursion.
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inductive partrec : (N -+ N) — Prop
zero : partrec (pure 0)
succ : partrec succ

right : partrec (A n, snd (unpair n))
pair {f g} : partrec f — partrec g —
partrec (A n, £ n >>= X\ a, gn >>= A\ b, pure (mkpair a b))
| comp {f g} : partrec f — partrec g —
partrec (A n, g n >>= f)
| prec {f g} : partrec f — partrec g —
partrec (unpaired (A a n, nat.rec_on n (f a)
(A y IH, IH >>= )\ i,
g (mkpair a (mkpair y i)))))
| find {f} : partrec f — partrec () a,
find (A n, (A m, m = 0) <$> f (mkpair a n)))

|
|
| left : partrec (A n, fst (unpair n))
|
|

Figure 5 The definition of partial recursive on N in Lean.

The minimization operator find p = un. p(n), which finds the smallest value satisfying
the (partial) boolean predicate p can be defined in terms of fix as follows:

find : (N + bool) -+ N
find p = fix (An. if p n then inl n else inr(n +1)) 0

As an aside, we note that while this monad supports many of the operations one expects
on partial recursive functions, one thing it does not support is parallel computation. That
is, we would like to have a nondeterministic choice function <|> : part & — part a — part «
such that p <|> ¢ is defined if either p or ¢ is defined (with value arbitrarily chosen from the
two). This is possible for partial recursive functions, but it is not constructively definable
for part. For this, we must restrict the propositions to be semidecidable [2], which means
essentially that they are a ¥; proposition, that is, a proposition of the form 3n. f(n) = true
for some f : N — bool. Every partial recursive function is semidecidable as a consequence of
the eval; function (see Section 5.2).

4.2 partrec and computable

The definition nat.partrec is given in Figure 5. The first 7 cases are almost the same as those
of primrec, except that we must now worry about partiality in all the operations that build
functions. So for example A n, f n >>= )\ a, g n >= )\ b, pure (mkpair a b) is the
function n — (f n,g n) except that if the computation of either f n or g n fails to return a
value, then this is not defined. (In other words, this operation is “strict” in both arguments).
Similarly, the composition is now expressed as A n, g n >>= f, which says that g n should
be evaluated first, and if it is defined and equals a, then f a is the resulting value.

The interesting case is the last one, which incorporates the find function on N. Ignoring
partiality, it says that Aa.pun. f(a,n) = 0 is partial recursive if f is. This is of course
the source of the partiality — all the other constructors produce total functions from total
functions but this can be partial if the function f is never zero.

12:9
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Although this defines a class of partial functions, some of the functions happen to be
total anyway, and we call a total partial-recursive function computable. It is an easy fact
that every primitive recursive function is computable.

As before, we can compose with encode and decode to extend these definitions to any
primcodable type. Although we could define an analogue of primcodable using computable
functions instead of primitive recursive functions, since we want to stick to simple encodings
(usually not just primitive recursive but polynomial time), and we already have encodings
for all the important types, so primcodable is enough.

One aspect of this definition which is not obviously a problem until one works out all
the details is the strictness of the prec constructor. In conventional notation, it says that if
fira-+pfand g: a— N — g -+ [ are partial recursive functions, then so is the function
h:a— N - 3 defined by

h(a,0) = f(a)
h(a,n + 1) = g(a,n, h(a,n)).

Importantly, h(a,n + 1) is only defined if h(a,n) is defined and g(a, n, h(a,n)) is defined. It
does not matter if g does not make use of the argument at all, for example if it is the first
projection. This comes up in the definition of the lazy conditional ifz[f, g], defined when

fra+ B, g:a-+ 3 by:

ifz[f,g] :a > N+ §
fla) ifn=0

ifz[f, gl(a,n) = {g(a) ifn#0’

where in particular ifz[f, g](a,1) = g(a) regardless of whether f(a) is defined. This is the
basis of “if statements” that resemble execution paths in a computer — we need a way to
choose which subcomputation to perform, without needing to evaluate both. The usual way
of implementing ifz is to use primitive recursion on the argument n, using f in the zero case
and g o 7 in the successor case. But because of the strictness constraint, this will result in
ifz[ L, g](a,1) = (gom)(a,0, f(a)) = L because f(a) = L, rather than the desired result g(a).
In fact, we won’t have the tools to solve this problem until Section 5.3.

5 Universality

5.1 Codes for functions

Because partrec is an inductive predicate, we can read off a corresponding data type of
syntactic representations witnessing that a function N -+ N is partial recursive:

inductive code : Type
| zero : code

| succ : code

| left : code

| right : code

| pair : code — code — code
| comp : code — code — code
| prec : code — code — code
| find’ : code — code
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We can define the semantics of a code via an “evaluation” function that takes a code and an
input value in N and produces a partial N value.

def eval : code - N - N

| zero = pure 0

| succ = succ

| left = A n, n.unpair.1
| right = A n, n.unpair.2
|

A n,

(pair cf cg) :=
eval c¢f n >>= \ a, eval cg n >>= )\ b, pure (mkpair a b)

| (comp cf cg) A n, eval cg n >>= eval cf

| (prec cf cg) unpaired (A a n,
nat.rec_on n (eval cf a) (A y IH, IH >>= )\ i,
eval cg (mkpair a (mkpair y i))))
| (find’ cf) := unpaired (A am, (A i, i + m) <$>
find (A n, (A m, m = 0) <$> eval cf (mkpair a (n + m))))

Then it is a simple consequence of the definition that f is partial recursive iff there exists a
code f such that f = eval f.

Note. The find’ constructor is a slightly modified version of find which is easier to use in
evaluation:

find' f (a,m) = (un. f(a,n+m) =0)+m,
which can be expressed in terms of find as:

find f a = find’ f (a,0)
find’ f (a,m) = find \z. f (x1,22 +m)) a +m

So we can pretend that partrec was defined with a case for find’ instead of find since it yields
the same class of functions.

Now the key fact is that code is denumerable. Concretely, we can encode it using a
combination of the tricks we used to encode sums, products and option types, that is,

encode (zero

encode (succ

encode (left

encode (right

encode ¢y, encode cg) + 4

encode (comp ¢ ¢g) = encode ¢y, encode ¢2) + 5

)=0
)=1
) =2
)=3
encode (pair ¢; ¢p) = 4
) =4
encode (prec ¢1 ¢c2) = 4

y=4

(
(
- (encode ¢y, encode ¢;) + 6
(

encode (find' ¢ encode ¢) + 7

where (m,n) is the pairing function from Figure 1. (We could have used a more permissive
encoding, but this has the advantage that it is a bijection to N, which makes the proof that
this is a primcodable type trivial.)
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Having shown that the type is primcodable we can now start to show that functions
on codes are primitive recursive. In particular, all the constructors are primitive recursive,
the recursion principle preserves primitive recursiveness and computability (not partial
recursiveness, because of the as-yet unresolved problem with ifz), and we can prove that
these simple functions on codes are primitive recursive:

const : N — code
eval (consta) n =a
curry : code — N — code

eval (curry ¢ m) n = eval ¢ (m,n)

In particular, the rather understated fact that curry is primitive recursive is a form of the
s-m-n theorem of recursion theory.

5.2 Resource-bounded evaluation

We have one more component before the universality theorem. We define a “resource-bounded”
version of eval, namely evaly : code — N — option N where &k : N. (In the formal text it is
called evaln.) This function is total — we have a definite failure condition this time, unlike
eval itself, which can diverge. There are multiple ways to define this function; the important
part is that if eval cn = L then evaly ¢ n = none for all k£, and if eval ¢ n = a is defined then
eval, ¢ n = some a for some k. Furthermore, it is convenient to ensure that evaly is monotonic
in k, and the domain of evaly is contained in [0, k], that is, if n > k then evaly ¢ n = none.

The Lean definition of evaln is given in Figure 6. The details of the definition are not
so important, but it is interesting to note that our “fuel” k for the computation only needs
to decrease when we don’t change the program code in the recursive call, namely in the
prec and find’ cases, thanks to Lean’s pattern matcher (which compiles this definition into
one by nested structural recursion). (You may wonder why we cannot use the fact that n
is decreasing in the prec case to prove termination, but this is because the function is not
defined by recursion on n, it is by recursion on k at all n < k simultaneously.)

Because evaly, ¢ : N — option N has finite domain n € [0, k] outside which it is none, we
can encode the whole function as a single list (option N). Thus we can pack the function
into the type N x code — list (option N), and define this by strong recursion (using the
theorem nat_strong_rec mentioned in Section 3), since in every case of the recursion, either
k decreases and ¢ remains fixed, or ¢ decreases and k remains fixed.

Thus evaln : N — code — N — option N is primitive recursive (jointly in all arguments),
and since eval ¢ n = evaly ¢ n where k' = pk. (evaly: ¢ n # none), this shows that eval is
partial recursive. This is Kleene’s normal form theorem (in a different language) — eval is a
universal partial recursive function.

5.3 Applications

The fixed point theorems are an easy consequence of universality. These have all been
formalized; the formalized theorem names are given in parentheses.

» Theorem 2 (fixed_point). If f : code — code is computable, then there exists some code
¢ such that eval(f ¢) = eval c.
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def evaln : V k : N, code - N — option N
| O _ := XA n, none
| (k+1) zero := A n, guard (n < k) >> pure O
| (k+1) succ := A n, guard (n < k) >> pure (succ n)
| (k+1) left := A n, guard (n < k) >> pure (fst (unpair n))
| (k+1) right := A n, guard (n < k) >> pure (snd (unpair n))
| (k+1) (pair cf cg) := A n, guard (n < k) >>
evaln (k+1) cf n >>= )\ a, evaln (k+l) cg n >>= A\ b, pure (mkpair a b)
| (k+1) (comp cf cg) := A n, guard (n < k) >>
evaln (k+1) cg n >>= A\ x, evaln (k+1) cf x
| (k+1) (prec cf cg) := A n, guard (n < k) >>
unpaired (A a m, nat.rec_on m
(evaln (k+1) cf a)
(A y, evaln k (prec cf cg) (mkpair a y) >>= X i,
evaln (k+1) cg (mkpair a (mkpair y i)))) n
| (k+1) (find’ cf) := A n, guard (n < k) >>
unpaired (A a m,
evaln (k+1) cf (mkpair a m) >>= A x,
if x = 0 then pure m else
evaln k (find’ cf) (mkpair a (m+1))) n

Figure 6 The definition of resource-bounded evaluation of partial recursive functions in Lean.

Notation note: The » operator is monad sequencing, i.e. a » b =a »= A__. b, and guard p : option unit
is the function that returns some () if p is true and none if p is false. Together they ensure that
evaln k ¢ n = none unless n < k.

Proof. Consider the function g : N - N + N defined by g « y = eval (eval z x) y (using
decode : N — code to use natural numbers as codes in eval). This function is clearly partial
recursive, so let g = eval §. Now let F': N — code such that F « = f (curry § x); then F' is
computable so let F' = eval F. Then for ¢ = curry g F we have:

eval (f ¢)n =eval (f (curry § F)) n
eval F F)n

= eval (
= eval (
=gFn

= eval j (F',n)

=eval (curry § F) n

=eval cn. <

» Theorem 3 (fixed_point,). If f : code = N = N is partial recursive, then there exists
some code ¢ such that eval c = f c.

Proof. Let f = eval f, and apply Theorem 2 to curry f to obtain a ¢ such that
eval (curry f ¢) = eval ¢. Then
eval ¢n = eval (curry f¢) n
= eval f (¢,n)
= fcn. <
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We can also finally solve the ifz problem. If f and g are partial recursive functions, then
letting f = eval f and g = eval g, the function

{f ifn=0
c(n) =
§ ifn#0

is primitive recursive (since both branches are just numbers now instead of computations
that may not halt), and ifz[f, g](a,n) = eval ¢(n) a. More generally, this implies that we can
evaluate conditionals where the condition is a computable function and the branches are
partial functions. We can also construct a nondeterministic choice function:

» Theorem 4 (merge). If f,g: a = [ are partial recursive functions, then there exists a
function h : N + N such that h(a) is defined iff either f(a) or g(a) is defined, and if x € h(a)
then © € f(a) orz € g(a).

Proof. It is easy to reduce to the case where f,¢g : N - N. Let f = eval f and g = eval g;
then h(n) = find(Ak. eval, f n <|> evaly § n) works, where <|> is the alternative operator
on option N. <

A corollary is Post’s theorem on the equivalence of computable and r.e. co-r.e. sets:

» Theorem 5 (computable_iff_re_compl_re). If p : o — Prop is a decidable predicate,
then p is computable iff p is r.e. and Aa. —p a is r.e.

Proof. The forward direction is trivial. In the reverse direction, if f, g : o - unit are chosen
such that f(a) is defined iff p(a) and g(a) is defined iff —p(a), then by Theorem 4 there is a
function h : @ + bool extending Aa. f(a) » pure true and Aa. g(a) » pure false. This function
has domain {a | p(a) V —p(a)} = « (because p is decidable) and is true when p(a) is true and
is false when —p(a). Thus h is a computable indicator function for p. |

The assumption that p is decidable is not the tightest condition we could assert; it suffices
p is stable, i.e. =—p(a) — p(a), or alternatively we could assume Markov’s principle or LEM.

We conclude with Rice’s theorem on the noncomputability of all nontrivial properties
about computable functions:

» Theorem 6 (rice). Let C' C (N + N) such that {c | eval c € C} is computable. Then for
any f,9: N+ N, f e C implies g € C (so classically C =0V C =N-»N).

Proof. Apply Theorem 3 to the function F' ¢ n = if eval ¢ € C then g n else f n. to obtain
a ¢ such that eval ¢ = F ¢. (Note eval ¢ € C is decidable because it is computable.) Then if
evalce€ C, wehave Fcn=gnforallnsoevalc=F ¢=g, hence g € C. Andifevalc¢ C
then eval ¢ = F ¢ = f similarly which contradicts f € C, eval ¢ ¢ C. <

The undecidability of the halting problem is a trivial corollary:
» Theorem 7 (halting_problem). The set {c: code | eval ¢ 0 is defined} is not computable.

Proof. Suppose it is; we can write it as {c | eval ¢ € C} where C' = {f | f 0 is defined}, so
applying Rice’s theorem with f = An. 0 and g = An. L we have a contradiction from f € C
and g ¢ C. <
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File | Section Line Count

primrec | Section 3 1338
partrec | Section 4 730
partrec_code | Section b 918
halting | Section 5.3 354

Figure 7 Line counts (unadjusted) for the files in this formalization. Note that primrec.lean
contains mostly endpoint theorems intended for presenting users with a convenient API for primitive
recursion proofs.

6 Related Works

While this is the first formalization of computability theory in Lean, there are a variety of
related formalizations in other theorem provers.
Zammit (1997) [18] uses n-ary p-recursive functions with an explicit big-step semantics.
Although we believe we have reproduced all the theorems in this report and more, it
should be noted that this predates all the others on this list by more than 10 years.
Norrish achieves a substantial amount in [13], using the A-calculus in HOL4, up to
Rice’s theorem and r.e. sets. The primary differences involve the differing model of
computation and differences from working in a classical higher order logic system rather
than a dependent type theory. (Lean is primarily focused on classical logic, but it permits
working in intuitionistic logic, and there was no particular reason to assume LEM except
in Theorem 5.)
Asperti and Riccoti [1] have formalized the construction of a universal Turing machine in
Matita, but do not go as far as the halting problem or recursively enumerable sets.
“Mechanising turing machines and computability theory in Isabelle/HOL” by Xu, Zhang
and Urban [17] builds from Turing machines, constructs a universal Turing machine,
formalizes the halting problem, and relates them to abacus machines and recursive
functions. But they acknowledge up front that formalizing TMs is a “daunting prospect,”
and their formalization is much longer (although direct comparisons are misleading at
best).
Forster and Smolka [7] formalize call-by-value A-calculus in Coq, including Post’s theorem
and the halting problem, but they have a much greater focus on constructive mathematics
and the exploration of choice principles such as Markov’s principle. As Lean is not as
focused on constructive type theory, we have instead chosen to focus on getting these
core results with a minimum of fuss and with the most externally useful developments,
so that they can perform well as an addition to Lean’s standard library.
In “Typing Total Recursive Functions in Coq” [11], Larchey-Wendling shows that all
total recursive functions have function witnesses in Coq. From the point of view of our
paper, at least concerning total recursive functions in the sense used in computability
theory, this is a consequence of the definition - a computable function has a function
witness by definition, as it is a predicate on functions. Similarly, we can evaluate a partial
recursive function when it is defined because of the definition of part « = ¥p,p — «a. The
content of the theorem is then shifted to the construction of the function fix, which was
not detailed here but reduces to nat.find : (3n : N. P(n)) — {n | P(n)}, which ultimately
relies on the same subsingleton elimination principle used in Coq.
In “Formalization of the Undecidability of the Halting Problem for a Functional Language”
by Ramos et. al. [15], the authors formalize a simplified version of PVS called PVS0
suitable for translating regular PVS definitions into PVS0 and proving termination, and
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they also do some computability theory in this setting, including the fixed point theorem
and Rice’s theorem using an explicit PVS0 program. Our approach is much more abstract
and generic, more suited to the mathematical theory than concrete execution models.

From our own work and the work in these alternative formalizations, we find the following
“take-home messages”:

Although the standard formulation of u-recursive functions uses n-ary functions, and
both [18] and [11] use n-ary p-recursive functions, it turns out that it is much simpler to
work with unary p-recursive functions and rely on the pairing function to get additional
arguments. This simplifies the statement of composition and projection significantly and
decreases the reliance on dependent types.
There is not a significant difference between our formulation of partial recursive functions
and the lambda calculus with de Bruijn variables, although we don’t get the higher-order
features until fairly late in the process. (Once we have eval and code we can use codes
as higher order functions.) But it is less obvious how to get primitive recursion in the
lambda calculus, and having a direct enumeration of all sets under consideration makes
it easy to get things like option.map as primitive recursive functions early on.

Building “synthetic computability” [5] into the types from the beginning makes it obvious

that all computable functions are Lean-computable and all partial recursive functions

can be evaluated on their domain. All the work is transferred to the single function fix,
whose definition is independent of the computability library, and a complicated induction
on partial recursive functions is avoided.

Synthetic computability is convenient when applicable, but in the presence of a “proper”
definition of computability, they are incompatible. It is not possible to prove that all
synthetically computable functions (that is, all functions) are computable, and this
statement is disprovable in classical logic, so we cannot assume it to be the case. (In
fact, there is a diagonalization problem here as well; even in no-axioms Lean, we cannot
take the assumption that all functions are computable as an axiom without making the
axiom false.)

7 Future Work

7.1 Equivalences

The most obvious next step is to show the equivalence of other formulations of computable
functions: Turing machines, A-calculus, Minsky register machines, C... the space of options is
very wide here and it is easy to get carried away. Furthermore, if one holds to the thesis that
partial recursive functions are the quickest lifeline out of the Turing tarpit, then one must
acknowledge that this is to jump right back in, where the hardest part of the translation
is fiddling with the intricacies of the target language. We are still looking for ways to do
this in a more abstract way that avoids the pain. Forster and Larchey-Wendling [6, 12] have
recently made some progress in this direction, connecting Turing machines to Minsky register
machines and Diophantine equations.

7.2 Complexity theory

This project was in part intended to set up the foundations of complexity theory. One of the
often stated reasons for choosing Turing machines over other models of computation like
primitive recursion is because they have a better time model. We would argue that this is
not true at fine grained notions of complexity, because there is often a linear multiplicative
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overhead for running across the tape compared to memory models. Moreover, in the other
direction we find that, at least in the case of polynomial time complexity, there are methods
such as bounded recursion on notation [9] that generalize primitive recursion methods to
the definition of polynomial time computable functions, which can be used to define P, NP,

and NP-hardness at least; we are hopeful that these methods can extend to other classes,

possibly by hybridizing with other models of computation as well.
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