623 research outputs found

    Bearing Fault Diagnosis Based on Optimized Variational Mode Decomposition and 1-D Convolutional Neural Networks

    Get PDF
    Due to the fact that measured vibration signals from a bearing are complex and non-stationary in nature, and that impulse characteristics are always immersed in stochastic noise, it is usually difficult to diagnose fault symptoms manually. A novel hybrid fault diagnosis approach is developed for the denoising signals and fault classification in this work, which combines successfully the variational mode decomposition (VMD) and one dimensional convolutional neural network (1-D CNN). VMD is utilized to remove stochastic noise in the raw signal and to enhance the corresponding characteristics. Since the modal number and penalty parameter are very important in VMD, a particle swarm mutation optimization (PSMO) as a novel optimization method and the weighted signal difference average (WSDA) as a new fitness function are proposed to optimize the parameters of VMD. The reconstructed signals of mode components decomposed by optimized VMD are used as the input of the 1-D CNN to obtain fault diagnosis models. The performance of the proposed hybrid approach has been evaluated using the sets of experimental data of rolling bearings. The experimental results demonstrate that the VMD can eliminate signal noise and strengthen status characteristics, and the proposed hybrid approach has a superior capability for fault diagnosis from vibration signals of bearings.National Natural Science Foundation of China, Key Laboratory Project of Department of Education of Shaanxi Province, Brunel University London (UK), National Fund for Study Abroad (China)

    A novel customised load adaptive framework for induction motor fault classification utilising MFPT bearing dataset

    Get PDF
    This research presents a novel Customised Load Adaptive Framework (CLAF) for fault classification in Induction Motors (IMs), utilising the Machinery Fault Prevention Technology (MFPT) bearing dataset. CLAF represents a pioneering approach that extends traditional fault classification methodologies by accounting for load variations and dataset customisation. Through a meticulous two-phase process, it unveils load-dependent fault subclasses that have not been readily identified in traditional approaches. Additionally, new classes are created to accommodate the dataset’s unique characteristics. Phase 1 involves exploring load-dependent patterns in time and frequency domain features using one-way Analysis of Variance (ANOVA) ranking and validation via bagged tree classifiers. In Phase 2, CLAF is applied to identify mild, moderate, and severe load-dependent fault subclasses through optimal Continuous Wavelet Transform (CWT) selection through Wavelet Singular Entropy (WSE) and CWT energy analysis. The results are compelling, with a 96.3% classification accuracy achieved when employing a Wide Neural Network to classify proposed load-dependent fault subclasses. This underscores the practical value of CLAF in enhancing fault diagnosis in IMs and its future potential in advancing IM condition monitoring

    Multimodal analysis for object classification and event detection

    Get PDF

    A Digital Triplet for Utilizing Offline Environments to Train Condition Monitoring Systems for Rolling Element Bearings

    Get PDF
    Manufacturing competitiveness is related to making a quality product while incurring the lowest costs. Unexpected downtime caused by equipment failure negatively impacts manufacturing competitiveness due to the ensuing defects and delays caused by the downtime. Manufacturers have adopted condition monitoring (CM) techniques to reduce unexpected downtime to augment maintenance strategies. The CM adoption has transitioned maintenance from Breakdown Maintenance (BM) to Condition-Based Maintenance (CbM) to anticipate impending failures and provide maintenance actions before equipment failure. CbM is the umbrella term for maintenance strategies that use condition monitoring techniques such as Preventive Maintenance (PM) and Predictive Maintenance (PdM). Preventive Maintenance involves providing periodic checks based on either time or sensory input. Predictive Maintenance utilizes continuous or periodic sensory inputs to determine the machine health state to predict the equipment failure. The overall goal of the work is to improve bearing diagnostic and prognostic predictions for equipment health by utilizing surrogate systems to generate failure data that represents production equipment failure, thereby providing training data for condition monitoring solutions without waiting for real world failure data. This research seeks to address the challenges of obtaining failure data for CM systems by incorporating a third system into monitoring strategies to create a Digital Triplet (DTr) for condition monitoring to increase the amount of possible data for condition monitoring. Bearings are a critical component in rotational manufacturing systems with wide application to other industries outside of manufacturing, such as energy and defense. The reinvented DTr system considers three components: the physical, surrogate, and digital systems. The physical system represents the real-world application in production that cannot fail. The surrogate system represents a physical component in a test system in an offline environment where data is generated to fill in gaps from data unavailable in the real-world system. The digital system is the CM system, which provides maintenance recommendations based on the ingested data from the real world and surrogate systems. In pursuing the research goal, a comprehensive bearing dataset detailing these four failure modes over different collection operating parameters was created. Subsequently, the collections occurred under different operating conditions, such as speed-varying, load-varying, and steadystate. Different frequency and time measures were used to analyze and identify differentiating criteria between the different failure classes over the differing operating conditions. These empirical observations were recreated using simulations to filter out potential outliers. The outputs of the physical model were combined with knowledge from the empirical observations to create ”spectral deltas” to augment existing bearing data and create new failure data that resemble similar frequency criteria to the original data. The primary verification occurred on a laboratory-bearing test stand. A conjecture is provided on how to scale to a larger system by analyzing a larger system from a local manufacturer. From the subsequent analysis of machine learning diagnosis and prognosis models, the original and augmented bearing data can complement each other during model training. The subsequent data substitution verifies that bearing data collected under different operating conditions and sizes can be substituted between different systems. Ostensibly, the full formulation of the digital triplet system is that bearing data generated at a smaller size can be scaled to train predictive failure models for larger bearing sizes. Future work should consider implementing this method for other systems outside of bearings, such as gears, non-rotational equipment, such as pumps, or even larger complex systems, such as computer numerically controlled machine tools or car engines. In addition, the method and process should not be restricted to only mechanical systems and could be applied to electrical systems, such as batteries. Furthermore, an investigation should consider further data-driven approximations to specific bearing characteristics related to the stiffness and damping parameters needed in modeling. A final consideration is for further investigation into the scalability quantities within the data and how to track these changes through different system levels

    Application of variational mode decomposition in vibration analysis of machine components

    Get PDF
    Monitoring and diagnosis of machinery in maintenance are often undertaken using vibration analysis. The machine vibration signal is invariably complex and diverse, and thus useful information and features are difficult to extract. Variational mode decomposition (VMD) is a recent signal processing method that able to extract some of important features from machine vibration signal. The performance of the VMD method depends on the selection of its input parameters, especially the mode number and balancing parameter (also known as quadratic penalty term). However, the current VMD method is still using a manual effort to extract the input parameters where it subjects to interpretation of experienced experts. Hence, machine diagnosis becomes time consuming and prone to error. The aim of this research was to propose an automated parameter selection method for selecting the VMD input parameters. The proposed method consisted of two-stage selections where the first stage selection was used to select the initial mode number and the second stage selection was used to select the optimized mode number and balancing parameter. A new machine diagnosis approach was developed, named as VMD Differential Evolution Algorithm (VMDEA)-Extreme Learning Machine (ELM). Vibration signal datasets were then reconstructed using VMDEA and the multi-domain features consisted of time-domain, frequency-domain and multi-scale fuzzy entropy were extracted. It was demonstrated that the VMDEA method was able to reduce the computational time about 14% to 53% as compared to VMD-Genetic Algorithm (GA), VMD-Particle Swarm Optimization (PSO) and VMD-Differential Evolution (DE) approaches for bearing, shaft and gear. It also exhibited a better convergence with about two to nine less iterations as compared to VMD-GA, VMD-PSO and VMD-DE for bearing, shaft and gear. The VMDEA-ELM was able to illustrate higher classification accuracy about 11% to 20% than Empirical Mode Decomposition (EMD)-ELM, Ensemble EMD (EEMD)-ELM and Complimentary EEMD (CEEMD)-ELM for bearing shaft and gear. The bearing datasets from Case Western Reserve University were tested with VMDEA-ELM model and compared with Support Vector Machine (SVM)-Dempster-Shafer (DS), EEMD Optimal Mode Multi-scale Fuzzy Entropy Fault Diagnosis (EOMSMFD), Wavelet Packet Transform (WPT)-Local Characteristic-scale Decomposition (LCD)- ELM, and Arctangent S-shaped PSO least square support vector machine (ATSWPLM) models in term of its classification accuracy. The VMDEA-ELM model demonstrates better diagnosis accuracy with small differences between 2% to 4% as compared to EOMSMFD and WPT-LCD-ELM but less diagnosis accuracy in the range of 4% to 5% as compared to SVM-DS and ATSWPLM. The diagnosis approach VMDEA-ELM was also able to provide faster classification performance about 6 40 times faster than Back Propagation Neural Network (BPNN) and Support Vector Machine (SVM). This study provides an improved solution in determining an optimized VMD parameters by using VMDEA. It also demonstrates a more accurate and effective diagnostic approach for machine maintenance using VMDEA-ELM
    corecore