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Abstract

Manufacturing competitiveness is related to making a quality product while incurring the
lowest costs. Unexpected downtime caused by equipment failure negatively impacts manufacturing
competitiveness due to the ensuing defects and delays caused by the downtime. Manufacturers have
adopted condition monitoring (CM) techniques to reduce unexpected downtime to augment main-
tenance strategies. The CM adoption has transitioned maintenance from Breakdown Maintenance
(BM) to Condition-Based Maintenance (CbM) to anticipate impending failures and provide main-
tenance actions before equipment failure. CbM is the umbrella term for maintenance strategies that
use condition monitoring techniques such as Preventive Maintenance (PM) and Predictive Mainte-
nance (PdM). Preventive Maintenance involves providing periodic checks based on either time or
sensory input. Predictive Maintenance utilizes continuous or periodic sensory inputs to determine
the machine health state to predict the equipment failure.

The overall goal of the work is to improve bearing diagnostic and prognostic predictions for
equipment health by utilizing surrogate systems to generate failure data that represents production
equipment failure, thereby providing training data for condition monitoring solutions without waiting
for real world failure data. This research seeks to address the challenges of obtaining failure data for
CM systems by incorporating a third system into monitoring strategies to create a Digital Triplet
(DTr) for condition monitoring to increase the amount of possible data for condition monitoring,.
Bearings are a critical component in rotational manufacturing systems with wide application to
other industries outside of manufacturing, such as energy and defense. The reinvented DTr system
considers three components: the physical, surrogate, and digital systems. The physical system
represents the real-world application in production that cannot fail. The surrogate system represents
a physical component in a test system in an offline environment where data is generated to fill in

gaps from data unavailable in the real-world system. The digital system is the CM system, which
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provides maintenance recommendations based on the ingested data from the real world and surrogate
systems.

In pursuing the research goal, a comprehensive bearing dataset detailing these four failure
modes over different collection operating parameters was created. Subsequently, the collections
occurred under different operating conditions, such as speed-varying, load-varying, and steady-
state. Different frequency and time measures were used to analyze and identify differentiating
criteria between the different failure classes over the differing operating conditions. These empirical
observations were recreated using simulations to filter out potential outliers. The outputs of the
physical model were combined with knowledge from the empirical observations to create ”spectral
deltas” to augment existing bearing data and create new failure data that resemble similar frequency
criteria to the original data. The primary verification occurred on a laboratory-bearing test stand.
A conjecture is provided on how to scale to a larger system by analyzing a larger system from a
local manufacturer.

From the subsequent analysis of machine learning diagnosis and prognosis models, the origi-
nal and augmented bearing data can complement each other during model training. The subsequent
data substitution verifies that bearing data collected under different operating conditions and sizes
can be substituted between different systems. Ostensibly, the full formulation of the digital triplet
system is that bearing data generated at a smaller size can be scaled to train predictive failure
models for larger bearing sizes. Future work should consider implementing this method for other
systems outside of bearings, such as gears, non-rotational equipment, such as pumps, or even larger
complex systems, such as computer numerically controlled machine tools or car engines. In ad-
dition, the method and process should not be restricted to only mechanical systems and could be
applied to electrical systems, such as batteries. Furthermore, an investigation should consider further
data-driven approximations to specific bearing characteristics related to the stiffness and damping
parameters needed in modeling. A final consideration is for further investigation into the scalability

quantities within the data and how to track these changes through different system levels.
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Chapter 1

Introduction

There have been four industrial revolutions since the mid-1700s. The First Industrial Rev-
olution (1IR) ranged from 1750 to 1840 and characterized changes in prior human and animal labor
to early manual machinery [8]. Novel inventions during this era are the steam engine, the spin-
ning jenny, the Bessemer process for steel manufacturing, and improved chemical production for
manufacturing. The Second Industrial Revolution (2IR) from 1820 - 1920 was characterized by
more common electrical technologies, the internal combustion engine, and developments along the
assembly line [9]. The Third Revolution (3IR) the focused on incorporating more electronics and
automation to the assembly line, further automating production [10]. Currently, industry is experi-
encing its Fourth Industrial Revolution (4IR) [11] with some researchers suggesting that society is
preparing to move into the Fifth Industrial Revolution (5IR) [12]. 4IR focuses on integrating new
process technologies, such as 3D printing, new fuel sources for transportation, such as electrification
and hydrogen, and integrating cyber-physical systems and high-performance computing for artificial
intelligence in industrial applications. 5IR will allegedly focus on personalizing the cognitive and
human intelligence systems from 4IR.

Whether the world is in the 4IR, transitioning from 4IR to 5IR, or in the 5IR, there is
a general push for leveraging the massive amounts of available data from industrial processes to
make informed decisions. Subsequently, these decisions, backed by newly available data, effectively
impact daily operations to minimize costs and ensure quality operations. The massive amounts
of available data, termed Big Data [13], require digital tools to process the data into information

in a timely and effective manner. Cyber-Physical Systems (CPSs) [14] and Digital Twins (DTs)



[15], with their variations, help to transform the available data into information. These systems
have been implemented in multiple industries, such as digital twins in health care for elders for
diagnostics and prognostics [16], digital twins for processing data during disasters and crises [17],
digital twin applications for safety and security in transportation systems [18], digital twins for
product development and management [19], cyber-physical systems in manufacturing for control
and product quality [14, 20], and cyber-physical systems for energy control [21].

However, these condition monitoring (CM) systems require reliable, large amounts of data
to determine the diagnosis and prognosis for the equipment. Generally, the data collected from a
manufacturing environment contains incomplete class representations or the labels attached do not
correctly characterize the equipment health state or operation [22]. Incomplete class representation
refers to datasets that do not contain enough data for certain classes, which then cause skewed
results and incorrect diagnoses. Leukel et al. [23] found that 38% of 34 reviewed articles did not
discuss the breakdown of data. The nonexistent data breakdown is further exacerbated by datasets
with few failures, which made up a further 10% of articles. The lack of reporting data and failure
data availability makes it difficult to reproduce results and transfer any meaningful information and
knowledge gained to industry, where these systems can make a difference.

The lack of reliable data leads to challenges in implementing condition monitoring systems in
industrial systems. Transfer learning, data augmentation, and new algorithm development have each
been implemented to address the data quality problem in condition monitoring systems. However,
their integration into the long-term condition monitoring system leads to varying success levels for
improving health predictions for the monitored equipment. This research proposes a novel approach
to the data quality problem in manufacturing using surrogate systems to generate the necessary
training data for condition monitoring systems in industrial settings. The process alleviates the
need for consistently accurate labeled data from the manufacturing environment to train the CM

system for failure diagnosis and prognosis.

1.1 Goal

The overall goal is to improve bearing diagnostic and prognostic predictions for equipment
health by utilizing surrogate systems to generate failure data representing production equipment

failure, thereby providing training data for condition monitoring solutions without incurring the



cost for real world failure data. The overall process is labeled as the Surrogate Digital Triplet
(SDTr) or Condition Monitoring Digital Triplet (CMDTr) system, which has the following elements:
a real-world production system that provides training and monitoring data (the physical triplet), a
surrogate system that provides representative training data to the digital triplet (surrogate triplet),
and the relatability and augmentation analysis for the surrogate system and condition health mon-
itoring analysis for the production system (digital triplet). The fully-trained digital triplet informs
the manufacturer about the production equipment’s health state, allowing the manufacturer to take
a proactive approach in their maintenance scheduling. With a comprehensive training profile for
manufacturing equipment and the ability to generate training data in parallel with the production
system, the ability to train and retrain predictive analytic algorithms allows for more robust and
effective implementation with knowledge of the possible failure modes for the production system

before any equipment failure occurs during production.

1.2 Objectives

To test this novel process, bearings are chosen as the experimental system due to their
criticality and use in rotational equipment. Rotational equipment is a primary focus for condition
monitoring as these systems are found in many industries, such as transportation, defense, man-
ufacturing, and energy. Hence, the objectives are generalized for other equipment; however, the
validation for this work is only conducted with bearings. The first objective is to create a methodol-
ogy for generating data in offline environments for training online condition monitoring systems. The
method standardizes damage plans to recreate ”life-like” damage realistically. The second objective
determines the procedures and necessary knowledge for transferring and merging the generated data
with production application data. The third objective focuses on how machine learning models
perform when considering the augmented bearing data compared to the original bearing data from

the test system.

1.3 Questions

Each research objective has a set of questions to help guide the work and answer fundamental

questions related to condition monitoring systems for bearings.



i.) Research Objective 1: Surrogate System Failure Data Generation for Bearings — Purposeful

Failure Methodology

a.) Research Question 1.1: How are the existing bearing datasets deficient for training man-

ufacturing condition monitoring systems?

b.) Research Question 1.2: What methodology criteria are necessary to fill gaps for condition

monitoring datasets utilizing a surrogate triplet?

c.) Research Question 1.3: How much data are needed to train a bearing condition monitoring

system for diverse failure modes?

ii.) Research Objective 2: Data-Driven and Physics-Based Methods for Data Relatability & Trans-

fer

a.) Research Question 2.1: How is the artificially generated data from the surrogate system

related to the production data taken from the real-world system?
b.) Research Question 2.2: What considerations or knowledge are needed to relate different
systems?

c.) Research Question 2.3: Are the physical scaling and spectral augmentation sufficient for
translating data from the laboratory environment to the real world when considering

similar applications?

iii.) Research Objective 3: Evaluation of Condition Monitoring System for Multi-Fault Diagnosis

- Bearings
a.) Research Question 3.1: Is there an ideal amount of real versus augmented failure data for
deploying offline data to a bearing diagnostic system?

b.) Research Question 3.2: What augmented data process (data augmentation or physics

scaling) increases the model performance regarding the assigned algorithm metrics?

c.) Research Question 3.3: Does feature window optimization for bearing features improve

bearing fault diagnosis regarding the assigned algorithm metrics?



1.4 Scope and Tasks

The proposed process entails the creation of a “Digital Triplet”, a system consisting of
a physical triplet, a surrogate triplet, and a digital triplet. The tasks are assigned based on the
research objectives and explore the relationships of the physical triplet to the surrogate triplet
(Research Objective 1), the surrogate triplet to the digital triplet (Research Objective 2), and
the digital triplet to the physical triplet, where the monitoring is trained based on data from the
surrogate triplet (Research Objective 3). The research objectives and questions are broken down

into a detailed research scope with the corresponding tasks.

i.) Research Objective 1: Surrogate System Failure Data Generation for Bearings — Purposeful

Failure Methodology

a.) Research Question 1.1
b.) Research Question 1.2
1.) Task 1: Conduct a dataset assessment to determine the criteria for condition moni-
toring datasets. Evaluate prior condition monitoring and design methods.
2.) Task 2: Formalize tasks into the Purposeful Failure Methodology (PFailM), which is
compatible between component, system, production line, and factory applications.
c.) Research Question 1.3
3.) Task 3: Generate and characterize failure data from multiple failure modes to create
a comprehensive failure profile for the surrogate system.
I.) Generate Fatigue Damage Data
IT.) Generate Contamination Damage Data
III.) Generate Brinelling Damage Data
IV.) Generate Lubrication Damage Data

4.) Task 4: Assess failure data using data-driven and physics-based equations associated
with the equipment to determine the separability of data concerning the contrived

failure modes.

ii.) Research Objective 2: Data-Driven and Physics-Based Methods for Data Relatability & Trans-

fer - Bearings



a.) Research Question 2.1

1.) Task 1: Conduct a comprehensive literature review of existing techniques to deter-
mine the best practices and limitations for the data transferability from a scaled

system to a full-size system.
b.) Research Question 2.2

2.) Task 2: Augment data with damage coefficients related to speed, load, and contam-
ination level using spectral subtraction across bearings of different sizes.

3.) Task 3: Perform relatability analysis relating bearing geometry and dynamic parame-
ters between bearings of similar sizes in the surrogate system data using mass-spring-
damper models.

4.) Task 4: Evaluate the physical variations when considering systems under different
operating conditions.

c.) Research Question 2.3

5.) Task 5: Validate the system methodology by relating augmented data from the sur-

rogate test stand to data from a real-world production system.
iii.) Research Objective 3: Evaluation of the Condition Monitoring System - Bearings

a.) Research Question 3.1
b.) Research Question 3.2

1.) Task 1: Train and evaluate machine learning models under different mixtures of real

and augmented failure data to diagnose bearing failure

I.) Random Forest Classification
I1.) Decision Trees Classification
III.) Naive Bayes Classification
IV.) Nearest Neighbors Classification
V.) Support Vector Machine Classification
VI.) Multilayer Perceptron
VI.) Deep Multilayer Perceptron

2.) Task 2: Train and evaluate machine learning models under different mixtures of real

and augmented failure data to provide a prognosis for impending bearing failure

8



I.) LSTM
I1.) Hidden Markov Model

ITII.) Monte Carlo Markov Model
c.) Research Question 3.3

3.) Task 3: Recreate the algorithms based on optimized time windows to determine if

accuracy increases with different time windows.

Figure 1.1 outlines the work overall pathway. The dissertation work follows a linear pathway
beginning with Research Objective/Area 1. Each research question (RQ) is addressed in the corre-
sponding research area before moving onto the the following research objective. The work conducted
in RQ 1.2 does impact RQ 2.1, and the work conducted in RQ 1.3 impacts RQ 3.1. The overlaps

are addressed in the corresponding RQ sections.
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Chapter 2

Background

The following chapter is considered an introduction to the relevant background sections for
this work. These sections provide an overview of background work related to condition monitoring
system and highlight the relation to the research goal. Section 2.1 provides a brief overview of
bearings. Section 2.2 and 2.3 provide motivations for the research work related to maintenance
costs and work strategy. Section 2.4 through 2.6 describes the different data acquisition, processing,
analysis, and manipulations investigated. Section 2.7 introduces technologies that package and
interface between the digital and physical systems. Figure 2.1 maps how the background topics
relate to different portions of the dissertation. Additional background information may be provided
in each of the separate research objectives called out. These initial background sections are meant

to provide the basis for further discussion in a deeper description of the research work in Section

Background
Data . ioi i
Cost of Maintens Dats Pr . Data Imbalance: Data Digital Twins and
Bearings — Unexpected ‘Sull: eln:mce Ac ;l :‘“ " 1Perp rocesi?:ilg. Augmentation and Cyber-Physical
Downtime ategy cquisitiof ocessing. Transfer Learning Systems
Analysis d
1
Digital Triplet
v v vy v Yy v
Research Research Lo
»  General Knowledge o L Research Objective 3
Objective | Objective 2

Figure 2.1: Path to show how the background topics relate further to the research work as described
in the next section
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2.1 Bearings

Bearings are critical in rotational equipment as they help transfer load and motion between
different systems. The work in this dissertation focuses explicitly on rolling element bearings. Four
major parts define rolling element bearings. The first two are the inner and outer rings found in
other types of bearings. The difference comes from the other two parts, the rolling element and
the cage. In plain bearings (i.e., bearings with no rolling element), the inner and outer rings are
separated by a film of grease. In a rolling element bearing, the rings have grooved trenches called
raceways. Rolling elements are placed in the raceway and rotate with the bearing as it moves. The
rolling elements distribute the load between the two rings. A cage holds these rolling elements to
ensure equal distribution around the bearing.

With these four parts, multiple configurations for rolling element bearings depend on the
application. For example, a deep groove ball bearing is suitable for all-around applications. However,
due to a different configuration, a thrust bearing would perform better in a purely axial considera-
tion but could not handle significant loads in the radial direction. Figure 2.2 shows an example of a
deep groove ball bearing in (a) and a thrust ball bearing in (b). Any significant radial load applied
to the thrust ball bearing could cause early failure. In these two examples, the rolling elements
are balls; however, they can also be cylindrical in other applications. The cylindrical applications
accommodate the scenarios of pure radial that might occur in certain applications. There is a third
type of spherical roller, which would accommodate misalignment scenarios. Misalignment is where
the shaft’s geometric center line differs from the bearing’s center line. Due to their precise nature,
small amounts of misalignment can cause early damage to bearings, causing them to fail faster.
For bearing selection, major bearing manufacturers (e.g. SKF and Koyo/JTEKT) provide pro-
cesses to select bearings for the correct application based on the application requirements, operating

conditions, lubrication, operating temperature and size.

Figure 2.2: Two bearing types: (a) Deep Groove Ball Bearing and (b) Thrust Bearing

12



Further documentation is available from the American Bearing Manufacturers Association
(ABMA) and the International Organization for Standardization (ISO). These two organizations
standardize bearing dimensions and coding to ensure that bearing dimensions are identical for every
bearing manufactured. ABMA standardizes bearings using the English system, and ISO standardizes
bearings using the metric system. During this research work, bearings are defined by the metric
system. The primary bearings used in this dissertation work are deep groove ball bearings, denoted
by the convention 6XYY, where X represents the width series and Y'Y codes for the bore size. Due
to their simplistic but precise nature, these bearings are considered a good all-around fit for most
applications, as they can accommodate radial and axial loads. Typical applications in industrial
environments for deep groove ball bearings involve motors, gearboxes, pumps, and fans. Deep
groove ball bearings are also found in many home applications, including air conditioners, washing
machines, and vacuums. Because of their prevalent nature, this research focuses on determining
the most effective manner to train, deploy, and execute condition monitoring systems to reduce

unexpected equipment failure.

2.2 Cost of Unexpected Downtime: Bearings

2.2.1 General Unexpected Downtime Cost

For this work, unexpected downtime is defined as any incurred downtime not accounted
for in manufacturing operations. Another term for labeling unexpected downtime is simply as
operation disruptions. Veira et al. [24] considered the following as disruptions that caused the need
for manufacturing rescheduling: machine failure, Urgent jobs, job cancellation, change in delivery
dates, delay in materials, change in job priority, rework issues, misallocation over process time, and
operator mishaps. As seen with the recent COVID-19 pandemic, disruptions in the timing for more
materials and products impacted the revenue streams for all industrial enterprises [25, 26]. Certain
strategies, such as supply chain redundancy, localization, and digitalization, improved supply chains
to respond to the supply chain changes forced on companies due to the pandemic. Adopting these
new strategies allows supply chain adaptability when presented with a set of adverse conditions.

However, machine failure is the most cited manufacturing disruption outside supply chain
disruptions by Vieira et al. [24]. While the primary focus is machine failure in manufacturing for this

work, machine failure causes disruptions in every industry, such as transportation [27], healthcare
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[28], and energy [29]. Equipment failure in each industry incurs additional costs outside traditional
monetary values and product loss. For example, equipment failure in the healthcare industry can
lead to patient deaths. Heneghan et al. [30] found that 44% of the medical device alerts issued
over five years had a reasonable probability of causing severe health consequences or death due to
defects found in their medical devices. Another instance is the failure of hospital systems like air
conditioning. While critical for climate control, air condition failures impact hospitals to filter air,
reducing their ability to fight infection while treating people [31]. Failures in transportation could
cause additional delays that strain other services. Gerdes et al. [32] found that air condition system
failures caused approximately $5.50 per flight. Gerdes et al. acknowledged that value may be low
and the cost savings from CBM implementation were only $1.1. However, when combining those
numbers with the approximately 16 million flights per year [33], the overall cost of just the air
conditioning failures represents a more significant cost.

Critical equipment failure in manufacturing has a degree of cascading effects, depending on
the industry, the equipment, and the failure type. The worst case scenario in any equipment failure
is loss of life, which is unquantifiable in cost. However, Chong et al. [34] found that facilities man-
agement and maintenance teams prioritized safety to reduce the possibility of injury and potential
death. With this consideration, the next worse case scenario, in terms of cost, is a failure that causes
a production stoppage. Thomas et al. [1] found that the approximate maintenance expenditures for
NAICS 32 (Forestry), 332 (Metal Fabrication), 333 (Machinery Manufacturing), 334 (Computer and
Electronic Product Manufacturing), 335 (Electrical Equipment, Appliance, and Component Manu-
facturing), 336 (Transportation Equipment Manufacturing), and 339 (Miscellaneous Manufacturing)
were estimated as $74.5 billion nationally in 2016. The cost breakdown from that number was di-
vided into expected expenditures at $57.3 billion, the additional costs incurred by faults and failures
at $16.3 billion, and the inventory cost at $0.9 billion. In addition to these costs, losses related
to downtime, defects, and delays were $119.1 billion. The amount of injuries each year related to
equipment failure was 134.1 injuries and 0.4 deaths on average for maintenance issues. Table 2.1
displays these numbers with their 90% confidence intervals. The survey and analysis were based on
71 companies from the referenced NAICS codes.

The cost analysis provides a general overview of costs affecting the manufacturing industry
across the nation. However, to tailor the price to particular companies, the economic cost function

changes based on the company size, the industry, and the failure type. For example, Muller et al. [35]
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Table 2.1: Table from Thomas et al. [1] showing the breakdown in costs and losses within their 90%
confidence interval

Costs and Losses Estimate  Confidence Interval
($ billion)  (90%) ($ billion)

Direct Maintenance Costs 57.3 42.4 - 72.2

Costs due to Faults and Failures 16.3 7.1-25.2

Inventory Costs 0.9 1.3-5.6

Unplanned Downtime Losses from labor 13.5 7.1-221

Unplanned Downtime Losses from Building Depreciation 2.5 1.8-3.1

Unplanned Downtime Losses from Machinery Depreciation 1.0 0.7-1.2

Unplanned Downtime Losses from Energy 1.1 0.8-14

Defect Losses 0.8 0.0 -2.7

Lost Sales from Defects 31.2 3.6 - B8.7

Lost Sales from Delays 69 29.8 - 108.1

found that an hour of motor downtime could incur between $7,000 - $200,000 costs, depending on the
industry. Another example considers the downtime cost for automotive manufacturers as $ 22,000
per minute [36]. With this wide range of cost, what is the cost of a bearing failure in manufacturing?
The section purpose was to point out not so much the cost for the bearing replacement but more
so the cascading costs associated with that bearing failure. A 6205 bearing may cost $30 to replace
typically, but if it fails within side a motor and is not assessed properly, it could cost tens of thousands

of dollars worth of damage to that motor.

2.2.2 TUnexpected Downtime Cost: Bearings

The bearing failure rate for systems in the industry varies based on that particular system.
SKF, a major bearing manufacturer, estimated that 1 billion of the 10 billion bearings manufactured
yearly are replaced. From that 1 billion, approximately 50 million bearings are replaced each year
due to a failure [7]. For example, in industrial and commercial motor applications, Rao et al. [37]
estimated 14 million hours of downtime. For those failures, bearings were one of the number one
leading maintenance issues at 7%. In a survey in the 1980s for industrial motors, O’Donnel et al.
[38, 39, 40] published a three-part motor survey that found bearings contributing up to as much as
50% of the failures they investigated. There is a wide variance between the number of failures caused
by bearings. That variance could be due to the sample selection and industries surveyed. Other
industrial applications focus on bearings as possible failures, such as computer numerical controlled
(CNC) cutting tools, which are susceptible to thermal seizure with their bearings [41], wind turbine

gearboxes where the bearings are susceptible to axial cracking [42], and pumps where the bearings
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fail due to high speed and poor lubrication [43].

Bearings remain a critical component outside industrial applications, and standard failure
mode requires extensive monitoring. For example, helicopters are another essential system that sees
several bearing failures. Davies et al. investigated data obtained from the AgustaWestland Limited
Materials Technology Laboratory that found that the failure investigations from the lab found that
55% of helicopters experienced some form of fatigue failure. Within this 55%, bearings contributed
the second most failures at 17% after gears at 20%. Prizinger et al. [44] conducted a similar survey
with U.S. Army helicopters to identify primary failure modes and provide tools for CBM. They found
that the main rotor swashplate (MRSP) and the tail rotor driveshaft (TRDS) bearings or bushings
contributed 36% and 23% of failures, respectively. These two systems are critical to aircraft control.
If the MRSP bearing fails, the control capability to the main rotor pitch links is reduced. If the
TRDS bearings fail, the pilot loses anti-torque and directional control of the aircraft. There is also
a significant time component to replace and repair these bearings. For the MRS, the maintenance
hours can extend up to 29.2 hours, whereas 11.5 hours are expended with replacing both the TRDS
hanger bearings (forward and aft).

The point of the preceding paragraphs is to highlight how critical bearings are in equipment.
Not only that, but depending on the location, the industry, the application, and the bearing type,
the repair time and cost will vary heavily. On average, planned and unplanned maintenance costs
can cover up to 40% of manufacturing costs [45]. These costs are derived from factors such as the
size of the application, the distance to transport parts and personnel to perform repairs, the new
equipment costs, the storage costs, the labor cost associated with the repair, the labor cost from
idle operators, and any lost sales. For example, in offshore wind turbines, Walford [46] found that
the size of the wind turbine drove the high costs. Replacing a gearbox in a 660 kW turbine on a
65-meter tower was $120 thousand. 80% was consigned for the gearbox, with the rest detailed for
the actual repair at the site. Increasing the turbine to a 1.5 MW turbine on an 80-meter tower
increases the gearbox cost by 3 or 4 times. With gearbox failures in wind turbines, Sheng [47] found
that approximately 70% of gearbox failures stemmed from bearings.

Maintenance costs vary from organization to organization due to the industry’s structure
and how the organization operates. Hence, instead of directly quantifying costs, Figure 2.3 and 2.4
shows two parts of a maintenance cost flow chart for motor bearing failures. Figure 2.3 shows the

direct failure costs immediately after it occurred, whereas Figure 2.4 focuses on the repair and further

16



failure effects after the repair. The terminology in this flow chart applies to other manufacturing
systems; the motor bearing failure is merely used as an example. After a failure has been identified,
the first action is determining how it affects production. A motor failure on the production line
would imply that the motor drives a system that either moves the product from station to station
or actuates a process to act on the product. A motor failure not occurring on the production line
may correspond to a support center not directly tied to production. These failures do not hamper

production but may remain a critical cost as specific tasks may have to be outsourced.

Figure 2.3: A flowchart for considering the cost of failure (Top Portion of the flow chart. Split to
accommodate two pages)

In stopped production costs related to unexpected downtime, there are five costs to consider:

environmental impact, idle operator costs, scrapped material, scrapped products, and incurred in-
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juries. Environmental impact costs from failures occur when harmful substances are released into
the environment due to equipment failure. These cases occur all the time in manufacturing due
to improper controls or technologies employed to mitigate the release of pollutants. For example,
Chevron Phillips Chemical Company was ordered to pay $3.4 million [48] due to violating the Clean
Air Act in the United States. On February 3, 2023, a Norfolk Southern train derailed due to a faulty
bearing. The EPA has ordered Norfolk Southern to clean up the site, costing approximately $70
thousand a day [49]. In addition, there have been recent calls for Norfolk Southern to pay for the
health costs due to the environmental impact [50]. Environmental costs are incurred if the motor
failure occurs within a system designed to prevent this release. When production stops, operators
still need to be paid for their present time. The ”idle” labor cost is avoidable during scheduled shut-
downs as manufacturers give time off to operators. Scrapped material and production costs include
additional costs outside of direct loss. For replacing material scrap, there is a cost for purchasing new
material, transporting the new material, and preparing the material for production. Kalpajian et al.
[561] found that material costs could account for as much as 50% of costs in modern manufacturing.
For a scrapped product, those costs further include the delay and defect costs to customers. The
delays and defects from equipment failures caused the most significant losses from the cost analysis
of Thomas et al. [1]. These subsequent losses could reflect a trust cost or a further unreliability cost
attached to the manufacturer. It may prevent one firm from returning to do business with another
firm and affect a company’s ability to remain competitive

These cost areas reflect only the costs that occur with stalled production. Further costs are
incurred from the damage and repair assessment for the failure. For instance, injury costs are added
if someone gets hurt due to an equipment failure. Current manufacturing systems are designed to
account for safety and risk; however, injuries can still occur on the manufacturing line. Dunning
et al. [52] found a significant cost for medical claims related to musculoskeletal injuries in Ohio
manufacturing at $673 million. Manufacturing was only second to the service industry, with a cost
of $909 million. Not all of these are attributable to equipment failure; however, the probability of
adding additional cost due to equipment failure is higher.

There are typically two scenarios to consider for the actual equipment repair cost: replace-
ment or no replacement. If there is a replacement, an inventory cost must be added that incorporates
a carrying or shelf life cost. There is also a cost related to maintaining the replacement and ensuring

it is still operable when needed. After preparing the replacement, the repair work can begin and
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include both in-house and outsourced labor. Outsourced maintenance help would comprise special-
ists to assist with specific repairs like equipment balancing and validation or used as storage for
replacement equipment [53]. Motor specialists may become involved if the failure is due to a system

misalignment, balancing, or looseness to ensure any installation does not affect other equipment.
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Figure 2.4: A flowchart for considering the cost of failure (Bottom Portion of the flow chart. Split
to accommodate two pages)
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If replacement is unavailable, additional costs may be incurred due to receiving new equip-
ment. Purchasing and shipping costs are included in receiving new equipment. Depending on the
motor size, it may come directly from the manufacturer rather than a supplier. For other equip-
ment, additional costs are incurred from purchasing any new tooling or services to run the equipment.
These are in addition to any costs needed to perform the repair, either with in-house specialists or
bringing in outside experts. In addition to the services performed, an additional cost consideration
for any production delays resulting from waiting for the repair. Repairs are not immediate, even
when they don’t affect the production line. Equipment that is down for a prolonged period could
affect the production line indirectly and force a production shutdown.

The next consideration is whether it is worth it to repair the original equipment. In the case
of the wind turbine gearboxes investigated by Walford [46], these systems are large enough scale that
repair can return them to a ”like new” or similar condition. The repaired components can then be
moved to storage or placed back on the production line at the following scheduled downtime. If the
equipment is not repaired, a replacement may be purchased, which will incur an additional cost. If
a replacement and repair is not in the maintenance policy, a scrap cost related to any disposal must
be assessed. A scrap cost would involve transporting and disposing of the equipment. Furthermore,
the disposal should be checked for any subsequent environmental considerations in the disposal.
Finally, a cleaning cost is assessed for the equipment operating area to reduce the possibility of
contamination or early failures.

A large amount of this cost is incurred due to improper planning caused by untimely failure.
The cost is less substantial by implementing condition monitoring, especially for bearings. Bearings,
by themselves, are a much lower cost for repair and replacement than a complete system failure due
to a bearing failing. Bearing CM allows maintenance teams to schedule the failure time to coincide
with the time that does not affect production. Proper maintenance scheduling reduces the potential
environmental impact, production costs and the lead time to wait for repair equipment. In an ideal
scenario, none of the production costs from Figure 2.3 and 2.4 are included in the final cost for

maintenance.
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2.3 Maintenance Strategy

Different strategies are employed based on the identified costs in Section 2.2.2. Cooke [54]
investigated plant maintenance strategies for different British manufacturing firms. They determined
that maintenance changed as a result of generational changes. The first generation, identified before
the Second World War, adopted the maintenance approach of ”fix it when it is broken”. This main-
tenance approach has also been termed corrective maintenance [55]. Maintenance fixes equipment
as it breaks on the production line. The second generation, identified from Cooke [54], comes from
the 1970s. The second generation focused on implementing more preventive measures, giving rise
to the practice of Preventive Maintenance (PM). The primary cause for this shift in maintenance
stemmed from the use of more complex systems in manufacturing.

PM is implementing maintenance checks on a timely schedule based on the equipment health
[56]. During PM implementation, maintenance schedules are based on the equipment life concerning
a hazard function. The maintenance actions that affect the model are typically characterized as
returning the equipment to either a perfect, imperfect, or minimal repair. A perfect repair returns
the equipment to a near "new” state. An imperfect repair returns the maintenance to some level of
functionality and restores a measure of life depending on the action. Finally, the minimal mainte-
nance action implies the repair was only to ensure the equipment can continue to operate. Models
for PM are framed using the time to failure to describe the equipment survival probability relative to
after a repair is performed. Cranfield [57] incorporated Weibull distribution parameters to estimate
the changing failure rate based on nonperfect and unknown maintenance actions. The model and
approach employed by Cranfield are part of age reduction models, which use a hazard function to
describe the system [58]. Two other model categories are hazard rate models and hybrid models.
Hazard rate models consider the possibility of changing the hazard rate due to a dynamic environ-
ment. Xiaofei et al. [59] considered a changing hazard rate function to accommodate a changing
environmental state. Hybrid models consider changes to the hazard function and rate as equipment
life fluctuates. Yang et al. [60] modeled shock damage as a change to the hazard function and rate,
replicating the abrupt degradation and drop in equipment life.

After the second generation, Cooke [54] describes the third generation of maintenance as
focusing on more condition monitoring and reliability-centered maintenance. Reliability-Centered

Maintenance (RCM) and CBM are designated under PdM in a tree of maintenance strategies [61].
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Niu et al. [62], however, considered CBM under PM strategies. Between PM and PdM, the line
begins to blur between maintenance strategies. Even further blurring the line, Niu et al. [62]
combines CBM and RCM to optimize maintenance costs. The separation between PM and PdM
is that PM focuses on time checks between hazard functions and rates, whereas PdM focuses on
scheduling maintenance checks before failure. PdM uses models based on the data collected from
the equipment to corroborate with the expected lifetime during operation [63]. Based on the data
collection, these models could be data-driven, physics-based or knowledge-based. A data-driven
model considers changes based on the measured data and associated changes within a system.
Deep and machine learning algorithms are considered one form of data-driven modeling to detect
changes in the collected data [64]. Physics-based models use the measured data to determine a
change in the system health state using a physics equation [65]. Robot predictive maintenance
incorporates robot physics to validate expected paths with physical data [66]. Deviations in robot
paths may correspond to degrading components that require replacement. Knowledge-based models
consider the simulation of expert and domain knowledge combined with data-driven modeling. Cao
et al. [67] create a knowledge-based approach based on statistical and symbolic modeling to extract
degradation models and predict machine failures. The data extraction occurred using chronicle
mining to incorporate contextual knowledge. Hybrid models are considered a combination of two or
more models described before.

Figure 2.5 shows an example of the progression of maintenance strategies and the philosophy
behind each. The top picture represents a failed engine from a piece of equipment. A photo shows
that a failure has prevented the equipment from being operable. If indicators had been in place
to catch the failure, it may have been detected earlier. However, the CM approach dictates that
repair only occurs after failure. The middle picture corresponds to PM. In this case, oil checks occur
regularly to ensure proper lubrication for the car engine. These time checks are based on the engine
life and the lubrication type, similar to the time checks based on the equipment life in manufacturing.
These periodic checks ensure that equipment remains operational over time. However, if there is
a drastic shift in equipment life over time, failures could still occur between the predetermined
maintenance checks. The remaining amount of oil is displayed on the dashboard in the bottom
picture. For the PAM approach, there is now an indicator and model that changes based on the oil
and equipment condition. The maintenance team monitors this value until a predetermined level

when maintenance is finally conducted.
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Figure 2.5: Examples of the different maintenance strategies

With the three iterations of maintenance and their examples shown in Figure 2.5, the
costs for maintenance will change between each type. Figure 2.6 considers the maintenance costs
concerning their maintenance activities. The cost comparisons are considered across three categories:
total cost, prevention cost, and repair cost. The prevention cost corresponds to what is conducted
to prevent failure. A repair cost corresponds to what is conducted to fix a failure. CM considers
a high repair cost but a low prevention cost. PM considers a high prevention cost and low repair

cost. PdM, in the optimal state, considers an equal amount of repair and prevention costs. PdM
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Figure 2.6: Total Cost Strategy

adoption brings in additional avenues of data collection for information generation, reducing the
maintenance checks that occur with PM. The adoption reduces the potential of a high-risk failure
that could occur with CM. The cost reductions of accepting PAM vary based on the equipment and

industry. A list of several references to cost savings related to predictive maintenance is below:

i.) Thomas et al. [1] found that the adoption of predictive maintenance decreased downtime by

$6.5 billion and an increased sales of $67.3 billion.

ii.) Adu-Amankwa et al. [68] predicted an average cost savings ranged from £22 thousand to £48

thousand when using predictive maintenance.

iii.) de Pater et al. [69] conceived a maintenance strategy using prognostic modeling for turbofan
engines to reduce engine failures using task rescheduling dynamically. After the rescheduling,

turbofans only contributed to 7.4% of total maintenance costs over 31.8%.

iv.) Umeda et al. [70] reduced maintenance costs to 69% on average for component failures in

plasma etchers based on using RUI prediction methods.
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2.4 Data Acquisition

Data acquisition in condition monitoring considers the different methods for collecting data
from critical equipment. The data comes from integrated sources during the equipment design or
from later data-gathering devices added to the equipment. Data acquisition is often seen as the
first step for condition monitoring [71]. The collected data are then converted into data features for
analysis and information generation, which is described in Section 2.5.

Due to the need for large amounts of verifiable data, standards exist to gather these data
from condition monitoring equipment. Table A.1 contains all the condition monitoring standards
from ISO TC 108/ Section 5. TC stands for technical committee. ISO TC 108 is the committee
for mechanical vibration, shock and condition monitoring standards. Subcommittee 5 of this TC
specifically focuses on standards related to the CM and diagnostics of the system. The general
standards for vibration condition monitoring were included in Subcommittee 2. Their primary focus
is measuring and evaluating mechanical vibration and shock applied to machines, vehicles, and
structures. Hence, the vibration condition monitoring standards are in a different committee, than
the other CM standards. The following subsection comprises the various methods for condition
monitoring derived from research and the general concepts in detecting failure in equipment.

The following subsections consider vibration, electrical current, acoustics, temperature, and
ultrasonics data acquisition methods concerning bearings. Another method that needs to be covered
in depth is oil wear analysis [72], which counts the number of contaminating particles in the oil.
However, the method is heavily subjective to the oil sample taken for the analysis. The method is
commonly paired with other condition monitoring techniques to verify readings from these analysis
techniques. Each subsection provides a brief overview of the CM strategy and the configuration.
The following section (Section 2.5) describes more of the different processing methods for bearing

condition monitoring.

2.4.1 Vibration

Vibration is the repetitive motion about an equilibrium point from a mechanical system
[73]. Generally, vibration comprises two different components: frequency and amplitude. Vibration
amplitude is the maximum distance, velocity, or acceleration reached over time and frequency. The

frequency is the rate for how many cycles appear within a set period (usually one second). Generally,
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vibration can be further defined into three categories: free vibration, forced vibration, and damped
vibration [74]. These categories are usually defined using system dynamic principles surrounding
mass-spring-damper (MSD) systems. Equation 2.1 represents the general equation for an MSD
system. Each part of the MSD represents a different component of vibration that then equals the
dynamic nature of the system, usually Force, denoted by F'(t) (N or Ibf). The mass (m) coupled with
acceleration (a(t)) refers to the inertial elements of the system. The spring elements (k) coupled
with displacement (d(t))) correspond to the stiffness within a system. The damper elements (b)
coupled with velocity (v(t)) comprise mechanical resistance elements. In vibration, these are the

parts of the system that dissipate the system energy.

F(t) = ma(t) + bo(t) + kd(t) (2.1)

Table 2.2 considers the four possible vibration scenarios based on the three different cat-
egories of vibration. Free vibration is categorized as not having an acting outside force on the
system. Depending on the scenario, there may or may not be a damping element as demonstrated
by Equations 2.2 and 2.3. In both cases, the vibration occurs from an initial input. However, in
the undamped case, the vibration continues until acted upon by either a damping element or an
outside force. For the free and undamped vibration, the system eventually comes to rest. Forced
vibration is characterized by an external force acting on the system. The force can vary with time
and, in some cases, is represented by inertial, spring, or damping elements. Equations 2.4 and 2.5
demonstrate the Forced vibrations with and without damping, respectively.

For bearing condition monitoring, vibration is the standard method for detecting changes
in condition. Vibration can be measured using displacement probes, velocity transducers, and
accelerometers [75]. In an ideal configuration, three sensors are used to measure the axial, horizontal,
and vertical radial vibration based on industry standards from ISO in Table A.1. Figure 2.7 shows
the general configuration when considering three vibration measurement locations. In application,
though, the radial location is difficult to reach safely during equipment operation; hence, most
arrangements only consider the radial sensors. Using the two radial sensors, it is possible to sync
the data from both sensors and conduct a phase analysis of the bearing vibration samples [76]. A
system fault is apparent if the bearing signals are not 90°apart from each other. The vibration

sensors should be positioned directly over the bearing and directly mounted to the housing using a
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Table 2.2: Four vibration scenarios based on the three vibration categories
Vibration Category  Elements General Equation
Free Vibration Inertial (m), Spring (k)
without Damping

ma(t) + k(z(t)) =0 (2.2)

Free Vibration with Inertial (m), Spring (k),
Damping Damping (b)

ma(t) +b(v(t)) + k(z(t)) =0 (2.3)

Forced  Vibration Inertial (m), Spring (k), Force
without Damping (F(t))
ma(t) + k(z(t)) = F(¢) (2.4)

Forced  Vibration Inertial (m), Spring (&),
with Damping Damping (b), Force (F(t))

ma(t) + b(v(t)) + k(z(t)) = F(t) (2.5)

fastened connection for the best signal. Other mounting methods are possible; however, the bearing
frequency range degrades using other less rigid connections. Generally, the gathered vibration is
passed to a signal conditioner and then digital to analog converter (DAC) before storing the data on
a processing device, such as a microcontroller or computer. Vibration condition monitoring systems
data can either pass through wired or wireless connections [77, 78]. The wireless connections depend

on the operating environment, as specific wireless frequencies can disrupt production equipment.

2.4.2 Electrical Current

Electrical current condition monitoring identifies bearing faults in electro-mechanical sys-
tems by the electrical signals that power the system. The most common systems to use electrical
condition monitoring are induction motors, where electrical current condition monitoring is termed
Motor Current Signature Analysis (MCSA). MCSA monitors primarily the stator current. In an
electrical motor, two primary components cause the equipment rotation: the rotor and the stator
[79]. The stator is the stationary portion of the motor attached to the outer housing, while the rotor
rotates around the center axis of the stator. The rotation comes from the magnetic field created by

the electrical windings in the rotor and stator. The bearings are placed on the drive and fan end of
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Figure 2.7: Bearing condition monitoring layout for a mounted bearing

the rotor and stator to help maintain alignment during rotation.

To perform current CM using MCSA, the sensors are placed on the electrical feed lines
connected to the electrical system [80]. Current sensors usually employ the Hall effect to measure the
electrical current for MCSA [81]. A Hall effect current sensor measures the magnetic field generated
by the electrical current passing through the wire. The induced magnetic field is proportional to a
voltage, which could be read to determine the current passing through the wire. Typically, a clamp-
on sensor is used to measure the electrical current using these sensors. There are different types of
sensors: open-loop and closed-loop sensors [82]. A closed loop sensor utilizes negative feedback with
the hall element sensor to mitigate the linearity and gain errors associated with open loop sensors.
However, due to the feedback from the system, stability is an issue where the system has difficulty
responding to quick changes in a system. Figure 2.8 demonstrates the overall configuration for the
hall sensor in the open loop configuration. A closed loop hall sensor considers an additional feedback
line with a wire wrapping around a magnetic core.

Generally, induction motors are classified based on the number of phases that supply power.
In industrial settings, a three-phase motor is commonly used due to the ability to provide a near
constant alternating voltage supply to the motor poles to maintain instantaneous power [79]. The
alternating voltage supply supports the magnetic field to cause the rotation. In a single-phase

motor, the voltage supply varies uniformly between the different poles and cannot maintain the
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Figure 2.8: Open loop Hall sensor. A closed loop hall sensor has a feedback line connected to an
additional wire wrapping around the magnetic core.

instantaneous power constantly. Three hall sensors are needed to wrap around the motor current
supplies individually to monitor all three phases of an induction motor. The separate current sensors
monitor a feed line input into the motor or electrical equipment. In the case of a single-phase motor,
only one sensor would be needed on the "live” wire. Generally, these three sensors are connected to
a signal conditioner and then DAC before storage and analysis. For electrical equipment, current
monitoring is paired with vibration monitoring to provide increased accuracy for system predictions

[83].

2.4.3 Acoustic Emission & Microphone Capture

Acoustic emissions (AE) are elastic waves generated by the rapid release of energy from a
stressed material [84]. The phenomenon is primarily used in material fatigue detection in materials
to determine the exact point at which a crack has occurred. In bearings, cracks appear due to
increased material fatigue or thermal cracking. For the fatigue case, these cracks may appear in
the subsurface and are only as easily detectable for vibration once it is too late in the case of
vibration. Acoustic sensors are placed on the material to capture the best wave signature. Similarly
to vibration sensors, AE sensors need to be placed close to the bearing to experience a clear signal.

It has been found in structural analysis that sensors further away from the disturbance location
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Figure 2.9: AE sensor with crack

elicit weaker signals [85]. However, the scale is different for steel structures and bearings. AE has
been used extensively for monitoring changes in the lubrication [86] and contamination [87]. Figure
2.9 provides a rudimentary representation of AE sensing with a crack formation on the bearing. AE
sensing is often paired with vibration CM to verify or enhance fault detection [86, 87, 88].

In addition to AE sensing, sound capture using microphones or other audio sensors is another
possible method for analyzing bearing signals. An increase in noise generation from bearings and
other rotational equipment implies metal-on-metal contact. The increase in contact implies that
there is either inadequate lubrication or a potential defect on the the bearing elements. One method
to monitor changes in sound is using microphones to measure sound pressure [89]. Sound pressure is
the deviation in local pressure from ambient pressure induced by a sound wave. Using microphone
sensor provides a non-intrusive manner for sensing as these sensors do not need contact to measure
the change in equipment condition [90]. However, in both AE and microphone sensing, these sensing
methods are susceptible to noise from surrounding systems. One method to reduce the noise is to
filter the condition monitoring data upon collection to remove interfering background noise elements
[91]. Another method involves the use of adaptive noise cancelling using an auxiliary or reference
signal to filter out the data [92]. Another potential method is the use of physical filtering to remove

background noise through the design of the system [93]. The noise mitigation from these different
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methods increases the likelihood of a correct diagnosis for the equipment.

2.4.4 Temperature

Temperature is a physical quantity used to express quantitatively different levels of hot and
cold. In bearing condition monitoring, bearings are rated to operate under certain levels depending
on the application. Detweiler [94] notes that bearing temperatures change based on the application.
For example, electric motors typically operate between 140°F — 160°F (60°C — 71°C). In gear drives,
bearing temperatures can range from 160°F - 180°F (71°C — 82°C). The change in temperature
a bearing may experience comes from either a change in the lubrication conditions, resulting in
further metal-on-metal contact. The bearing heating increases the rate of lubrication degradation
and potentially early failure in the system.

Bearing temperature is monitored through the use of a sensor attached as close to the
bearing as possible to acquire an accurate reading. These sensors are generally small and comprise
of thermocouples [95] or thermistors [96] to measure the temperature change in the system. A
thermocouple produces a temperature dependent voltage using the Seebeck effect [97] by using two
dissimilar electrical conductors. Thermocouples exist in different forms based on the materials used
to create the conductors [98]. Examples of the K, J, and E thermocouples are demonstrated in
Figure 2.10. For the best measurement, the thermocouples should contact the bearing. In the
case of electric motors, 15°F can be added to the temperature reading if it the sensor does not
clearly contact the bearing [94]. Different thermocouple types may perform better depending on
the application. Thermistors are resistors, where the resistance is dependent on the temperature.
Thermistors are divided into Negative Temperature Coefficient (NTC) and Positive Temperature
Coefficient (PTC) thermistors [99]. For NTC thermistors, resistance decreases as temperature rises.
For PTC thermistors, resistance increases as temperature rises. These thermistors are placed in
line with a circuit and used to measure the voltage drop over the thermistor. The voltage change
corresponds then to the temperature rises.

Temperature is a common application in condition monitoring due to the direct correlation
between equipment condition and temperature changes. Temperature condition monitoring defines
set limits that inform maintenance operators in condition monitoring. Albers et al. [100] considers
three different levels for motor bearing health, defined as "healthy”, ”warning”, and ”shutdown”.

As temperature increases, maintenance operators can take appropriate actions to stop failures from
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Figure 2.10: Examples for the K, J, and E type thermocouples

occurring. While temperature monitoring provides clearly defined limits for equipment conditions,
it is noted that temperatures can rise from other elements in the operating environments [101]. For
example, if the temperature sensor is exposed to the sun, that would naturally cause a tempera-
ture increase not related to the equipment condition. To mitigate this phenomena, temperature
monitoring is paired with other sensor types, such as vibration [102] to increase fault diagnosis

accuracy.

2.4.5 Ultrasonic Sensing

Ultrasonic sensing measures sound waves generated in the ultrasonic frequency range. Usu-
ally, the ultrasonic frequency range is defined as sound waves above 20 kHz [103]. Figure 2.11 places
ultrasound in reference to other audio ranges. Acoustic ranges were discussed earlier in Section 2.4.3

using microphone and sound sensing and represent what is audible to humans. It should be noted
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that with AE sensing, there is overlap in the frequency ranges for sensing between the two tech-
nologies. Vibration sensors can also measure ultrasonic frequencies if tunable to that sampling rate
and frequency range. Ultrasounds and infrasound ranges [104] are defined as inaudible to humans.
Infrasound is not necessarily useful in condition monitoring, since faults, especially bearings, occur

above the 20 Hz range.

20 Hz 20 kHz

=== — ) >

Infrasound Acoustic Ultrasound

Figure 2.11: Audio range classifications for infrasound, acoustic, and ultrasound

Utrasonic sensing is usually conducted using either a ultrasound probe as done in Kim et al.
[105] or transducer as done in Drinkwater et al. [106]. For Kim et al. [105], the ultrasound probe
was an industrial solution that comprises an all in one system for both the sensing device and signal
conditioner. The usable range for the probe was between 20 and 100 kHz for measurement. For
the transducer solutions in Drinkwater et al., the center frequency range was 200 MHz. However,
additional components were needed such as a signal generator and a pulser-reciever to capture the
ultrasound signals. In either situation, the data are passed back through a DAC prior to analysis
with a computer.

The benefits of ultrasonic sensing primarily come from measuring lubrication deviations
[107, 108] and early inception defects, such as cracks, as done with AE sensing [109]. The lubrication
film for bearings is very fine on the scale of micrometers. If there is too little lubrication, the
bearing rolling elements contact with the bearing raceway and have direct metal-on-metal contact.
The contact increases the amount of friction and stress between the rolling elements and speeds up
degradation. Zhang et al. [108] detected within 90% of the theoretical solution with loads greater
than 1.5 kN. Another benefit for ultrasound sensing is the increased accuracy for bearing detection
at slower speeds for bearings [105]. Vibration has a harder time detecting the impulses related to

bearing defects, due to the time related to turning the shaft.

2.4.6 Data Acquisition: Synthesis

A literature review was conducted to determine the breakdown of condition monitoring

over these five technologies. Section B contains the initial search terms used to conduct the liter-
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ature review. A total of 10 search terms were used comprising the data acquisition method (i.e.,
”Vibration”) and either the term ”Rolling Element Bearing” or ”Ball Bearing”. The search was
conducted over papers from the last 5 years from the Compendex database. The papers were fur-
ther paired down based on the search vocabulary referring to a physical system (i.e., "magnetic

»” 2 »” ”

bearing”, "rotors”, "aircraft engines”). In addition, the top 10 journals were selected along with the
five top publishers. Table 2.3 contains the breakdown of condition article with respect to the data

acquisition method and application. Appendix B contains a further breakdown of the methodology.

Table 2.3: Rolling element bearing condition monitoring data acquisition methods and application

Data Acquisition Method  References Applications

Vibration [110], [111], [112], [113], [114], Bearing Test Rig: [110], [112],
[115], [116], [117], [118], [119], [113], [114], [115], [116], [117],
[120], [121], [122], [123], [124], [118], [119], [120], [121], [122],
[125], [126], [127], [128], [129], [123], [124], [125], [126], [127],
[130], [131], [132], [133], [134], [128], [129], [130], [131], [132],
[135], [136], [137], [138], [139], [133], [135], [136], [137], [139],
[140], [141], [142], [143], [144], [140], [138], [141], [142], [143],
[145), [146], [147], [148], [149], [144], [198], [145], [146], [147],
[150], [151], [152], [153], [154], [148], [149], [150], [151], [199],
[155], [156], [157], [158], [159], [152], [153], [154], [155], [156],
[160], [161], [162], [163], [164], [157], [158], [160], [161], [162],
[165], [166], [167], [168], [169], [163], [164], [165], [166], [200],
[170], [171], [172], [159], [173], [167], [168], [169], [170], [171],
[174], [175), [176], [177], [178], [172], [159], [173], [174], [175],
[179], [180], [181], [182], [183], [176], [177], [178], [181], [182],
[184], [185], [186], [187], [188], [183], [184], [185], [187], [188],
[189], [185], [190], [191], [192], [189], [201], [202], [192], [193],
(193], [194], [195], [196], [197] [194], [195], [196], [197],
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[257],

[256],

[256], [257], [258], [259] Bearing Test Rig:

Electrical Current

[258], [259]

[256],

[262],

Bearing Test Rig:

[260], [261], [110], [262],

[256],

Acoustic Emission and

[110], [136], [162], [205],

[261]a

[136], [162], [252], [205], [208]

Sound

Bearing Test Rig (Ce-

[208],

ramic): [260], Pump:[252]
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Temperature [260], [236], [128], [213], [136], Bearing Test Rig: [136], [146],
[146], [169], [189], [230], [205], [169], [189], [205], [263], [264],
[263], [264], [207], [265], [266], [207], [265], [266], [208], [267],
[208], [267] Bearing Test Rig (ceramic):
[260], [236], [128], [213], [230]
Ultrasonic 268 Wind Turbine: [268]

Vibration is still the most prevalent condition monitoring technology available in research
and industrial applications. Out of 170 articles reviewed from the initial search, 154 articles utilized
vibration condition monitoring for bearing fault diagnosis. Temperature is the next largest category
at 17 articles; it should be noted that many of the articles utilized both technologies. In the event
that two or more technologies in the article, the reference was repeated for both data acquisition
methods. A potential reason for the lack of ultrasonic could stem from the training required to utilize
these technologies for condition monitoring. Kim et al. [105] notes that some tuning was required for
the ultrasound probe. In addition, Drinkwater et al. [106], depending on the solution used, noted
the level of precision and equipment needed to integrate their transducer in the bearing. It was
surprising to see not as many papers related to current CM data acquisition, given the relatively
un-intrusive method for sensing in motors. A potential reason could stem from the filtering out
of sources from the search process as many of the journals were mechanical in nature; however,
IEEE was one of the publishers used. The review was conducted to emphasize how each of these

technologies are used in research and to inform the reader on the breakdown of technologies.

2.5 Data Preprocessing, Processing, and Analysis

The overlap between data processing and analysis is used interchangeably in CM research
literature. If one were to continue with the CBM process laid out by Jardine et al. [71], data
processing is the conversion of the data into features that determine the equipment health state.
Data analysis comprises a ”Maintenance decision support” system that determines the equipment
health state based on the features. Jardine et al. describes some of these methods as time and
frequency articles. In some research articles, the transformation process between time and frequency

space is a data preprocessing technique [269, 270]. In other works, data processing encompasses the
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entire process from data collection to the fault determination [271, 272]. To try and standardize the

process, Figure 2.12 lays out the flow data from the data generation to the data analysis section.
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Figure 2.12: Layout of data preprocessing, processing, and analysis after data acquisition. (a) orig-
inal collected signal, (b) removed outliers, (c) normalized data, (d) statistical values, (e) frequency
values, (f) two separate healthy and anomalous signals, (g) identified clusters based on statistical
features and identified hyperplane

This section standardizes these definitions to ensure this research work is clear about certain
data types and their relationship to different parts of the condition monitoring system. Data prepro-
cessing refers to any data preparation techniques before feature generation. As mentioned, this term
changes between preprocessing and processing when considering data transformations (i.e., time to
frequency data). For this work, any data manipulation that does not result in a direct feature for the
data analysis is considered a preprocessing technique. Data preprocessing could consider techniques
such as data normalization or data outlier reduction. Data processing covers the conversion of data
into features, also known as feature generation [273]. Feature generation is a term that comes from

machine learning implementation and involves condensing data into usable metrics to differentiate

37



classes. Data processing uses time-based measures, such as the root mean square (RMS) and Kurto-
sis, or frequency peaks, to reduce the data for analysis. Data analysis involves using data techniques
to determine the correct data class associated with the original data. Based on the selected category,
information becomes available for effective decision-making. Data analysis techniques include ma-
chine learning applications and physics-based modeling. The subsections comprising the remainder

of the section discuss and cover the areas of data preprocessing, processing, and analysis.

2.5.1 Preprocessing

As mentioned earlier, data preprocessing deals with any data manipulation that does not
result in a feature. Data that comes directly from the data source generally has errors. A sensor could
fail unexpectedly, an interruption could occur in the data transmission, or human error may have
incorrectly configured the equipment before collection. Data preprocessing is needed in each scenario
to mitigate and correct potential errors that may otherwise inhibit accurate classification. Famili et
al. [274] notes these scenarios in their review and discussion for data preprocessing, specifically in
the case of "too much” data, "too little” data, or ”fractured” data. A data scenario with too much
data may have additional noise or irrelevant points mixed in with the expected data. A system with
too little data may have missing values from the data. A fractured data set may have incompatible
data types mixing from multiple sources at different levels. Hence, measures are needed to account
for these data inconsistencies.

Alsadi et al. [275] describes several different techniques, such as manually filling in the
data through either a global or probable constant based on the data source. Another technique is
binning to reduce the effect of minor data observations. Ramirez-Gallego et al. [276] considered
several different data reduction scenarios to reduce the data amount potentially affecting the overall
analysis for online processing and analysis. They primarily investigated using filters and wrappers to
reduce the data amount during their work. Alexandropoulos et al. [277] highlighted the use of noise
and outlier detectors to limit their impact on the generation of features. They also brought up the
idea of feature selection and methods to mitigate missing feature values. While some may argue that
this means data preprocessing and data processing should remain interchangeable, feature selection,
or feature extraction as it is sometimes known, is encompassed in the data processing section.

Many different preprocessing techniques are used in condition monitoring, especially bear-

ings, due to the wide degree of variance accompanying manufacturing data. A manufacturing en-
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vironment is considered harsh, with additional chances of accumulating damage depending on the
process and industry. Hence, data sources experience similar harshness levels related to their equip-
ment and can accumulate other noise. One immediate method for data cleaning and reduction is
filtering. Data filtering uses digital or physical methods to remove specific data from the collected
signal. Han et al. [278] highlights several for electrical equipment (motors and transformers), such
as ban pass filtering, low pass filtering and high pass filtering. Figure 2.13 considers three different
filtering methods to eliminate data outside of a specific frequency. A low pass filter allows only
signals below the cutoff frequency through the filter, whereas a high pass filter will enable signals
above a particular frequency for analysis. The band-pass filter considers only signals between a lower
and upper frequency. By applying the correct filter, certain undesirable data bands are removed
from the feature generation. Filters can be used digitally or physically, depending on the applica-
tion. A physical filter would involve modifying a physical component to reduce the amount of noise
from surrounding objects. Skoglind et al. constructed a physical filter applied to a microphone to
detect quality checks in electrical connections. Microphones can also be built with directionality to
eliminate surrounding ambient noise that may corrupt a signal [279]. Pointing the microphone at
the equipment ensures that the microphone collects only the expected signals from the equipment

and reduces the effect of the noise from outside sources.

Low-pass Filter High-pass Filter

_»
Band-pass Filter
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Figure 2.13: Different filtering methods: Low-pass filter, High-pass filter, and Band-pass filter

The cutoff frequencies chosen for the above filtering methods are generally based on known
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expected frequencies or experimentation. In practice for bearings, four different critical frequencies
require monitoring. These defect frequencies are associated with the other bearing parts that are
discussed later in this section. In addition to these frequencies, speed frequencies are captured
depending on how fast the bearing is rotating. Depending on the application, other frequencies,
such as the motor slip, speed, and rotor bar frequency, could be captured. Filters generally isolate
and remove potential extraneous noise around the expected bearing frequencies.

In addition to data filtering, data transformations help visualize and identify signals of inter-
est that occur at specific instances. For condition monitoring, time series data are often transformed
into frequency space data because specific frequencies increase in amplitude as equipment degrades.
For bearings, the features generated from the frequency space could correspond to increases in
defects along the bearing raceway or an increase in contamination in the bearing lubrication. Fre-
quency transformations in condition monitoring used are the Fast Fourier Transform (FFT), the
Hilbert-Huang Transform (HHT), and Wavelet Transforms (WT).

The Fast Fourier Transform (FFT) is a method for computing the discrete Fourier transform
of time series data [280]. From the transformation, it is possible to view the different amplitudes
associated with each frequency value between zero and half of the sampling rate. For example, if
the sampling rate is 1000 Hz or 1 kS/s, the maximum possible frequency to analyze is 500 Hz. In
addition to the maximum measured frequency, the spacing between frequency points is called the
frequency resolution. The frequency resolution is determined based on the maximum sampling rate
divided by the number of available samples [281]. A higher resolution FFT allows for easier viewing
of specific frequencies but requires more significant sample amounts. FFTs are used in condition
monitoring due to their efficient computational implementation. After the transformation, different
signal parts are analyzed to determine the equipment health state [282]. However, a drawback to the
FFT is that it also does not handle changes to the operating conditions with equipment. With other
techniques, such as the HHT and WT, the time series information is still captured in the signal,

allowing for better resolution as the operating conditions change over time.

Y(K) = Z X (jyw D=1 (2.6)
j=1

Hilbert Huang Transform (HHT) is another method for extracting noisy signals using em-

pirical mode decomposition (EMD) to extract the noise from the intrinsic mode functions (IMFs)
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[283]. EMD is a method to decompose a signal into separate components related to different system
parts. These individual components are called intrinsic mode functions. IMFs are characterized
by two properties: (1) the number of extrema and zero crossing points must be equal or differ by
one, and (2) the mean value of local minima and maxima must be zero [284]. The decomposition
of the signal into the IMF's allows for the analysis of systems with non-stationary conditions. Non-
stationary conditions mean operating conditions that change concerning time or equipment state.
Since bearing condition monitoring requires knowledge of the equipment characteristics, such as
load and speed, the HHT helps determine these conditions and tracks their changes in the time and
frequency domain.

Empirical mode decomposition involves sifting to extract the usable IMFs from the time-
series equation. The sifting process aims to eliminate the extraneous and outlier points and have the
data appear more symmetric. Hence, the data is sifted until it reaches the above IMF condition. The
general procedure follows as shown below in Equation 2.7. X(¢) represents the original raw data,
whereas m represents the mean of the upper and lower envelope. The mean signal is subtracted
from the algorithm to form the first component of the sift, h1. hy is then used as the next part of the
sift. The algorithm is used successively until it satisfies the conditions for the IMF. Consequently,

hik replaces X (t), and the process begins again until no more IMFs are extracted.

X(t) —mp = hl
hi —mi1 = hi

higg—1) — mik = hag

IMF7 = hy,

The frequency transform then employed is the Hilbert Transform (HT), where the main
equation is provided as shown in Equation 2.8. The Hilbert transform is used due to the interest
in obtaining the instantaneous frequency, Y (¢). P represents the Cauchy principal value and X(t)
represents the raw time series values. The capture of the instantaneous frequency using the HT
allows for the matching of frequencies to their associated time series expectations.

1M X(#)

Y(t)==P —dt 2.8
(t) el (2.8)
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The final discussed method are Wavelet Transforms. A wavelet is an oscillation mimicking a
wave that begins at zero and increases or decreases multiple times [285]. These wavelets are passed
over data numerous times to capture frequency information while retaining the time data. The
most common application for condition monitoring literature is the Continuous Wavelet Transforms
(CWT). A continuous wavelet transform considers the representation of a signal by constantly
varying the translation and scale parameters of a wavelet to represent a time-based signal. Grossman
and Morlet first implemented the process of continuous wavelet transforms [286]. They subsequently
created the Morlet Wavelet is characterized by a complex exponential and Gaussian window. While
wavelets are typically employed, generally, there implementation requires extensive experimentation
to select the appropriate wavelet for each scenario. In this essence, wavelets are considered more of
a future item rather than employed with this work.

Data transformations for transferring data from the time to frequency space are common
applications alongside data filtering methods. Other methods to reduce the error amount in a signal
for condition monitoring are similar to handling data scenarios as described by Famili et al. [274].
Bangalore et al. described the use of different ”filters” to account for missing data and add a cluster
probability to the data. By adding these additional filters for the analysis, they were able to ensure
continuity of data prior to analysis in the model. Yang et al. [287] and Ompusunggu et al. [288]
used data binning to reduce the data dimensionality prior to failure analysis. The subsequent data
binning allowed for the feature generation in a streamlined manner for online condition monitoring.
Wu et al. [289] considered data normalization of AE signals to allow for direct comparison related
to other sensors and overcome the nonlinear response problems. Yang et al. [290] considers the use
of data normalization to scale the data prior to use in their analysis. They suggest that some of
their objective functions for condition monitoring would not work without scaling the data.

For condition monitoring, there are different methods to ensure that the data are presented
correctly before analysis. The proper data presentation each time leads to a smoother transition from
the data processing to the data analysis stage. The preprocessing stage also reduces the possibility
of "garbage” data entering the processing and analysis stage. Generally, the rule of thumb for data
processing and analysis is ” Garbage In equals Garbage out”. The phrase means that if the data are

not helpful, the information generated is equally useless for any equipment analysis.
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2.5.2 Processing

Data processing encompasses the techniques for creating features and analysis that indicate
possible equipment damage. Equipment degradation, barring a catastrophic event (i.e., human error
or inadequate equipment design or function), does not immediately occur without some indication in
the data to signal the possible degradation to the failure point. These features are usually processed
in either the time or frequency domain. The time domain represents data collected concerning
time, whereas the frequency domain contains data concerning frequency. Time domain features
generally consider statistical values to differentiate between healthy and failed equipment. Dyer et
al. [291] tracked the change of RMS and Kurtosis over time to match the degradation of equipment.
Mechefske [292] described that the overall data distribution changed as equipment degraded, as
shown in Figure 2.14. The data distribution changes will change depending on the different defect
associated with the bearing. Analyzing raw vibration signals makes it possible to pick out faults

based on where bearing impulses occur [293].
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Figure 2.14: Representative changing data distribution based on the equipment degradation

The change in the kurtosis could stem from additional outliers in the bearing data. Kurtosis
increases from the other data that comes from the outliers. That makes the data distribution ”heavy-
tailed”. The additional outliers could stem from the increased defect events causing vibration spikes.
As these events grow, the damage accumulates on the bearing surface. The increased damage on

the bearing surface registers additional spikes as the bearing rolling element goes over the bearing
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surface.

The changes in data distributions are usually described by statistical parameters, such as
the RMS, Variance, Kurtosis, and Skewness of the data [294]. The RMS measures the overall level
of a discrete signal and can measure the vibration power. This feature differs from the signal mean,
which only works for rectified signals. For standard time series data, the signal remains close to zero.
The variance of the signal tracks the dispersion from the average expected value. The Kurtosis and
skewness of the data describe the change in normal distributions. As bearings degrade, the data
distribution also changes from a normal state. Additional measures consider the peak acceleration
and crest factor. The peak acceleration reports the maximum possible value from the bearing. The
crest factor is the ratio of the peak acceleration to the RMS. The deviations and trends associated
with the crest factor are considered unreliable, though. Equations 2.9 through 2.14 shows the
equations for calculating the RMS (2.9), mean (2.10), variance (2.11), Kurtosis (2.12), skewness
(2.13), and crest factor (2.14). z; refers to the individual samples in a group of samples z. N is the

number of samples, and Z is the mean.

RMS(z) = Zsz (2.9)
B 1 =1
T= > (2.10)
N
VAR(z) = 23(137_—153)2 (2.11)
Kurtosis = — 2im1 @ = 8" (2.12)

(N =1 YN, (2 —7)?)

N
1
Skewness = ————— x; — )3 2.13
PeakAcceleration(PA)
= 2.14
Crest RMS () (2.14)

Helmi et al. [293], Kundu et al. [230], Ren et al. [295], and Caesarendra et al. [290]

considers similar time features in their different analysis techniques for bearing condition monitoring
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and remaining useful life prediction. Caesarendra et al. and Helmi et al. provide additional terms
as well. Caesarendra et al. uses a shape factor and characterizes it as a non-dimensional feature,
similar to the crest factor for determining bearing faults. In addition, they used the entropy of the
vibration signal to determine the uncertainty of random vibration signals. Equation 2.15 and 2.16
are the shape factor and entropy equation as called out by Caesarendra et al.. The entropy equation
is characterized by the probabilities p based on a vibration signal z;. In addition to these equations,
Helmi et al. considered the standard deviation, square mean root, margin factor, impulse factor,
mean absolute, standard deviation absolute, skewness absolute, and Kurtosis absolute features in
bearing condition monitoring. Equations 2.17 and 2.18 are the standard deviation (SD) and square
mean root (SMR), respectively. These parameters are variations of the variance and RMS. Equations
2.19 and 2.20 are the margin factor and impulse factor, respectively. These parameters are similar
to the shape and crest factor and are considered non-dimensional features. Equations 2.10 through
2.24 describe the absolute value variations from earlier described parameters. Helmi et al. does not
explain the impact these features have in determining bearing fault over the conventional features
as listed for Equations 2.9 through 2.13 and Equation 2.17.

Nayana et al. [297] did provide a comparison for their proposed features: the mean absolute
(MA), the simple sign integral (SSI), the waveform length (WL), the Wilison Amplitude (WAMP),
the zero crossing (ZC), and the slope sign change (SSC). Equations 2.25 through 2.32 are the equa-
tions for the SSI (2.25), the WL (2.26), the WAMP (2.27) and the corresponding conditional (2.28),
the ZC (2.29) and the corresponding conditional (2.30), and the SSC (2.31) and the corresponding
conditional (2.32). The SSI is another variation of the MA to describe the signal amplitude over
a vibration sample. The WL and WAMP describe the frequency of variation between individual
samples. The WAMP provides the variation provided within a certain noise level, defined as €. The
ZC and SSC calculate the frequency signals corresponding to specific vibration samples. Nayana et
al. compared the accuracy using these features against the conventional features in a NB and SVM

classifier. They were able to find similar accuracy levels between either feature group.
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Standard Deviation (SD) = \/(VAR(z)) (2.17)

N 2
Square Mean Root (SMR) = % (2.18)
PA
Margin Factor (MF) = SR (2.19)
Impulse Factor (IF) = 371\]\{5 (2.20)
N Licalwil
N
Mean Absolute (M A) = % (2.21)
172
Standard Deviation Absolute(SDA) = W (2.22)
1 N
Skewness Absolute (SA) = N-15D° Z(|xz|—f)3 (2.23)
i=1
N _=\4
Kurtosis Absolute (KA) = Zi:l(h\gfﬂ 2) — (2.24)
(N =1z (i — 7)?)
N
SSI = oy (2.25)
i=1
N
WL = Z|xl — XTi—-1 (2.26)
i=1
N
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0 otherwise
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ZC = (ﬁz >0 && Tiy1 < O)H(azl < 0&& Tiy1 > O) (229)

Ty — $i+1|2 € (230)
SSC = (xl > T && T; > Xt + 1)”(%2 < Tj—1 && xz; < £L'7;+1) (231)
|$i - 3%;1‘2 € (2.32)

In addition to the time features described, frequency features track degradation at spe-
cific frequencies based on changing amplitude and energy content across a frequency range. These
frequencies correlate to specific physical components that exhibit degradation. Buhl et al. [298]
used frequency analysis to identify the difference between clean and dirty lubrication for bearing
conditions. NASA contracted researchers to investigate bearing failure utilizing frequency analysis
for different bearing faults [299]. Observing these frequencies for bearing condition monitoring has
formulated impulse theory found in physics-based modeling for bearing analysis [300, 301, 302]. Fre-
quency spectra have also been converted to images for deep learning algorithms to identify bearing
fault diagnosis [303]. Depending on the different faults, the images exhibit additional frequency
information as samples are collected. There are commonly accepted failure frequencies related to
the bearing geometry and speed for bearings. Equations 2.33 through 2.36 describe the calculation
for the Ball Pass Frequency Inner (BPFI) (2.33), the Ball Pass Frequency Outer (BPFO) (2.34), the
Fundamental Train Frequency (FTF) (2.35), and the Ball Spin Frequency (BSF) (2.36). The BPFI
and BPFO correspond to defects along the raceway of the inner and outer race, respectively. The
FTF and BSF correspond to defects on the cage and rolling elements, respectively. N refers to the
number of balls, and B is the ball diameter in mm. P is the bearing pitch diameter in mm, calcu-
lated by using the mean of the bearing bore diameter (shaft diameter) and outer diameter (bearing
outer ring diameter). ¢ is the contact angle for the rolling elements to the bearing raceway. Q is
the bearing speed measured in Hz. The bearing frequencies are expressed in Hz if they include the
bearing speed. If the bearing speed is not included, a dimensionless value termed undulations per

revolution (UPR) describes the bearing frequency. Generally, as bearing defects appear on certain
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elements, these frequencies increase in amplitude. Additionally, their harmonic frequency values

may increase in amplitude as bearings degrade.

BPFI = gQ(l + gcos %) (2.33)
BPFO = ggu - %cos ) (2.34)
FTF = %(1 - %cos ) (2.35)
BSF = %(1 - (g)%os #)%) (2.36)

For industrial applications, vibration and sound measurement techniques are tuned to cap-
ture these vibration signals. The maximum measured frequency must be below 1/2 the sampling
rate, which is the folding or Nyquist frequency. The effects of aliasing are reduced by meeting this
criterion. Typically, for most bearing signals, ensuring the sampling rate is at least ten times the
last critical frequency is good practice. For example, if a bearing has a maximum fault frequency
of 100 Hz, the minimum sampling rate should be 1000 Hz. Mechefske et al. [292] detailed the use
of expected bandwidth limits for frequency-based data. The method sets cutoff frequencies below
and above the defect frequency at specific intervals. The equipment’s remaining useful life decreases
as deviations occur in these bandwidths. These frequencies are also captured in certain band limits
designed by the person performing the analysis or the technique used [304]. However, these bands
can depend on the method used to isolate the bearing frequency, as mentioned in Section 2.5.2.
Non-stationary techniques are generally the preferred method as they reduce the possibility of low
visualization for the bearing fault frequencies, especially in the machine and deep learning methods
[305]. For these data-driven processes, hidden fault frequencies may not bring the expected results
when considering potential noise in the bearing signal. Other band limits for frequency analysis are
based on the bearing signal’s intrinsic mode functions [306, 192]. Kurtosis can be calculated from

the extracted frequencies for the IMF to determine the fault type and severity.
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2.5.3 Analysis

The two primary methods used for bearing analysis are either data-driven methods, such as
machine and deep learning, or physics-based methods, such as mass-spring-damper (MSD) systems.
Table 2.4 contains review articles for bearing condition monitoring and fault diagnosis, comprising
physics-based methods and data-driven methodologies. Data-driven modeling operates on training a
model on a set of sample data to predict the outcome of any new data. The learning conducted from
the data-driven model is purely based on the characteristics of the data patterns. Physics-based
modeling is based on the physical relationships of the system that the data describes and represents.
Typically, these models are more computationally intense; however, their predictions are related
directly to the system’s physical components versus indirectly measured data. Between these two

modeling techniques, hybrid methods combine techniques from both domains.

2.5.3.1 Data-Driven Modeling

Data-driven modeling primarily utilizes machine learning models to predict and determine
certain outcomes based on the train data. As mentioned earlier, the models learn entirely based on
an input of sample data that trains and configures the model to predict certain outcomes. There are
three learning approaches for data-driven modeling: Supervised, Unsupervised, and Semi-Supervised
learning. Supervised learning algorithms create a function that predicts an outcome based on feature
inputs and is trained using input-output pairs [318]. Essentially, the input-output pairs used for
training are termed ”labeled training data”. The ideal algorithm from supervised learning can predict
“unseen” or new data used in target analysis. For condition monitoring, support vector machines
(SVM) [138], Naive Bayes [319], k-Nearest Neighbors (kNN) [320], Decision Trees [320], Random
Forest [320], and Artificial Neural Networks (ANN) [321] use supervised learning for training their
respective approaches. The training size for constructing the algorithm influences the algorithm’s
performance. Large amounts of training data are required to ensure model accuracy and for the
analysis to predict the correct outcome [322]. Another consideration is the trade-off between bias
and variance in supervised learning [323]. A biased algorithm continuously incorrectly predicts a
certain class; a high variance algorithm changes its prediction based on the selection of training data.
Mitigating ways for the amount of bias and variance in a machine learning or data-driven model is

using different hyperparameters to tune the model output and reduce potential errors.
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Table 2.4: Review articles for bearing data analysis

Reference

Journal

Models and Methods

Cerrada
et al.
[307]
El-Thalji
et al.
[308]

Lei et al.
[309]

Liu et al.
[310]

Hoang et
al. [311]
Lei et al
[312]

Hamadache
et al.
[313]

Peng et
al. [314]

Zhang et
al. [315]

Peng et
al. [316]

Alshorman
et al.
[317]

Mechanical Systems
and Signal Process-
ing
Mechanical Systems
and Signal Process-
ing

Mechanical Systems
and Signal Process-
ing

Mechanical Systems
and Signal Process-
ing
Neurocomputing

Measurement

JMST Advances

International Jour-
nal of Advanced
Manufacturing
Technology

IEEE Access

Algorithms

Shock and Vibra-
tion

Artificial Neural Network, Support Vector machines, Hidden
Markov Modeling, Linear Discriminant Analysis, Fuzzy Logic

Artificial Neural Network, Fuzzy Logic, Support Vector Ma-
chines, Principal Component Analysis, Paris’s Law, Forman Law,
Fatigue Spall Model, Self-Organizing Map, Recurrent Neural Net-
work, Deep Belief Network, Expert Systems

Artificial Neural Network, Expert Systems, Support Vector Ma-
chines, k-Nearest Neighbors, Probabilistic Gaussian Models, De-
cision Trees, Autoencoders, Deep Belief Network, Convolutional
Neural Network

k-Nearest Neighbor, Naive Bayes, Support Vector Machine, Arti-
ficial Neural Networks, Convolutional Neural Networks, Autoen-
coder, Restricted Boltzmann Machines, Deep Belief Networks
Autoencoder, Restricted Boltzmann Machine, Convolutional
Neural Network

Finite Element, Mesh Stiffness, Analytical models, Support Vec-
tor Machines, k-Nearest Neighbors, Ordinal Ranking, Hidden
Markov Models, Bayesian Networks

Linear Discriminant Analysis, Support Vector Machine, k-
Nearest Neighbor, Extreme Learning Machine, Artificial Neural
Networks, Convolutional Neural Network, Recurrent Neural Net-
work, Restricted Boltzmann Machine, Autoencoder

First Principle Modeling, Parameter Estimation, Fuzzy Logic,
Expert systems, Artificial Neural Networks, Bayesian Modeling,
State Space Modeling, Hazard Rate Modeling, Gray Model

Artificial Neural Networks, Principal Component Analysis, k-
Nearest Neighbor, Support Vector Machine, Linear Discriminant
Analysis, Bayesian Networks, Ensemble Learning, Convolutional
Neural Networks, Autoencoders, Deep Belief Neural Networks,
Generative adversarial Network, Recurrent Neural Networks
k-Nearest Neighbors, Artificial Neural Network, Support Vector
Machines, Random Forest, Convolutional Neural Network, Au-
toencoder, Deep Belief Network, Recursive Neural Network
Bayesian Networks, Supprot Vector Machines, Artificial Neural
Network, k-Nearest Neighbor, Neuro Fuzzy, Deep Neural Net-
work

Unsupervised learning is the opposite of supervised learning. Unsupervised learning trains

the model based on the self organization of the training data by assigning certain probabilities to

different models [324]. Unsupervised learning algorithms learn based on mimicry of the data. The

model then corrects it self based on the error in the system to then update weights and biases in the

data. Different unsupervised learning models exhibit two different methods, clustering methods and
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anomaly detection methods. Clustering methods seek to predict outcomes on input features based on
different data groupings [325]. Examples of these methods involve k-Means, Hierarchical clustering,
linkage clustering, and Fuzzy c-means. Anomaly detection consider the detection of outliers based
on rare events [326]. The assumption of these different methods considers that outliers are few
and have different attributes. Unsupervised learning methods using anomaly detection include the
Isolation Forest [326] and Local Outlier Factor [327]. Note, it is possible to train algorithms that
are designed for supervised learning with unsupervised learning methods [328, 329]. The difference
is dependent based on the algorithm hyperparameters and structure. For the unsupervised learning
approach to work, enough separability is needed between classes to predict the expected outcome.
Semi-supervised learning considers a combination of training based on a small amount of
labeled training data and a large mount of unsupervised samples. Li et al. [330] considers two general
issues related to semi-supervised learning in machine learning applications: Data Quality and Model
Uncertainity. Data quality considers how relatable the labeled training data are to the unlabeled
training data. Subsequently, another issue is the prediction of new testing data, if they are not
represented in the training case. Gomes et al. [331] notes that scenarios of weak and inconsistently
provided labeled training data hampers the algorithm predictability. Model uncertainty is caused
by different trials and different training data selections. One particular problem is pseudo labels,
which can increase performance degradation. Despite the issues, semis-supervised learning is a
common method in condition monitoring due to the low amount of labeled training data for the
algorithms. Bull et al. [332] used semi-supervised learning with a Gaussian Mixture Model to reduce
classification accuracy. Yuan et al. [333] used manifold regularization to determine different classes
for bearing defects using semi-supervised learning. Essentially, these models are trained using the
small samples of labeled data intially and then strengthed using the unlabeled data. Figure 2.15
considers the three different approaches with respect to the training data used. If the training data
are labeled, then a supervised learning approach is used. If the training data are unlabeled, then an
unsupervised learning approach is used. If there is a mixture of labeled and unlabeled data, then a
semi-supervised learning approach is used. Based on the training data and application, a different

machine learning or data-driven model can be chosen to predict the model case.
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Labeled Training Data Unlabeled Training Data

Supervised Learning Semi-Supervised Unsupervised Learning
Model Learning Model Model

Class 1 Class 2

Figure 2.15: Learning approaches organized based on the training data used

2.5.3.2 Physics-Based Modeling

AS the name suggests, bearing physics models are rooted in the physics regarding the
bearing system. The common physic principles for bearings are related to their design life as called
out in ISO 281 [334]. The life modeling relations from ISO are determined based on the load and
is commonly referred to as L10 life. L10 is the basic life rating for a bearing given in units of
10¢ rotations per hour. Equation 2.37 returns L10 life as referenced by the previous units. C is
the dynamic load rating, and P is the dynamic application load. p is the exponential that is a
data-driven parameter based on the bearing designation. Equation 2.38 considers the input of speed
to provide an application specific life rating, where n is the number of rotations per minute. In
other variations, an « is added for increased accuracy by including lubrication and contamintion

information.

QA
=

Ly = ( (2.37)

52



10 C

@(f)p (2.38)

Lion =

These equations are derived based on data-driven experimentation for bearings. However,
they form the basis for bearing life equations. For fault diagnosis methods, bearing impulses are
used to simulate and model vibration responses under different operating conditions. Mcfadden
et al. [302] is usually credited with the first impulse method for modeling bearing vibration as
defects begin. Tandon et al. [335] used Lagrange’s equations of motion to derive vibration response
and frequencies based on the bearing rotation. The formulation of mechanics is based on stationary
action principles as is commonly expressed as a variation of Equation 2.39. L represents a Lagrangian
derived based on the change in kinetic and potential energy. x denotes the position particles that
make up the Lagrangian and & denotes the velocity terms of the position particles. f; denotes the
external forces that may act on the system with respect to the position variables. Patel et al.
used the Runge-Kutta equations to derive their equations of motions and to predict the bearing
life relative to the different inner and outer defects. The Runge-Kutta equations are explicit and
implicit methods to approximated nonlinear equations. Sassi et al. [336] created a numerical model
to predict damaged bearing vibrations relative to the expected bearing vibration response using
the finite element method (FEM). FEM is the process for approximating physical models using
mathematical relationships. Liu et al. [337] constructed a two degree-of-freedom (DOF) model
using Hertzian contact of the ball and the bearing defect raceway. Hertzian contact is used to
describe the stress at the point of contact between two elastic bodies [338]. For ball bearings, the
surface is modeled as a point; for roller bearings, it is modeled as a point. Sawalhi [339] considers a
five degree-of-freedom (DOF) model for determining vibration response in the x and y direction for
the bearing. The DOF of a bearing model are determined based on the number of input position
points. The system DOF can be based on the bearing housing, shaft, the inner ring, the outer ring, or
the rolling elements. Equation 2.40 provides the general representation for bearing equation motion

that is derived based on the Lagrangian or Runge-Kutta methods and is the same as Equation 2.5.

0L d 0L <, 0fi
D dt 0, T2 g, =0 (239)
mi + bi 4+ kx = F (2.40)
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The previous methods described could be termed ”motion models”. They are formulated
based on the equations of motions derived through different analytical methods. Outside of the
equation of motions, laws have been utilized from fracture mechanics to describe defect propagation
in bearings. One example is the use of the Paris Crack Growth (PCG) model, also nown as Paris
Law, to determine the increase of bearing defect cracks over time [340, 341, 342]. The Paris crack law
is formulated as shown in Equation 2.41. ais the crack length, where da/dN is the crack growth per
loading cycle. C' and m are coefficients determined as a resultant of the application in a particular
environment. AK is determined based on the maximum and minimum stress in the model. Due
to the constraints given by C, K, and M, the relationship serves as the basis for state models [341].
Qian et al. [341] combined PCG with a Hidden Markov model (HMM) to determine the remaining
useful life over time for bearings. A number of other crack growth equations exist with respect to
the Forman equation [343] and Elber equation [344]. The vast majority of bearing physics-based

literature is represented through the Paris crack growth model.

da m
IN = C(AK) (2.41)

2.5.3.3 Diagnostic vs. Prognostic Method

Bearing analysis is split into diagnostic and prognostic methods. Bearing diagnostics identi-
fies a condition under certain scenarios, such as operating conditions or applications. The condition
could be the different failure modes from the mechanical system or an anomaly from a baseline
scenario. Essentially, the diagnostic is to detect when something has deviated from a normal state.
The bearing prognostics are focused on determining the time until bearing failure. The bearing
prognosis is based on the changes to the diagnosis over time. Vogl et al. [22] splits these in their
analysis of current prognostics and health management (PHM) to consider the challenges in both
systems. Ostensibly, these two methods should go hand in hand, as it happens in the medical field
[345]. Diagnosis is viewed as the first step towards decision-making and generally is followed by a
prognosis of treatment for the body to return to a natural state.

Data-driven models and physics-based models have been used in both mechanical system
diagnosis and prognosis. For bearing diagnosis, classifier tasks generally are able to pick out the dif-
ferences between certain failure criteria. Zhang et al. [315] primarily listed machine learning tasks,

such as artificial neural network (ANN) and k-Nearest Neighbors (kNN), to pick out bearing faults
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on the different rolling elements. Hybrid-based methods, the combination of physics and data-driven
methods, are also used to implement bearing diagnosis. Sadoughi et al. [346] incorporated bearing
fault frequency information into Convolutional Neural Network (CNN) to simulate and compare the
spectral analysis between convolutions in the neural network architecture. Combining the physics
information with data-driven modeling reduces the inherent black-box nature that accompanies ma-
chine learning and data-driven models. Physics-based methods are usually considered corroboration
and identification for different bearing diagnostic models. Mcfadden’s models [302, 301] are generally
the basis for any physics verification for any fault generate bearing data using the impulse of rolling
element striking the bearing raceway.

For bearing prognostic models, state-space modeling, forecasting, or regression analysis are
used to determine trends as bearings degrade. One example is the use of HMM to estimate bearing
state and remaining useful life [347]. The HMM uses the inputs as different states to determine
potential outcomes. From Tobon-Mejia et al. [347] and Soave et al. [348], the HMM process takes in
certain vibration levels and from there determine different potential outcomes related to remaining
useful life. Another method involves the use of deep learning to determine different equipment
states. Ni et al. [349] used a Gated Recurrent Unit (GRU) RNN to predict bearing life over time.
Bearing states are determined based on the bearing life until failure using the L10 calculation or
predetermined vibration limits. Data-driven and physics-based models can predict and project the
expected rise in vibration as a system degrades. Thereby, a manufacturer or maintenance engineer

can determine when to schedule maintenance based on the most likely scenario.

2.6 Data Augmentation and Transfer Learning

Imbalance data in computer science refers to when certain classes from a dataset represent
most of the samples over other classes. Depending on the distribution of the samples, the subsequent
weighting of these different classes skews and affects the results of any data analysis applied. The
common issue of data imbalance in condition monitoring stems from a lack of labeled data related to
failure modes [22]. Often, in manufacturing, there is a prevalent amount of healthy data with varying
label characteristics. Failures are sporadic in production, which is suitable for production. However,
it needs more data for training condition monitoring applications. Kaur et al. [350] found 11

different application areas, which include Computer Vision, Medical Science, Image processing, and
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Bioinformatics. Different approaches were taken in each domain to mitigate their effect on algorithm
accuracy and robustness. This research work focuses on the impact of data augmentation and
transfer learning to solve data imbalance. Data augmentation is artificially increasing the training
data by modifying any existing data [351]. Transfer learning improves learning on a new task based
on a related task [352]. These two methods are related to the data and knowledge for increasing
learning for particular applications. DA and TL are two methods that fit within the domains for
addressing condition monitoring approaches, such as preprocessing [353], hybrid methods, including
ensemble learning and resampling [354], and algorithm-centered approaches [355]. The primary focus

is due to the parallels this work draws with other domains in applying these two particular methods.

2.6.1 Data Augmentation

In computer vision and medical imaging, often training datasets can be skewed based on the
number of available images within certain classes. For example, Spiesman et al. [356] recognized an
imbalance of data related to certain Bumblebee species. To reduce the bias and variance from their
model, they had to reduce the number of possible samples to represent each class equally. Another
example is facial recognition in recognizing the bias from detecting people on watch lists [357]. It
was found that commercial systems had issues guessing and determining a person’s age as their skin
became darker. Consider autonomous driving scenarios in which a system needs to tell the difference
between a stop sign at night versus during the day [358]. In each scenario, the data imbalance from
the data gathering can negatively impact the possibility of implementation in actual practice.

Data augmentation is one method to increase the amount of data for underrepresented data
classes. In computer vision for deep learning, Shorten et al. [359] discussed different methods for
changing images to represent different classes. Some of the proposed methods involve changing
the orientation of the photo through rotation, flipping, translation, and cropping. Other methods
consider changing the image filter by adding noise and changing the aspect ratio. Depending on
the number of changes to a dataset, it can exponentially grow based on the number of changes
to an image. There are few available images for training machine and deep learning algorithms
in medical image datasets to determine diseases from medical X-rays and CT scans. Chlap et al.
[360] considers many of the image augmentation techniques recognized by Shorten et al.. They also
consider using Generative Adversarial Networks (GAN) to generate new images. GAN trains based

on a set of images and then seeks to recreate these images based on noise input. The generated
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images are then evaluated using a discriminator to determine their authenticity. In product quality
for manufacturing semiconductor wafers, Saqlain et al. considered data augmentation methods to
increase the training data for detecting wafer defects. In doing so, new images can be generated
that mimic the configuration of old images. Data augmentation also extends to other fields. Liu et
al. [361] considered a method of text data augmentation where certain words were either deleted,
exchanged, inserted, or moved to increase the robustness of text processors. The number of sentences
with the same meaning but changed words increases the robustness of a model meant to detect certain

meanings.

Augmented Images

Original Image

Figure 2.16: Example of different methods of data augmentation in detecting a case on a desk

In condition monitoring, there are usually two approaches for data augmentation: direct
manipulation of the time series data or algorithmic-based augmentation. Direct time series ma-
nipulation can comprise similar methods as described in image data augmentation. One method
is overlapping data samples to create additional sub-sample sets. Zhang et al. [362] suggest that
creating over 50,000+ sample sets from 60,000 original data points was possible based on an overlap
of 1 and a length greater than 2000. Li et al. [363] and Yu et al. [364] considered the use of noise
addition, zooming in on the data, slicing the data and applying it to different segments, reversing
the data, and amplitude shifting the data based on a scaling factor. Figure 2.17 shows an example
of creating new vibration data based on local segment splicing. The rearranged and modified data
can double the expected features based on the augmentation method.

In algorithmic-based augmentation, data augmentation uses either a Generative Adversarial
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Figure 2.17: Example of time splicing vibration condition monitoring by splitting the original signal
and rearranging it into a new signal based on local components

Network (GAN) or a Convolutional Neural Network (CNN) to modify and create new data. In
addition to the data augmentation, these models diagnose faults using the true and augmented
bearing data. Bui et al. [365] compared GAN-based data augmentation and that conducted by
hand for FFT feature inputs. The generated GAN data could accurately predict the bearing fault
above 90%; however, they performed 6% poorer when none of the original failure data were present.
Shao et al. [366] considered using data augmentation with GAN to generate additional failure data.
After the correction, none of the algorithms performed less than 99% when considering the balanced
dataset. Wang et al. [367] utilized a GAN with an Autoencoder to diagnose bearing faults based
on artificially generated data. The use of these models provides a streamlined platform for the

generation of synthetic data.

2.6.2 Transfer Learning

In bearing condition monitoring, transfer learning considers data from the source data to
contain the representative ratio of failure to healthy data expected in the industry. The target domain
considers a scenario of insufficient bearing data to represent both classes. Both Schwendemann et
al. [368] and Zhu et al. [369] combined CNN with transfer learning to inform better results in
datasets where there were only a small amount of samples. They used the mean-max discrepancy to
measure the source and target domain distribution. The measure ensures the distance on the space of

probability remains similar. Other methods to measure the discrepancy between data distributions

58



are the Kullback-Leibler divergence and the Euclidean distance. Deviations from these values could
signal non-convergence between the source and target domain. To demonstrate the adaptability of
transfer learning, even in non-stationary conditions, Hasan et al. [201] created a CNN over variable
working conditions to diagnose bearing faults. They use fine-tuning-based transfer learning, which
transfers learned parameters to target models to save time during training and analyze bearing faults
for different operating conditions. Zhao et al. [370] considers a feature-based learning method using
manifold feature learning with dynamic distribution alignment to mitigate the potential for source
and target drift in the data distributions. The technique used by Zhao et al. is unique as manifold
feature learning is not a deep learning method, as was conducted by the previous applications.

As seen in the above-mentioned articles, several methods exist to conduct transfer learn-
ing and combinations to measure their success. Chen et al. [371] groups transfer learning meth-
ods into model-based, discrepancy metric-based, and domain adversarial-based methods. Model-
based methods consider separate models that share learning parameters for transferring knowledge.
Discrepancy-based approaches consider the same source and target domain model based on minimiz-
ing a discrepancy metric. Adversarial-based transfer learning is considered unsupervised and tries
to modify the feature transformation rather than the model itself. Despite the successes with trans-
fer learning, Chen et al. [371] present challenges concerning the interpretability of a deep learning
model, the transferability assessment for different domains, and the reliability of data-driven mod-
els. Chen et al. [372] and Li [373] further echo these sentiments as challenges for transfer learning.
Establishing additional criteria related to transfer learning would reduce the possibility of negative
transfer between source and target applications. Figure 2.18 demonstrates the transfer learning pro-
cess between two models for similar tasks. Model 1 represents a model trained using a large amount
of labeled data. The parameters from model 1 are used as the starting parameters for model 2,
meaning the knowledge transfer. Model 2 passes data with a low amount of labeled sampled data
for training. However, using the parameters from model 1, the training process only needs a smaller
amount of samples to complete the training process and reach a similar level of accuracy for model

1.
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Prediction Task 1

Model 1

Prediction Task 2

Knowledge Transfer

Source Data
(large amount of labels)

Model 2

Source Data
(small amount of labels)

Figure 2.18: Example of transfer learning from Model 1 to Model 2

2.7 Digital Twins and Cyber-Physical Systems

Digital Twins (DTs) were first conceptualized by Grieves et al. [374] for product lifecycle
management. Essentially, as one had their physical system, they would also have a digital system
that mirrored that physical system. As changes were made to the physical design, changes would
occur with the digital system and vice versa. Generally, though, the digital twin definition varies
based on the user or organization. Shao et al. [375] did a comparison survey of different users
for the digital twin characteristics by analyzing their definition, viewpoint, fidelity, and temporal
integration. They found a wide variance across the four different definitions of a digital twin for
condition monitoring, such as whether the temporal integration was in real-time or not and whether
model fidelity was considered complete or partial.

For CM applications and PdM, the following definition is adopted: A digital twin is consid-
ered a near real-time system that provides information related to the equipment’s health to determine
the appropriate time for maintenance schedule based on a combination of input data. The physi-

cal domain encompasses all interfaces that work with the equipment, including the repair action
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and data gathering. In contrast, the digital space considers all the data processing and analysis
to generate information based on the inputs from the physical world. The phrasing allows for the
type of model to be open-ended, provided it is either a data-driven, physics-based, or hybrid model
[376]. Moghadam et al. [377] provides an example of a wind turbine physics-based digital twin using
MSD equations to describe degrading components. Qin et al. [378] considers a data-driven model
based on an improved CycleGAN to determine bearing fault diagnosis. The use of the model is to
map data to the physical environment, and map features to the virtual environment to determine
different bearing faults.

Cyber-physical systems (CPS) are systems that serve to integrate computational and phys-
ical processes [379]. CPS focuses on bridging the gap between the cyber and physical worlds. Using
these systems, integrating new data and knowledge from either world to influence the other pos-
itively is supposed to be more accessible. Lee et al. [14] proposed a 5C architecture to describe
the use of CPS at the component, machine, and production system level. The 5C architecture is
considered to have the following attributes: Connection, Conversion, Cyber, Cognition, and Con-
figuration, which increase in complexity from the connection to the configuration level. While DTs
and CPS may appear the same on the surface level, there are inherent differences in their cyber-
physical mapping and hierarchy, as a result, [380]. However, both are considered and introduced in
this research, as they are used extensively in industrial applications. Furthermore, there is potential
to use these techniques to package the acquisition, processing, and analysis techniques for bearing

condition monitoring.

2.8 Background Synthesis

There is a key message to consider from each background section:

i.) Bearings are a common component that is used in a broad and diverse range of rotational
equipment. Due to the application diversity, there is a wide variety of operating and environ-
mental conditions one could consider in designing and selecting a bearing. These conditions
could further influence the bearing performance and subsequent longevity in specific environ-

ments.

ii.) The Cost of Unexpected Downtime has far-reaching impacts outside of the equipment

replacement. An unexpected failure could result in millions of dollars worth of damage for the
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iii.)

iv.)

vi.)

vii.)

company from other cost sources, such as environmental, inventory, and labor costs. These

costs are incurred in addition to repairing and replacing the equipment.

Maintenance personnel have created and integrated different Maintenance Strategies to keep
up with evolving production lines and equipment. Due to the increased mechanization of
products and processes, anticipating equipment failures for maintenance scheduling leads to

lower costs in long-term planning but higher short-term costs for installation.

One of the common technologies integrated into manufacturing equipment is Data Acqui-
sition systems to monitor different process values and equipment factors that may indicate

progressing equipment failure.

Data Preprocessing, Processing, and Analysis considers different techniques for cleaning
and preparing data for analysis and the methods for transforming data into usable information.
These methods are based on the statistical data change from the manufacturing equipment

and the physics changes in the digital space.

Data I'mbalance is a challenge when analyzing and predicting impending equipment failure
when certain classes outweigh other classes, leading to skewed analysis results and inaccurate
predictions. In the case of manufacturing equipment, the healthy class usually outweighs the

failure classes, and in certain instances, no failure data is available.

Digital Twins and Cyber-Physical Systems are tools for encapsulating the data acqui-
sition and analysis methods and interfacing with maintenance engineers. However, there is a

loss of trust between manufacturers and these systems when inaccurate results are reported.
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Chapter 3

Challenges and Solutions for
Condition Monitoring

Implementation

Chapter 2 provided a basic level of knowledge needed to understand the challenges for the
presented solution in this work. In Chapter 3, the different challenges are framed about the different
research objectives from the Introduction. The challenges listed in Research Objective 1 are to
address the generation and labeling of data for condition monitoring systems. Research Objective
2 addresses the scaling and manipulation of data between different systems. Most of the research

work is conducted in Research Objectives 1 and 2, validated in Research Objective 3.

3.1 Research Objective 1 Challenges

In manufacturing, as mentioned in Section 2.6, imbalance commonly stems from a lack of
labeled samples concerning the different failure conditions of the equipment [350] in contrast to the
healthy equipment modes. Hence, inadequately labeled data and low data availability can cause data
imbalance. Supporting evidence mentioned earlier from Leukel et al. [23] that in some cases, the
analysis is conducted with a dataset having less than 10 failures present in the sample population.

In one such case, 30 million records (samples) were present, but only 8 failures. In other instances,
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failure data is not recorded. Due to the lack of records, it is unclear how to create or apply any
generated knowledge from prior lab work to actual production applications.

Fredriksson et al. [381], in observing and interviewing data scientists, listed common prob-
lems that contributed to data labeling stemming from the lack of a systematic approach, unclear
responsibility for labeling, and noisy labels in the general data science domain. In the image la-
beling domain, to mitigate the effects of potential bias and variance in the data, researchers have
introduced data labeling algorithms to reduce potential bias through crowd-sourcing [382] or bias
algorithms [383]. However, manual data labeling through crowd-sourcing is time- and cost-intensive.
Another challenge with crowd-sourcing data could lead to issues with label quality, depending on
the knowledge level [384]. A common challenge in automated data labeling is to model and capture
bias before implementing methods to remove it effectively [385]. If the bias algorithm is incorrectly
configured, it may skew results to a certain conclusion and increase the prediction bias.

Consider the background sections from Section 2.1 through Section 2.5 as applicable back-
ground knowledge to frame the data imbalance problem for the data generation conducted in Re-
search Area 1. There are various condition monitoring applications for motors [317], gearboxes [386],
pumps [387], and turbines [388], and all are common applications in a manufacturing environment®.
A common component in each listed application is bearings, which help control the rotational char-
acteristics for these applications and others (i.e., robots and CNC machine tool spindles). In each
piece of equipment, bearings are listed as a common failure point in Failure Modes and Effects
Analysis (FMEA), especially within industrial motors as [38, 39, 40, 37]. Due to their widespread
application, condition monitoring applications focus on bearings as a primary point of failure using
the methods described in Section 2.4 for the analysis methods from Section 2.5. Preliminary bearing
data can establish a baseline, where any deviations could be marked for investigation or further anal-
ysis. As data is collected, it may or may not be assigned a label for further training data in a model.
If failure training data is already available from early faults, a model may be deployed to monitor
and identify potential equipment failures and predict future manufacturing life. As faults and errors
occur along the production line, the program is adjusted for potential changes. This process outlines

a brief overview of the condition monitoring implementation pipeline from ISO 17539 [5]2.

1These equipment are found in other industrial environments; the frame of reference for this work is in a manu-
facturing environment

2Further discussed in Section 4.1.2. Please reference Figure 4.3 for a detailed flow diagram for the general condition
monitoring system
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The CM system’s configuration, upkeep, and data availability are where data imbalance
affects this process. The alert, alarm, and failure criteria depend on existing data, information,
and knowledge related to failures in the monitored system. If no failure data is available from
the application, then the configuration relies on industry-expected limits, such as those from ISO
[389]. These expected alarms and alert criteria may focus primarily on common failure modes and
not consider process or equipment specific failure modes. Even when failure data is available for
training, the data labeling procedure is hampered by the primary focus on returning the equipment
to operate on the production line. Hence, significant data labeling may not occur, and there may
be critical missing critical domain knowledge.

In addition, the labeling procedure changes based on the person implementing, collecting,
and analyzing any CM analyses. For example, eight different bearing fault datasets are investigated
in Section 4.1.1 to determine different characteristics for CM analysis. In each dataset, the data
labeling, structure, and investigated failure modes vary to the point where eight different procedures
yield potentially similar results. Hence, across CM literature, no standardized procedure or criteria
is available associated with the data labeling and collection procedure to build these analysis tools to
diagnose and predict bearing failure. The following references have noted the difficulty in collecting

labeled data for condition monitoring applications:

i.) [370] Zhao et al. note that it is difficult to gather the necessary labeled data for machine

learning based on different operating conditions and equipment configurations.

ii.) [390] Lyu et al. highlights some data-scarce regions when assessing product quality to inform

operating performance.

iii.) [391] Cohen et al. state that industrial datasets are not always suited for supervised learning

based on the need for extensive domain knowledge for accurate labeling.

iv.) [392] Serin et al. finds that machine tool condition monitoring datasets require consistent
labeling to ensure the proper metrics; otherwise, it invites unknown errors in the algorithm

training process.

v.) [393] Liu et al. note that it is somewhat considered infeasible to perform defect inspection

while also labeling each sample collected from the manufacturing environment.
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vi.) [363] Li et al. utilized data augmentation to create new data to circumvent the expensive cost

of labeling data.

vii.) [394] Gao et al. noted that for big data implementations in manufacturing an increased amount

of quality data is necessary to ensure prediction accuracy.

Data availability in condition monitoring systems is not necessarily an issue. Sensors and
computational power are relatively low-cost for implementation along the edge or cloud computa-
tional. Data generation can occur at an exponential rate depending on the system and the number
of systems under assessment. However, despite having access to the data, if it is not labeled or if
there is no underlying information to determine what could have caused certain trends then the data

does not provide a meaningful contribution to the understanding of equipment degradation.

3.2 Research Objective 2 Challenges

As data imbalance occurs due to low available labeled training data or failure data, there
are methods to reduce the data imbalance by applying data techniques or algorithm-based methods.
The background knowledge from Section 2.5 through Section 2.6 is applied to frame the problem
regarding Research Area 2. Different data techniques to reduce data imbalance in condition moni-
toring consider reducing or creating training data amount to achieve a particular outcome. Sampling
techniques, such as undersampling [395] and oversampling [396], can either add or remove data from
certain classes to provide an even distribution of data for condition monitoring applications based
on an existing set of data. However, duplicating data in oversampling can make any model over-
fitted [397]. By removing or reducing data for undersampling, data points are removed to reduce
the imbalance between the different datasets [397]. However, removing that data could reduce the
model performance in determining the correct diagnosis by affecting the variability within the sys-
tem. Another technique to address data imbalance is data augmentation to create new data samples
from an existing dataset.

As introduced in Section 2.6, data augmentation creates new data by applying modification
factors, such as randomization, filtering, and scaling, to the original data set [398]. Depending on the
dataset, specific data augmentation techniques will perform better than others depending on the data

3

scenario”®. Sometimes, it requires testing multiple data augmentation methods to improve results.

3Techniques are further explained in Chapter 5
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The subsequent new data help to increase an algorithm’s robustness to potential new data collected as
the algorithm performs [399]. Data augmentation techniques have been applied in bearing condition
monitoring to increase and improve datasets [363, 364]. Depending on the application, different
techniques affect the algorithms tested. In addition, algorithms, such as Generative Adversarial
Networks, create bearing data based on generators trained on failure data [400]. However, in this
instance, these data augmentation techniques are based on an existing failure data source. Without
failure data, the accuracy and applicability of data augmentation are reduced.

Pursuing an algorithmic approach, data imbalance can be solved by using tools, such as
one-class classifiers [401], unsupervised learning approaches [329], and synthetic data generation
[402]. In one-class classifiers, an algorithm trains on the status quo of bearing data and identifies
potential outliers as defect points. Unsupervised learning approaches do not need labeled data
and instead, attempt to classify data into clusters of similar data attributes to determine potential
failures. Synthetic data generation with algorithms implies using a generator algorithm, such as a
GAN. For example, a GAN algorithm is trained based on a set of failure data to generate additional
failure samples that may resemble the original true data. These algorithms successfully predict
equipment failures; however, the intrinsic knowledge needed to understand the identified outliers or
clusters from the analysis is a drawback. In addition to data generation algorithms, an existing set
of failure data is required to train the algorithm to generate the bearing data. It may be possible to
extrapolate expected features from similar bearing data, but that may also skew results if they do
not converge.

Another method to address data imbalance is using transfer learning to deploy similar
but different algorithms to different scenarios. This process differs from the previously mentioned
methods, as transfer learning considers data from two sources rather than the singular source in
the prior techniques. For example, Wu et a. [403] designed a transfer learning method to train an
algorithm based on generated laboratory data for practical, real-world scenarios. Wang et al. [404]
used a mixture of ResNet-50 with a multi-scale feature extractor to transfer bearing data between
applications to improve fault classification. However, an inherent issue with transfer learning is
understanding how the algorithm tuning parameters change between different bearing applications.
Generally, these different applications have different fault spectra that may not be present in the

source or target domain, leading to negative transfer learning.
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3.3 Digital Triplet Formulation

To summarize the previous sections (Sections 3.1 - 3.2), low amounts of or missing labeled
failure data from inadequate labeling procedures cause data imbalance for manufacturing CM ap-
plications. Reducing data imbalance involves changing the data procedures, integrating additional
steps in the data pipeline, or utilizing different analysis techniques. However, applying these other
data imbalance mitigation methods does not guarantee increased accuracy or the ability to transfer
generated data, information, or knowledge from one application to another. The lack of transfer
power reduces the possibility of creating a generalized algorithm that fits the expected scenarios for
bearing CM in a manufacturing environment. The time and effort related to labeling data from each
bearing condition monitoring scenario lead to slower adoption for condition monitoring in a factory
environment.

The Condition Monitoring Digital Triplet (CMDTr) is proposed to address the issues of low
amounts of labeled data and how to transfer data, information, and knowledge between different
applications in a manufacturing environment. Proposed initially as Surrogate Digital Triplet (SDTr)
by Wescoat et al. [3], the CMDTr combines the work presented in this dissertation into three
different areas to support digital systems in manufacturing. The three triplets proposed are the
Physical Tiplet (PT), the Digital Triplet (DTr), and the Surrogate Triplet (ST). This system is
meant to extend the DT and CPS discussed in Section 2.7. Generally, these systems are viewed as
means to ingest data and return information [375]. However, knowledge of how data are transferred
is sometimes lost in converting data to features and between the different applications.

Knowledge applications in digital twins have been somewhat previously investigated. Zhou
et al. [405], who proposed a framework for a knowledge-driven digital twin manufacturing cell
for planning, scheduling, and managing a manufacturing cell. In this scenario, the digital twin
contains the information and knowledge to collect the manufacturing system. Knowledge-based
systems have also been incorporated into digital shadows to characterize Al and human knowledge
for manufacturing system operations [406]. Umeda et al. [407] previously introduced the digital
triplet to characterize human interaction with a digital twin. In their interpretation, the digital
triplet is meant to illustrate further the application of knowledge from the information generated in
the digital twin aspect. With Zhou et al. and Ladj et al. [406], the knowledge is still encompassed

in the digital twin to leverage the information readily.
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However, one of the knowledge aspects that needs to be more readily captured in the current
digital twin is the aspect of a generalized model that can be deployed to multiple systems of different
sizes and configurations. A digital twin is considered specific to a physical counterpart; hence, the
information and knowledge generated are meant for that particular application alone. The CMDTr
intends to provide a method to extend knowledge to multiple systems using the Surrogate Triplet.
The primary purpose of the CMDTr is to address the data imbalance problem in a digital twin
scenario. A general understanding of the proposed condition monitoring triplet proposed is shown
in Figure 3.1, showing how the data, information, and knowledge relationships reduce data imbalance
and ease the implementation of condition monitoring systems in the manufacturing domain. The
dotted lines represent the lines of knowledge from one triplet to another triplet, the dashed lines
represent the change in data from one triplet to another, and the solid lines represent the change
in information. In this current iteration, the condition monitoring triplet considers the knowledge
from decision-making as another portion of the physical triplet. It is understood that some consider

that the knowledge related to decision-making is part of the digital triplet in this scenario.
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Equipment Knowledge for Surrogate Testing
Figure 3.1: A general implementation of the Condition Monitoring Digital Triplet from [3]

This dissertation lays the framework for the necessary tools and methods to implement

the CMDTr for bearings as depicted in Figure 3.2. As these tools and techniques are defined for

bearings, the discussion is provided on how these methods are also extensible to other systems. In

this research, Chapter 4 covers the initial data generation for the CMDTr to reduce gaps and holes

69



in the training profile for condition monitoring systems. This chapter demonstrates the methods and
tools for designing the knowledge relationship between the physical and surrogate triplet and the
data and information relationships between the surrogate and digital triplet. Chapter 5 considers
the methods and tools to transfer the appropriate data between different bearing sizes and systems.
This chapter will demonstrate the tools and methods for the knowledge relationship between the
surrogate and digital triplet and the data and knowledge relationships between the physical and the
digital triplet. Finally, Chapter 6 will provide the methods and tools to evaluate the effectiveness
of new bearing systems using the generated data in training these condition monitoring systems.
This chapter will explore the tools and methods for the information relationships between the digital

triplet and the surrogate and physical triplets.

Bearing System Surrogate Digital Triplet

Bearing Surrogate Triplet Knowledge transfer to Digital Triplet:
- Transfer relationships incorporating geometry, kinematics,
and dynamics
Bearing Physical Triplet Data transfer to Digital Triplet:
- Vibration, Electrical Current, Acoustics, Ultrasonics
Labeled
Multiple Classes
Feature Selection and Analysis

Bearing Physical Triplet Knowledge transfer to Digital Triplet :
- Geometric considerations (size)
Kinematic considerations (speed)
Dynamic considerations (load, torque)
Bearing Physical Triplet Data Transfer to Digital Triplet:
Vibration, Electrical Current, Acoustics, Ultrasonics
Unlabeled or no contextual information
Missing classes related to diagnosis
Maintenance Strategy

Bearing Digital Triplet Information transfer to

Physical and Surrogate Triplet: Surr.cgate
- Equipment diagnosis and prognosis T"||et
- Data verification :

Bearing Physical Triplet Knowledge transfer to Surrogate Triplet:
- Geometric considerations (size)
Kinematic considerations (speed)
Dynamic considerations (load, torque)
Failure modes (fatigue, contamination, lubrication)
Process Events

Figure 3.2: A general implementation of the Condition Monitoring Digital Triplet from [3]
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Chapter 4

The Digital Triplet: Data

Generation

In implementing the CMDTr, the first consideration is determining the data sources for
collecting data and ensuring the appropriate data amounts for diagnosing and predicting bearing
failures. This chapter presents a purposeful failure methodology based on investigating bearing
datasets but with applicability to other manufacturing equipment. Failure methodologies are crafted
for bearings based on the associated failure modes defined by industrial standards, the equipment
type, and the location within the equipment. The changes in the bearing failure signals are identified
utilizing time and frequency analysis and compared to each other. As an additional consideration,

non-stationary operating conditions are considered in the bearing data.

4.1 Purposeful Failure Methodology

The Purposeful Failure Methodology (PFailM) was created as a result of the investigation
into RQ1.1 and RQ1.2:

i.) Research Question 1.1: How are the existing bearing datasets deficient for training manufac-

turing condition monitoring systems?

ii.) Research Question 1.2: What methodology criteria are necessary to fill gaps for condition

monitoring datasets utilizing a surrogate triplet?
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During the investigation, standardized criteria of data attributes are applied to eight publicly avail-
able bearing datasets. From these criteria and their subsequent ranking, gaps are identified with
condition monitoring datasets as possibilities for improvement for standardizing data generation
in condition monitoring. A review of design, failure, and condition monitoring implementation

methodologies combined to form the steps necessary for the PFailM.

4.1.1 Condition Monitoring Data Assessment

Open-source datasets help improve machine learning algorithms by providing more areas of
learning for the related systems. Examples of open-source datasets include the MNIST handwritten
images and the ImageNet dataset in the computer vision domain. These datasets provide a variety
of different representations for certain labels. Using these datasets provides data scientists with
hundreds of thousands of training samples that could potentially increase with techniques such as
data augmentation and oversampling. The open-source nature allows for ease of access in utilizing
these datasets in varying scenarios. Popular sites that host open-source datasets are places like
GitHub! and Kaggle?. Other organizations, such as IEEE?, Mendeley*, and NIST?, will also host
open source datasets for various domains and projects.

For condition monitoring datasets specifically, a detailed list of complete condition monitor-
ing datasets can be found on the NASA Prognostics Center of Excellence, IEEE Dataport, Kaggle,
and GitHub. The CM datasets available consider multiple different systems, such as bearings, gear-
boxes, composites, and electrical equipment. Each dataset provides a different level of contextual
knowledge in terms of documentation. Hence, there are varying levels of how to utilize the available
data for condition monitoring. Hence, an initial survey of condition monitoring datasets was con-
sidered to determine what criteria are commonly found in these condition monitoring datasets. At
the end of Section 4.1.1, a ranking and review of the current data dimensions is provided.

Since the primary focus of this dissertation is bearings, the initial data survey considered
bearing datasets from eight different sources. These bearing datasets are hosted on university web-

sites, third party organizations, such as NASA and IEEE, or open-source data forums such as

I'Link to the front page of GitHub: https://github.com/

2Link to the front page of Kaggle: https://kaggle.com/

3Link to IEEE Dataport: https://ieee-dataport.org/

4Link to Mendeley Data: https://data.mendeley.com/

5Link to NIST datasets: https://www.nist.gov/el/ammt-temps/datasets

6Link to NASA Prognostics Center of Excellence: https://www.nasa.gov/content/prognostics-center-of-excellence-
data-set-repository
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GitHub and Kaggle. Table 4.1 lists the publicly available data for bearings used for this assessment
by providing a data overview for the collection location, associated publication, data types, test
conditions, and dataset size. In some research works, the IMS bearing dataset refers to the NASA
bearing dataset since it is hosted on the NASA Prognostics Center of Excellence (PCoE) (note
however that the NASA PCoE also hosts the IEEE 2012 PHM challenge dataset). Each dataset is,
to mitigate potential confusion, referred to by the original collection entity to remove any potential
naming confusion. Each dataset has been publicly available in the last 10 years except for the IMS
dataset, which has been available for over 20 years. The datasets are hosted by the NASA PCoE,
GitHub, Mendeley Data Center, or their respective university web pages and are verified by a corre-
sponding journal citation”. The bearing datasets are referred to based on the agency that performed
the data collection. The bearing test methods are described based on the methods that faults were
induced in the bearings. The acronyms mean the following: O-AF (Overload - Accelerated Failure),
S-AF (Seeded - Accelerated Failure), and SF (Seeded Faults). The difference between these failure
methodologies is further described in Section 4.1.3. The data type acronyms mean the following:
Vib (Vibration), Temp (Temperature), and EC (Electrical Current). These datasets are not the only
available bearing datasets, but they have been used extensively in bearing condition monitoring re-
search. In addition, other types of condition monitoring datasets exist; however, bearing datasets

provide the most breadth in terms of availability and quantity.

Table 4.1: Publicly available bearing data

Bearing Datasets IMS FEMTO CWRU MFPT UO PU XJTU- KAU
SY
Associated  Refer-  [408] [409] [410] [411] [412] [413] [414] [415]
ence
Bearing Experimen- 4 1 Motor N/D 1 1 1 1
tal System Bearing Bearing Bearing Bearing Bearing Bearing Bearing
Test Test Test Test Test Test Test
Bearing Test Meth- O-AF  O-AF SF SF SF O-AF, S-AF SF
ods S-AF
Failure Modes Fatigue Fatigue Fatigue Fatigue Fatigue Fatigue Fatigue Fatigue
Data Types Vib (2-  Vib Vib (1- Vib(1- Vib(1- Vib Vib (1-  Vib (1-
axis) /  (2- axis) axis) axis) (1- axis) axis)
Vib (1-  axis), axis),
axis) Temp EC,
Temp
Data Amount 6.08 2.97 0.709 0.057 0.762 21.28 4.23 0.001
gb gb gb gb gb gb gb Mb

"Links to the Bearing datasets are found in Table C.1 in Appendix C

73



The quality of the dataset is assessed and checked using a standardized criteria. Lessmeier
et al. [413] proposed a criteria for reporting bearing data in their dataset formulation based on ISO
15243 [6]. In the criteria, they report the test length, damage methods, and operating conditions,
which are a part of bearing condition monitoring investigations. In a separate analysis, Hagmeyer et
al. [416] considered criteria for dataset assessment to represent data scenarios for data generation.
In these data scenarios, they discuss the methods of data history range, acquisition, the damage
degradation, system information, data quality and quantity, and data source. In each avenue, these
scenarios provide the measures for describing the datasets as needed for PHM datasets; however,
not all of the criteria are transferable to the analysis or extensible to other similar bearing systems.
However, they are good measures of how to describe a system.

Considering the above mentioned criteria a more simplified approach was taken for describ-
ing dataset configurations. Hagmeyer et al. and Lessmeier et al. provided a background for how
to view condition monitoring datasets and ways to describe the dataset However, a more general
criteria was sought that could provide a more critical analysis of prior condition monitoring data
assessments with general data criteria. In 2002, Pipino et al. published a set of data dimensions
describe data from businesses looking to leverage more analytics in their decision making. The cri-
teria, also referred to as data dimensions, were originally derived based on work conducted by Wang
et al. [417] in a data quality review from the prior research literature that synthesized the above at-
tributes. The data dimensions also tie into work deriving information quality dimensions conducted
by Kahn et al. [418]. The focus remains on data quality dimensions rather than information quality
dimensions. The data dimensions from Pipino et al. describe data attributes that ensure the data
accurately represent the conditions and classes by encompassing the necessary labels to trace and
transfer data between similar applications.

For the analysis, the dimensions considered by Pipino et al. were split into an analysis of
either the data or dataset. The split was conducted because it was considered that some of the
dimensions described the overall dataset rather than the actual data. Table 4.2 contain the data
criteria described by Pipino et al. that was determined to pertain directly to the data. Table 4.3
contain the data criteria described by Pipino et al. that was determined to pertain directly to the
dataset. Some of the dimensions were also combined as they provide overlapping definitions. Based
on the split of data and dataset dimensions, there are overlapping instances with the work conducted

by Hagmeyer et al. and Lessmeier et al.. However, the underlying dataset considerations was not

74



considered in their work and is considered novel versus prior work in this area. In the following

sections (Section 4.1.1.1 - 4.1.1.3), the dimensions are described how they asses the respective bearing

datasets and determine whether these datasets are good for CM applications.

Table 4.2: Data Quality Dimension from Pipino et al. [2] and the interpretation for Condition Based

Monitoring Datasets. These dimensions describe the data.

Dimensions

Definitions by Pipino et al.®

Definitions interpreted for
Condition Based Monitoring
Datasets

Appropriate Data Mount

Believability/ Free-of-Error

Completeness

Consistent ~ Representation/
Ease of Manipulation

Extent to which the data vol-
ume [are] appropriate

Extent to which data [are] re-
garded as true and credible/
Extent to which data [are] cor-
rect and reliable

Extent to which data [are]
not missing and [are] sufficient
breadth and depth

Extent to which the data [are]
presented in the same format
/ Extent to which data [are]
easy to manipulate and apply
to different tasks

Determine the dataset sample
count across the different op-
erating conditions and failure
modes in relation to equip-
ment failure diagnosis

Assess the accuracy of data la-
beling and supporting infor-
mation for the different data
classes before analysis/ Deter-
mine if the fault and operating
characteristics are present in
the data based on inspection
Determine if there are any in-
accuracies in the data repre-
sentation

Determine if the data are
organized the same way for
each data collection and test
/ Assess the different possible
methods for translating data
to features based on the data
organization

4.1.1.1 Data Dimensions

Appropriate Data Amount

The appropriate data amount is not accurately defined for training condition monitoring
applications. Leukel et al. [23] surveyed that industrial applications can have less than 10 failures
in their training data. Hence, the interpretation of the failure training data size varies depending
on the application and analysis method. The determination of dataset size is a common problem
for data analysis. In some cases, a study’s uncertainty and confidence intervals may determine the
amount of data needed [419]. Hackshaw [420] theorized the data amount needed is based on the

study objective. The larger the sample size in the study, the more precise the conclusions for the

75



Table 4.3: Dataset Quality Dimension from Pipino et al. [2] and the interpretation for Condition

Based Monitoring Datasets. These dimensions describe the dataset.

Dimensions

Definitions by Pipino et al.”

Definitions interpreted for
Condition Based Monitoring
Datasets

Accessibility/ Timeliness

Concise Representation

Interpretability/ Understand-
ability

Objectivity

Relevancy/ Value-Added

/Reputation

Extent to which data [are]
available/ Extent to which the
data [are] sufficiently up-to-
date for the task

Extent to which data [are]
compactly represented
Extent to which data [are ex-
pressed] in appropriate lan-
guages, symbols, and units/
Extent to which data [are] eas-
ily comprehended

Extent to which data [are] un-
biased, unprejudiced, and im-
partial

Extent to which data [are] ap-
plicable and helpful/ Extent
to which data [are] beneficial
and provides advantages from
its use/ Extent to which data
[are] highly regarded

Assess whether the datasets
are publicly accessible for re-
search and public use/ Assess
how up-to-date the data are
for their respective data col-
lection

Assess how well the data are
condensed for analysis
Ensure that the units are
properly labeled for the data/
Assess the data descriptions
for the dataset to improve
data understanding
Determine how repeatable
the condition monitoring data
generation methods

Assess how the data are
labeled concerning expected
system failure modes/ Assess
how well the dataset generates
and adds new data to a CM
system / Assess dataset im-
pact for condition monitoring
and evaluation

study. Small sample studies achieve short-term goals, but may not apply to larger populations unless
through added scalability or uncertainty.

Due to their widespread application, bearings fail at varying rates and for varying reasons.
However, as noted by major bearing companies such as SKF [7], bearing failures are linked to
four failure causes: lubrication, contamination, assembly /operating errors, and general fatigue. The
failure causes induce different failure types depending on the bearing application, where it occurs, and
how the damage progresses as listed in ISO 15243 [6]. Bearing research has investigated these failure
causes and effects by adding contamination into the lubrication [87], starving bearings of lubrication
[421], placing artificial dents to induce bearing mounting defects [422], and the overloading the
bearing on inducing early-stage fatigue damage [408]. The weighting of the appropriate amount of
failure data varies based on the application and the likelihood of one failure occurring over another.

The appropriate data amount is considered based on the number of potential failure classes
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from the datasets due to the general lack of standardized metrics for evaluating the data amount. Ta-
ble 4.4 shows the breakdown of scoring for the appropriate amount of data for the bearing datasets.
Four dataset characteristics were determined to compare the data amount between these datasets:
Failure Modes, Operating Conditions, Damage States, and Applications. The failure causes eval-
uations to consider the different methods for inducing damage in bearings to gather data. The
operating conditions and damage states consider the extent of failure tested for each dataset. The
application row considers the different failure test beds used. The raw score is shown in the total
row. In the dataset ranking, these scores are normalized and scaled to a weighting of 10, where the

highest score receives a 10 and rounded down.

Table 4.4: Total data amount ranking for the bearing datasets

Bearing Datasets IMS FEMTO CWRU MFPT UO PU XJTU- KAU

SY

Failure Causes (4) 1 1 1 1 1 2 1 1
Operating Condi- 1 2 5 8 4 4 3 2
tions (3)

Damage States (2) 4 17* 15 3 4 3 15% 2
Applications (1) 1 1 1 4 1 1 1 2
Total 16 45 50 38 25 27 44 16
Normalized Score 3 9 10 7 5 5 8 3

From this analysis, the CWRU dataset performs the best based on the consideration of the
different damage states tested and the operating conditions. The primary reason for the breadth of
data generated stems from having the second most operating conditions and damage states tested.
The XJTU-SY and FEMTO dataset perform equal to or greater than the CWRU bearing dataset for
the number of damage stages tested but fall short with consideration for the operating conditions.
The asterisk for the XJTU-SY and FEMTO datasets’ damage states comes from an assumption
that each bearing tested provides a unique damage stage, as their documentation did not clearly
define the different damage states in their run-to-failure testing. This data dimension favors datasets
with a wider breadth of data generated versus only considering the data amount since the amount
needed for condition monitoring applications is subjective. Future analysis could consider the over-

lap between the data amount needed as a function of the failure modes and potential failure breadth.

Completeness. The data completeness was conducted to verify that the data contained the right

amount, as stated in their documentation. Incomplete data refers to instances where the reported
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data amount does not match what the dataset contains. Missing data is a common problem in con-
dition monitoring due to the equipment operating environments. Methods are available to handle
missing data by approximating the data or removing those data from the sample set [423]. However,
if these occur at regular intervals, it could speak to more problems with the data acquisition system
and inhibit any real time analysis. Hence, it is an important data characteristic to note in any
training dataset.

Only the IMS dataset had significant amounts of missing data for the datasets assessed.
Figure 4.1 shows an example of Test 1 missing data for the IMS dataset through the representation
of the full test in Figure 4.1 (a) to what is meant to happen as shown in Figure 4.1 (c). The missing
gaps could be attributed to errors with the data acquisition process or errors in testing. It could
signal that there is potentially missing information from the tests that may confuse further analysis.
It should be noted that Figure 4.1 (¢) shows a change in the file frequency that was called out in

the IMS documentation. However, it does not explain the missing files in other parts of the dataset.
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Figure 4.1: Missing Bearing Test Files and Sample Rate Verification from IMS Test 1. (a) shows
the change over a period of days, whereas (b) shows the missing data for one section zoomed in over
hours. (c) shows the change in data accumulation as and the instances of too many time recordings
in the data.

The other datasets did not have larger missing samples. The other datasets had, at most
1%, of their data missing from their particular files. The percentage of data missing was calculated
based on the number of samples, the sampling rate, and the sample duration. In the case of the
FEMTO and CWRU datasets, there were instances where the files were present, but data were
missing from columns in those file categories. The other datasets had negligible missing data based

on the comparison of missing data found in the IMS datasets. Hence, the amount of missing data
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from the IMS, FEMTO, and CWRU was assessed against the amount of expected data and used to
compute their score relative to a weighting of 10. The dataset weighting was determined starting at
10 and then decreased based on the amount of data missing as a percentage from each dataset.

Believability/ Free-of-Error. The believability dimension determines if the necessary class at-
tributes are present in the data based on their labeling. In contrast, the free-of-error dimension
assesses whether the necessary signal attributes are present. For bearing condition monitoring,
the believability dimension determines if the equipment operating information is present, the fault
characteristics are properly labeled, and any additional supporting equipment characteristics are
recorded. Equipment characteristics correspond to the bearing size and dimension information,
which will influence the data generation. Table 4.5 details whether each dataset includes the corre-
sponding information for the labeling and the supporting information for the different data classes.
There are three critical aspects for fault labeling: damage location, damage size, and bearing life-
time. The datasets use terms such as "outer race”, ”rolling element”, or ”inner race” describe the
location of the defect. Combination faults are where multiple bearing elements are damaged. For
example, a combination fault could include damage to the outer and inner races for the same bear-
ing. All three elements could also have damage as well. It is not noted in any of datasets whether
any of the datasets have multiple rolling element defects. The damage size, when reported, could
include the defect size’s length, width, and depth. In some cases, the bearing life will not always
be reported. Bearing life measures how much damage has accumulated over time with the bearing
or the test-stopping point. When bearing life is recorded, it can be given in terms of defect size or
time since the operation started. Each class has a speed label associated with the operating con-
ditions to account for the bearing speed. The speed is important for calculating bearing life using
the Lyg equation by converting the number of revolutions into time and frequency information to
determine the absolute bearing characteristic frequencies. None of the datasets specifically record
the bearing load limits; however, it is noted that this information is readily accessible based on the
bearing manufacturer. The bearing load and torque during operation are recorded based on the
dataset. Recording both or either influences the resulting bearing vibration amplitude. The bearing
size and dimensions were the common elements relative to equipment characteristics among all the
datasets, except in the case of the FEMTO bearing dataset. Not included in the category scoring,
but noted in this dimension, is whether there is photographic evidence to quantify faults. The KAU,
XJTU-SY, PU, FEMTO, and IMS included pictures, but those were to provide examples of specific
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faults. The score was based on a total of 10, with a weight of five for the fault labeling, three
for the operating conditions, and two for the equipment characteristics. The scores were based on
the number of possible yes’s in each category. As long as the load or torque was recorded for the

operating conditions, it was considered a full score with the associated speed.

Table 4.5: Criteria for describing bearing labels

Bearing dataset Fault Labeling Operating Equipment Pictures Related
Conditions Charac-  to Faults
teristics

IMS (NASA) Damage Location: Yes, Speed: Yes, Yes Yes, but only ex-
Damage Size: No, Bearing Load: Yes, ample faults
Lifetime: Yes Torque: No

FEMTO (IEEE 2012 Damage Location: No, Dam-  Speed: Yes, No Yes, but only ex-

PHM) age Size: No, Bearing Life- Load: Yes, ample faults
time: Yes Torque: No

CWRU Damage Location: Yes, Speed: Yes, Yes No
Damage Size: Yes, Bearing Load: No,
Lifetime: Yes Torque: Yes

MFPT Damage Location: Yes, Speed: Yes, Yes No
Damage Size: No, Bearing Load: Yes,
Lifetime: No Torque: No

Uuo Damage Location: Yes, Speed: Yes, Yes No
Damage Size: No, Bearing Load: No,
Lifetime: No Torque: No

PU Damage Location: Yes, Speed: Yes, Yes Yes, but only ex-
Damage Size: Yes, Bearing Load: Yes, ample faults
Lifetime: Yes Torque: Yes

XJTU-SY Damage Location: Yes, Speed: Yes, Yes Yes, but only ex-
Damage Size: No, Bearing Load: Yes, ample faults
Lifetime: Yes Torque: No

KAU Damage Location: Yes, Speed: Yes, Yes Yes, but only ex-
Damage Size: Yes, Bearing Load: Yes, ample faults
Lifetime: No Torque: No

In contrast to the believability dimension, the free-of-error dimension for bearing condition
monitoring focuses on the different analysis techniques to verify the bearing data. Clean data, in this
sense, is described as data that have little to no noise that could hide or confuse any of the healthy
signals [424]. The expectation for clean data is not a realistic one; however, there are specific
indicators to differentiate the deviation between expected healthy and failed data. For example,
rotational equipment, such as bearings, have particular characteristics in the frequency spectrum
based on the fault modes, equipment configuration, operating parameters, and bearing size. Table
4.6 contains notes on verification methods used for each dataset or attached research documentation.
This analysis considers only the methods used by associated publications. The IMS bearing and

FEMTO datasets were the only two datasets that used time-based and frequency-based features
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described earlier to verify the damage characteristics for at least a portion of the data. The CWRU,
MFPT, UO, PU, and KAU data used frequency-based features to identify the bearing characteristic
frequencies to identify bearing damage. The XJTU-SY bearing data includes no data features to
verify or validate damage. However, they demonstrate the raw data change from a baseline to a
fault condition. In some instances, different machine learning techniques were presented, such as in
the case of the PU and XJTU-SY datasets, to demonstrate the separability among the data classes.
Due to the use of both time techniques, the FEMTO and XJTU-SY datasets score a 10, whereas
the other datasets only receive a 5. The weighting was determined based on the number of possible

outcomes. Since there were only two, datasets received a score of a 5 or 10.

Table 4.6: Metrics used to verify bearing damage

Bearing Dataset Time-Based Features Frequency-based Features

IMS (NASA) Verifies data from Test 1 with RMS  Utilizes wavelet analysis to extract early defect
and Kurtosis measures to determine  variation in the data for identification of partic-
if the damage is present ular bearing faults

FEMTO (IEEE Verifies data from specific tests us-  Uses spectrogram analysis to view how the power

2012 PHM) ing the Crest factor and K-factor in  spectral density changes concerning time
their verification

CWRU Not Provided Verifies the data using three different frequency

transform methods utilizing Envelope Analy-
sis using the standard method, with cepstrum
prewhitening, and a discrete benchmark method
to extract bearing characteristic frequencies

MFPT Not Provided Verified using Envelope Analysis for different
fault conditions to extract bearing characteris-
tic frequencies

UoO Not Provided Verified using Time-Frequency extraction to ver-
ify the damage bearing characteristic frequencies

PU Not Provided Verified using Envelope Analysis to extract bear-
ing characteristic frequencies

XJTU-SY Not Provided Not Provided

KAU Not Provided Verified using Fourier Analysis to extract damage
characteristics

Consistent Representation/ Ease of Manipulation. The consistent representation dimension
assesses how well the data are organized and if it is compatible for each file. CM systems require
a standardized procedure to ensure minimal data uncertainty when performing equipment health
analysis [71]. The same file organization and data collection procedures during experimentation
minimize data uncertainty by ensuring that the data files are formatted the same for ease of access.
Consistent formatting allows for efficient data and feature extraction and expedited processing.
Three different file structures are considered for the bearing datasets: .csv files for the FEMTO and

XJTU-SY data, a text-file variant for the IMS data, and .mat files for the UO, PU, CWRU, MFPT,
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and KAU data. Each file type in Python has a unique command to access the data content. If the
data files are each organized in the same format, a singular command can extract the data from each
file without needing personalized file calls. An initial file was loaded for each dataset to understand
how to access the data and formulate a function to check that each file is read. The functions were
unique to each dataset and written using Python v3.8. Each function was able to access the data
within each file. There was one individual file in the PU dataset where the PU function did not work
due to a column misrepresentation. The data from the PU file was manually extracted to account
for the data. Since it was only one file out of all the tests conducted, only a minor penalty ( loss of
a point) was assessed against the PU dataset. Consistent representation is typically an established
norm as the original publishers of the data would want to ensure it remains in a format for easy
analysis.

The ease of manipulation dimension refers to how well the dataset is structured to facilitate
changing the data into features for analysis. In this dimension, the focus is primarily on feature
extraction techniques for bearings. Feature extraction for condition monitoring refers to reducing
the data dimensionality to a set of features analyzed to diagnose equipment failures [425]. Feature
extraction is used interchangeably with feature generation; however, this work differentiates the
two by describing feature generation as the method used to transform data into features [273]. For
bearings, features are generated in either the time or frequency domain. Time domain features refer
to values related to statistical changes in the signal, such as monitoring increases in the root-means-
square (RMS) or increasing variance in the gathered data [426]. Frequency features refer to values
that occur at specific instances, such as the rotational frequency of the equipment and the bearing
fault frequencies [296]. The frequency features are commonly used in the rotational analysis as a
physical representation of the damage present in the equipment. For bearing condition monitoring,
several frequencies denote particular condition criteria related to the overall equipment health, such
as the operating speed, system misalignment, and mechanical looseness.

For the completeness dimension, only the PU dataset had issues accessing each data set
similarly. The scoring was based on a percentage of correctly accessed files relative to the incorrectly
accessed files. That percentage was then multiplied by ten and then rounded down. Each dataset
subsequently scored 10, except for the PU dataset at 9. For ease of manipulation, each dataset
allows for the conversion of raw data into features easily. However, the dataset collection strategies

allow for additional analysis to take place. In the case of the IMS, PU, FEMTO, and XJTU-SY
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datasets, they are collected concerning time during the test duration. The CWRU dataset contains
data concerning different damage stages with a failure case. The UO, KAU, and MFPT datasets are
collected based on each failure case and do not concern time or increasing damage. The progressive
collection allows for testing about time and progressing damage. Hence, the IMS, PU, XJTU-SY, and
CWRU datasets receive a ten as they allow for feature generation related to diagnosis or prognosis
analysis. The MFPT, KAU, and UO datasets received a five as the data comparison only occurs
concerning baseline and failed cases. The weighting was determined based on the number of possible

outcomes. Since there were only two, datasets received a score of 5 or 10.

4.1.1.2 Dataset Dimensions

This section provides a brief overview of the other data dimensions provided by Pipino et
al. [2]: accessibility, concise representation, interpretability, objectivity, relevance, and security. The
accessibility dimension establishes whether the data are available for public and research use in train-
ing condition monitoring applications. Due to the data quantity in circulation, restrictions are often
placed to protect the originators’ rights regarding data use for outside entities using legal frame-
works [427]. These restrictions are codified using Non-Disclosure Agreements (NDA) or company
policies to prevent private data from reaching the public domain where it may harm the company
or business practices. For this review, the accessibility dimension is framed toward assessing which
bearing datasets are known and publicly available. Each dataset is stored either in a public site
such a hosting sites, university web page, or government organization. Other condition monitoring
data are available on similar sites associated with datasets describing gearboxes, motors, batteries,
and other electrical components. The benefit of utilizing these datasets over data from proprietary
organizations is the unrestricted data use with appropriate citations. The bearing datasets in the
review are all equal for the accessibility dimension due to their public location. There are other
locations where these datasets may be stored with parenthetical information corresponding to other
names for the datasets. However, the risk of not providing equal access to data reduces the poten-
tial for reproducing research. The timeliness data dimension refers to how up-to-date the data are
with respect to the documentation and the point-of-contact for questions. The timeliness dimension
considers only when the data are updated.

The concise representation of the dataset refers to how well the data are packaged and

condensed to reduce the file size for storage and processing. Concise representation is considered for
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textual analysis due to the large amount of words that accompanies any text processing. Concise
representation in text analysis focuses on how to prioritize sections of text documents to improve
text analysis [428]. For this analysis, the datasets are considered concise based on the storage size
each dataset contains. The general structure for condition monitoring data can contain a range of
additional information that may or may not pertain to the bearing condition. The extraneous data
may reduce the processing rate possible for the bearing data during fault analysis. The comparison
in for this metric is to get the average collection size for each bearing dataset represented in a
MATLAB file type. A MATLAB file type was chosen because the file type is the most common file
format for each dataset. After the comparison of only raw data, a second comparison was considered
by removing all of the extraneous data except for the vibration values. Only the vibration values
were considered since these are the similar data types between the different sources.

The interpretability dimension assesses whether the data have the correct contextual labels
for inferring the data representation. Vibration can be expressed in three different units: dis-
placement (mm), velocity (mm/s), and acceleration (m/s?). The understandability data dimension
assesses how well the data are described through their data documentation. Across the dataset
documentation, similar document sections describe the methodology for generating data, the file
structure for accessing the data, and the dataset structure into the individual classes.

The objectivity dimension determines how repeatable the data are under different operating
conditions and failure modes. Objectivity in data focuses on reducing the bias that may influence
a decision. Bias in the data can cause errors when one class is weighed favorably over another class
thereby potentially skewing results [429]. Having untreated bias in algorithms and data in condition
monitoring can cause failure misdiagnosis and possible subsequent unplanned downtime. For the
objectivity dimension, the number of tests conducted and the number of bearings that failed for
each test are considered.

The relevance dimension assesses how applicable the data are in identifying the specific
labeled failure modes. The reputation dimension focuses on the impact of the dataset in condition
monitoring training and validation. In transportation systems, poor data quality or ingestion ap-
proach causes poor decision-making, leading to potentially life-threatening conditions. To that end,
researchers, such as Chuprov et al. [430] and Acharya et al. [431], have looked to incorporate data
quality metrics and data management systems to assess data before use. Including a reputation

factor with each data set creates an associated confidence value about the potential information
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generated. The number of downloads has been considered for dataset assessment as a reputation
metric; however, that metric is not tracked or publicly available across all possible hosting sites. The
value-added dimension assesses how well the training data adds new information to a CM system.
The daily data generated from a condition monitoring system can overwhelm a processing system
if not correctly managed. Hence, a criterion is needed to determine what additional data is needed
outside of the initial data collection.

The data security dimension assesses what data restrictions are in place and protection
methods are used to prevent malicious modification. Because these datasets are public, there are
no associated restrictions for their use in the research literature as long as the authors provide the
appropriate citations and references. There are instances where partial versions of each dataset are
available from third-party users. In the data dissemination world, partial or even malicious data
provides as much damage as no data. Hence, the adoption of data security frameworks should be
considered for future data dissemination to ensure data quality [432, 433].

These dataset dimensions are not incorporated into the final scoring for the dataset ranking
since many of these dimensions are corrected in the post-processing any collected data. The other
criteria from Pipino et al. [2] are considered more dataset-level criteria. In this analysis, dataset-
level criteria are associated with the methods in how the data are stored and disseminated, rather
than in the acquisition and analysis phase. An example is the concise representation dimension,
where the collected data are assessed based on how well the data are packaged for analysis and
processing. The file type, the number of significant figures, and the data type during the analysis
influence the data size. Hence, the dimension does not directly impact the data acquisition for
condition monitoring, as this dimension can change based on the user storing and accessing the data
for future use. A similar dimension consideration is the security dimension. In open-source medical
datasets, data are anonymized before dissemination to protect patient identity [434]. Similarly,
security does not necessarily impact the dataset formulation until the preparation for dissemination.
Future work could focus on these dataset dimensions for the optimization of data processing and

analysis, especially for real-time analytics.

4.1.1.3 Bearing Dataset Review and Ranking Relative to the Data Dimensions

Table 4.7 contains the final dataset ranking score relative to the different sub-scores from

the analyzed dimensions. Based on the dimensions, the datasets are grouped into two distinct
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categories. The IMS, MFPT, UO, and KAU datasets had scores within 3 points of each other across
the different categories and centered at 40. Separately, the CWRU, FEMTO, PU, and XJTU-SY
datasets were also within 4 of each other and centered at 51. The two highest scoring data sets, the
CWRU and FEMTO datasets, maintained the highest or second highest score across at least three of
the six categories. Across the different categories, the Appropriate Data Amount and Believability
dimensions differentiated the data set the most across the different categories. A part from that

the datasets that did not perform as high were usually deficient in at least two of the other four

categories.
Table 4.7: Dataset ranking based on the scores

Bearing Data A.D.A.! CompletenessBelievability F.E.? CR.3 E.M.% Total
Set

IMS 3 7 8 10 10 10 39
FEMTO 9 9 4 10 10 10 52
CWRU 10 8 10 5 10 10 53
MFPT 7 10 4 5 10 5 41
Uuo 5 10 3 5 10 5 38
PU 5 10 10 5 9 10 49
XJTU-SY 8 10 8 5 10 10 51
KAU 3 10 8 5 10 5 41

I Appropriate Data Amount
2 Free-of-Error
3 Consistent Representation

4 Ease of Manipulation

The following observations are drawn based on the scoring provided for these different

categories:

1. Appropriate Data Amount - There is no generalized consensus on the correctly needed data
relative to a healthy and failed component in condition monitoring literature. The lack of
consensus is further reflected in the datasets generated for bearings, where there are some
datasets, such as the CWRU, with very little amounts of data but reflect multiple different
failure modes, and the IMS dataset, which has abundant amounts of data but reflects the
imbalance seen in manufacturing applications in industry. The other dataset falls anywhere
along the spectrum with respect to data amount versus failure classes identified, increasing the
confusion in a standardized metric. Hence, the metric in assessing the failure modes, types,
operating conditions, and stages, was meant to capture the versatility of application for these

datasets based on the documentation rather than the direct amount of data.
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2. Completeness - In this application, the data were counted to ensure that all computed data are
present as expected for these datasets. In characterizing these datasets, a quantifiable metric
related to capturing missing data has not been presented. Hence a ratio was used to assess
the number of files and data points based on the documentation. The deviations were noted
and checked with the documentation to see if they were present in writing. The metric is not
a requirement; however, having missing data in the data generation could lead to doubts and
confusion related to further analysis. Hence, the datasets with missing data outside a feasible

limit, in this case, 2% per file or collection, were penalized.

3. Believability/ Free-of-Error - There are a number of different metrics to consider when analyz-
ing failed bearings. ISO 15243 [6] provides a comprehensive bearing ”investigation” pipeline
for analysis when they fail. Including these metrics for bearing analysis should be the stan-
dard. There are numerous analysis methods for bearings; however, they generally fall into two
categories either time- or frequency-based methods. Both techniques should be the standard
in assessing bearing damage criteria. A similar control is placed in material failure studies
where damage is measured relative to the number of loading cycles and conditions subjected

to the material.

4. Consistent Representation/ Ease of Manipulation - Consistent representation is a standard
metric to ensure that the data are presented in the manner described in the documentation.
Deviations about the structure lead to doubts related to whether the data reflects the analysis
described in the supporting documentation. Ease of Manipulation considers the different
methods one can use for the generated data for analysis. Each of the datasets reflects diagnosis
categories in comparing healthy versus failed bearings. However, further prediction on the
bearing health timeline requires data capture with respect to a metric, such as damage and

time.

The scores are not meant to state whether the individual bearing datasets are useful in
one category over another. It is more so to demonstrate how is easy it is to interpret the dataset,
utilized the gathered information, and apply any general knowledge to a similar situation. That
is the purpose of generating these datasets in the long run. The scores provide an easier under-
standing og which dataset is easier to interpret and apply to another bearing condition monitoring

application. With these categories properly, standardized metrics are needed to justify the datasets
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understandability, and guiding principles are needed to link these analyzed dataset characteristics

into the data generation process.

4.1.1.4 Data Generation Principles

In Section 4.1.1.3, the bearing datasets were originally analyzed with respect to prior con-
dition monitoring literature characteristics. In doing so, the datasets were split into different levels
of understandability and versatility based on the associated metrics with each dataset. Six guiding
principles are proposed for future dataset generation to better capture these dataset characteris-
tics. These principles differ from prior work, such as Hagmeyer et al. [416], which characterize the
dataset scenario for generating data. Instead of focusing on a case-by-case scenario, these principles
should be captured in every type of condition monitoring dataset generation. The six principles
are: Purpose, Testing Methodology, Physical Training Data, Verification & Validation, Data La-
beling/Documentation, and Data Transferability. Each principle is linked back to one or more of
the dataset characteristics assessed in the last section, along with possible links to the other criteria
listed in Table C.2 in the appendix.

Purpose. Each condition-monitoring dataset should have an identifiable mission statement, moti-
vation, or reason for generating the data. The motivation is criteria listed by Hagmeyer et al. in their
dataset characteristic list. There are formulaic methods for designing mission statements with nine
categories describing most: (1) Customers, (2) Products or Services, (3) Markets, (4) Technology,
(5) Concern for Survival, (6) Philosophy, (7) Self-concept, (8) Concern for public image, and (9)
Concern for employees [435]. The criteria presented are more tailored to businesses; however, the
right mission statement has been found to promote further ownership and accountability with the
product [436]. The tailored criteria for condition monitoring applications, keeping similar definitions,
could consider the following criteria in Table 4.8 in forming a purpose or motivation for generating
condition monitoring datasets. The guiding questions for forming the condition monitoring mission
statement help start the formulation of the other data generation principles. This guiding principle
serves as the basis for the appropriate data amount. The basis of the motivation provides the user
with the basis for how much use they can expect from the dataset in terms of what data is available,
the type, and the applications it considers.

Testing Methodology. A firm understanding of the testing methodology is needed for application

in the real world to verify the damage methods and allow for the recreation of any data generation.
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Table 4.8: Mission Statement Criteria

Original Criteria Condition Monitoring Crite- Guiding Questions for CM Criteria
ria

Customers Component What components are tested?

Products Failure Mode Data What failure modes are considered?

Markets Applications What applications are covered?

Technology Data Types What types of data are included?

Concern for Survival  Data Trends How does the data change over time?

Philosophy Testing Process How are the data generated?

Self-Concept Data Uniqueness How are the data unique?

Concern for Public Data Dissemination How is the data available for use?

Image

Concern for Employ- Data Validity How are the data verified for use?

ees

Bearings are precision systems and are susceptible to multiple failure modes that are captured in
different forms. These different failure modes could manifest in different signals captured during the
data analysis. Hence, the accurate detailing of the test methodology links changes in the data with
changes in the actual system. However, it also helps provide the users with a level of understanding
with respect to the likelihood of appearing in a real system. For example, drilling holes in the bearing
raceway is one damage method to generate bearing fault data in bearing condition monitoring.
However, the likelihood of a circular fault through the bearing raceway is minimal. Hence, the
applicability of that data outside of the research domain is small in comparison to data generated
in a run-to-failure rig. Furthermore, the testing methodology organizes the data based on the test,
operating conditions, equipment characteristics, and damage applied. Hence, this guiding principle
considers the Completeness and Consistent Representation dimensions. The testing methodology
provides a basis for verifying the correct amount of data in a valid format.

Physical Training Data. The primary data pool for offline testing should be physical data col-
lected from an experimental system. There are benefits to using synthetic data to grow datasets
and increase the likelihood of failure detection [437]. However, the basis for synthetic data requires
experimental knowledge to verify the expected failure signatures. Hence, generating physical data
can verify the expected failure characteristics in a signal for specific failure modes. The physical data
generated could then serve as a basis for synthetic data generation techniques. Similar applications
can be found in data augmentation applications. For example, Alqudah et al. [438] compares the
data augmentation and synthetic data techniques generated of a real dataset for classifying semi-

conductor defects. Similar applications can occur using Generative Adversarial Networks (GAN) for
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synthetic data generation in bearings based on accurate data [366]. The basis for these additional
computational techniques relies on a physical source of training data. The dimensions associated
with this principle are related to the Free-of-Error dimension.

Verification & Validation. Every condition-monitoring dataset should have verification and vali-
dation metrics for the generated data. Verification methods represent quantifiable differences in the
data generated, such as statistical changes in time-series data and peaks increasing in the frequency
data. Physics-based models could be incorporated into the verification to ensure the correct data
output for different failure modes. The validation processes consider the anomalies that happen
during the verification process. For the data generation process, the detected faults could assess
sensor damage, equipment faults unrelated to testing, or noise from surrounding equipment. The
verification process entails procedures to ensure the correct amount of data is included in the dataset
based on the test methodology descriptions. This guiding principle corresponds to the Free-of-Error,
Ease of Manipulation, and Completeness dimension.

Data Labeling/ Documentation. This principle encompasses the four prior guiding principles
into a single document for ease of data dissemination and use in different applications. The complete
documentation includes the reasons for creating the dataset, the methods for creating the dataset,
the data itself, and the verification and validation procedures used to ensure the data represent
the expected scenarios. The data labeling should be conducted in a manner that uses terminology
related to the equipment failure modes. For example, defects in bearings should be labeled based
on damage related to the bearing failure mode documentation in ISO 15243 [6]. The document
provides additional terminology to describe bearing faults, such as contamination, thermal, and
chemical damage. This guiding principle corresponds more so to the Appropriate Data Amount and
the Ease of Manipulation dimensions. This guiding principle provides a means to standardize and
document how data are disseminated after the data generation process.

Data Transferability. The final guiding principle considers the methods to transfer data between
different systems. Data transferability describes the methods used to move data, information, and
knowledge between different systems. For the knowledge aspect, it is possible to use techniques, such
as transfer learning, to apply the knowledge gained from the generated data to similar systems. For
the information process, expected limits learned from the generated could be scaled and applied to
other systems. For the data transfer between systems, scaling laws are needed to prove a relationship

between one system’s generated data and an existing system’s generated data. One example is the use
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of similitude in structures to verify the data, information, and knowledge between scaled and actual
structures [439]. In condition monitoring systems, these physics models can be complex depending
on the application and scenario; however, physics-informed methods could provide approximations
for physical attributes that require computationally intense calculations. This guiding principle
is considered in the Ease of Manipulation dimension. Currently, most datasets only consider the
methods for conducting diagnosis and prognosis analysis. However, providing information related
to the system to ensure the data transferability to other systems helps ensure a one-to-one relation

between similar systems.

4.1.2 Design and Condition Monitoring Methodologies

Two different areas were considered for the initial methodology formulation: design and
condition monitoring methods. For the surrogate system to act as a counterpart to the real system,
it must resemble the real-world physical system. However, repeated failure of one-to-one systems
would increase the overall cost of the CMDTr implementation. A scaled version would be needed
to integrate the surrogate system into the condition monitoring system. However, the system de-
sign needs to consider the real-world condition monitoring system and how that is implemented
alongside the designed system. The extracted content from these areas helps formulate a process
implementable with the design of new systems alongside existing production systems. In each of the
following sections (Sections 4.1.2.1 and 4.1.2.2), an overview is provided with respect to a design
process and condition monitoring process widely accepted: the Engineering Design A Systematic
Approach by Pahl and Beitz et al. and ISO 17539, a condition monitoring implementation pro-
cess. From these systems, an ensuing failure methodolgy is created to act in coordination with both

methods to form a surrogate system.

4.1.2.1 Design Process

For the design of the surrogate system in the Purposeful Failure Method, the design process
adopted comes from the Pahl and Beitz Method, termed Engineering Design A Systematic Approach
[4]. Pahl et al. splits the design process into four areas: Planning and Task Clarification, Conceptual
Design, Embodiment Design, and Detail Design. During the Planning and Task Clarification stage,
the design team begins with a task/problem to solve. The culmination of the ideas related to

the task becomes the requirement list. With the requirement list, design process moves into the

91



Conceptual Design phase, where specific problems are identified, and concept variants are formulated.
These concept variants are formulated into a principle solution, beginning the Embodiment Design
phase. During the Embodiment Design phase, details, such as the material selection and engineering
calculations, are added to this principle solution. The solution is refined to eliminate weak spots and
errors and prepare for production. The final phase is the Detail Design phase, where the production
and operating documents are finalized with detailed drawings for the solution. Figure 4.2 describes
the Pahl and Beitz method based on these four stages and the different deliverables for each design
step.

During the planning phase, the underlying motivation is revealed for the product. A mar-
ket analysis is conducted for existing products and whether a need is present during this design.
Engineers determine flaws and existing gaps for current products and create a mission statement
(product proposal). Based on a review of Fortune 1000 companies, Williams et al. [440] found that
the top- and bottom-performing companies had a separable difference in their mission statements.
Those top-performing companies had clear, identifiable components that accurately conveyed who
the company was and what it did. These criteria have been further found to give employees greater
motivation in their drive for their work [441]. In design, the mission statement focuses on the an-
ticipated design, such as the purpose of the final design. From the establishment of the mission
statement, further clarification is provided, and a requirements list is formulated.

After the initial requirement list formulation occurs, additional requirements may be added
as the design process continues. The initial formulation requires a general framework that allows
for easy integration of these checklists as design continues [442]. The basis of the requirements list
continues with the formulation of conceptual designs. During this phase, function structures and
working principles are fleshed out to link the created requirements list with the principle solution.
These function structures help manage the changing states that might occur in the product. The
working principles determine how to fulfill the functions described in the functional structures. After
a selection occurs using design trees and morphological charts, a principle solution is selected. This
solution represents the best initial design characteristics.

The embodiment design phase begins with the principle solution. Examples of work that
begins with this phase consider material for different components, and engineering calculations
to verify parts of the design. During this time, actual prototypes may be designed for certain

functions to verify how they would work. The prototypes would serve as a scaled-down representation
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using dimensional analysis to minimize the cost and maximize the information needed for these
designs. With technologies such as 3D printing, it is quicker to make functional representations
and verification during the design phase [443]. As the prototyping occurs, the design is updated
with the new information and checked for potential errors using Failure Mode and Effects Analysis
(FMEA) [444] and Fault Tree Analysis (FTA) [445]. After meeting all of the checks related to the
failure analysis method and passing the verification, the product documentation is formulated and

production begins.

4.1.2.2 Condition Monitoring Implementation: ISO 17539

As mentioned previously, the four main foci with condition monitoring systems involve data
acquisition, processing, analysis, and maintenance decision-making [71]. However, these are each
very broad topics, and if the proper design principles are not incorporated into these measures, then
the condition monitoring system is rendered ineffective. ISO 17359 provides the general procedures
for implementing a condition monitoring system [5]. The overview steps are broken down into A
cost-benefit analysis for condition monitoring, an equipment audit, a reliability and criticality au-
dit, a maintenance strategy selection, a monitoring method selection, data acquisition and analysis,
maintenance action determination, and review. These overview steps could be grouped into four
categories: the condition monitoring system motivation, the system preparation, the active moni-
toring state, and the decision-making. Figure 4.3 provides a general procedure outline and how the
overview steps are grouped into their respective categories.

An argument is made to adopt condition monitoring during the condition monitoring mo-
tivation phase. As discussed in Section 2.2 (Cost of Unexpected Downtime), the primary driving
factor for adopting condition-based monitoring is to reduce the cost of equipment downtime. The
cost analysis considers area covered in Section 2.2, such as the repair cost, labor costs, environ-
mental impact, and lost production. For example, in the field of wind turbines [446] and rail way
costs [447], the benefits of equipment condition monitoring can significantly reduce the capital costs
associated with their downtime. However, there are additional costs associated with condition mon-
itoring implementation. Yang et al. [448] found that condition monitoring increased the diagnosis
and prognosis power for equipment health predictions but condition monitoring was much more
expensive over traditional Supervisory Control and Data Acquisition (SCADA) systems. These sys-

tems are not mutually exclusive, but there are tradeoffs to consider between using SCADA over
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Figure 4.3: General procedure for ISO 17359 [5]

CM systems. These are factored into the equipment audits and reliability analysis to determine
what are the cost with the current maintenance practices in place. As found by Adu-Amankwa et
al. [68], predictive maintenance provided a greater cost reduction than preventive and corrective
maintenance; however, that is not a definite fact in every scenario and is shy a proper motivation is
needed before implementing condition monitoring.

There is some overlap between the reliability and criticality audit stages for the system
preparation phase of condition monitoring implementation. At this juncture, failure analysis tools
are used to determine what areas of the equipment are monitored. The FMEA is considered the
standard in most design methods and in the manufacturing industry [449]. However, other fail-
ure tools, such as the fault tree analysis and root cause analysis methods (i.e., cause-and-effect
diagrams) [450] are also employed to map equipment failures to critical functions and provide a
rating. A maintenance strategy is eventually chosen, after equipment failure modes and criticality
are determined and combined with the prior motivations surrounding cost. If the method is not

a CM-based maintenance strategy, then other methods are put in place. A monitoring method is

95



needed to determine the key performance metrics if a CM-based strategy is used. For industrial
practices, various data acquisition methods have been tested and implemented in each scenario. For
example, in wind turbines, Liu et al. lists vibration, acoustic emission, lubricant, power quality,
microscope, and temperature as methods to acquire and implement condition monitoring [388]. The
monitoring method should have associated standards related to their implementation depending on
another of different standard organizations [451].

The active monitoring stage is when data related to the equipment conditions is collected
to start making decisions related to the overall equipment’s health. After the establishment of the
equipment’s normal routine or ”baseline”, different diagnostic and prognostic controls are determined
to asses the degrading state of the equipment. These controls can vary based on the parameters
collected from the equipment and the underlying condition. For example, in vibration, there are
certain frequencies or vibration limits [389] that can determine when the equipment is about to fail.
Additional information can come from equipment manufacturers, such as temperature limits from
SKF [94]. However, these standardized limits vary based on the equipment size and configuration.
When one of these limits is tripped, though, the decision-making phase for the condition monitoring
system begins. During the decision-making phase, a schedule is determined to enact a repair that
involves taking the equipment offline. Depending on the CM system, the repair schedule could occur

automatically or through the use of a human.

4.1.2.3 Synthesized High-level Methodology Relationships

Generally, a similar process is evident from the design and condition monitoring methods.
Both methods begin with the underlying motivation and analysis to determine if there is enough
justification for their implementation. Whereas the design method begins with a requirement list to
motivate the initial concepts for the product, the condition monitoring system considers the different
monitoring methods that enable the maintenance strategy. In the design process, a final concept is
chosen with design calculations and considerations to ensure the working order of the final product.
For the condition monitoring process, the monitoring method is implemented and tuned to the
equipment for the condition monitoring system. During this period, diagnosis and prognosis criteria
are implemented and updated as the system collects data. For the condition monitoring process, the
final system provides decision-making power to the manufacturers to perform maintenance. For the

design process, a final product is designed that fills a niche market. Hence, to integrate PFailM, the
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process considers the inputs from the failure analysis study during design and condition monitoring
to formulate the damage generation for the component. Data from the data generation is collected
using the monitoring methods considered and selected as part of the design and condition monitoring
process. The data are related back to the original system utilizing equipment knowledge, such as the
geometric, kinematic, and dynamic constraints expected from the surrogate triplet to their related

quantities in the physical triplet.

4.1.2.4 Modeling Approaches

The basis for the PFailM approach is centered around using a surrogate system to create
an offline environment, as mentioned earlier in Chapter 3. Hence, a surrogate model based on
known physics phenomena is employed to consider the another using a Mass-Spring-Damper (MSD)
system. The MSD system represents a means of relating data between bearings of different sizes
based on understanding the known physical transformations between a source system (surrogate
triplet) and a target system (physical triplet). However, other modeling approaches make it possible
to establish the relationship between the physical and surrogate triplet when relating data. The
different approaches are broadly formed through either numerical or analytical modeling approaches.
Additionally, prototyping modeling approaches could enforce the relationships between the surrogate
and physical triplet.

Numerical models consider a large number of mathematical equations built around known
physical quantities to approximate a solution to a physical system. Von Neumann et al. [455] are
considered to have the first work in the modern approach for numerical modeling when investigating
the errors associated with inverting large matrices. Matrix manipulation is a fundamental part of
numerical modeling due to the large number of equations associated with each physical system. Nu-
merical modeling has been implemented for bearing analysis due to known geometric and material
constraints to form dynamic parameters [112, 143, 336] through finite element analysis. The vibra-
tion formulation can consider nonlinear and linear tendencies for these parameters based on known
geometric, kinematic, or dynamic constraints related to the physical system. However, the numerical
solutions’ performances are based on how well the parameter approximations are conducted and the
nodal approximation associated with each modeled object. As the number of nodes increases, the
number of equations and parameters increases exponentially, increasing the necessary computation

power and time to reach a solution.
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Analytical models consider a set of mathematical equations based on specific parameter
relationships to determine a solution as it changes concerning time. The type of analytical models
used for bearings depends on the desired approximation. For example, in crack fatigue, fracture
mechanics are employed to estimate the growth length of a crack using the Paris crack growth model
[340, 341, 342]. MSD models [114, 337] are another form of analytical modeling used to approximate
bearing vibration based on a known set of equations associated with different physical parameters
associated with the system. The physical approximations determine the number of equations needed
for the solution, similar to the format of the numerical solution. However, the analytical solution
returns an exact response based on the approximations and equations formulated for the analysis.
A disadvantage of analytic approaches is that these closed-formed models may require a deeper
understanding of the system that may not always be accessible. In this case, the model formulation
cannot occur in a closed-form and more numerical approximations are required.

The prior methods consider more so data generation through computational simulation
and these are further discussed later for the bearing physics modeling in Section 5.1.1.1. Other
forms testing to either a similar size and configuration to the end product expenditures faced by
small, high-risk projects in the early 2000s [452] to increase cost savings. The prototype process
allows the simulation of final products using scaled models to reduce the cost of testing full-sized
objects. For example, Rothhaar et al. [453] demonstrated the approach for creating a prototype
environment to simulate the change from hovering to wing-born flight on a scaled model. In addition
to demonstrating and validating the design of the prototype, the test bed created, as a result, enables
successive model testing as design considerations change for the prototype model. However, for
the prototype to relate to a real system, the scaled system demonstrates the need for established
relationships in the physical quantities between the scaled solution and the final solution.

In this approach of the surrogate triplet, surrogate models are chosen due to their gener-
alized approximation of a system versus the need for high-fidelity quantities found with numerical,
physical, and prototyping applications. Surrogate models are formed as mathematical models to
determine an outcome that is not easily measured or approximated. Despite the numerous models
and methods for approximating bearing vibration, the numerical methods and analytical models
are heavily dependent on the parameters approximated. For prototyping, the approximation of
the physical parameters can vary greatly based on the physical relationships between the scaled

model and the actual application. Hence, the surrogate triplet takes elements of each to create a
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surrogate system to approximate the data that could come from a physical counterpart. It should
be noted that the physics parameters are still employed based on known constraints related to the
system, as overgeneralization does increase the risk of no relation between the different systems.
The relationship of the generated data from the surrogate to the physical triplet is then analyzed
using a generalized analytical model representing a bearing system in either environment. The data
relationship between the physical and surrogate triplet is discussed more in Chapter 5, whereas the
system design for the surrogate triplet as it relates to the physical triplet for bearings is discussed

in Section 4.2.

4.1.3 Purposeful Failure Method

The PFailM was designed to compliment the previous design formulations drawn by Pahl
and Beitz et al. [4] and ISO 17359 [5]. The PFailM aims to generate condition monitoring data for
generalized applications. Using this method, a surrogate system is designed to resemble the original
equipment, whereby failure data is generated to resemble the failure modes anticipated. The system
design considers the intrinsic knowledge to build the system and then uses these methods in the
transfer back to the original system the surrogate was designed to represent. Some of the method
and methodology characteristics are similar to Function Failure Design [454]. Using Function Failure
Design, the functions and failures are linked together to improve the original concept. The concept
generator phase from Pahl and Beitz et al. is modified to focus the concept design on addressing
these identified failure modes with their corresponding functions. Fault propagation analysis is
another complementary technique that serves to map how faults progress through complex systems
[455, 456]. The analysis begins with identifying a failure in a particular function and how it affects
subsequent systems. The formulation of these failure modes and process allows for the automatic
generation of failure scenarios, such as the work conducted by Irshad et al. [457]. They worked to
model early human failures in complex systems and how they affected equipment life and failure
scenarios. The primary difference between PFailM and fault propagation analysis and Function-
Failure Design stems from the generation of data specifically for condition monitoring systems. In
this manner, the method purpose is to help augment the training of CM systems for their integration
into production equipment by providing instances of failure data before they begin to occur.

The initial formulation of the Purposeful Failure Methodology is meant to be slotted into

the design and condition monitoring methods discussed in Section 4.1.2. Figure 4.4 and Figure 4.5
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shows where PFailM is meant to be slotted in with design and condition monitoring methods. PfailM
is meant to be integrated inside of the definitive layout portion of the Pahl and Beitz et al. method.
During the time of the definitive layout, the prototype and validation portion could incorporate
data generation for differing failure modes when implementing the purposeful failure method. For
the condition monitoring implementation, PFailM is implemented alongside the monitoring method
selection and data acquisition selection and implementation. During these steps, it is possible that
an offline model could be leveraged to serve as a validation or expectation for how the monitoring

method performs as equipment degrades.
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Figure 4.4: The integration of PFailM with Figure 4.2

In general, though, PFailM contains six major steps to cover the design, implementation
and generation of a surrogate system to resemble a real-world manufacturing system. The steps
consider the data criteria, design process, and condition monitoring implementations to plan out
the methodology for standardizing data generation. These steps are: Identify functions and fail-
ure modes, Select damage implementation, Determine damage propagation, Select data acquisition
methods, Design a surrogate system and generate data, and Verify and transfer data to the real-
world system. Figure 4.6 shows the abreviated steps with corresponding sub-steps below. Sections
4.1.3.1 through 4.1.3.6 consider the additional reasoning behind each step in the method. During
each step, parallels are drawn to the aforementioned areas of data criteria, design, and condition

monitoring implementations in both their similarities and where they diverge.
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Figure 4.5: The integration of PFailM with Figure 4.3

4.1.3.1 Identify the Functions and Failure Modes

Step Purpose: To identify the functions most critical to the equipment and production operation
whereby a failure could cripple the greater functionality over the plant environment. Determine the
failure modes that would affect the critical equipment functions through there different methods of
causes and effects.

The function and failure mode identification is the first step in PfailM primarily because it is
a common enough starting point between the data criteria, design process, and condition monitoring
implementation. In this step, the motivation and different failure modes are determined while adding
contextual knowledge for the overall system. In some condition monitoring systems, the identified
functions are easily determined; however, in complex systems the link between function and failure
modes can be lost. Hence, the reason for other methods such as the Function-Failure Design method
[454]. The initial formulation for the methodology was to consider components, such as bearings
shown in Figure 4.7. However, the method can extend to how robots may fail over time and different
processes as well.

The equipment functions should be readily available based on the equipment documentation

or knowledge and how they are integrated into the existing process. Depending on the level as shown
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Figure 4.6: The Purposeful Failure Methodology

in Equipment 4.7, the function list can stem from one or two at the component level to hundreds at
the process level. As an example, a function at the component level may involve translating motion
between two subsystems as is done with a bearing. The function of a gear is to increase the force
or increase the speed between two subsystems. At the system level, a cobot robotic arm (i.e., a
URI10 or Kuka Iiwa) system could consider joints as multiple subsystems, which are in turn made
up of multiple different component, such as bearings and gears. There may be an overall function
to the robotic arm; however, in response each of those components for the different subsystems and
components require consideration as the failure of one could offset the control of the overall system.
The level and depth varies depending on the starting equipment level. In truth, the determination

of those critical functions is up to the user. Using design processes, these functions are easily
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Figure 4.7: The different equipment levels considered under PFailM

disseminated if not provided on hand by any equipment documentation.

After determining the functions, the secondary portion of the step is the failure mode
determination. Steps and methods already exist in place to determine the equipment failure methods.
The preferred tool to use for this analysis is a Failure Modes and Effects Analysis (FMEA) [444].
Figure 4.8 contains a breakdown of the different failure events as they correlate to identified functions.
There are nine columns for an FMEA with a tenth column added to make potential design changes.
Each column helps to organize the failure modes and rate them against other failure modes with
other equipment functions to determine and address failure modes in a certain order. For PFailM,
the FMEA organizes the failure modes clearly to determine which methods to use for recreating
failure in the following system. The knowledge contained in the table is necessary to consider in the
following steps.

Goldberg et al. [458] published a technical report from NASA that provided a list of 15

different methods to consider in system safety reliability and analysis tools, among which an FMEA
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Equipment Function

Potential Failure Mode

Potential Failure Effect

What is the Equipment Function?

In what ways can the step go
wrong?

What is the failure impact?

Bearing — Rotational Motion

Fatigue Damage

Bearing Destruction, Loss of
Rotation and Support

(a)

Severity

Failure Causes

Occurence

How severe is the impact?

What causes the failure to occur?

How frequently does the damage
occur?

1 — 10 (10 is a catastrophic event)

Inadequate lubrication, long life,
contamination, damaged
installation

1—10 (10 is a frequent event)

(b)

Process Controls

Detection

Risk Priority Number
(RPN)

What are the existing controls?

How likely is detection?

How frequently does the damage
occur?

Periodic vibration measurements,
speed monitoring

1 —10 (10 means a low probability
of detection)

Severity * Occurrence * Detection
=RPN

(c)
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Figure 4.8: Example FMEA record showing bearing fatigue damage mode. In general, these columns
are represented all in one row. (a) contains the Equipment Function, Failure Mode, and Failure
Effects, (b) contains the Severity, Failure Causes, and Occurrences, and (c) contains the process
controls, Detection, and Risk Priority Numbers.

was listed as one of the methods. Other failure analysis methods considered FTA, Probabilistic
Design analysis, and Cause-Consequence analysis. These methods are useful for failure mode iden-
tification and could substitute or supplement the knowledge gained using an FMEA. Scriboni et al.
[459] considered the use of FMEA and FTA to identify and track the effectiveness of different failures
within a UR robotic arm. They showed that similar failure modes were identified with similar risk

probabilities. Song et al. [460] used FEA to model potential failure modes within wind turbines and




determine the potential failure effects throughout a complex system. Abdelghany et al. [461] used
cause-consequence graphs to model reliability in electrical networks. They utilized an existing set of
failure modes to consider the different cascading effects throughout the system. The failure analysis
tool selected should be able to provide comprehensive knowledge on what causes failure in the end
and how it affects the existing system.

Step Outcomes: This step determines an understanding of the equipment functions and failure
modes. Through the use of design and failure tools, already widely used in industry, documentation
is provided for the motivation in future failure testing and how the testing links back to the physical
system from the surrogate system. Depending on the equipment level, the number of functions and

failure modes varies and may drive the creation of more than one surrogate system.

4.1.3.2 Select the Damage Implementation

Step Purpose: Determine the critical failure modes from the conducted failure analysis in Step 1.
Consider the different failure effects and select different methods of recreation to induce defects of
similar scale in the bearing system.

Damage implementation methods come from the original failure analysis conducted in Step
1. The failure analysis tool determines the failure causes and effects. A ranking is established
as a result of the assessment. A criteria is then selected to determine what failure modes are
recreated for the system. The criteria for determining the number of failure modes can vary. It
could be determined based on the Risk Priority Number (RPN) from the FMEA using a threshold
or percentage or based on a subscore from two categories (Severity, Occurrence, or Detection).
Depending on the failure causes different failure modes are recreated using different means to create
life-like damage. For a component, such as a gear, researchers have chipped and damage teeth to
elicit a failing gear frequency [462, 463]. In both instances, the researchers have listed the damage
method and additional factors of size and location to relate the damage to the entire system. The
method chosen should be repeatable and ensure minimal disturbance to the rest of the system.
System-level equipment, such as robotics, could consider the use of a limiter to induce backlash on
a robot joint [464]. The subsequent deviation could simulate an anomalous condition affecting the
overall system. Run-to-failure testing is another option, where a system is run outside of its normally
expected failure modes and then stopped when a condition is met. This testing is commonly used

for bearings[408, 409]; however, if configured incorrectly at start-up, it can lead to widely varying
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data responses. Incidentally, using purposeful failure methods, these methods must be controlled
with tools to enable the best recreation of damage for data generation method. Figure 4.9 shows a
bearing damaged in a late-stage defect. It seems that the damage induced is meant to resemble a
late-stage defect due to the surface area of damage; however, the crisscrossing lines seem to indicate

an uncontrollable nature during the recreation.

Figure 4.9: Example of bearing damage through purposeful failure means.

Step Outcomes: The method for damaging a system is selected and the means are provided for

how to recreate the cause and subsequent damage effects to replicate physical damage.

4.1.3.3 Determine the Damage Propagation

Step Purpose: Determine metrics to determine the scale of damage as it occurs during test.
Determine health indicators for potential changes during data collection and generation.

Damage propagation is defined as the steps to increase damage during testing. In the
methodology framework, there are two types of damage possible in the system: ”Run-to-Failure”
and 7 Artificially Generated Failure Data”. Run-to-failure testing occurs when a component or
system runs to a predefined failure point after a certain length of time. The predetermined failure
point indicates some kind of condition that has occurred on the equipment that is induced by the
starting conditions. In the bearing dataset generation from the IMS, FEMTO, XJTU-SY bearing
datasets, the bearings are overloaded in terms of there applied load and in relation to there fatigue
load limit [408, 409, 414]. For materials, there are cyclical cycles that flex the material until it
reaches its breaking point. Damage can also be measured after a certain number of cycle have
passed in the system and a full breakage has not occurred. The other possible method is to use

accelerated failure testing. At certain points in a system predetermined amounts of damage or an
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adverse condition to speed up degradation relative to the overall system lifetime [465]. In bearings,
this could be the application of small defects to the bearing raceways and rolling elements. The
CWRU, PU, UO, MFPT, and KAU [410, 413, 412, 411, 415] used seeded bearing failure data by
marking the bearing surface using abrasive tools. By using the periodic damage, failure is sped up;
however considerations are needed to ensure that the bearing damage retains the like like expectation
as damage increases.

Health indicators provide different measures of equipment life as the damage increases in the
system. In battery testing, the capacitance determines what the life stage for the equipment [466].
As a battery degrades, the holding charge reduces over time. The sensory data indication from the
testing can provide the indication of degrading health. In the FEMTO bearing dataset [409], the
stopping condition was based on the bearing vibration amplitude. The stopping condition for the
IMS bearing data [408] was the amount of material removed during testing and was deposited in the
bearing oil. Hence, these health indicators should correlate to the equipment degradation to convey
how damage changes over time.
Step Outcomes: Metrics are assigned to characterize the change in equipment health as it relates
to the damage implementation method. Assigned at each stage of damage are health indicators to

signify the changing equipment state and provide a stopping condition for any induced damage.

4.1.3.4 Select the Data Acquisition Systems

Step Purpose: Select the data acquisition system for the surrogate system based on the original
equipment design.

The data acquisition methods are a necessary step to ensure that the data collected in the
surrogate system replicates the configuration in the real world system. For equipment condition mon-
itoring, vibration, temperature, acoustic emission, lubrication provide measurable data to changes
in the equipment condition. However, each of these methods require tuning depending on the ap-
plication. For example, any vibration system must ensure that the Nyquist frequency/criterion is
met. The Nyquist frequency is the minimum sampling frequency needed to measure a signal and
prevent anti-aliasing in the signal. For acoustic measures, directional microphones filter out back-
ground noise in non-measured zones. For more detail on these different data acquisition methods,
the reader is directed back to Section 2.4 in Chapter 2.

Th other consideration from this step for the user is how to combine additional data ac-
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quisition methods to increase confidence in any prediction. Sensor fusion is a common application
for consideration due to the lower cost associated with computational resources and the widespread
application of multiple sensors. Sensor fusion is the process of combining sensor data from multiple
different disparate sources to increase the amount of available information [467]. The combination of
different data sources allows for greater accuracy in reaching the correct conclusion, where in some
situations, the signal is confused when using only one sensor. This step provides the user to bring
in additional sensors to test new data streams. These new data stream could then be added to real
world system depending on their impact to the overall system.

Step Outcomes: The data acquisition systems are documented in relation to the real world system

and deployed to the surrogate system and integrated to the test plan.

4.1.3.5 Design the Surrogate System and Generate Data

Step Purpose: Design and build the surrogate system using design relationships of similitude
to relate the experimental system to the real world system. Generate the data by combining the
previous four steps into an experimental plan with the corresponding failure scenarios.

During this step, the experimental procedure is formulated based on the prior four steps,
the surrogate system is designed, and the data generation begins. The experimental procedure
begins with a description of original equipment and why the equipment requires the generated data
(i.e., verification and validation of design, missing training data etc.). The failure modes are listed
in order of priority with the corresponding damage implementation methods and the metrics for
damage propagation. At this point, the formulaic procedure describes how to create the associated
simulated damage in the surrogate system.

After formulating the experimental procedure though, the secondary consideration involves
the preparation of the surrogate system. One manner to view the surrogate system is as a pro-
totype to the real world application. Building scaled prototypes is a common enough occurrence
within design to validate the method and performance for how the system performs in the actual
environment. A common application in the aircraft industry is to use additive manufacturing to
build scaled prototypes for aircraft parts and provide verification and validation of the components
using blockchain [468]. He et al. [469] showed how digital twins could also use physical prototypes
in their design phase to demonstrate different control structures as they move within a system. Fur-

thermore Coutinho et al. [443] provided a review of prototype concepts for implementing similitude
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for designing prototype buildings with real counterparts.

In prior condition monitoring applications, the primary emphasis has been to replicate
systems that occur in industry. In PFailM, a further step is taken to ensure a level of design
similitude between the real world applications and the surrogate system. Similitude is defined as
a system that meets geometric, kinematic, and dynamic relationship goals between the a scaled
environment and the real world environment [470]. The early discussion of the similitude theory
could be traced back to a Dialogues Concerning Two New Sciences by Galileo Galilei [471] and have
been used in a variety of engineering applications. Vassalos et al. [470] used similitude as a means
to simulate how scaled marine structures operate in the real world environment. Another example
of the use of similitude is through the application of wind tunnels [472]. Wind tunnels simulate the
effects seen on aerospace structures in the real world through a scaled representation. Casaburo et
al. [439] considered the use of similitude to design and build scaled models of structures to validate
how they would act in the real world.

Similitude is capable of being carried out using dimensional analysis. Dimensional analysis
is the study of how to relate physical quantities through the identification of their base relation-
ships [473]. The concept was first introduced by John Fourier in 1822. Since then, the common
methods for applying dimensional analysis is using Rayleigh’s Method through the formalization of
the Buckingham Pi Theorem [474]. During the process, the scaling laws are derived to relate the
physical quantities of different systems to each other. These applications occur in vibration analysis
as a means of verifying the experimental response to see in such systems [475]. Through the use of
similitude, it is possible to design a scaled system for the surrogate system for condition monitoring.
The underlying derived relationships are utilized to then transfer data from the surrogate system to
a real world system.

Step Outcomes: The underlying experimental procedures and systems are designed. Data genera-
tion occurs according to the procedures with the experimental system. During the data generation,
documentation should occur ensure the proper operating conditions and labels are assigned the data

after the data generation.

4.1.3.6 Verify and Transfer the Data

Step Purpose: Verify the presences of the failure criteria in the bearing data. Implement physics-

informed and physics-based data to link the surrogate system data back to the original equipment
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in operation.

The first portion of this step considers how the generated data are analyzed to verify damage
is present in the data generated. For this step, an exploratory data analysis is considered to determine
the different changes in the data. Tukey et al. [476] provided a number of different techniques in
his published work on exploratory data analysis (EDA), such as box-plots, histograms, and bar
charts. The analysis could occur with features or raw data to determine overlap between different
distributions. For very clear distinctions in the data, the EDA could differentiate the different types
of fault conditions from baseline scenarios.

However, physics informed measures are adopted to confirm the potential slight changes
that might occur between systems monitored through condition monitoring. The techniques vary
between the different condition monitoring applications and data types. For vibration, acoustics, and
ultrasonic data, frequency analysis is a common metric to determine the changes in data related to
changing states for equipment health. For example in bearings, there are four rotational frequencies
that increase in amplitude as damage increases. For gears, there is a tooth mesh frequency that
becomes apparent as cracks in the teeth occur. Digital and physical filters may need to be employed
to ensure that the correct signals are captured and remove potential noise from the data.

Data transfer occurs after the verification that confirms the data represented contain the
necessary failure criteria. The data transformation occurs using either data-driven or physical pa-
rameter analysis through the dimensional transformation and scaling laws created for the similitude
scale. The combination of the data-driven and physical analysis changes based on the overall system
requirements. One method to verify the data transfer is by using data overlap [477]. The overlap
will determine what data are transferable and what do not conform to the physical system. Those

data may be discarded or further transformed to determine the deviations in the data.

4.1.4 Section Recap: Purposeful Failure Methodology
This section provided the basis of answers to two questions:

i.) Research Question 1.1: How are the existing bearing datasets deficient for training manufac-

turing condition monitoring systems?

Answer: ¢ Based on prior literature for Pipino et al., Hagmeyer et al., and Lessmeier et al., there

are identified criteria for assessing datasets and characterizing their effectiveness for different data
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scenarios as was attempted by Hagmeyer et al.. However, in terms of condition monitoring data,
there has not been a deeper analysis of how well these datasets meet the actual criteria. In the
conducted analysis, it was found that the datasets with a greater amount of contextual knowledge
performed better against the criteria from Pipino et al. in terms of a general analysis to describe
data attributes. While some datasets did perform well, there were lacking characteristics related
to understanding the data failure criteria, the transference of data between different failure modes,
and the labeling of different bearing failure modes. To clarify, while each dataset had healthy and
failure data separated, it was difficult to understand the differences in the data and the failure data

generation in some respects.

ii.) Research Question 1.2: What methodology criteria are necessary to fill gaps for condition

monitoring datasets?

Answer: By analyzing design and condition monitoring methodologies, a set of criteria were
extracted to ensure standardized data generation. The analyzed steps were: Identity functions
and failure modes, Select damage implementation, Determine damage propagation, Select data
acquisition methods, Design a surrogate system and generate data, and Verify and transfer data to
the real-world system. The dimensions identified from Pipino et al. are captured in the steps. The
Appropriate Data Amount dimension is ensured by determining the expected failure modes, their
damage stages, and varying operating conditions. Planning out the data acquisition system within
the surrogate system should ensure Consistent Representation and Ease of Manipulation for any
data generated. The data’s Believability, Free-of-Error, and Completeness dimensions are verified
using the data verification and transfer method in the final step. These dimensions are tied to prior

condition monitoring criteria to cement their position and ensure data standardization.

4.2 Failure Methodology Design: Bearings

The generated failure methodologies are created as a means to investigate RQ1.3 using the

PFailM from Section 4.1:

i.) Research Question 1.3: How much data are needed to train a bearing condition monitoring

system for diverse failure modes?

This section investigates and standardizes the different metrics in identifying bearing damage
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and formulates them into four damage methodologies: Fatigue, Contamination, Lubrication, and
Brinelling defects. These failure methodologies are tied to generalized bearing failure modes. Each
subsection with Section 4.2 describes a step related to the PFailM implementations for each bearing

failure mode.

4.2.1 Identify Functions and Failure Modes: Bearings

Bearings are common applications with very defined functions, as discussed in Section 2.1.
The primary focus of this dissertation work is conducted with deep groove ball bearings. From SKF,
a major bearing manufacturer, Deep Groove Ball Bearings [478] are versatile and widely used. They
can support radial and axial loads with low friction, noise, and vibration. The primary purpose of
this bearing type is to provide a transfer of load and motion between two different systems in a
range of speed applications. Hence, motors, robots, gearboxes, and CNC equipment use deep groove
ball bearings.

As mentioned previously, bearings are a common failure point in rotational equipment. Due
to their wide application, there are multiple different causes of failure. SKF identifies four probable
causes of failure: Lubrication, fatigue, contamination, and improper events (operating or assembly
errors) [7]. A cause of failure from lubrication is listed as either using the wrong kind of lubrication
or the incorrect quantity of lubrication. Fatigue failure stems from the bearing reaching the end-of-
life stage and has overstressed certain points on the bearing. Contamination causes failures due to
different types of particles entering the bearing raceways and interfering with the rolling elements.
Finally, the improper events cause improper bearing operation or assembly failures. An improper
bearing operation situation corresponds to using a bearing in the wrong design situation, such that
it exceeds the load or speed limits of the bearing.

As these are the potential causes of failures in bearings, there are categorized effects of bear-
ing failures documented by ISO 15243 [7]. ISO 15243 describes the different bearing failure modes
categorized into six major categories with 14 distinct failure types across the different categories.
Figure 4.10 shows the organization for the different categories of failure and their corresponding

types. The general meaning for each failure mode is as follows:

i.) Rolling contact fatigue failure occurs from repeated stresses during operation from the rolling

elements passing over the surface of the raceways. Subsurface means that the cracks begin
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Bearing Failure Modes

ii.)

iii.)

iv.)

—» Subsurface initiated fatigue ‘

—»  Rolling Contact Fatigue =~ ——

—> Surface fatigue ‘
—> Abrasive Wear ‘
> Wear I
—> Adhesive Wear ‘
—> Moisture Corrosion ‘
> Corrosion — —> Fretting Corrosion ‘
—> Frictional Corrosion ’—
—> False Brinelling ‘
—» Excessive Current Erosion ‘
— Electrical Erosion —

—»  Current Leakage Erosion ‘

—> Overload Deformation ‘

—ﬂ Plastic Deformation —

—» Indentations from particles ‘

—> Forced fracture ‘
—JI Cracking and Fracture =~ ——— Fatigue fracture ‘
—> Thermal cracking

Figure 4.10: Bearing failure modes from ISO 15243 [6]

below the bearing surface, and surface fatigue is caused by asperities on the surface going

through plastic deformation.

Wear describes bearing failures that occur due to surface material removal related to sliding
or rolling contact between the raceways and rolling elements. Abrasive wear is caused by the
sliding presence of hard particles over the bearing surface. Adhesive wear is caused by the

smearing of material between one surface to another surface.

Corrosion occurs due to a chemical reaction with the bearing surface. Moisture corrosion is
caused by the bearing surface coming into contact with some aggressive substance that causes
rust to form. Frictional corrosion occurs due to the micromovements between the surfaces,
leading to the generation of rust. Frictional occurs from fretting at the fit interfaces and false

brinelling from vibration.

Electrical erosion is the localized microstructural change through an electrical current. Ex-
cessive current erosion occurs when an electrical current passes from one bearing ting to the

other through the rolling elements and their lubricant films. Current leakage erosion occurs
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continuously as electrical current passes through the bearing, creating a patterned response

on the bearing raceway.

v.) Plastic deformation is caused when the yield strength of the material occurs. An overload
deformation happens when the bearing is stationary and is caused by a shock load. Indenta-
tions from particles occur when small elements are overrolled between the rings and the rolling

elements.

vi.) Cracks occur when the material’s ultimate tensile strength is locally exceeded, and fractures
occur when the crack occurs through a component section. Forced fracture occurs due to stress
concentrations. Fatigue fracture occurs when the fatigue strength limit in bending, tension,

or torsion results in cracking. Thermal cracking occurs from frictional heating in the bearing.

The above list considers the general possible failure causes and resulting failure types. How-
ever, how these occur in industry depends on the equipment and condition. For example, there is
a low probability for an electrical failure to occur in a bearing, not an electrical application. These
failure modes are organized into an FMEA, where each failure type is considered a possible failure
mode. The FMEA conducted is based on the maintenance documents from SKF [7] and Koyo [479].
These are both maintenance documents that describe bearing failure modes.

Figure 4.11 contains the FMEA breakdown for the general failure modes for bearings. The
failure causes and effects primarily come from SKF [7] and are further supplemented by the document
from Koyo [479]. The primary reason is that SKF follows the ISO classifications for documenting
bearing failures. The failure severity determines whether the bearing damage effects contained
fractures (10) versus surface damages (7). These are the two common damage types listed outside
of a change in appearance to the bearing elements, as documented in each failure mode. The failure
causes were determined based on whether there was a strong correlation to the particular failure
mode, as documented by SKF and Koyo. The exception to this rule was for fatigue failures, as these
are common regardless of failure causes. Hence, even weak correlations were recorded for these cases.
The failure occurrence is determined based on the representation of the four different failure causes
as listed by SKF earlier: Lubrication, Fatigue, Contamination, and improper events (operating or
assembly errors). The maximum possible score was 10, with the point values broken down as follows:
4 - Lubrication, 3 - Fatigue, 2 - Contamination, and 1 - improper events. These are ranked based

on the distribution of failure causes from bearings listed in the SKF maintenance document [7].
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Figure 4.11: Generalized FMEA focusing on the bearing severity and occurrence concerning the
failure causes and effects from [7]
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The detection and potential process controls were not listed as part of this FMEA primarily
due to the number of possible methods for reducing these potential failures. Based on the failure
modes, the common control to reduce bearing failure is proper installation, operation, and continuous
maintenance to ensure smooth operation. Standards are listed for the proper installation procedures
with the bearings from their respective companies. In addition, there are several methods for
detecting bearing failure within condition monitoring technologies alone. It was felt that there was
no discernible difference in the present scores by adding these values to the RPN calculation.

Based on the RPN calculations, the higher RPN calculations come from those failure modes
with possible failure cause categories in general and not necessarily from a higher severity. For
example, in the fracture and cracking sections, the failure causes come from improper design and
installation. Hence, the lower risk number if there is an assumption that the equipment is profes-
sionally maintained. The highest RPN values, outside of fatigue, come from those most affected
by damage to the bearing elements caused by a mixture of contamination and lubrication. The
fatigue represents the only natural failure mode that could occur in bearings. As a note, it should
be considered that these values vary based on the application.

Extracted Information: From this step, the general bearing failure modes are matched up to
potential failure causes and effects. In terms of RPN, the top four bearing failures with the highest
risk numbers correspond to fatigue cases, abrasive wear, and indentations from particles. These
different failure modes provide a basis for determining the damage implementation methods and the

damage progression stages.

4.2.2 Select the Damage Implementation: Bearings

The failure mode descriptions best summarize the damage implementation methods for
bearings. As mentioned earlier, the primary failure causes for bearings come from lubrication,
contamination, fatigue, and operating/assembly errors. The failure effects associated with these
different bearing failure modes cause surface damage to the bearing raceways or rolling elements.
These can cause fractures and cracks in the bearing elements in certain severe cases. However, before
that fracture point, craters, dents, and defects form in the bearing surface to represent progressing
damage. For this bearing failure testing, four different bearing damage methods represent the
potential failure causes and the subsequent effects. The methods are described in each subsection

as follows: Fatigue (Section 4.2.2.1), Lubrication & Contamination (Section 4.2.2.2), and Bearing
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Assembly Defect: Brinelling (Section 4.2.2.3). Each of these sections describes the methods for how
the damage is applied to the bearings. Section 4.2.3 describes the stages of damage after the initial

damage implementation and the stopping conditions associated with the damage progression.

4.2.2.1 Bearing Fatigue

Bearing fatigue is the commonly tested failure mode in research and data generation appli-
cations. Each of the eight datasets in the dataset criteria section (Section 4.1.1) investigates this
failure mode. The investigations use either "natural” or ”artificial” damage to show the growing
defect over time. Natural failure testing involves running the bearing to some predetermined point
of failure. In the IMS dataset, the end condition was once a significant amount of bearing material
was removed from the bearing raceway and rolling elements. In the FEMTO, PU, and XJTU-SY
datasets, the stopping condition was determined based on a vibration limit for the system. The
other datasets use methods of artificial damage. Artificial damage for fatigue cases involves induc-
ing defects that resemble fatigue damage on the bearing surface. The CWRU dataset used an EDM
machine to create their bearing defect sizes. The PU dataset drilled holes and used an engraver to
create their defects for their artificial tests. The KAU dataset does contain data from the CWRU
dataset but does not clarify how they generated their defects. The MFPT and UO do not say how
they generate their defects other than the locations.

A Dremel tool and tabletop CNC were used to test and induce defects on the bearing
raceways to replicate the fatigue damage for this testing. Due to the bearing material’s hardness,
an abrasive tool bit works away at the bearing surface in each instance. The Dremel tool was used
initially to determine if enough material would be removed to induce a defect of the expected size.
However, there were concerns about controlling the defect size as the defect became larger. The
tabletop CNC was a Nomad 3 from Carbide 3D. The spindle ran at 24000 RPM and was powered
by a 130 W Brushless DC motor. The tool used to induce the defect was a burring tool designed for
grinding applications and performing contouring. The defect sizes were based on the bur tool size.
The bearings for this type of testing had polymer cages to allow clear access to the bearing raceway.

Figure 4.12 shows the test area with the tool for the fatigue fixture case.

117



Figure 4.12: CNC Engraving Test area

4.2.2.2 Bearing Contamination & Lubrication

The most common unexpected bearing failure mode stems from poor bearing lubrication.
The lubrication inside a bearing is crucial to reducing the metal-on-metal contact that would oth-
erwise occur [480]. A rolling element bearing should reach elastohydrodynamic lubrication if it is
well-lubricated. Elastohydrodynamic lubrication occurs due to the rolling motion between the rolling
elements and the inner raceway and the resulting high pressure from the elastic deformation [481].
As this contact occurs, the lubricant viscosity increases and maintains a film around the elements to
reduce the metal contact. There are several different methods for calculating the fluid film thickness
in bearings, such as using the Reynolds Equation and the Etrul-Grubin approach. Both methods
are detailed in the review by Lugt et al. [481]. The underlying equations are provided in Equation
4.1 for using Reynolds Equation and Equation 4.2 for the Etrul-Grubin approach. h is the fluid film

thickness at the specified z- and y-coordinates. d. corresponds to the Hertzian contact deforma-
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tion. R, , corresponds to the contact radii of the rolling element and the bearing raceway. In the
Etrul-Grubin analytical approach, H* corresponds to the point where the dimensionless pressure
and coordinate equal 0 and H corresponds to the dimensionless pressure using the Etrul-Grubin

analysis. X is the dimensionless coordinate along the bearing raceway.

2 2

h(z,y) ~ he + % + % + de(2,y) (4.1)
H—H" = |X|(X?-1)% - In[|X|+(X? - 1)(1/2)] (4.2)

Bearings are greased regularly and at predetermined amounts to maintain the minimum
grease level inside the bearing. The general equation to calculate the amount of grease for a specific
bearing is shown in Equation 4.3. L, is the lubrication amount in grams, D is the outer diameter
of the bearing, and B,, is the bearing width. The calculation for determining the intervals between
bearings is given in Equation 4.4 from the Noria Corporation [482]. T represents the time in hours
between lubrication. K is a product between all the correction factors shown in Table 4.9. n is the
bearing speed in RPM, and d is the bearing bore diameter in mm. The bearing lubrication regime
is determined for different manufacturing scenarios using Equation 4.3 and 4.4. Not following the
regime or using a different lubrication than needed could lead to early bearing degradation. It can
be seen from the calculations that deviations in the bearing operating environments can lead to
changes in the lubrication pattern. If these are not accounted for and the timing is missed long

enough, the bearing begins degradation earlier than the Li( life calculation.

L, = DBy #0.005 (4.3)
14000000

Even if the bearing is well-lubricated, contamination can enter through the bearing seals and
disrupt the lubrication pattern. Contamination is described as any foreign substance not expected
in the lubrication. Hence, the contamination can either be a solid or liquid. However, as these
substances enter the raceway, they disrupt the lubrication film and increase the metal-on-metal

contact, resulting in the skidding and sliding that is caused during the bearing wear. One particular
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Table 4.9: Bearing Lubrication Interval parameters

Condition Average Operating Range Correction Factor
Temperature (Ft) Housing below 150°F 1.0
150°F to 175°F 0.5
175°F to 200°F 0.2
Above 200°F 0.1
Contamination (Fc) Light, non-abrasive dust 1.0
Heavy non-abrasive dust 0.7
Light abrasive dust 0.4
Heavy, abrasive dust 0.2
Moisture (Fm) Humidity below 80% 1.0
Humidity between 80% to 90 % 0.7
Occasional condensation 0.4
Occasional water on housing 0.1
Vibration (Fv) Less than 0.2 ips 1.0
0.2 to 0.4 ips 0.6
above 0.4 ips 0.3
Position (Fp) Horizontal bore centerline 1.0
45°bore centerline 0.5
vertical centerline 0.3
Bearing Design (Fd) Ball Bearings 10
Cylindrical and needle roller bearings 5.0
Tapered and spherical roller bearings 1.0

problem is the overrolling of the particles that eventually cause dents in the bearing surface. Dwyer-
Joyce [480] tested several different contamination particles to estimate the indentation size. These
indentations accumulate as the amount of contamination enters into the bearing. Poddar et al.
[87] and Maru et al. [483] tested the effect of contamination in bearing lubrication finding that
the vibration level increases as the amount of contamination increased. The vibration increase also
correlated with the increased scratches and indentations on the bearing surface. Hariharan et al.
[484] demonstrated similar phenomena in grease lubrication; however, it is noted that the dispersion
of contaminants is not necessarily equal due to the variation in viscosity between the two materials.

Grease contamination is captured in the bearing life calculation using the ISO reliability
factor coefficient (agso) from ISO 281 [334]. The equation for calculating one of the ISO reliability
value curves is shown in Equation 4.5. & is the reference viscosity ratio based on the viscosity related
to the bearing dimensions and the bearing actual viscosity. e, is the bearing contamination factor
dependent on the number of particles, the reference viscosity ratio and the bearing pitch diameter.
C, is the bearing fatigue load limit, and P is the bearing dynamic load limit. The reliability factor

is then multiplied against the normal L1q life equation to determine the expected bearing life under
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contaminated conditions. Hence, as the bearing contamination increases, the related bearing life

decreases.

2.2649 ecCly _
[Rtd! Jovrso = 0.1[1 — (25671 — ~55) 5% CP )1/3]-9:3 (4.5)

It was determined to split the tests for lubrication and contamination damage into two
categories. Lubrication would test the bearing performance under different lubrication amounts in
the bearing. The bearing contamination cases would test the bearings under different contamination
scenarios. The amount of lubrication removed from the bearing was based on Equation 4.3. The
contamination amounts were initially based on the expected ISO contamination levels for oil from
ISO 4406 [485]. The amounts are further explained in Section 4.2.3, which details the procedures

for inducing bearing damage.

4.2.2.3 Bearing Assembly Defect: Brinelling

Dents and nicks form in the bearing raceways from assembly and operating errors. According
to the SKF documentation [7], the most common problem occurs when forcing the bearing on an
incorrectly fitted shaft. It is recommended to cool and heat the bearing to fit the shaft; however,
the incorrect temperature does not cause the metal to contract enough to allow the bearing to fit
onto the shift. Another common incorrect installation practice is unevenly pressing the bearing onto
the shaft. An uneven press could cause nicks and dents to form on the raceway due to incorrect
pressure. Another possible implementation is dropping the bearing during production or installation.
The drop can send a shock through the bearing, leaving an indentation on the bearing surface.

It is possible to induce defects using hardness testers to resemble the expected defect size
[486]. One of the common methods is using hardness testing equipment to induce the defect and
measure the defect formation as time progresses. Ueda et al. [487] used both hardness testing
equipment and contamination to induce a defect in a bearing test rig to induce the equipment
flaking behavior. However, these defects are more meant to represent the plastic deformation case,
which represents severe mounting errors and, more so, the shock loads affecting the equipment.

The method used is a drop test of the bearing on a metallic surface from a predetermined
height. The action is meant to mime a situation where a maintenance engineer installs the bearing

and may inadvertently drop the bearing. The shock to the bearing may cause a defect on the raceway
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due to the shock of the rolling elements on the bearing inner race and outer race. Figure 4.13 shows
the fixture for the bearing assembly defects. This case is termed the ”Brinelling case” due to the
similarities to the hardness test of the same name, but it is not an actual Brinell test. The bearing
drops represent the potential for improper bearing handling. The different heights symbolize the
potential heights that the bearing could fall. The drops could represent a small shock load to impact

the bearing.

Figure 4.13: Fixture for ensuring repeatable drop testing

4.2.2.4 Damage Implementation: Summary

Extracted Information: From this step, four different methods are identified to apply damage
to the bearing. For the fatigue case, defects are induced by engraving minor point defects using a
tabletop CNC mill. Rather than using a drill, the flaws are generated using an abrasive engraver
to create a rougher damage edge than the sharp and clean grooves. The lubrication defect implies

starving the bearing from the bearing and increasing the metal-on-metal contact. The contamination
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damage uses abrasive particles to induce defects along the bearing raceway, simulating the defect
damage on the bearing surface. For the assembly and mounting defects, the bearing case investigates

drop damage to the bearing raceway to simulate an installation error.

4.2.3 Determine the Damage Propagation: Bearings

The damage progression step was determined by each failure based on considerations from
prior literature. The tables here represent the empirical progression for each of their failure modes.
Other failure progressions were tested in the course of the research work and are labeled appropriately
with the appropriate figures and analysis.

For the fatigue case, the damage was measured based on the defect size in terms of length
along the bearing raceway and the bearing tool. A deburring tool that was 2.38 mm (3/32 in) in
diameter was used to inflict damage on the bearing. Due to the spherical nature of the tool, the
damage area was approximated based on the tool. The depth was approximated based on the force
applied to the tool edge. Table 4.10 contains the different damage stages inflicted on the bearing
case. The damage stages listed ”Stage 17, ”Stage 2”7, and ”Stage 3” were tested on all bearings. The
damage stages labeled ”Stage 1 6205”7 and ”Stage 2 6205” were conducted with a hand engraving
tool to see if there was a difference between a point or line defect along the raceway. The bearing
CNC length did not control the depth; hence, the damage percentage was conducted based on the

percent surface area damaged.

Table 4.10: Bearing Fatigue Defect Cases

Damage Stages Defect Length Depth

Stage 1 1 mm 0.1 mm

Stage 2 3 -5 mm 0.1 mm

Stage 3 5 - 10 mm 0.1 mm

Damage Stages Damage Style Percentage damage
Stage 1 6205 Point defect 0.2%

Stage 2 6205 Line defect 2.0%

The measures are based on the calculated grease amount for the bearings under expected
lubrication cases. When opening the bearings to apply the grease, it was noticed by weighing the
bearings that the bearings appeared underfilled about the expected grease amount. Table 4.11
contains the lubrication cases as a percentage of the original grease amount. About the original

amount of grease in the bearing, though, Stages 1 and 2 for each case represent over-greased scenarios
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in every case. Stage 3 for the 6205 and 6206 was an under-greased scenario, whereas Stage 3 for
the 6207 bearing case represented a case for the proper amount of grease. The likelihood of bearing
running without grease in an industrial application is low; hence, it was not included as part of the

final test plan. It was considered, however.

Table 4.11: Bearing Lubrication Defect Cases

Damage Stages Percentage Lubrication Amount
6205 Stage 1 75% 292 ¢

6205 Stage 2 50% 1.8¢g

6205 Stage 3 25% 097 g

6206 Stage 1 5% 3.72 ¢

6206 Stage 2 50% 248 g

6206 Stage 3 25% 1.24 ¢

6207 Stage 1 75% 4.59 g

6207 Stage 2 50% 3.06 g

6207 Stage 3 25% 1.53 g

The contamination case is based on the ISO oil codes for contaminated cases. However, due
to the grease viscosity, the particle counts are sometimes skewed and unevenly distributed during
the analysis. Hence, these values only represent the starting amount of contamination relative to the
bearing size. Table 4.12 contains the number of grease particles per gram and the total amount of
contaminated particles in grams. The amount of particles is calculated based on the particle density
relative to the particle size. A spherical shape was assumed; particle amount changes based on the
volume assumed. The diameter, though, was assumed by the grit size of the particles at 53 pum
(F230 on the FEPA (Federation of European Producers of Abrasives) scale). The particles were
alumina oxide as used by Dwyer-Joyce in their work [480]. Dwyer-Joyce used the contamination
grit size to reference the particle size. Poddar et al. [87] used a similar range of sizes. Note that
while ISO codes are used to identify the particle amounts relative to the grease amount, generally,
these are employed with smaller grit sizes in mind. That being said, it is not unusual to notice grit
sizes of the tested size, as Dwyer-Joyce noted. Additional contamination stages were conducted for
earlier 6205 bearing tests.

The bearing drop tests are conducted based on the number of drops at certain heights. Table
4.13 contains the different damage stages. The OG stages are only associated with an earlier 6205
case. The increasing damage height can correspond to different impacts the bearing may undergo.
However, since no force is applied, the impact of the bearing on the ground is considered due to

gravity each time. However, the energy with each strike changes proportional to the change in
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Table 4.12: Bearing Contamination Defect Cases

Damage Stages Particles per gram Contamination (g)
6205 Stage 1 10,000 0.012 g
6205 Stage 2 100,000 0.125 g
6205 Stage 3 250,000 0.250 g
6206 Stage 1 10,000 0.0159 g
6206 Stage 2 100,000 0.159 g
6206 Stage 3 250,000 0.318 g
6207 Stage 1 10,000 0.019 g
6207 Stage 2 250,000 0.192 g
6207 Stage 3 500,000 0.384 g
height.

Table 4.13: Bearing Drop Testing

Damage Stages Damage Height Number of Drops
Stage 1 (OG) 0.5m x2
Stage 2 (OG) 1.0m x2
Stage 3 (OG) 1.5m x2
Stage 4 (OG) 2.0m x2
Stage 1 0.5m xH
Stage 2 1.0m x5
Stage 3 1.5m x5
Stage 4 2.0m x5

Extracted Information: The different damage progression methods are presented for each case
with the appropriate methods of damage to denote the change in equipment health over time. The

different damage stages provide the damage label for any bearing data labeled.

4.2.4 Select the Data Acquisition System: Bearings

The bearing data acquisition system for testing considers three data types: vibration, acous-
tic, and temperature. These data types are commonly used in bearing condition monitoring strate-
gies. Two vibration sensors are placed in the z- and y- directions. The vibration sensors are VSA001
from IFM'. The sampled frequency from the sensors was at 50kS/s. The sampling frequency ex-
ceeded the Nyquist frequency for the sensor harmonic levels by 8x. The Nyquist frequency was
configured based on the maximum bearing frequency expected from the test stand. An infrared

11

temperature sensor'! was placed in the axial direction (z-direction). The sensor measured the am-

bient and infrared temperature around the bearing fixture at an approximate sampling rate of 0.1

10Vibration Sensor Information: https://www.ifm.com/us/en/product/VSA001
HTemperature Sensor Information: MLX90614ESF-DCA-000-SP at mouser.com
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kS/s. For bearing failures, the temperature change can happen rapidly rather than sampling period-
ically; hence, the rapid sampling rate for the temperature sensors. Figure 4.14 shows the vibration
and temperature sensors concerning the bearing test blocks. The solid blue arrow references the ax-
ial direction, and the dashed blue arrow references the radial horizontal direction. The solid orange
circle corresponds to the vertical radial vibration sensor, and the dashed orange circle denotes the
horizontal radial sensor. The green sensor denotes the temperature sensor pointed at the bearing to

measure the temperature.

Figure 4.14: Vibration and temperature sensor layout for bearing testing

A microphone was placed in the horizontal radial direction to corroborate the frequencies
gathered from the vibration testing '2. The data measured from the analysis is scaled concerning
the db and gain of the microphone. The sampling frequency was 44.1 kS/s, which exceeded the test
bearings’ Nyquist frequency. The microphone gain and scale are meant to remain constant during
testing. Figure 4.15 shows the microphone layout concerning the bearing test stand. The end of
the microphone was placed approximately 10 inches - 1 foot from the test bearing. The distance
configured between the microphone and the test bearing was constrained by the overall safety cage

around the bearing test stand. The microphone may still pick up noise around the test stand;

2Microphone Information: https://rode.com/en/microphones/shotgun/ntg3
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insulation was placed around the test stand to reduce the amount of potential noise. The variation

in noise from surrounding activities causes variability in the test stand microphone data.

Figure 4.15: Microphone concerning the test bearing

Extracted Information: The bearing data acquisition system was configured based on the appli-
cations under test. The sampling rates were configured based on the maximum expected bearing
frequency. Based on the documentation, the measurement ranges for the sensors were expected to

cover the maximum possibility from the test stands.

4.2.5 Design the Surrogate System and Generate Data: Bearings

A contributing goal for this research is to determine how to scale laboratory data to a real-
world bearing scenario utilizing informed learning. Prototyping is a common strategy in design;
hence, a similar strategy is adopted in the formulation of the surrogate system design. The first
consideration is to identify the primary elements of the real-world system. The second consideration
is to consider and determine the physical quantities in the prototype design. The data generation
occurs after the surrogate system design, where the labels are determined based on the damage
progression and operating conditions.

For bearings, the primary physical considerations for each application consider the bearing
geometry, the bearing speed, and the bearing load. The bearing geometry and speed determine the
vibration frequencies based on the bearing defect equations. The bearing load and speed influence

the vibration amplitude. Other physical quantities should also involve other rotational elements
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on the shaft and surrounding equipment. Hence, a bearing test system should consider modular
elements to allow for other rotational elements to be added to the surrogate system as needed.

Figure 4.16 shows the bearing test stand constructed for the data generation. The test
stand is split into three levels: the testing level (top level), the load level (middle level), and the
motor level (bottom level). The testing level comprises the test block, which holds the test bearings,
and the support blocks, which hold the driving shaft. The loading level contains the loading arm
that applies a load to the bottom of the bearing by adding weights to the back of the arm. The
loading mechanism comprises a force sensor to verify the force applied to the bearing. The bearing
test block is also placed on a separate rotating block to induce operational play during testing. The
motor level contains the motor, which connects to the test level using the pulleys and v-belt. The
motor is connected to a variable frequency drive to ensure variable speed during testing. The test
stand during operation is placed inside a protective cage.

Four different bearings were considered for the analysis and data generation: 6204, 6205,
6206, and 6207 cases. The test blocks were precision machined to serve as housings for the bearings
as a split housing to close around the bearing. Figure 4.17 shows the bearing test block configuration
with the top removed for the split housing. The top block is what contains the vibration sensor
during testing. The housings are configured to the outer diameters and represent a perfect fit for the
bearing under test. The bearings are pressed onto test shafts that are machined to the respective
inner diameter for each bearing. A mounting shoulder is applied for each shaft to ensure the press
fit for each bearing. The test block in Figure 4.17 contains the 6204 and 6205 bearing sizes. A
separate test block, designed similarly, is used for the 6206 and 6207 bearings. The bearing test
shaft connects to a drive shaft connected to the motor using the pulley and v-belt system. The final
configuration of the bearing test shaft includes a cap at the end of testing to ensure the bearing does
not move off the shaft during testing.

The bearing data generation is broken down into tests and collections. Each test conducted
consists of collections that occur at different speeds and loads. There are three set speed configura-
tions (640, 1103, and 1687 RPM) and three set loads (520N, 814N, 1049N) configurations. Due to
the variability in the tests, the speed and loads did not fluctuate by more than 2% of the original
configuration. Three tests are performed: Steady State, Speed Varying, and Load Varying. The
Steady State considers collections when the operating conditions remain the same throughout the

collection. The Speed Varying collections consider changing speed conditions during the data ac-
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Test Bloc ‘ f,.

Figure 4.16: Bearing Test Stand

quisition procedure. The Load Varying collections consider instances where the load changes in the
data. Figure 4.18 shows the generic configuration for a test at a set speed and load, incorporating
the Steady State, Speed Varying, and Load Varying collections into the procedure. The warm-up
periods are run between 5 to 10 minutes and the time changed based on the lack of variation be-
tween collections. The speed-varying collections considered changes in bearing speed up to 10 Hz
(1 Hz corresponds to 30 RPM from the VFD). The load-varying collections considered changes of
up to 90 - 100 N during the collections. The collection order was repeated for each speed and load
configuration. Depending on the bearing, this procedure was repeated between 3 to 9 times for each
test.

Extracted Information: The bearing test stand is constructed to control the bearing geometry,
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Figure 4.17: Test block configuration with the bottom block

speed, and load to provide relatability to the real-world system. The bearing test stands considered
three test types: steady state, speed varying, and load varying. It was built in a modular format to

ensure that other elements could be added depending on the real-world equipment.
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Figure 4.18: Example of bearing test procedure and types of tests

AR
DO

4.2.6 Verify and Transfer the Data: Bearings

For this step, the methods are introduced for verifying the generated data and transferring
the bearing data between different applications. The analysis representations are further described
in later chapters and sections. Section 4.3 covers verifying and analyzing the bearing data generated.
Chapter 5 provides a more in-depth consideration of the methods (data-driven and physics-informed)
used to transfer bearing data from differing applications. The concepts are briefly introduced in this
section, though.

Three verification methods verify the bearing data generated from the test stand. The
first method considers statistical features and groupings to determine if the bearing data is the
same between similar classes and separable between different classes. ANOVA tests are conducted
to determine if there is any statistical significance in any data overlap. These methods consider
only the time series data, which are grouped based on the sampling frequency. Data windowing is
considered in Chapter 6 to determine if there is a significant influence on the bearing data.

The second method considers the frequency measures for devolving the bearing data using
Fourier transforms into frequency representations. Particular attention is assessed to the bearing
defect frequencies shown in Equation 2.33 through 2.36. These frequencies are represented in both
Hertz and Undulations Per Revolution (UPR). UPR represents the bearing frequencies without their
corresponding speed component, allowing for a direct representation concerning load. As bearing
damage increases, these frequencies should become more apparent in the bearing frequency analysis.

The third method utilizes Empirical Mode Decomposition (EMD) to devolve the bearing
signal into the intrinsic mode functions (IMFs). EMD is an integral portion of the Hilbert-Huang
Transform (HHT), which identifies the instantaneous frequencies of a sample utilizing the IMFs

[488]. Huang et al. [488] theorized that EMD could determine the IMFs by using a sifting process
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to ensure that a finite number of IMF's are returned to determine the instantaneous frequencies. An

intrinsic mode function comprises two criteria:

i.) In the whole data set, the number of extrema and zero-crossings must either be equal or differ

at most by one.

ii.) At any point, the mean value of the envelope defined by the local maxima and local minima

is zero.

The IMF's represent the original signal and are defined as a near orthogonal representation. Gen-
erally, the first IMF is rejected as it contains primarily high-frequency noise. Zhao et al. [489] and
Wu et al. [490] each used empirical mode decomposition in their rolling bearing analysis. Zhao
et al. used EMD to devolve the bearing signal and then reconstruct the signal in the frequency
domain while removing nonsensitive IMF's to bearing damage. Wu et al. used the HHT to identify
the change in spectral energy as the bearing degrades over time. For this analysis, the generated
bearing data IMFs are compared to see how they compare to other collected bearings.

For the transfer approaches back to the real system, two new approaches are formulated to
transfer data from the surrogate system to the real-world application. The first method is termed the
Spectral Augmentation (SA) method. The method combines data augmentation with the bearing
defect frequencies to transfer the failure components to baseline data. Theoretically, the baseline data
with the failure components will closely match the bearing failure signals. The second method uses
bearing physical modeling to determine vibration limits to remove potential noise for transferring
bearing data. Scaling factors are determined based on the change in physics modeling representation
to move bearing data between different applications. The physics analysis is tested with the baseline
data, and observational limits are theorized with the fault data and simulation of rolling element
point defects. Chapter 5 covers these methods in further detail later.

Extracted Information: Three different data analysis techniques are conducted to verify the bear-
ing data. A physics-informed method and physics-based methods are introduced for data transfer

in Chapter 5.

4.2.7 Section Recap: Failure Methodology Design

This section determines the method for generating bearing damage, the design and creation

of the surrogate system for bearings, and the selection of the analysis techniques for bearings. At this
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point, the data generation provides a wide, diverse data pool for further exploration of the bearing
failure modes under different conditions. At this point, the third research question introduced at the
beginning of the section cannot be answered. However, this section provides the means to answer

the question in the following section.

4.3 Data Generation: Bearings

The generated bearing data using the methodologies from Section 4.2 are compared against

each other to investigate RQ1.3:

i.) Research Question 1.3: How much data are needed to train a bearing condition monitoring

system for diverse failure modes?

In this section, the techniques briefly introduced in Section 4.2.6 describe the changes in
the bearing data under the different class conditions. Table 4.14 contains the other tests conducted
for each load and speed condition on the bearing system. The ”s” and ”k” refer to the different
manufacturers of the bearings. Note that this did not appear to skew the results in the analysis
and is just a notation. The ”base” refers to whether the bearing test conducted was a baseline test,
”Brinell” denotes the bearing was used for a Brinell test, ”lube” corresponded to the lubrication
tests, and "fatigue” was for the engraving tests. The different types of collections used in each test
are denoted as follows: ss means ”steady state”, sv means "speed varying”, and lv means ”load

varying”.
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Table 4.14: Bearing tests conducted for each set of operating conditions and bearing

Speed —
Load |

640 RPM

1103 RPM

1697 RPM

520N

814N

1049N

2k6205
2k6205

(base, ss, sv)
(lube, ss, sv),
3k6205 (base, ss, sv)
3k6205  (brinell, ss,
sv), 4k6205 (base, ss,
sv), bk6205 (base, ss,
sv), 6k6205 (base, ss,
sv), 3s6205 (cont, ss),
456205 (base, ss), 486205
(brinell, ss),  5s6205
(base, ss), 76205 (base,
ss), 2k6205 (base, ss,
sv), 2k6206 (brinell, ss,
sv), 3k6206 (base, ss,
sv), 3k6206 (lube, ss,
sv, 1v), 4k6206 (base, ss,
sv, 1v), 5k6206 (base, ss,
sv, 1v), 5k6206 (cont, ss,
sv, 1v), 2k6207 (base,
ss, sv), 3k6207 (base, ss,
sv), 3k6207 (cont, ss,
sv, lv), 4k6207 (base,
ss, sv), 4k6207 (brinell,
ss, sv), 5k6207 (base, ss,
sv), 6k6207 (base, ss, sv)

356205 (cont, ss), 456205
(base, ss), 456205
(brinell, ~ss), 536205
(base, ss), 7s6205 (base,
ss), 1156205 (base, ss),
756205  (fatigue,  ss),
1286206 (base, ss, sv),
1386206 (base, ss, sv)

356205 (cont, ss), 456205
(base, ss), 456205
(brinell, ss), 536205
(base, ss), 76205 (base,
ss), 7s6205 (fatigue,
ss), 836205 (cont, ss),
1186205 (base, ss, sv),
1486205  (base,  ss),
1286206 (base, ss, sv),
1356206 (base, ss, sv)

2k6205 (base, ss, sv)
2k6205 (lube, ss, sv),
3k6205 (base, ss, sv)
3k6205  (brinell, ss,
sv), 4k6205 (base, ss,
sv), b5k6205 (base, ss,
sv), 6k6205 (base, ss,
sv), 3s6205 (cont, ss),
456205 (base, ss), 486205
(brinell, ss),  5s6205
(base, ss), 76205 (base,
ss), 786205 (fatigue, ss),
12k6205 (fatigue, ss, sv,
lv) 2k6205 (base, ss, sv),
2k6206 (brinell, ss, sv),
3k6206 (base, ss, sv),
3k6206 (lube, ss, sv, lv),
4k6206 (base, ss, sv, Iv),

( )

( )

)

5k6206 (base, ss, sv, 1v),
5k6206 (cont, ss, sv, 1v),
12k6206 (fatigue, ss, sv,
lv), 2k6207 (base, ss,
sv), 3k6207 (base, ss,
sv), 3k6207 (cont, ss,
sv, lv), 4k6207 (base,
ss, sv), 4k6207 (brinell,
ss, sv), 5k6207 (base, ss,
sv), 6k6207 (base, ss,
sv), 12k6207 (fatigue, ss,
sv, 1v)

356205 (cont, ss), 456205
(base, ss), 456205
(brinell, ss), 536205
(base, ss), 76205 (base,
ss), T7s6205 (fatigue,
ss), 1186205 (base, ss),
1256206 (base, ss, sv),
1386206 (base, ss, sv)
36205 (cont, ss), 456205
(base, ss), 456205
(brinell, ss), 536205
(base, ss), 76205 (base,
ss), 7s6205 (fatigue,
ss), 8s6205 (cont, ss),
1186205  (base,  ss),
14s6205  (base,  ss),
1286206 (base, ss, sv),
1356206 (base, ss, sv)

2k6205 (base, ss, sv),
3k6205 (base, ss, sv),
3k6205 (brinell, ss, sv),
4k6205 (base, ss), 5k6205
(base, ss), 6k6205 (base,
ss), 3s6205 (cont, ss),
456205 (base, ss), 486205
(brinell, ss), 5s6205
(base, ss), 76205 (base,
ss), 7s6205 (fatigue, ss),
12k6205 (fatigue, ss, sv,
lv) 2k6205 (base, ss, sv),

)
3k6206 (base, ss, sv)
3k6206 (lube, ss, sv, lv),
4k6206 (base, ss, sv, lv),
5k6206 (base, ss, sv, lv),
5k6206 (cont, ss, sv, lv),
12k6206 (fatigue, ss, sv,
lv) 2k6207 (base, ss, sv),
3k6207 (base, ss, sv),
3k6207 (cont, ss, sv, lv),
4k6207 (base, ss, sv),
4k6207 (brinell, ss, sv),
5k6207 (base, ss, sv),
6k6207 (base, ss, sv)
12k6207 (fatigue, ss, sv,
lv)

356205 (cont, ss), 486205
(base, ss), 456205
(brinell, ss), 5s6205
(base, ss), 7s6205 (base,
ss), 7s6205 (fatigue,
ss), 1156205 (base, ss),
1256206 (base, ss, sv),
1356206 (base, ss, sv)

356205 (cont, ss), 486205
(base, ss), 456205
(brinell, ss), 536205
(base, ss), 76205 (base,
ss), 7s6205 (fatigue, ss),
856205 (base, ss), 836205
(cont, ss), 1156205 (base,
ss), 14s6205 (base, ss),
1256206 (base, ss, sv),
1356206 (base, ss, sv)
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4.3.1 Baseline Operating Conditions Differences

The baseline bearing data were analyzed using Fast Fourier Transform (FFT), Time-based
statistical measures, and Empirical Mode Decomposition. Fast Fourier Transform is a common fre-
quency analysis measure created by Cooleyet al. [491] to originally monitor missile launches. Using
the FFT, it is possible to change from time-series data to frequency-based data rapidly and easily.
Time-based statistical measures capture and detail changes to specific moments within the data,
such as changes in the root-mean-square, variance, skewness, and kurtosis. Finally, the empirical
mode decomposition method is used as a representation to provide an understanding of the measures
that change with respect to speed.

For the initial baseline characterization, the bearings were run at for varying lengths for 2
and a half hours to three hours at varying speeds and loads. It should be noted that data were
collected in two different locations: Clemson Vehicle Assembly Center and the Clemson Graduate
Education Center. Interestingly, it appeared to affect the data collection in the low-frequency range
below 500 Hz for the vertical accelerometer data. Several reasons could affect the vibration data
collected between the two locations. Mechanical components could become worn out during testing;
a belt could begin to loosen or lose grip over time; a difference in the surrounding equipment could
affect the vibration readings; the environmental conditions are not conducive for vibration testing.
All of these factors could cause a difference in the bearing data generation. Hence, these factors
require careful documentation to reduce their impact on baseline data generation. It should be noted
that the horizontal bearing data was not as significantly impacted by the change of location.

Due to the lower variation in the horizontal bearing vibration, it is more likely that there
was a faulty component during the baseline data generation. Despite changing the components and
making modifications to reduce the test stand noise, the level of noise was not diminished. The
horizontal bearing data does not appear to change with respect to the noise. It could mean that
the noise is created due to the loading mechanism acting on the bearing. The variation is further
explained in the frequency data for potential possible variations.

Figure 4.19 shows the grouping of the baseline bearings based on the vibration variance
along the z-axis and the vibration RMS along the y-axis. The comparison did not consider two
baseline bearings (Bearing 4 and Bearing 7) due to errors in the test procedure. For each case, the

grouping of data points appears with higher RMS values associated with higher variance values. In
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the 640 and 1103 cases, the data appear as a tighter grouping in the run-to-run case. For the 1687
RPM case, there is an increased variation between each baseline bearing. It is possible that the
increase in speed causes additional vibrations to come through the test stand. Despite the variation
in the 1687 RPM case, it is possible to see that there are clusters that form between each set of
operating conditions with some overlap between the different bearing characteristics. The averages
for each case are shown in Table 4.15. The RMS and variance values were found to increase at
different rates relative to the change in speed. The rapid increase in relation to the variance could
stem from additional harmonics caused by the increase in the operation speed.

A silhouette test was conducted to assess the level of overlap between the different clusters
created with the different operating conditions. The silhouette score considers the overlap between
the two clusters. Traditionally, the score interprets how well the clusters are defined without overlap
between the other clusters [492]. The silhouette score is assessed over a range of -1 to 1. If the score
is closer to 1, then it is considered that the values form well-defined clusters with little overlap. If
the silhouette is closer to -1, then labels are flipped for the data, but still remain well defined. If the
score is closer to zero, then the clusters are not well defined and contain a large amount of overlap
between samples. A further explanation of the silhouette score is provided in Appendix D.

For the RMS feature, the 640RPM and 1103RPM cases were found to have a silhouette
score of 0.247. The silhouette score between the 1103RPM and 1687RPM case was measured at
0.542. For the variance feature, the silhouette score was at 0.44 between the 640 and 1103 RPM
case. The 1103 and 1687 RPM case had a silhouette score of 0.14. The silhouette scores imply that
the overlap between the different cases was either moderate or low between the different cases. When
these features are considered in a group, the 640 and 1103 RPM case have 0.512 overlap between
the different data cases. The 1103 and 1687 RPM case had a silhouette score of 0.16. Hence, there
was a lower amount of overlapping features between the 1687 RPM case and the 1103 RPM case,
then there was with the 640 RPM and 1103 RPM case.

Bearing Condition Average RMS Average Variance
Baseline, 640 RPM 0.220 5 0.052 (%)?
Baseline, 1103 RPM 0.524 5 0.318 (%)?
Baseline, 1687 RPM 0.917 & 0.882 (sﬂz)2

Table 4.15: Averages of the RMS and Variance for the 6205 case for each set of operating conditions.

RMS is a data metric to describe the quadratic mean of a sample set. The variance describes
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Figure 4.19: RMS and Variance for each baseline scenario in the 6205 case under changing speed
conditions and constant load. (a) represents the bearing data colleced at 640 RPM, (b) represents
the bearing data collected at 1103 RPM, and (c) represents the bearing data collected at 1687 RPM.

137



the spread of a number set in relation to the RMS. The Kurtosis considers the distribution with
respect to the tail weighting relative to the sample set mean otherwise kown as the fourth moment
of a distribution. The skewness of a dataset determines the data symmetry. From Mechefske
[292], a baseline set of data is considered to have a near "normal” distribution. Depending on the
application,though, the baseline distribution could change, such as those that are more transient
systems. However, it is expected that the bearing data generated during the steady-state conditions
mimic the normal distribution. Figure 4.20 shows, though, that there are some outlier elements that
skew the data reporting. For future data analysis, it is possible to eliminate samples based on their
normality or lack of normality. However, the limits for normality are subjective for using Kurtosis
and skewness. For the range of skewness, the lowest acceptable limits found are between -0.5 to 0.5
for a normal distribution; however, -2 to +2 is also an acceptable range as found by George et al.
[493] and Hair et al. [494]. In the ideal case, the For Kurtosis, George et al. considered the Kurtosis
range between -2 and 42 for an accepted normality, whereas Hair et al. considered it at -7 to +7.
Aminu et al. [495] indicated that Skewness and Kurtosis values above 3 and 10, respectively, could
indicate a serious problem. For future analysis, the data points with Kurtosis values greater than 7
are removed from the dataset in the baseline case.

In addition to the steady-state condition monitoring case, transient systems were also con-
sidered in a load-varying case and speed-varying case. Figure 4.21 shows the load-varying case for
the bearing baseline condition for the 6205 sized bearing. Only the 1687 RPM case is there a large
variation between when the expected load is applied and an additional load is given. For the 1103
RPM case and the 640 RPM case, there is not any noticeable variation between the two different
load cases. One potential cause for the lack of variation is the speed domination that could be
occurring at lower frequencies. It is possible that applying a bandpass or highpass filter removes
some of the speed domination in the bearing data.

Figure 4.22 shows the effects of the different bearing speeds and the variation during the
course of the collection. The green circles mark instances where the speed is increasing. The black
circles mark instances where the speed is decreasing. In this instance, the only outlier is the green
data, which sees the steady-state variance shift with respect to the bearing during the test. In
this instance, the bearing test conducted did not decrease back to the expected speed limit and
was considered an anomaly due to the test procedure. For the frequency data, since the vibration

data is tied heavily to the equipment operation, it is noted that the EMD method will isolate those
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Figure 4.20: Kurtosis and Skewness for each baseline scenario in the 6205 case under changing speed
conditions and constant load. (a) shows the statistical kurtosis and skewness for the 640 RPM data,
(b) shows the statistical kurtosis and skewness for the 1103 RPM data, and (c) shows the statistical
kurtosis and skewness for the 1687 RPM data.

139



6205 Bearing with a speed of 1687 RPM and a load of 520N
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Figure 4.21: Load varying baseline raw vibration features for the RMS and variance cases for the
6205 data cases. (a-b) 1687 RPM case: (a) shows the RMS vs. Variance comparison, (b) shows the
vibration sample set for the RMS feature. (c-d) 1103 RPM case: (c) shows the RMS vs. Variance
comparison, (b) shows the vibration sample set for the RMS feature, (e-f) 640 RPM case: (e) shows
the RMS vs. Variance comparison, (f) shows the vibration sample set for the RMS feature.

instantaneous frequencies attached at those speeds.

Figure 4.23 shows the variations when changing the testing locations in the vertical bearing
data. A number of factors could have caused this inconsistency to occur and stay present in the
bearing data. First, it is noted that most of this noise is low-frequency vibrations centered around
the operating speed frequency. It is possible that an element of the test stand settled in and caused
the misalignment as the testing progressed for over a year. However, changing the components other
than the test block or mounted bearings did<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>