109,244 research outputs found

    Kernel-Controlled DQN Based CNN Pruning for Model Compression and Acceleration

    Get PDF
    Apart from the accuracy, the size of convolutional neural networks (CNN) models is another principal factor for facilitating the deployment of models on memory, power and budget constrained devices. However, conventional model compression techniques require human experts to setup parameters to explore the design space which is suboptimal and time consuming. Various pruning techniques are implemented to gain compression, trading off speed and accuracy. Given a CNN model [11], we propose an automated deep reinforcement learning [9] based model compression technique that can effectively turned off kernels on each layer by observing its significance on decision making. By observing accuracy, compression ratio and convergence rate, our model can automatically re-activate (turned on) the healthiest(fittest) kernels to train it again which greatly ameliorate the model compression quality. Experimented results on MNIST dataset [7], the proposed method reduces the size of convolution layers for VGG-like model [9] up to 60% with 0.5% increase in test accuracy within less than a half the number of initial amount of training (speed-up up to 2.5Ă—), state-of-the-art results of dropping 80% kernels (86% parameters compressed) with increase in accuracy by 0.14%. Further dropping 84% kernels (94% parameters compressed) with the drop of test accuracy 0.40%. The first proposed Auto-AEC (Accuracy-Ensured Compression) model can compress the network by preserving original accuracy or increase in accuracy of the model, whereas, the second proposed Auto-CECA (Compression-Ensured Considering the Accuracy) model can compress to the maximum by preserving original accuracy or minimal drop of accuracy. Based on experiments, further analyzed effectiveness of kernels on different layers based on how proposed model explores & exploits in various stages of training

    Layer-wise compressive training for convolutional neural networks

    Get PDF
    Convolutional Neural Networks (CNNs) are brain-inspired computational models designed to recognize patterns. Recent advances demonstrate that CNNs are able to achieve, and often exceed, human capabilities in many application domains. Made of several millions of parameters, even the simplest CNN shows large model size. This characteristic is a serious concern for the deployment on resource-constrained embedded-systems, where compression stages are needed to meet the stringent hardware constraints. In this paper, we introduce a novel accuracy-driven compressive training algorithm. It consists of a two-stage flow: first, layers are sorted by means of heuristic rules according to their significance; second, a modified stochastic gradient descent optimization is applied on less significant layers such that their representation is collapsed into a constrained subspace. Experimental results demonstrate that our approach achieves remarkable compression rates with low accuracy loss (<1%)

    Telling Cause from Effect using MDL-based Local and Global Regression

    Get PDF
    We consider the fundamental problem of inferring the causal direction between two univariate numeric random variables XX and YY from observational data. The two-variable case is especially difficult to solve since it is not possible to use standard conditional independence tests between the variables. To tackle this problem, we follow an information theoretic approach based on Kolmogorov complexity and use the Minimum Description Length (MDL) principle to provide a practical solution. In particular, we propose a compression scheme to encode local and global functional relations using MDL-based regression. We infer XX causes YY in case it is shorter to describe YY as a function of XX than the inverse direction. In addition, we introduce Slope, an efficient linear-time algorithm that through thorough empirical evaluation on both synthetic and real world data we show outperforms the state of the art by a wide margin.Comment: 10 pages, To appear in ICDM1

    No-reference bitstream-based impairment detection for high efficiency video coding

    Get PDF
    Video distribution over error-prone Internet Protocol (IP) networks results in visual impairments on the received video streams. Objective impairment detection algorithms are crucial for maintaining a high Quality of Experience (QoE) as provided with IPTV distribution. There is a lot of research invested in H.264/AVC impairment detection models and questions rise if these turn obsolete with a transition to the successor of H.264/AVC, called High Efficiency Video Coding (HEVC). In this paper, first we show that impairments on HEVC compressed sequences are more visible compaired to H.264/AVC encoded sequences. We also show that an impairment detection model designed for H.264/AVC could be reused on HEVC, but that caution is advised. A more accurate model taking into account content classification needed slight modification to remain applicable for HEVC compression video content

    An optimized TOPS+ comparison method for enhanced TOPS models

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background Although methods based on highly abstract descriptions of protein structures, such as VAST and TOPS, can perform very fast protein structure comparison, the results can lack a high degree of biological significance. Previously we have discussed the basic mechanisms of our novel method for structure comparison based on our TOPS+ model (Topological descriptions of Protein Structures Enhanced with Ligand Information). In this paper we show how these results can be significantly improved using parameter optimization, and we call the resulting optimised TOPS+ method as advanced TOPS+ comparison method i.e. advTOPS+. Results We have developed a TOPS+ string model as an improvement to the TOPS [1-3] graph model by considering loops as secondary structure elements (SSEs) in addition to helices and strands, representing ligands as first class objects, and describing interactions between SSEs, and SSEs and ligands, by incoming and outgoing arcs, annotating SSEs with the interaction direction and type. Benchmarking results of an all-against-all pairwise comparison using a large dataset of 2,620 non-redundant structures from the PDB40 dataset [4] demonstrate the biological significance, in terms of SCOP classification at the superfamily level, of our TOPS+ comparison method. Conclusions Our advanced TOPS+ comparison shows better performance on the PDB40 dataset [4] compared to our basic TOPS+ method, giving 90 percent accuracy for SCOP alpha+beta; a 6 percent increase in accuracy compared to the TOPS and basic TOPS+ methods. It also outperforms the TOPS, basic TOPS+ and SSAP comparison methods on the Chew-Kedem dataset [5], achieving 98 percent accuracy. Software Availability: The TOPS+ comparison server is available at http://balabio.dcs.gla.ac.uk/mallika/WebTOPS/.This article is available through the Brunel Open Access Publishing Fun
    • …
    corecore