166 research outputs found

    Formal Verification of Autonomous Vehicle Platooning

    Get PDF
    The coordination of multiple autonomous vehicles into convoys or platoons is expected on our highways in the near future. However, before such platoons can be deployed, the new autonomous behaviors of the vehicles in these platoons must be certified. An appropriate representation for vehicle platooning is as a multi-agent system in which each agent captures the "autonomous decisions" carried out by each vehicle. In order to ensure that these autonomous decision-making agents in vehicle platoons never violate safety requirements, we use formal verification. However, as the formal verification technique used to verify the agent code does not scale to the full system and as the global verification technique does not capture the essential verification of autonomous behavior, we use a combination of the two approaches. This mixed strategy allows us to verify safety requirements not only of a model of the system, but of the actual agent code used to program the autonomous vehicles

    Approche réactive pour la conduite en convoi des véhicules autonomes (Modélisation et vérification)

    Get PDF
    Cette thèse se situe dans la problématique de la conduite en convoi de véhicules autonomes : des ensembles de véhicules qui se déplacent en conservant une configuration spatiale, sans aucune accroche matérielle. Ses objectifs sont d'abord, la définition d'une approche de prise de décision pour les systèmes de convois de véhicules, puis, la définition d'une approche de vérification, adaptée à la preuve de propriétés relatives aux convois de véhicules, avec une attention particulière envers les propriétés de sûreté.L'approche pour la prise de décision est décentralisée et auto organisée : chaque véhicule détermine son comportement de façon locale, à partir de ses propres capacités de perception, sans avoir recours à une communication explicite, de telle sorte que l'organisation du convoi, son maintien et son évolution soient le résultat émergeant du comportement de chaque véhicule. L'approche proposée s'applique a des convois suivant plusieurs types de configuration, et permet des changements dynamiques de configuration.L'approche proposée pour la vérification de propriétés de sûreté des convois de véhicules, adopte le model-checking comme technique de preuve. Pour contourner le problème de l'explosion combinatoire, rencontré dans la vérification des systèmes complexes, nous avons proposé une méthode compositionnelle de vérification, qui consiste a décomposer le système en sous systèmes et à associer une propriété auxiliaire à chacun des sous systèmes. La propriété globale sera ensuite déduite de l'ensemble des propriétés auxiliaires, par l'application d'une règle de déduction compositionnelle. La complexité calculatoire est mieux maîtrisée car le model-checking s'applique aux sous-systèmes. Nous proposons une règle de déduction adaptée aux systèmes de conduite en convoi, en particulier ceux qui sont basés sur des approches décentralisées. La règle considère chaque véhicule comme un composant. Elle est consistante sous la condition que l'ajout d'un nouveau composant au système n'a pas d'influence sur le comportement du reste du système. L'approche décentralisée proposée pour la conduite en convoi satisfait cette condition. Deux propriétés de sûreté ont été vérifiées : absence de collision et évolution confortable pour les passagersThis thesis places in the framework of Platoons, sets of autonomous vehicles that move together while keeping a spatial configuration, without any material coupling. Goals of the thesis are: first, the definition of a decision making approach for platoon systems. Second, the definition of a method for the verification of safety properties associated to the platoon system.The proposed decision making approach is decentralized and self-organized. Platoon vehicles are autonomous, they act based only on their perception capabilities. The configuration emerges as a result of the individual behavior of each of the platoon vehicle. The proposed approach can be applied to platoon with different configurations, and allows for dynamic change of configuration.The proposed verification method uses the model-checking technique. Model checking of complex system can lead to the combinatory explosion problem. To deal with this problem, we choose to use a compositional verification method. Compositional methods decompose system models into different components and associate to each component an auxiliary property. The global property can then be deduced from the set of all the auxiliary properties, by applying a compositional deduction rule. We define a deduction rule suitable for decentralised platoon systems. The deduction rule considers each vehicle as a component. It is applicable under the assumption that adding a new component to an instance of the system does not modify behavior of the instance. Two safety properties have been verified : collision avoidance.BELFORT-UTBM-SEVENANS (900942101) / SudocSudocFranceF

    Specifying in B the Influence/Reaction Model to Study Situated MAS: Application to vehicles platooning

    Get PDF
    International audienceThis paper addresses the formal specification and verification of situated Multi-Agent Systems (MAS) that can be formulated within the Influence/Reaction model as proposed in 1996 by Ferber \& Muller. In this model, our objective is to prove the correctness of reactive MAS with respect to a certain formal specification or property, using formal methods. This is an important step to bring MAS to high quality standards as required for critical applications encountered in domains such as transport systems. A generic B representation of systems instantiating the Influence/Reaction model is proposed, using patterns of specification. We illustrate our approach with a MAS to control unmanned land vehicles to form a platoon. The papers ends with considerations about further improvements of the framework, involving simulation and study of the properties of the system

    Event-B Specification of a Situated Multi-Agent System: Study of a Platoon of Vehicles

    Get PDF
    10 pagesInternational audienceSituated Multi-Agents Systems (MAS), and other Agent-based systems, are often complex. Formal reasoning is needed to ensuring their correctness and structuring their development. Event-B is a formal method with tool support allowing a stepwise development of reactive distributed systems. MAS being a subclass of such systems, we propose using Event-B to helpful their specification and their safe development. In this article, we mainly report our experience with the Even-B stepwise development of a situated MAS which study the displacement of vehicles in a convoy. This article aims also at serving as a guide for the development of other MAS, taking agents-specific features into account

    Generic Expression in B of the Influence/Reaction Model: Specifying and Verifying Situated Multi-Agent Systems

    Get PDF
    This paper addresses the formal specification and verification of situated multi-agent systems that can be formulated within the influence-reaction model as proposed in 1996 by Ferber & Muller. In this framework our objective is to prove the correctness of reactive multi-agent systems with respect to a certain formal specification or property, using formal methods. This is an important step to bring multi-agent systems to high quality standards as required for critical applications encountered in domains such as transport systems. A generic B writing of systems instantiating the influence reaction model is proposed, using patterns of specification. An illustration is then presented on the formal specification of a system operating electrical vehicles under precise automatic control at close spacings to form a platoon. The papers ends with considerations about further improvements of the framework, involving simulation and study of the properties of the system

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Model-Based Engineering of Collaborative Embedded Systems

    Get PDF
    This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years

    Agents and Robots for Reliable Engineered Autonomy

    Get PDF
    This book contains the contributions of the Special Issue entitled "Agents and Robots for Reliable Engineered Autonomy". The Special Issue was based on the successful first edition of the "Workshop on Agents and Robots for reliable Engineered Autonomy" (AREA 2020), co-located with the 24th European Conference on Artificial Intelligence (ECAI 2020). The aim was to bring together researchers from autonomous agents, as well as software engineering and robotics communities, as combining knowledge from these three research areas may lead to innovative approaches that solve complex problems related to the verification and validation of autonomous robotic systems
    • …
    corecore