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ABSTRACT 

KERNEL-CONTROLLED DQN BASED CNN PRUNING FOR MODEL 

COMPRESSION AND ACCELERATION 

 

ROMANCHA KHATRI 

2020 

Apart from the accuracy, the size of convolutional neural networks (CNN) models 

is another principal factor for facilitating the deployment of models on memory, power 

and budget constrained devices.  However, conventional model compression techniques 

require human experts to setup parameters to explore the design space which is sub-

optimal and time consuming. Various pruning techniques are implemented to gain 

compression, trading off speed and accuracy. Given a CNN model [11], we propose an 

automated deep reinforcement learning [9] based model compression technique that can 

effectively turned off kernels on each layer by observing its significance on decision 

making. By observing accuracy, compression ratio and convergence rate, our model can 

automatically re-activate (turned on) the healthiest(fittest) kernels to train it again which 

greatly ameliorate the model compression quality. Experimented results on MNIST 

dataset [7], the proposed method reduces the size of convolution layers for VGG-like 

model [9] up to 60% with 0.5% increase in test accuracy within less than a half the 

number of initial amount of training (speed-up up to 2.5×), state-of-the-art results of 

dropping 80% kernels (86% parameters compressed) with increase in accuracy by 0.14%. 

Further dropping 84% kernels (94% parameters compressed) with the drop of test 

accuracy 0.40%. The first proposed Auto-AEC (Accuracy-Ensured Compression) model 
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can compress the network by preserving original accuracy or increase in accuracy of the 

model, whereas, the second proposed Auto-CECA (Compression-Ensured Considering 

the Accuracy) model can compress to the maximum by preserving original accuracy or 

minimal drop of accuracy. Based on experiments, further analyzed effectiveness of 

kernels on different layers based on how proposed model explores & exploits in various 

stages of training.    
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1. INTRODUCTION 

Over the last few years, deep learning models have been continuously achieving 

state-of-the-art performance in a variety of computer vision task, ranging from Visual 

Data Processing- Image Classification [6], Segmentation [6], Object Detection and 

Object Recognition [16][14] , Natural Language Processing- (Natural Language 

Generation - Image Captioning, Question Answering, Market Intelligence, Sentiment 

Analysis, Natural Language Understanding - Language Translator, Speech & Text 

Recognition), Bio-medicine, Autonomous driving, and so on. Most of the applications 

require high volumes of information for training the model that result in the requirement 

of high memory and powerful computational hardware to achieve state-of-art 

performance. For deploying the model in a constraint environment (memory, power, 

computation) locally (on smart-phones, drones, autonomous vehicles, glasses, smart 

watches) and globally on cloud is painful and insecure.  

Furthermore, running large networks requires a huge memory bandwidth to fetch 

enormous weights and tremendous amounts of matrix multiplications, FLOPs, which 

consumes considerable amounts of energy. Therefore, it is essential to reduce the size of 

models which has relatively low computational cost, low memory footprint but high 

accuracy and high convergence in real- world applications. 

Various approaches have been proposed and tested in Convolution Neural 

Network for dimensionality reduction in both convolution layers (dropout, pooling, point-

wise convolution) and fully-connected layers ( replacing with Global Average Pooling 

Layer), computation reduction (Group convolution - for data & model paralyze , point-

wise convolution, Depth-wise Separable convolution [5] , Fast Fourier Transform(FFT) 
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& Inverse Fast Fourier Transform (IFFT) convolution, and Winograd Convolution [12]. 

Although, the above methodologies worked for few CNN models, they also suffered from 

various application criteria. For example, group-wise convolution solved computation 

overload by sub-sampling inputs and processed independently, but the number of 

channels increased as we progressed through the layers because of concatenation applied 

after inception model. FFT & IFFT only worked well for large filters, whereas, Winograd 

Convolution solved the problem working with small filters but only applicable where 

there is overlapping for example, it would not be feasible to apply for 1×1 convolution or 

2×2 convolution with stride 2 and so on.  

Pruning techniques solved the problem by reducing the memory footprint and can be 

implemented in low computing smart devices, but the major challenges - pruned channels 

& weights are irreversible, in other words, once they are pruned, they will not be 

recovered. During the training process, the significance of kernels may vary. For 

instance, a #2 kernel for convolution layer-1 could play an important role in identifying a 

high-level feature for image classification at the end of training, but it could be pruned in 

the earlier part of training and never be recovered. Many works have focused on pruning 

methodologies, but they did not study the significance of each weight / kernels in 

different stages of training and once the weights/filters are selected & pruned, it will not 

get recovered.  

In this work, we propose to develop a novel Auto-AEC (Automatic Accuracy 

Ensured Compression) model for deep compression by addressing problems with a hand-

crafted compression rate which is sub optimal & time consuming, slow convergence 

[iterative pruning], unrecoverable pruned weights/kernels. We have used a Deep 
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Reinforcement Learning algorithm (Deep Q Learning) for selecting appropriate kernels 

and perform binary operations (active and inactive) for kernels in convolution layers that 

improves the model compression quality. Inactive operation is used to turn off kernel/s 

whereas active operation is used to turn on inactive kernels if needed. Turning on and off 

operations are automatized by using Deep Q Learning to select kernels based on kernel's 

efficiency and training stage. 
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Figure 1: Architecture of Deep-Q compression model 
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2. RELATED WORK 

As per a survey conducted by Yu Cheng [4], different approaches for model 

compression and acceleration are listed below : 

i. Parameter pruning & sharing (quantization, block coding & encoding) 

ii. Low-rank factorization (low rank filter, low rank approximation) 

iii. Knowledge distillation (teacher-student model) 

iv. Transferred/compact convolution filters (filter/channel pruning) 

By exploring the above approaches, although each methodology has surpassed their 

performance on different types of network, human expertise was required to set up hyper-

parameters, design space before implementing it. Method (i) & (ii) outperformed in many 

applications as they could support both train from scratch & pre-trained models. The rest 

of the approaches could only support training from scratch so they would be more 

challenging for implementation on Knowledge Transfer. Furthermore, method (iv) 

channel/filter pruning could only be applied in Convolution layers, so we could not deal 

with the parameters in FC layers. Song Han [8] also concluded that FC layers have more 

redundancy compared to convolution layers. They could prune up to 90% parameters on 

FC layers and up to 70% parameters on convolution layers without or with negligible 

accuracy drop.  

Pruning channels/filters could be more sensitive as an individual filter has high 

responsibility on generating a feature map results in loss of prominent features. The 

problems with method (i) are to identify the appropriate threshold parameter, and manual 

setup for the sensitivity of each layer's threshold for parameters pruning. Manual setup 

for threshold will lead to inconsistency in training and another important aspect is 
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retraining, fine tuning the pruned network after each pruning operations to compensate 

for pruned weights. Many works focus on compressing existing networks by setting up 

hand-crafted compression ratio for each layer, which requires a human expert. To sum 

up, it will elongate training time for the model.  

Therefore, to address aforementioned problems, proposed Deep Compression neural 

networks with pruning [8], trained quantization & Huffman coding and achieved state-of-

art performances reducing the model size on AlexNet by 35×, from 240MB to 6.9MB, 

and on VGG-16 by 49× from 552MB to 11.3MB, with no loss of accuracy with pruning 

reduced the number of connections by 9×  to 13× and quantization reduced the number 

of bits representation for each connection from 32bits to 5 bits. The size reduction of the 

model resulted in its possibility of implementation on SRAM which requires 120× fewer 

energy for computation rather than DRAM memory. In the last few years, different 

algorithms have been proposed for deep neural compression based on different 

methodologies.  

To replace conventional techniques of modifying the architecture manually or using 

pre-defined heuristic, [2] proposed policy-gradient RL for Network to Network 

Compression which compressed teacher model in two stages (Layer removal & Layer 

shrinkage). Removing layers aggressively reduced the size of the architecture but 

required heavy training & large computation in second stage for fine tuning the model. 

Yihui He and Song Han [10] proposed ADC: Automated Deep Compression and 

Acceleration with Reinforcement Learning for channel pruning. Work focused on layer 

wise channel pruning and did not study channel dependencies. An output channel is only 

dependent on input channels in the same group, and we can have convolution kernels and 
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channel dependency as well. So channel pruning without studying their dependencies 

might affect other channels and kernels. Once a channel is pruned, it cannot be recovered 

so the study of channel dependencies is important before pruning it.   

As discussed earlier, once we trained the model for few epochs, some kernels may 

have less significance than it was at the beginning of training. So the importance of 

individual kernel varies on different stages of training. And mostly, when the kernels are 

used to train model for sufficient number of epochs, turning off the kernels would have 

minimal impact than if they were turned off at early stages of training. To address this 

problem, we used epoch-based reward (Ereward). When the model proceeds toward higher 

number of epochs, negative reward is given to the model as a punishment, then model 

will learn to converge sooner with the predefined constrained. This epoch-based reward 

helps the model to converge sooner and if model takes long amount of training, DQN 

force the model to prune more kernels at latter part of the training. Pruning kernels in 

latter part of training is safe because most of the weights have been trained well. In this 

way, DQN force the model to accelerate. 

Ereward = {-1 if #epochs ↑ },  scoree = scoree + Ereward where, scoree is accumulated score at 

episode e. 

For resurrections of kernels, the model will learn the importance of that particular 

kernel before it was dropped out or deactivated and assign the fit value. During the 

resurrection process, the most fit (healthiest) kernel/s among deactivated ones will be 

reactivated and initialized.  There could be a chance of them getting turned back off again 

immediately for newly reactivated kernels, so we modified weights for reactivated 

kernel/s after its initialization.  
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𝒘𝒍𝒌 = 𝒊𝒏𝒊𝒕(𝒘𝒍𝒌) ∗  |𝒘𝒍𝒌| .............eq  i Modified weight 
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 2.1. ACCURACY-ENSURED COMPRESSION (AEC) 

We deployed Deep Q Network to learn the importance of kernels in reduced 

VGG-16 like models and compressed the model by turning off/on kernels. We were 

successfully able to turn-off up to 73% of the kernels with increasing the accuracy and 

also able to accelerate the model by 1.5 times which resulted in faster convergence. As 

the training elongated, DQN will enforce the model to deactivate more kernels because 

most of the weights are already learned, which will lead to increase compression ratio 

considering the accuracy. If the accuracy drops, instead of using iterative based training 

used by many other researches, this proposed model used a naive concept of reactivating 

inactive kernels to fine tune the model. We are making sure that the model will select 

kernel/s with higher fit (Flk – fit value for k’s kernel in l-layer) value. While turning off 

kernels, the model will evaluate all those kernels and assign fit value for each deactivated 

kernel based on their significance. So, during the re-activation cycle model will select 

prominent kernel/s so we can fine tune the model with the fewer number of kernel/s 

reactivation.   

 

Algorithm 1: Finding the best policy based on Accuracy Ensured Compression 

Goal: Find the optimal policy 

Target policies: Accuracy (= |  ↑) and Compression rate (↑↑↑) 

Candidate optimal policies = [Target policy and fast convergence] 

For every episode: 

1) Initialize observation (start state) 
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 – S0 𝜖 (𝑙11, 𝑙12, 𝑙13 … … 𝑙21𝑙22 … … 𝑙𝑛1𝑙𝑛1. . 𝑙𝑛𝑚), l1 norm / Manhattan Distance (l), 

number of layers n and list of kernels each layer m 𝜖 [𝑚1  , 𝑚2, ….. 𝑚𝑛] 

2) Exploration: 

a. Taking random actions from action space As 𝜖 (𝑎1 … . 𝑎5):  

b. Observe kernel’s significance & apply actions 

c. Observe accuracy & compression changes 

d. Save states on Replay memory  

R = [ St, at, rt, St+1, acc, compress …………]   

e. Explore few iterations at the beginning of training  

Exploitation: 

f. Learn and choose the best action from replay memory [Using past experience 

from R] 

Qtarget = reward batch + 𝜸 * max( Qnext_state).............eq  ii. Target Q value 

 

g. Random explore to make the model stochastic 

3) Repeat until current state (St) is the final state (Sf) or max number of training 

(exploration) 

 

 2.2. COMPRESSION-ENSURED CONSIDERING ACCURACY (CECA) 

 The second proposed model is CECA, which compresses the big model by 

maintaining original accuracy in most of the cases, but a negligible drop of accuracy is 

acceptable up to -0.5% loss if the compression rate is relatively high, in other words able 

to generate high weight sparsity in the network. The sparser the network is, the less 
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training and testing time is required for the network and also will fit the model in small 

memory and computation constrained devices like smart phone, smart watch, smart car, 

drone, surveillance camera, and even in the cloud. The purpose of this model is to 

compress the model by only preserving the minimal required number of kernels in 

convolutional layers of CNN.  We have used the same algorithm as we did use for the 

accuracy ensured compression model with a change in Target policy. 

Target policy for CECA model = Compression rate (↑↑↑↑) and Accuracy (= | ↑↑↑  |  ↓) 

 We have successfully obtained a model with a high compression rate, an increase 

in accuracy and a convergence rate. The model achieved state of the art performance by 

compressing big ratios for both the number of kernel's required in each layer and the 

number of pruned/inactive parameters in the network.  
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3. METHODOLOGY 

Figure 1 illustrates the proposed Automated DQN based Deep Compression model. We 

aim to automatically find the importance of kernels in each layer of the network to 

improve the quality of compression algorithms. Motivated from [15] kernel-wise 

variational pruning to remove unimportant kernels from the input channel dimensions, we 

propose to search for unimportant kernels based on accuracy, compression ratio & 

convergence rate and deactivate kernels instead of pruning so that we could recover the 

kernels (turn- on /activate) if required.  

 The goal of the proposed methodology is to improve the quality of compression in 

terms of accuracy, compression ratio and convergence rate. Accuracy is the test accuracy 

performed after training; compression rate is defined in terms of kernels dropout [turned 

off kernels] which will result in more inactive parameters. Convergence rate is the total 

number of epochs required to train the model to reach target policy. Considering these 

three factors, the goal of proposed DQN model to two different findings: 

1. Appropriate number of kernels in each convolution layer 

2. Appropriate time to turned off / turn on kernels 

Simply learning which kernels to turn-off and when (at what training stages) to turn-off. 

To achieve appropriate number of kernels and appropriate time for any kernels to turn-

off, actual human learning approach is implemented. Depicting into the model how 

human progress through learning, how human can skip redundant and unimportant 

information. For example, human is asked to read a book for 100 times, human may read 

thoroughly for the first time but after second attempt human speed up learning by 

skipping unnecessary details, redundant information and also some small information 
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may be learned within a few readings. This concept is translated into machine by turning 

off kernels from convolution layers. But what if some really important information is 

missed while skipping learning? To cover this, human can reread it. This idea is depicted 

in the machine by turning on kernels which are already turned off so machine can learn 

missed information on few epochs of training 

 

3.1. PROBLEM DEFINITION 

Model compression is achieved by deactivating the number of kernels from k to k'. 

k = [1,1,1,1,1,1,1... 1], k' = [0,0,0,1,1,0,1,0…0] for n kernels, 1 is active kernels and 0 is 

inactive kernels. k' is sparsity of kernels. The sparsity ratio can radically affect the 

compressed model’s performance, so we propose to find sparsity ratios in fine-grained 

with reinforcement learning. 

Observation is a series of l1 norms, S0 𝜖 (𝑙11, 𝑙12, 𝑙13 … … 𝑙21𝑙22 … … 𝑙𝑛1𝑙𝑛1. . 𝑙𝑛𝑚) , 

proposed reinforcement model always starts with same initial state values computed by l1 

norm on kernel’s weight. [13] We used l1 norms because of it has a lower computation 

cost as compared to l2 norm. Successive states are determined based on action values and 

random exploration. When the model learned from first batch of observations, it will 

exploit more from past experience and explore less often in order to deal with changing 

states and makes model stochastic. Two different experiments are done with different 

size of experience 64 and 150. This numbers suggest that 64 past experience was used to 

exploit the learning for Deep Q Network. It’s better to have more experience to train the 

model so model learns better. 
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Two run time memories for storing accuracy and compression ratio for n episodes are Acc 

= {aoriginal, ae1, ae2, ae3, … ,aen}, Cratio = {0, ce1, ce2, ce3, ... ,cen, and As 𝜖 (𝑎1 … 𝑎5) action 

space. 

 

3.2. PROBLEM FORMULATION 

Action: An action is an operation to be performed in the big model based on exploration 

and exploitation. Exploration is done by picking a random action from actions available 

in action space (As), whereas, an exploitation is done based on experience (selecting the 

best action so far based on sequence of observation, action, reward and new observation 

from replay memory). An action can be exploration or exploitation. 

 

Action Space (As): All the available actions are stored in action space, so that Deep Q 

Network performs one of these actions at a time). Proposed model has action space As = 

[0, 1, 2, 3, 4] having five actions.  

 

 

Table 1: Action table for DQN Model 
 

Action No.  Actions Action based on 

0 Turn off (3%) kernels kernels with minimum l1 norm 

1 Turn off (5%) kernels kernels with minimum l1 norm 

2 Turn on (5%) kernels kernels with higher fit value 

3 Turn on (10%) kernels kernels with higher fit value 

4 Epoch-based, Turn off (3%) kernels kernels with minimum l1 norm 

Epoch-based, Turn off (5%) kernels kernels with minimum l1 norm 
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State Space (Ss): All the states/ observations are stored in the State Space, i.e. the possible 

observations. In our case, the state space is continuous. 

 

Episode: An episode is a sequence of observations/states that start with the initial state to 

the final state. DQN model learns better as the number of episodes progresses. The 

number of states in each episode can be different which is known as step-size in Q-

learning. The goal is to minimize the step size while reaching the terminal state.  

 

Step-size (Convergence rate): The total number of epochs required for training the model 

in a particular episode is considered as a step-size in the proposed model. With the 

requirement of a minimal number of epochs in training will increase the training 

efficiency and require less training time. 

 

Reward: A reward is what we give feedback to the model on its action on particular 

observation. A positive reward will motivate the model, whereas, a negative reward will 

deviate the model to take another action. In the proposed CECA model, the goal is to 

compress the model as much as we can. Therefore, the reward for turning off kernels is 

+1, whereas the reward for turning on kernel is -1. We have further classified rewards 

below: 

a. Activation/Deactivation based rewards: The rewards for turning-off and 

turning-on kernels.  

b. Epoch/Step-size based rewards: The rewards given based on current step-

size. The goal is to reduce the number of epochs/step-size so as the 
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number of epochs increases, we give negative rewards to the model to 

push the model for early convergence with a quality result in terms of 

accuracy & compression. 

 

Table 2: Reward table for DQN Model 
 

Action value Reward value 

0 +1 

1 +1 

2 -1 [Punish] 

3 -1 [Punish] 

4 +1 

Epoch based reward Reward value 

Early convergence +10  

Accuracy (= or >) +20 

Compression (>) +10 

Full epoch of training -2 on each epoch [Punish] 

 

The goal is to compress the CNN Model, so a positive reward (+1) is given when the 

model chose the actions that resulted in a compressed model. But it does not mean that 

compressed model is always good if the accuracy is dropped too much. So, to maintain 

the accuracy a good reward (+20) is given to the model so it will try to maintain the 

original accuracy or better accuracy. Similarly, obtaining a more compressed model 

balancing the accuracy is most important, so, for compression a reward (+10) is given. To 
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obtain the optimal result with fast convergence, a negative reward/penalty (-2) is given as 

model training progress further. 

 

Exploration: At the beginning of learning for the DQN model, we forced the model to 

explore until the replay memory consisted of the total number of sequences as the batch 

size. The other way to explore was controlled using an Epsilon value in the model. The 

exploration happened a lot at the beginning with some occasional exploration throughout 

the learning. The purpose of the exploration in the proposed model was to address the 

following issues: 

a. The problem of Q-learning is over-exploitation, narrow the search space so 

does not deal well with changing observations. 

b. To prevent model from premature convergence i.e. we do not want the model 

to get converged with bad performance (accuracy & compression). 

 

Exploitation: Learning from past experience. We have used Replay Memory that can 

memorize past experience so that the model can re-use those experiences to learn in a 

more efficient way. We have conducted experiments with different sizes of Replay 

memory [64, 150]. The bigger the size of replay memory, the model has more past 

experience to learn from therefore the model can learn quicker and better. 
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3.3. MODEL STRUCTURES 

 

Table 3: DQN Model Structure 

 

Layer # Layer type Activation function No. of inputs  No. of outputs  

1 Linear / FC ReLU 224 256 

2 Linear / FC ReLU 256 256 

3 Linear / FC softmax 256 5 (actions) 

 

 

Table 4: Tested CNN Model 
 

Index: [- : The layer does not have that feature] 

 

Layer 

# 

Layer type Activation 

Function 

No. of inputs No. of 

outputs 

Kernel 

size/padding/stride 

1 Conv2D ReLU 1 32 3 / 1 / 1 

2 MaxPool2D - - - 2 / - / 1 

3 Conv2D ReLU 32 64 3 / 1 / 1 

4 MaxPool2D - - - 2 / - / 1 

5 Conv2D ReLU 64 128 3 / 1 / 1 

6 FC ReLU 7 * 7 * 128 1024 - 

7 FC Softmax 1024 10 - 
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4. EXPERIMENTS 

In all experiments, the MNIST [3] dataset contains 70000 grayscale images which 

is divided by 60000 samples for training, 10000 samples for evaluation. We adopt a VGG 

like network as a base model with 3 convolution layers and 2 dense layers. The first 2 

convolution layers used max pool operations for down-sampling with stride 2 and kernel 

size 3 × 3. We used ReLU (Rectified Linear Unit) as the activation function.  

f(x) = max (0, x) .............eq  iii ReLU Activation Function [1]. 

For Deep Q Network, we used 3 linear layers and ReLU [1] as the activation 

function except last layer. The discounting factor is selected as  𝛾 = 0.99 and epsilon as 𝜖 

= 1.0 and final epsilon as 0.01 with a decay of 5e-2. Replay memory of size 64. The 

learning rate for Deep Q Network is 0.003 and Adam is used as an optimizer.  The loss 

function used for training is Cross Entropy Loss. All implementation has been done on a 

top python-based machine learning framework called 'PyTorch', developed by Facebook 

AI team. 

 4.1. ACCURACY-ENSURED COMPRESSION 

The Figure 2 Network is trained for 50 Epochs and 50 Episodes for accuracy constrained 

compression. Each episode begins with the same initial weight as the original model used 

for its training. The result shows that for compressing the original model using proposed 

Auto-AEC, 80% of kernels can be turned-off without dropping the accuracy or with a 

slight increase in accuracy, whereas, with 0.5% loss of accuracy, 84% of kernels can be 

turned-off. With the compression rate more than 55%, the network converged early on 

80% of trainings.  
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Figure 1 shows that the proposed Auto-AEC model learnt well with accumulating 

rewards and reducing number of steps to achieve the target. Fluctuating curve for step 

size means randomly at certain iterations we forced the model to explore and learn so the 

model trained for full epoch of 50 for episode 20, 29, 37, 44, 50. 

 

Figure 2: Accuracy and Compression rate/turned off rate 50epochs/50episodes 

 

 

 

 

 

 

 

 

 

Figure 3: Accumulated rewards and Convergence rate 50epochs/50episode  
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Table 5: Average accuracy & convergence rate variance with compression rate (kernel 

turned-off %) 
 

Compression rate (%) Accuracy changes (%) Converge rate (times) 

50-59 % + 0.5 +2.3 

60-69% + 0.08 + 1.7 

70-75% + 0.15 + 1.6 

75-80% +0.12 + 1.25 

>80% - 0.40 + 1.15 

 The optimal policy [based on accuracy increase] leant by the proposed model for 

the experiment above is (i) in Table 5 with an increase in accuracy, compressed kernels to 

50-60% and an increase in convergence rate by 1.9 × to 2.5×. Similarly, the optimal 

policy [based on compression rate] is (iii) in Table 5 with increase in accuracy, 

compressed kernels to 75% and increase in convergence rate by 1.6 ×. 

 

Figure 4: Accumulated reward and convergence rate for 50 epochs 100 episodes of 

training AEC 
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While ensuring the accuracy, the compressed model can converge even more than two 

times faster. 

4.2. COMPRESSION-ENSURED CONSIDERING THE ACCURACY 

 Based on the test conducted with 50 epochs, 50 episodes compression ratio can be 

guaranteed more than 50% with an increase in accuracy up to 1% or a loss of accuracy 

less than 0.05% and convergence rate raised to 2.5×. A smaller than half sized model 

achieved the accuracy milestone within 20 epochs of training.  

 

 

 

 

 

 

 

 

 

Figure 5: Accuracy Vs. Compressed Rate and Accumulated Rewards Vs. Convergence 

Rate 50 epochs 50 episodes 

With another experiment with 100 episodes of training we have obtained the 

following results. The results show that the performance of the model is increasing as 

training episodes increases.  
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As the episodes progress, the model learned well and converged very well with 

optimal results (both accuracy & compression rate).  

 

 

Figure 6: Accuracy Vs. compressed rate and accumulated rewards Vs. convergence rate 

50 epochs 100 episodes 

 

While exploring CECA training of 100 episodes, the model explores until 17 

episodes and then starts exploiting often and exploring less often until 50 episodes. After 

50 episodes, the model leant very well and starts converging sooner. The proposed model 

can find a good model very quickly. The state-of-the-art results of compression of 80% 

kernels (86% parameters) with increase in accuracy by 0.14% and compression of 84% 

kernels (94% parameters) with the drop of minimal test accuracy 0.4% is shown below. 
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Figure 7: Inactive kernels and parameters versus accuracy change 

 Dropping off 80% of kernels resulting 86% inactive/sparse parameters from 

different convolution layers with improve on accuracy +0.14%. As experiment conducted 

on 3-layer Convolution Neural Network with kernels (32, 64 and 128) respectively 

starting from first layer, we can make conclusion that kernels at latter layer have more 

significance on performance factor of Convolution Neural Network for both accuracy and 

compression performance. Figure 8 below shows 64% of parameters are pruned from the 

first layer, whereas, 68% parameters are inactive in the second layer and the highest 

percentage 91% parameters are pruned from the third convolution layer. Out of 128 

kernels in the third layer, DQN just retained 12 kernels as active kernel to perform 

classification and outperformed on both accuracy and compression performance.  
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Figure 8: Layer wise percentage of inactive parameters for CNN 

 

 To ensure the consistency of our model's performance, we have conducted a test 

combining both previous model's policies. The Accuracy-Ensured Model and the 

Compression-Ensured Model considering Accuracy are merged to see the performance 

differences. We have conducted an experiment for 50 epochs and 70 episodes of training 

with a slight adjustment on size of replay memory [150]. At total of 150 best action 

batches are stored in replay memory which means with having more experience, the 

model learns better. The results are shown below. 
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Figure 9: Episode Vs. accuracy and layer-wise turned-off kernels, and inactive 

parameters 

 

 
Figure 10: Episode Vs. Step-size and Accumulated Reward for 150 sized replay memory 
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Figure 11: Layer-wise inactive parameters per epoch [average of last five episodes] 

 

  

 By observing Figure 11, regarding both accuracy and compression, layer 3 kernels 

have a significant role. As layer 3 has 64 input channels and 128 output channels, turning 

off a single kernel in layer 3 will result in (64 × kernel-size) parameters to be zero. When 

you have a target policy to compress high, the DQN model will select kernels from layer 

3 at most but turning off many kernels at this layer would cause a significant drop in 

accuracy so the model has to sensibly turn off kernels in different convolution layers. As 

results show, layer 3 kernels are sensibly turned off in a linear way as the number of 

training epochs increase with balancing kernels from previous layers [turning off or 

saturate]. After 13 epochs of training, kernels turned off for layer 1 is saturated at 68% 

but we can see a variance in kernels turned off rate for layer 2. From this experiment we 
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still found state-of-art result compressing convolution layers by 89% (overall 80% of 

kernels are turned off) with accuracy increase in +0.31%. 

4.3.  LAYER-WISE KERNEL’S EFFECTIVENESS ANALYSIS 

 According to the proposed DQN model, while analyzing the importance of 

kernel’s on each layer, on different stages of training on both experiments, we found that 

kernel’s at earlier convolution layers are safe to be turned off. But to obtain more 

compressed network, kernel’s at latter parts of convolution layers are turned off. 

Maintaining the balance between accuracy and compression rate, the proposed model 

determines which layer’s kernels should be turned off or turned on at what stage of 

training. For an instance, we have 3 convolution layers, for most of the episodes of 

training the model turned off kernels from first & second convolution layers considering 

accuracy. But when we trained the model based on experiment 2, trying to increase the 

compression rate, the model turned off kernels from the third layer. For regaining 

accuracy, the most important kernels from layer three are turned back on. 

 For Accuracy Ensured Compression (AEC) training, kernels at the earlier layers 

are turned off whereas, for Compression Ensured Considering the Accuracy (CECA) 

training, kernels at latter layers are turned off. In both the training, the proposed model 

gained high compression rate with an increase in accuracy or negligible drop on accuracy 

in average or less than a half percentage for model compressed ratio greater than 80%. 
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Figure 12: Inactive parameters at episode 1  

 

 Convolution layer 1 has 32 output channels, layer 2 has 64 output channels and 

layer 3 has 128 output channels. Turning off kernels at the first layer results in less sparse 

network, whereas, turning off kernels from layer 3 results in sparser network (high 

compression rate). Kernels at layer 3 have a connection with more parameters so turning 

off kernels at layer 3 is highly sensitive as compared to previous layers regarding both 

accuracy and compression rate. Turning off kernels from layer 3 will result in high 

compression but on the other hand, the accuracy might get affected when more weights 

are pruned at once. So the goal of model is to learn the significance of kernels at each 

layer and at different stages of training such that how many and when the kernels should 

be turned off/turned on. Turning off will definitely result in compression network but that 
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is not the primary issue if we lose accuracy by a large margin, so it is important to know 

when to turn off the kernels. 

 

Figure 13: Inactive parameters at episode 100   

Figure 12 is the result obtained at the beginning of learning when applying actions of 

turning off and turning on kernels to maintain accuracy, compression ratio and 

convergence rate. As the learning progresses, Figure 13 describes the model learnt 

importance of various kernels at different convolution layers. Layer 3 with 128 output 

channels, kernels at that layer play the most significant role to maintain both accuracy & 

compression ratio. So, the model cautiously deactivating kernels as epochs of training 

progress considering accuracy and compression ratio also results in fast convergence. 

Figure 7(b) shows that Accuracy-Ensured Compression training is able to compress 

(>50%) with few epochs of training just (23 epochs) as compared to 50 epochs of training 

for original model. After training for several episodes, the model has learnt kernel’s 
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efficiency and as the epochs progress the model force to converge early by deactivating 

kernel’s that lead to increase compression ratio with guaranteed accuracy increase. 

Figure 13 shows that turning off kernels from the first layer is saturated after 2 

epochs of training, similary, turning off kernels from second layer is increasing as 

training progress until 11 epoch and saturated for a while with balancing kernels turning 

off from third convolution layer until 23 epochs of training.  

 

  

Figure 14: Layer wise performance analysis and respective accuracy, compression ratio 

and convergence rate 
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4.4.  RESULTS COMPARISON 

The accuracy of the small model is lagging in all three cases for (44 , 40, 43)% 

kernels turned-off percentage by -0.04%, -0.12%, -0.17% respectively with compared to 

big model. The accuracy of the model using DQN model is higher as compared to the 

original model average accuracy for running 50 different testing (+0.09%, +0.15%, 

+0.13%) respectively. Comparing the model with DQN outperforms in terms of accuracy 

with smaller model as well by (+0.09%, +0.16%, +0.14%) respectively. The DQN 

compressed model outperforms in terms of accuracy, compression ratio & convergence 

rate compared to the original model, and in terms of accuracy compared to new designed 

small model. Therefore, the compressed network gererated  by DQN model performs 

better than the equal sized small network. 

 

Figure 15: Accuracy graph for small model with 44 kernels Vs. model with DQN model 
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Figure 16: Accuracy graph for small model with 40 kernels Vs. model with DQN model 

 

 

 

 
   

 

 

Figure 17: Accuracy graph for small model with 43 kernels Vs. model with DQN model 
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 To find the appropriately sized small model for the given problem a brute force 

approach is tedious and time consuming. The DQN model helped to find the small sized 

model for the given problem so that we can construct a small model base on the number 

of active kernels remaining in DQN compressed model. The results showed that the 

performance of the DQN compressed model surpassed in every aspect to the original 

model and small sized model. Training for 50 different randomly initialized weights, 

DQN based compressed model showed consistence performance with gain in test 

accuracy. 

 

Table 6: Overall kernels and parameters comparison  

  

Model 

Convolution Layers 

Active 

parameters 

(#) 

Kernels Inactive parameters 

(# / %) 

Inactive Active 

Original Model 92448 0 (0%) 224 0 (0%) 

DQN compressed Model 

(Better accuracy)- AEC 

12943 179 

(80%) 

45 79505 (86%) 

DQN compressed Model 

(Better compression)- CECA 

5547 188 

(84%) 

36 86901 (94%) 
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5.  CONCLUSION 

The proposed DQN model, an automated deep reinforcement-learning based 

model can effectively turn off kernels on each layer by observing the kernel’s 

significance on decision making. Unimportant kernels are deactivated and assigned a fit 

value based upon its current importance. We addressed the problem of traditional pruning 

approaches which required more training in order to compensate pruned weights. The 

proposed model simply turned on kernels if required and immediately regained the 

accuracy with minimal training required. By observing accuracy, compression ratio and 

convergence rate, the DQN model can automatically renovate (turn on) the 

healthiest(fittest) kernels to train it again which greatly improves the model compression 

quality. Instead of doing premature pruning, the DQN model meticulously decides the 

appropriate time for kernels to deactivate without causing performance degradation. 

Furthermore, conducting experiment results on MNIST dataset, the proposed method can 

reduce the size of the convolution layers for VGG-like model up to 60% with 0.5% 

increase in test accuracy within less than a half the number of initial amount of training 

(speed-up up to 2.5×), state-of-the-art results of 80% kernels (86% parameters) with 

increase in accuracy by 0.02%. Further compression up to 84% kernels (94% parameters) 

with the drop of minimal test accuracy 0.4%. The DQN model successfully learned to 

find the appropriate number of kernels required in each convolution layers and what is 

the appropriate time to turn off a particular kernel. Two different models are proposed for 

model compression and acceleration, Auto-AEC (Accuracy-Ensured Compression) 

model can compress the network by preserving original accuracy or increase in accuracy 

of the model, whereas, Auto-CECA (Compression-Ensured Considering the Accuracy) 
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model can compress to the maximum by preserving original accuracy or minimal drop of 

accuracy.  
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