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ABSTRACT

Facilitating Formal Verification of Cooperative
Driving Applications: Techniques and Case Study

Shou-pon Lin

The next generation of intelligent vehicles will evolve from being able to drive autonomously

to ones that communicate with other vehicles and execute joint behaviors. Before allowing

these vehicles on public roads, we must guarantee that they will not cause accidents. We will

apply formal methods to ensure the degree of safety that cannot be assured with simulation

or closed-track testing. However, there are challenges that need to be addressed when

applying formal verification techniques to cooperative driving systems.

This thesis focuses on the techniques that address the following challenges: 1. Au-

tomotive applications interact with the physical world in different ways; 2. Cooperative

driving systems are time-critical; 3. The problem of state explosion when we apply formal

verification to systems with more participants.

First, we describe the multiple stack architecture. It combines several stacks, each

of which addresses a particular way of interaction with the physical world. The layered

structure in each stack makes it possible for engineers to implement cooperative driving

applications without being bogged down by the details of low-level devices. Having functions

arranged in a layered fashion helps us divide the verification of the whole system into smaller

subproblems of independent module verification.

Secondly, we present a framework for modeling the protocol systems that uses GPS

clocks for synchronization. We introduce the timing stack, which separates a process into

two parts: the part modeled as an finite-state machine that controls state transitions and

messages exchanges, and the part that determines the exact moment that a timed event

should occur. The availability of accurate clocks at different locations allows processes to

execute actions simultaneously, reducing interleaving that often arises in systems that use



multiple timers to control timed events. With accurate clocks, we create a lock protocol

that resolves conflicting merge requests for driver-assisted merging.

Thirdly, we introduce stratified probabilistic verification that mitigates state explosion.

It greatly improves the probability bound obtained in the original probabilistic verification

algorithm. Unlike most techniques that aim at reducing state space, it is a directed state

traversal, prioritizing the states that are more likely to be encountered during system exe-

cution. When state traversal stops upon depleting the memory, the unexplored states are

the ones that are less likely to be reached. We construct a linear program whose solution

is the upper bound for the probability of reaching those unexplored states. The stratified

algorithm is particularly useful when considering a protocol system that depends on several

imperfect components that may fail with small but hard-to-quantify probabilities. In that

case, we adopt a compositional approach to verify a collection of components, assuming

that the components have inexact probability guarantees.

Finally, we present our design of driver-assisted merging. Its design is reasonably simpli-

fied by using the multiple stack architecture and GPS clocks. We use a stratified algorithm

to show that merging system fails less than once every 5× 1013 merge attempts.



Table of Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Driver-assisted Merge Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Architecture for Intelligent Vehicles . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Platoon control architecture . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Sensor System Architecture . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Coordinate Timely Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Verification of the Protocol Systems . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 A Multiple Stack Architecture for Cooperative Driving Applications 14

1.5.2 Protocol Synchronization Based on GPS Clocks . . . . . . . . . . . . 15

1.5.3 Stratified Probabilistic Verification . . . . . . . . . . . . . . . . . . . 16

1.5.4 A Driver-Assisted Merge Protocol . . . . . . . . . . . . . . . . . . . 17

2 Related Works 19

2.1 Architectures for cooperative driving systems . . . . . . . . . . . . . . . . . 19

2.2 Highway Lane Change / Merge Solutions . . . . . . . . . . . . . . . . . . . 21

2.3 Modeling Real-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Tackling State Explosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



3 Preliminaries 26

3.1 Constituting Components of a Protocol System . . . . . . . . . . . . . . . . 27

3.1.1 Finite-State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Models for Services and Environments . . . . . . . . . . . . . . . . . 29

3.2 Modeling and Verification of Probabilistic Systems . . . . . . . . . . . . . . 31

3.2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Probabilistic Safety Properties . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Verification of Probabilistic Safety Properties for MDPs . . . . . . . 36

3.3 From Finite-State Machines and Service Models to Markov Decision Process 39

3.4 Example: Verifying Acknowledgement Protocol . . . . . . . . . . . . . . . . 44

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Multiple Stack Architecture 51

4.1 Multiple Interactions with the Physical World . . . . . . . . . . . . . . . . . 52

4.1.1 The Vehicle Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 The Communication Stacks . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.3 The Timing Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.4 The Sensor Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Layered Architecture and Verification . . . . . . . . . . . . . . . . . . . . . 58

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Synchronous Clocks 61

5.1 The Lock Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Real World Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.2 The Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.3 Specification in Timed Automata . . . . . . . . . . . . . . . . . . . . 66

5.2 Revisit the Timing Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Interface of Timing Stack . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Finite-State Machines with Timestamps . . . . . . . . . . . . . . . . 70

5.2.3 Specification of Lock Protocol . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Modeling of Protocol Systems with Timing Stacks . . . . . . . . . . . . . . 75

ii



5.4 Transition Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 Compatibility of FSMs with Timestamps . . . . . . . . . . . . . . . 77

5.4.2 Transition rules imposed by the timing stack model . . . . . . . . . 78

5.5 Example: Execution Sequences of the Lock Protocol . . . . . . . . . . . . . 80

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Stratified Probabilistic Verification 86

6.1 Discretized Probability Levels . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Discretized-probability Markov Decision Processes . . . . . . . . . . 88

6.1.2 Execution sequence and structure of reachable graph . . . . . . . . . 89

6.1.3 Correctness properties . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Stratified State Traversal Algorithm . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Integrate Probabilistic Search into Depth-First Search . . . . . . . . 93

6.2.2 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.3 Bound Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.4 Stratified Technique versus Original Probabilistic Verification . . . . 104

6.2.5 Stratified Technique versus PRISM Model Checker . . . . . . . . . . 106

6.3 Compositional Verification with Stratified Technique . . . . . . . . . . . . . 107

6.4 Stratified Algorithm for Standard Markov Decision Processes . . . . . . . . 111

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 The Merge Protocol 115

7.1 Driver-assisted Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Specification of the Merge Protocol and its Safety Guarantees . . . . . . . . 118

7.3 Verification of the Driver-assisted Merging . . . . . . . . . . . . . . . . . . . 124

7.3.1 Service Models of Components . . . . . . . . . . . . . . . . . . . . . 126

7.3.2 Service Guarantees as Regular Safety Properties . . . . . . . . . . . 127

7.3.3 Verifying the Merge Protocol . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Conclusions 135

iii



Bibliography 136

iv



List of Figures

1.1 Driver-assisted merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Service models used in verification of acknowledgment protocol . . . . . . . 6

1.3 The layered architecture in the PATH project . . . . . . . . . . . . . . . . . 8

1.4 The layered sensor architecture in the BMW project . . . . . . . . . . . . . 9

3.1 Half-duplex channel service model . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 An Adversary Resolves an MDP into a Markov Chain . . . . . . . . . . . . 34

3.3 Specification of acknowledgment protocol . . . . . . . . . . . . . . . . . . . 44

3.4 Service models used in verification of acknowledgment protocol . . . . . . . 45

3.5 A Portion of Constructed MDP . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Bad prefix DFA of the regular safety property . . . . . . . . . . . . . . . . . 47

3.7 Portion of MDP-DFA product . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Multiple stack layered architecture for cooperative driving system . . . . . . 52

4.2 Simplifying verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Normal Operation of the Lock Protocol . . . . . . . . . . . . . . . . . . . . 65

5.2 Specification of the Lock Protocol in UPPAAL model . . . . . . . . . . . . 67

5.3 Interacting with the Timing Stack . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Validity Check when Receving Messages Containing Timestamp(s) . . . . . 72

5.5 Specification of the lock protocol, id= i (Flock,i) . . . . . . . . . . . . . . . . 74

5.6 The System Appears to Have a Single Stack . . . . . . . . . . . . . . . . . . 75

5.7 Four lock protocol processes on four vehicles . . . . . . . . . . . . . . . . . . 80

5.8 Competing Requests of Lock Protocol . . . . . . . . . . . . . . . . . . . . . 81

v



5.9 Logical View of the Four-Instance System . . . . . . . . . . . . . . . . . . . 82

6.1 An example of verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Possible transitions from a given state s . . . . . . . . . . . . . . . . . . . . 103

6.3 Lock protocol system resolving two conflicting requests . . . . . . . . . . . . 105

6.4 Lock protocol system resolving five conflicting requests . . . . . . . . . . . . 106

6.5 Example: layering parameter p̂ = 0.1 . . . . . . . . . . . . . . . . . . . . . . 112

7.1 Driver-assisted Merge Protocol in the Architecture . . . . . . . . . . . . . . 117

7.2 Finite-state machine Fmerge . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 Finite-state machine Fhmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Finite-state machine Ffront (Fback) . . . . . . . . . . . . . . . . . . . . . . . 122

7.5 Interactions between FSMs and the interfaces . . . . . . . . . . . . . . . . . 123

7.6 Car m attempts to merge between car f and car b . . . . . . . . . . . . . . 124

7.7 Service models of the components, part 1 . . . . . . . . . . . . . . . . . . . 127

7.8 Service models of the components, part 2 . . . . . . . . . . . . . . . . . . . 128

7.9 DFA A∗merge: the labels in the alphabet that are not shown result in self-loop 128

7.10 DFAs representing regular safety properties . . . . . . . . . . . . . . . . . . 129

7.11 DFA A∗lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.12 7-party scenario of the lock protocol . . . . . . . . . . . . . . . . . . . . . . 132

vi



List of Tables

6.1 Comparison of probability bounds obtained by the original probabilistic ver-

ification and by using linear programming . . . . . . . . . . . . . . . . . . . 105

6.2 Comparison of PRISM and stratified algorithm . . . . . . . . . . . . . . . . 106

7.1 Messages on the Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vii



Acknowledgments

I am fortunate to have wonderful people helping me along this quite unforgettable

journey of Ph.D. studies and of self-exploration. It is sentimental since this thesis marks

the culmination of twenty years of education since the first day I stepped into the gate of

the elementary school.

First and foremost, I would like to thank my Ph.D. advisor, Professor Nicholas Maxem-

chuk, for his guidance and support. Without his foresight and invaluable experience this

thesis would not have been possible. I am extraordinarily lucky to have had the chance to

work with him, and will be forever grateful for his support and mentorship.

I am also thankful to my committee members, Prof. Debasis Mitra, Prof. Krishan
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Sensing, communications, and vehicle control are being integrated in intelligent vehicles.

There have been successful demonstrations of autonomous driving at Google and Carnegie

Mellon University, and there are plans to include autonomous driving into production ve-

hicles by Tesla, Nissan, Mercedes, and BMW.

The next generation of intelligent vehicles will be the ones that can communicate with

other vehicles and execute joint maneuvers. Vehicles are evolving from autonomous vehicles

that sense their environments and control their operation to vehicles that communicate

and coordinate their maneuvers. For instance, vehicle platoons are being investigated in

the Grand Cooperative Driving Challenges. Before allowing these cooperative vehicles on

public highways, we must guarantee that they will not cause accidents, as any flaw in the

system may claim human lives. We will apply formal methods to ensure the degree of safety

that cannot be assured with simulation or closed-track testing.

This thesis focuses on the techniques that facilitate the developments and verifications

of safe cooperative driving protocols. Specifically, we are taking the techniques that are

proven to be useful in the development of communication system, such as layered archi-

tecture and formal methods, to the realm of intelligent vehicles. We use these techniques

to develop a driver-assisted merge protocol as a proof-of-concept. The merge protocol not

only involves cooperation between vehicles, but also includes cooperation between the driver

and the vehicle, rather than being fully-automated. Semi-automated merge protocols are

crucial steps toward fully automated protocols. The public should be convinced that these
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applications improve safety before they are asked to give up control of the vehicle.

Simulation and test tracks are the prevalent techniques that are used to study the

performance of the systems and to verify that such systems are safe. However, the tolerance

for failure in automobiles is much lower than can be guaranteed by these techniques. For

example, recently, faulty ignition switches on several models of vehicles manufactured by

General Motors resulted in a massive recall of vehicles. According to the article [Dye, 2014],

there were 52 crashes that were known to be caused by the faulty switch; at least 2.6 million

vehicles were recalled in the year of 2014. Supposing that each vehicle with a faulty switch

spent at least 1,000 hours on public roadway from the time it left the auto plant, there would

be 52 switch-related crashes in (2.6×108×103) hours of driving, or approximately 2 crashes

every 108 hours of driving. A failure this rare would likely go undetected by simulation and

closed-track testing, whereas formal methods are proven more comprehensive.

Before we apply formal methods to prove the safety of cooperative driving systems, the

following challenges need to be addressed:

• Automotive applications interact with the physical world in different ways, includ-

ing sensing the surroundings of a vehicle, controlling vehicle movements, exchanging

messages with other vehicles by tapping the wireless medium, and so forth. Each in-

teraction with the physical world is susceptible to various types of failures and errors.

For instance, transmitted messages may not be received in a timely manner and may

be lost due to interference or sensors may measure distances inaccurately.

• Cooperative driving systems are time-critical. Vehicles travel on highways with veloc-

ities up to 70mph. All maneuvers are required to be completed within a reasonably

short time slot, as the conditions on highways are constantly changing. Given that

we are designing a driver-assisted merging application, the responses from drivers

also affect the execution of maneuvers, since drivers may fail to respond to advisories

provided by the applications.

• The complexity of model checking increases exponentially in the number of partici-

pants in the system. This complexity comes from the number of states in the composite

machine, which increases exponentially with the number of participants. Although
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the driver-assisted merging involves only three vehicles, namely the vehicle changing

lanes and the two vehicles in the adjacent lane where the target gap is located, other

vehicles may interfere with the merge. On a reasonably loaded highway, this is of-

ten the case. This exponential increase in the complexity of verification is known as

state explosion problem, which is a major obstacle that prevents application of model

checking techniques.

This thesis introduces the techniques that address these challenges and culminates in the

application of formal methods to verification of the driver-assisted merge protocol. To give

an overview of the contributions of this thesis, in this chapter we first describe the successful

experience of layered architecture in the field of communications (Section 1.1), introduce

the accurate clocks obtained from Global Positioning System (GPS) signal (Section 1.2),

and provide the background of verification of state transition systems (Section 1.3). We

outline the contributions of this thesis in Section 1.4.

1.1 Driver-assisted Merge Protocol

One of the main objectives of this thesis is to design a safe driver-assisted merging applica-

tion that is robust against various undesirable event is the main objective of this thesis. In

this section, we describe the expected behavior of the merge protocol. We give an overview

of the enabling technologies, as the available technologies influence the design of the archi-

tecture and the merge protocol itself.

Figure 1.1: Driver-assisted merging

The envisioned driver-assisted merge protocol should assist a driver who attempts to

merge between two vehicles in the adjacent lane, as shown in Fig.1.1. The merge protocol

is semi-automated in the sense that it controls the longitudinal movement of the vehicle

while leaving the steering control to its driver. The driver first signals his/her intention to

switch into the adjacent lanes by switching on the turn signal, at which point the merge
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protocol is initiated. The merge protocol attempts to request for cooperation of the two

vehicles surrounding the target gap. On agreeing to cooperate, the two vehicles adjust their

velocities and accelerations to gradually create a gap between them. At the same time, the

vehicle in which the driver issues a merge request also adjusts its velocity and acceleration so

as to align with the gap being created. When the sensors on each of the three vehicles agree

that the merging vehicle is fully aligned with the gap, the driver on the merging vehicle is

notified, for instance, by a flashing indicator on the dashboard and/or a buzzing prompt.

The driver then steers into the newly created gap and concludes the merge maneuver.

As the group of vehicles execute the merge maneuver on public highways, a wide range

of undesirable events may happen, including emergency braking of the vehicle in front, an

unexpected obstruction on the road, interfering third-party vehicles, and component failures

such as sensor inaccuracies, message loss, communication failure, etc. When an undesirable

event occurs, the merge should be aborted safely and the driver notified. The vehicle either

returns the control to the driver or enters autonomous driving mode that avoids collision.

To realize the whole merge maneuver, the intelligent vehicle equipped with the merge

protocol should be capable of the following tasks:

Controlling the speed and distance in relation with the preceding vehicle —-

The development of Adaptive Cruise Control (ACC) [Ioannou and Chien, 1993] combines

electronic control of the brakes and throttle and affordable radar technology. When given a

desired headway, the system is able to control the brake and throttle accordingly to adjust

headway then maintain a fixed distance from the preceding vehicle. At the time of this

writing, a successful experiment [Milanés et al., 2014] has been done to combine commercial

ACC system with communication systems to create a Cooperative Adaptive Cruise Control

(CACC) that allows a platoon of four identical vehicles to operate at a speed of 25 m/s,

or 90 km/h. This is achieved by having a high-level controller issuing speed and headway

settings to the commercial ACC system.

Sensing the surroundings of the vehicle —- The merge protocol is responsible for

creating a gap and aligning the merging car with the created gap. This requires coordination

of sensors on all three vehicles. The two neighboring vehicles in the target lane exchange

sensor readings so that they can instruct their respective ACC to adjust speed and create a
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gap. The merging car itself should sense its surrounding environment and also receive sensor

readings from the vehicles in the target lane so as to deduce the whereabouts of the gap.

A wide range of techniques have been developed to merge a set of readings obtained from

a single vehicle [Aeberhard et al., 2012; Jo et al., 2012; Li et al., 2014], and also to merge

readings from a group of cooperating vehicles [Li and Nashashibi, 2013; Bento et al., 2012;

Yuan et al., 2015].

Exchanging information among a group of vehicles —- Cooperative driving, as

its name suggests, involves more than one intelligent vehicle. There should be, of course,

messages passed among vehicles so as to achieve cooperation. The messages being trans-

mitted could be sensor readings measured by another vehicle at the edge of the group or a

request that attempts to initiate a merge maneuver. Vehicular ad hoc networks (VANETs)

that operate with no infrastructure are suitable for the merge protocol as well as other

cooperative driving applications. There has already been a significant amount of research

[Hartenstein and Laberteaux, 2008; Sichitiu and Kihl, 2008] on vehicular communication

systems that are suitable for different applications. The most complete work on VANETs

is dedicated short-range communication (DSRC), also known as wireless access in vehicular

environment (WAVE) [Uzcategui and Acosta-Marum, 2009].

Taking measures to avoid or to alleviate crash —- On aborting the merge ma-

neuver under emergency situations, either the control is returned to the driver or to a

system handles both longitudinal control and lateral control. If the merge protocol is

being used at low speed, we can hand over control to the traffic jam assistance systems

introduced by Daimler [AG, 2015]. It is based on radar and stereo cameras and is de-

signed for automated low speed driving on congested highway operating at 30 km/h. In

the near future, this system is expected to operate at higher speeds. If the merge pro-

tocol aborts at high speed, the combination of lane departure warning (LDW) systems

[Ishida and Gayko, 2004] combined with collision prevention systems [Kodaka et al., 2003;

Maurer, 2012] will steer the vehicle back to its original lane and slow it down when neces-

sary. If a collision is unavoidable, these systems alleviate the damage caused by the crash.

Evasive steering [Dang et al., 2012], is also currently under development as an assistance to

avoid collisions.
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Based on the currently available technology, the merge protocol should be suitable for

mildly to strongly congested highway, especially the toll plaza. After improving automation,

we can see applications expanded in the near future to include merge maneuvers occurring

at higher speeds.

1.2 Architecture for Intelligent Vehicles

An architecture is used to decompose a complex problem into smaller, more manageable

pieces. Each component of the architecture has a well-defined set of inputs and provides a

service in the form of a well-defined set of outputs. In this section, we briefly review the

success story of communication architectures. We then review the most complete work by

far on the layered architectures for vehicle control and sensor system, developed by PATH

and BMW research, respectively.

Architectures in communications networks are used to isolate the physical devices that

perform communications from the programs that provide the communication. Communica-

tion architectures have evolved to having layered structures that perform more sophisticated

communications functions, such as routing or flow control, in different components of an im-

plementation. The layered structure with well-defined interface makes it possible to change

parts of more complex communication functions without changing others. It also makes it

possible for an application programmer to implement functions without being familiar with

the implementation details of how the messages are being exchanged between computers.

(a) Without Interface (b) Simplified by Interface

Figure 1.2: Service models used in verification of acknowledgment protocol

When it comes to verification, with the layered structure, each module can be verified
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independently by proving that each layer provides the service to the next higher layer, given

that it receives the proper service from the lower layer. This is especially useful when there

are more than one, say k, systems collaborating. Suppose on each system there are two

modules, each contains N1 and N2 states, as shown in Fig.1.2a. Without the interface

provided by the architecture, the composition of k systems may contain at most (N1×N2)
k

states. With the interface, we can replace the first module with an interface that often has

much less states than the module itself. If an interface of N ′1 states is obtained, like the one

in Fig.1.2b, then the state space can be reduced to the one that has at most (N ′1 × N2)
k

states, achieving a reduction of (N1/N
′
1)
k.

1.2.1 Platoon control architecture

A layered architecture is used in the automated highway system (AHS). The system was

developed at the University of California Partners for the Advanced Transit and High-

ways program (PATH) [PATH, ]. The architecture controls a highway network in which

automated vehicles are organized into platoons. Upon entering the highway, the driver

hands control over to the automated system. The layered architecture allows design and

verification to be done at distinct layers.

The architecture in Fig.1.3 consists of five layers. Each layer is self-contained and uses

a model that is appropriate for the layer. The layers have interfaces that specify the data

that are exchanged between adjacent layers. Starting from the bottom, the layers are called

the physical layer, regulation layer, coordination layer, link layer, and network layer. The

implementation of the bottom three layers resides in the vehicles, while the link layer and

the network layer are located in the infrastructure.

The physical layer includes the onboard vehicle controllers of the automated vehicles,

including the engine and transmission, brakes, steering control, and the various sensors. It

decouples the longitudinal and lateral vehicle guidance control, which simplifies the design

of the regulation layer.

The regulation layer executes the maneuvers ordered by the coordination layer when a

vehicle is a platoon leader or a free vehicle. When the vehicle is a follower within a pla-

toon, the regulation layer maintains a predetermined spacing from the preceding vehicle.
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Figure 1.3: The layered architecture in the PATH project

The tasks implemented in this layer include vehicle following [Ioannou et al., 1993], pla-

toon maneuvers [Alvarez and Horowitz, 1999a; Alvarez and Horowitz, 1999b], and highway

entry/exit [Godbole et al., 1998].

The coordination layer determines the maneuvers that the vehicle should execute to

achieve an active plan that is assigned by the link layer. The coordination layer communi-

cates with the coordination layers in the neighboring vehicles and supervises the regulation

layer.

The link layer controls the traffic flow on segments of the highway that are 0.5-5 km long.

The link layer receives commands from the network layer in the form of flow assignments for

the highway segment and determines the activity plan that achieves the flow assignments.

Finally, the network layer controls the traffic entering the highway and plans routes and

flows to maximize the capacity or minimize the average vehicle travel time. Its objective is

to reduce congestion.

Each layer is designed and verified independently and is modeled by an appropriate
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mathematical technique. For instance, the coordination layer is modeled as a discrete event

dynamical system [Varaiya, 1993] while the regulation layer is modeled by feedback laws

[Godbole et al., 1998; Swaroop et al., 1994]. Similar to the communication architecture,

each layer is verified by proving that it provides the service to the layer above it, given that

it receives the proper service from the layer below. By proceeding in a bottom-up fashion,

eventually we can verify the entire system.

1.2.2 Sensor System Architecture

The layered sensor architecture in Fig.1.4 is proposed in a BMW research project on au-

tomated driver assistance systems [Aeberhard et al., 2012]. The sensor system detects

surrounding traffic and obstacles and creates a map of the environment. The layered archi-

tecture facilitates the design of a track-to-track fusion algorithm, allowing components to

be upgraded without reimplementing the entire system.

Figure 1.4: The layered sensor architecture in the BMW project

The architecture has three layers: the sensor layer, sensor fusion layer, and application



CHAPTER 1. INTRODUCTION 10

layer. Each layer of the architecture produces a list of objects. Each object in the list has a

state vector (which may include information on position, velocity, and acceleration), a state

covariance matrix, the object existence probability, and a classification of the object.

The sensor layer processes data from each sensor and outputs a list of objects. There

can be low-level or a feature-level preprocessing at this level. The fusion layer joins the data

from each sensor and produces a single list of objects. First, object lists from each sensor

are temporally and spatially aligned, then the objects are associated and fused together.

In the application layer, there can be different driving applications that use the object list.

Each application can decide to consider a subset of objects in the list.

The outputs from different sensors may be received asynchronously and may be sub-

jected to variable delays. In addition, different sensors are likely to have different fields of

view that may overlap. The fusion layer joins data from different sensors into a single map,

allowing applications to be engineered without considering the properties of the individual

sensors.

1.3 Coordinate Timely Actions

Incorporating time into communication protocols has been investigated extensively [Alur,

1999; Banerjea et al., 1996; Fecko et al., 2003; Huang et al., 1996; Lin et al., 1989; Nagano

et al., 1996; Chu and Liu, 1988; Sinha and Suri, 1999; Yannakakis and Lee, 1993]. All of

the approaches use timers rather than synchronized clocks. Most determine the possible

sequences that occur when timers are set in different orders among different participants.

Different sequences of timers are particularly troublesome when timers are set by a

message that is transmitted over an unreliable communication channel. If two participants

in a protocol set identical timers when they receive a message from a third participant, and

the first recipient receives the message on the first transmission attempt but the second

participant requires two transmission attempts, the first participant’s timer will time out

first. However, if the second participant receives the message on the first attempt, and the

first participant receives the message on the second attempt, then the second participant’s

timer will time out first.
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Our objective is to simplify timed protocols by using synchronized clocks to plan events

that occur simultaneously in all of the participants. Simultaneous events reduce the number

of sequences that we must consider when verifying the protocol.

A major difference between protocols that are written today and those that were written

as recent as 5 or 10 years ago is the availability of inexpensive, accurate clocks. Commer-

cial GPS not only provides positioning but also highly accurate clocks that are accurate

within tens of nanoseconds [of the Secretary of Defense, 2008]. This is particularly true

for automotive systems since GPS devices have become ubiquitours. Accurate crystal os-

cillators can maintain a clock when a GPS signal is not available for short periods of time.

A short but incomplete list of applications that employ timing information obtained from

GPS clocks includes the Google Spanner database [Corbett et al., 2013], which depends on

time-accuracy to ensure that the latest data is committed to the database, a synchronized

beaconing scheme for wireless ethernet [Papadimitratos et al., 2009; Scopigno and Cozzetti,

2009], and the Large Hadron Collider (LHC) [Brun et al., 2003] in Switzerland.

In some circumstances, such as driving through roofed roadway like tunnel or driving in

downtown district of cities where skyscrapers cause canyon effect [Misra and Enge, 2006]. In

replacement, when GPS is not available for an extended period of time, the IEEE 1588-2008

standard for Precision Time Protocol (PTP) [Cooklev et al., 2007; Abubakari and Sastry,

2008; Mahmood and Gaderer, 2009; Eidson and Lee, 2003] synchronizes clocks in nearby

vehicles over wireless communication. These techniques provide clocks that are accurate to

microseconds, which is sufficient in most cooperative driving applications. The advantage

to using GPS clocks when they are available is that there is no delay when synchronizing

the clocks with adjacent vehicles.

1.4 Verification of the Protocol Systems

The aim of formal methods is to establish system correctness with mathematical rigor. For-

mal methods are gaining traction in verification of software development of safety-critical

systems. They have been actively researched, and powerful software tools have been devel-

oped such that various verification steps of software systems can be automated in a push-
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button fashion. They have proven to be successful in guaranteeing the robustness of systems

in various fields. This list includes but is not limited to Mars Pathfinder [Jones, 1997], file

system [Yang et al., 2006], and several communication protocols [Edelkamp et al., 2004;

Musuvathi et al., 2004; D’Argenio et al., 1997], etc.

Model-based verification techniques are based on models describing the possible sys-

tem behavior in a precise and unambiguous manner. It often turns out that, during the

initial stages of model construction, accurate modeling of system reveals incompleteness,

ambiguities, and inconsistencies of informal system specifications. The system models are

accompanied by algorithms that systematically and automatically explore states of the sys-

tem model.

Model checking is an automated technique that, given a finite-state model of a system

and a formal property, systematically checks whether the property holds or not. The tech-

niques that belong to the type of exhaustive exploration examines all possible states of the

system in a brute-force manner, while there are other types of techniques explore a selected

set of scenarios in the model that are representative for system behaviors in general. Finally,

if the system fail to satisfy the property, a counterexample trace is produced so that the

users may inspect the cause of error.

The process of model checking consists of three phases:

Model construction —- The inputs to model checking algorithms are a model of the

system and a formal description of the property to be checked. Models of system describe

the behavior of the system in an accurate and unambiguous manner. Possible modeling

choices include finite-state automata (FA) [Baier and Katoen, 2008], timed automata (TA)

[Alur, 1999], and Markov decision processes (MDPs) [Baier and Katoen, 2008], etc. These

models are comprised of a finite set of states and a set of transitions.

Properties to be checked are also described in an accurate and unambiguous manner.

Typical property specification languages are temporal logic [Pnueli, 1977] and its various

extensions. Temporal logic allows specification of system behaviors over time and allows

a wide range of properties to be specified, including functional correctness, reachability,

safety, liveness, etc. The extension of temporal logic includes linear-temporal logics (LTL)

[Gerth et al., 1995] and computational tree logic (CTL) [Clarke and Emerson, 1982] as well
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as their timed and probabilistic variations, timed computation tree logic (TCTL) [Alur et

al., 1990] and probabilistic computation tree logic (PCTL) [Hansson and Jonsson, 1994], for

specification of properties with timing constraints and probabilistic constraints, respectively.

In this thesis, the modeling choices we make are finite-state machines (FSMs) (extensions

of finite-state automata that are suitable for modeling implementation with inputs and

outputs interface) and a variation of MDPs. The properties we would like to check the

merge protocol against are functional correctness (Can the protocol complete the merge?),

reachability (Is there a deadlock?), and safety (Does protocol crash when undesirable events

occur?). These properties belong to regular safety properties, which are a subset of the

properties that can be represented by LTL.

Running the model checker —- There is a wide range of model checkers that are

appropriate for different modeling choices: SPIN model checker [Holzmann, 1997] checks

systems modeled by finite-state automata, UPPAAL [Larsen et al., 1997] checks systems

modeled by timed automata, and PRISM model checker [Hinton et al., 2006] checks sys-

tems modeled by discrete-time and continuous-time Markov chains and Markov decision

processes. These tools sometimes do not take the models directly. Rather, the inputs to

these tools are described using their respective model description language. For instance,

SPIN accepts input written in Promela [Holzmann, 2007], to which finite-state automata

can be translated, while PRISM accepts reactive models [Alur and Henzinger, 1999], which

is suitable for defining product of several Markov decision processes.

The users supply the model checkers with the system models written in appropriate

model description language and the property to be checked. The model checkers then carry

out the task of actual model checking automatically.

Result analysis —- Three outcomes may be produced when the model checkers ter-

minate:

1. The property being checked holds in the given model

2. The property being checked is violated and a counterexample trace is produced

3. The model checker runs out of memory because the constructed model is too large

If a property holds, then we call it a day. If a property is violated, we study the
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counterexample trace and determine the cause. There can be three possible causes. First,

it may be due to a modeling error, in which case the constructed model does not faithfully

represent the design of the system. The users should revise the model and restart the model

checker after the revision is done. Secondly, it can be property error where the property

that users have described in the property specification language does not precisely represent

the requirement one wished to checked. The users should alter the property accordingly

then restart the model checker. Finally, it can be a design error. This type of error is the

one we wish to discover before the implementation of systems takes place. It reveals the

flaw in system design and prompts the designed to improve or possibly redesign the system.

A major drawback that plagues model checking is the problem of state explosion. The

number of state in a protocol system can be as many as the product of the number of states

of all its constituting components. That is, the state space of a system grows exponentially

in the number of processes or components in the systems and in the size of the constituting

processes. In this thesis, we develop a directed search over an exceedingly large state space

by exploring the more likely states first and reduce the probability of reaching the states

that we are not able to examine.

1.5 Summary of Contributions

This thesis focuses on the techniques that facilitate the design and verification of cooperative

driving applications. We present a driver-assisted merge protocol to illustrate the usage of

these techniques. In this section, we briefly summarize the contributions of this thesis.

1.5.1 A Multiple Stack Architecture for Cooperative Driving Applica-

tions

In Chapter 4, we present the multiple stack architecture for design and verification of

cooperative driving applications. It combines the best of both worlds. The layered structure

within each stack makes it possible for a designer of cooperative driving application to

implement functions without being distracted by the details of sensing the surroundings or

the low-level controller for adaptive cruise control, as long as the interface and the services
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provided by the lower layers remain the same. Multiple stacks address different ways of

interaction with the physical world: a single sensor stack includes all the functions related

to sensing the environments of a single vehicle or a group of vehicle; a single vehicle stack

includes the functions for controlling a single vehicle and controlling a group of vehicles.

Having functions arranged in a layered fashion makes compositional verification possible.

The modules in each layer are verified independently, proving that each layer provides service

to the next higher layer, given that it receives the proper service from the lower layer. The

verification of the whole cooperative driving system is thus broken down by the layered

structure into smaller problems of verification of single layers, significantly reducing the

complexity of verification. It also makes verification possible, as different layers differ in

their logical proximity to the physical world and require different modeling strategies and

different verification techniques.

The evolution of the multiple stack architecture over time are in [Lin and Maxemchuk,

2012; Lin et al., 2014; Maxemchuk et al., 2015], ordered chronologically.

1.5.2 Protocol Synchronization Based on GPS Clocks

In Chapter 5, we construct the framework for the design and verification of protocol systems

that uses GPS clocks for synchronization. We separate the access and control of timing

information into a standalone timing stack. The timing stack relieves the protocols of the

control of timing by means of timers. From the perspective of FSMs, the timing stack

maintains a list of synchronized events for the participants in a protocol. Accessing the

same set of synchronized events allows them to execute synchronized actions. Having a

group of participants executing synchronized actions based on clocks also reduces, although

not completely eliminates, interleaving of paths that we see when timers expire at different

times. There are no timers or clocks in any of the other protocols that co-located with

the timing stack. The control of timing is replaced by simple messages exchanged amongst

FSMs and the timing stack. This adds a small set of input and output messages to the

definition of FSMs. Several compositional rules are also added to FSMs to reflect the

synchronized actions induced by synchronous clocks.

Under this framework we design a lock protocol that resolves contention for merge
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requests issued by different vehicles on the highway. The merge protocol uses the lock

protocol to create mutually-exclusive cooperating groups and to allocate a period of time

for the merge maneuver until a specified deadline. The lock protocol demonstrates the

advantage of synchronizing the clocks of the participants. The synchronous clocks ensure

that the group persists until the specified deadline and that every participant releases the

lock simultaneously. This cannot be done should the timers be used by participants that

are physically separated.

The design of the lock protocol is first proposed in [Lin and Maxemchuk, 2014]. The

framework for using the GPS clocks for synchronization is currently being prepared for

submission.

1.5.3 Stratified Probabilistic Verification

In Chapter 6, we present the stratified probabilistic model checking algorithm for a variation

of Markov decision processes, in which probabilistic choices do not have exact probability

distribution but rather discretized levels of probability. It copes with state explosion prob-

lem differently by exploring part of the state space instead of reducing the problem size.

The stratified approach prioritizes the state traversal on those that are more likely to be

reached during system execution. Hence, at any point of state traversal, the unexplored

states are the ones that are less likely to be reached during system execution than those

have been traversed. If the state space is fully traversed before the memory is depleted,

then the result it obtains is the same as typical explicit-state model checkers. If otherwise

the complete state space cannot fit into the limited memory space and the traversal stops,

and we compute an upper-bound for the probability of reaching those unexplored states.

The bound answers the query if a probabilistic safety property holds.

The stratified method approach is a reincarnation of probabilistic verification in [Max-

emchuk and Sabnani, 1989], but it computes a significantly tighter probabilistic bound than

the original algorithm. By the time it stops state traversal, it produces a linear program

whose solution is a valid probability upper-bound on the probability for the regular safety

property to be violated.

The fact that the technique is developed for probabilistic system without exact proba-
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bility distribution paves ways for a more flexible approach to piecewise verification of com-

ponents in the architecture. Although the architecture has already divided the verification

problem into smaller parts, a complete traversal of a subproblem is sometimes improbable.

At best, a component may be verified to satisfy a probabilistic regular safety property with

a reasonably high probability, but it can never be perfect. Stratified method can verify

a system that contains partially verified components that provides required service with

some inexact probability. We apply compositional methods [Clarke et al., 1989] to verify a

collection of components with inexact probability guarantees.

Finally, the stratified method not only applies to the variation of MDPs that contains

discretized probability levels but MDPs with standard definitions. Similarly, it categorizes

probabilistic choices into different discretization levels for stratified search of state space.

Given the exact probability distribution, we can compute a more precise probability bounds

for the regular safety property to be valid.

We summarized some of the contributions in [Lin and Maxemchuk, a; Lin and Maxem-

chuk, b].

1.5.4 A Driver-Assisted Merge Protocol

In Chapter 7, we focus on the design and verification of driver-assisted protocol using the

techniques we developed for cooperative driving systems. The protocol is built within the

multiple stack architecture constructed earlier. The simple logics of the merge protocol

executes more complex execution such as controlling the speed via the simpler interfaces

provided by the layered structure. The merge protocol makes use of accurate GPS clocks

to keep track of gap creation and driver response. The lock protocol also uses GPS clocks

and provides conflict resolution to the merge protocol.

Next, we apply stratified model checking to the whole system, including the merge

protocol and all the components that provide services to the merge protocol. We check if the

merge protocol assists a driver in completing a merge and aborts and notifies its driver when

undesirable events occur, such as third-party vehicles interfering with the merge. For those

components that cannot be verified using model-based techniques, we replace them with the

finite automata that represent the service which they are expected to provide. Verification
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of the lock protocol is prone to state explosion, and the stratified method is able to compute

a probabilistic bound for the lock protocol to provide its service. Finally, the compositional

verification framework allows us to combine all service-providing components, including the

lock protocol, and verify the merge protocol to ensure safety with high confidence. We have

proven that the system only enters an unexplored state or fail due to component failure less

than once every 5×1013 protocol invocations. Simulation or having vehicles driving on test

tracks clearly cannot achieve this level of confidence.

The contribution presented in Chapter 7 is summarized in [Lin and Maxemchuk, 2015].
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Chapter 2

Related Works

In this chapter, we provide a brief overview of the related work. Cooperative driving

applications have already been researched actively, as well as their enabling architecture.

However, only a small part of them uses formal methods to verify the safety. We first

overview the existing architectures for various cooperative driving projects (section 2.1).

Next, we review works regarding cooperative lane-change or merge (section 2.2). We then

briefly review several models for time-critical systems (section 2.3). Finally, we discuss

works that mitigate the problem of state explosion in verifying probabilistic system (section

2.4).

2.1 Architectures for cooperative driving systems

We survey the architectures that are being used for intelligent vehicles. Most of the archi-

tectures are modular. They consist of a number of functional boxes that are interconnected.

They include: architectures that are used for cooperative cruise control systems in the 2011

Grand Cooperative Driving Challenge and in a European Commission project; two of the

architectures [Caveney, 2010; HAVEit, ] have a modular structure with some of the modules

organized into layers.

Modular architecture is an intuitive way to organize functions so as to separate dif-

ferent technologies such as wireless communications, control systems, and sensors. The

modules are interconnected. They pass data between one another and provide services to
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each other. Depending upon how the modules are interconnected, it may or may not be

possible to engineer and test the modules independently. The modular functions include:

wireless communication, positioning, environmental sensing, vehicle controllers, coordina-

tion controllers, human-machine interfaces. The modular architectures may emphasize the

data flow between modules or the inter-dependency between modules. The modules may

be organized into groups that reflect the hardware implementation.

Cooperative adaptive cruise control systems (CACCs), require communications between

cooperating vehicles and the coordination of maneuvers. They are used to create platoons

of vehicles that travel together on a highway.

Most cooperative driving systems assume that peer-communicating vehicles use the same

control strategy and identical systems. The 2011 Grand Cooperative Driving Challenge

(GCDC) [van Nunen et al., 2012] is the first competition to simulate a realistic heterogeneous

environment, in which passenger cars, vans, trucks, and buses are included in the same

platoon, and operate on roads shared by manually driven cars. There were nine teams

with different implementations of CACC systems. The architectures in these systems are

implementation-specific [Nieuwenhuijze et al., 2012; Mårtensson et al., 2012; Guvenc et al.,

2012; Geiger et al., 2012; Kianfar et al., 2012; Lidström et al., 2012]. They are tailored to

reflect the design of each implementation. However, the functions of the modules are similar

to the previous list. The connections between modules can either reflect data flow between

functions [Geiger et al., 2012; Lidström et al., 2012], represent inter-dependency between

modules [Kianfar et al., 2012], or simply describe the connection of hardware components

[Guvenc et al., 2012; Mårtensson et al., 2012]. Some of the modules are grouped together

based on the hardware on which they are implemented [Geiger et al., 2012; Guvenc et al.,

2012; Kianfar et al., 2012; Lidström et al., 2012]. Another European Commission funded

project, SARTRE [SARTRE, ], is also developing strategies and technologies to enable

platoons of vehicles to operate on public highways. It is also developed on the basis of a

modular architecture.

In the architecture proposed in [Caveney, 2010], some of the modules, or blocks, are laid

out in layers which are determined by the different time constants and rates of communi-

cation that are required by the modules.
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HAVEit [HAVEit, ], funded by European Framework Programme 7, is developing intel-

ligent vehicles that switch between semi-automated driving and fully automated driving,

based on the driving situation. Its perception module is further subdivided into a data

fusion function that combines sensor data from onboard sensors and the information gath-

ered via inter-vehicle communication. The layers in the perception module are similar to

the layered architecture for sensor systems that will be described in the next section.

Besides the PATH project, there are similar layered architecture for platoon control pro-

posed in the Japanese Dolphin project [Tsugawa et al., 2000] and the Auto21 collaborative

driving system (CDS) project [Hallé et al., 2004]. The projects SASPENCE (SAfe SPEed

and safe distaNCE) [Bertolazzi et al., 2010] and INSAFES (Integrated Safety Systems)

[Amditis et al., 2010], are part of the project PReVENT under the European Framework

Programme 6. Both use a layered structure in their sensor system design. The perception

layer provides the same world view to different applications in order to eliminate conflicts

between applications. It should be noted that the notion of a single global object list,

world model, or environmental mapping is becoming widely accepted [Amditis et al., 2010;

Broggi et al., 2013; Behere et al., 2013].

2.2 Highway Lane Change / Merge Solutions

Cooperative driving has become an active research area since the proposal of Automated

Highway System (AHS) in 1980s, in which vehicles are fully-automated and driven in pla-

toons. There are independent projects [PATH, ; Tsugawa et al., 2000; Hallé et al., 2004]

that attempt to realize the concept of AHS. Among them, PATH has adopted formal ap-

proach to verify the safety of its coordination protocol. The authors of [Varaiya, 1993;

Horowitz and Varaiya, 2000] have separated the coordination of a platoon of vehicles from

individual vehicle control. Three protocols, namely merge platoon, split platoon, and lane

change protocols, coordinate vehicle maneuvers in platoon [Hsu et al., 1991], namely , each

with FSM specification. Two platoon leaders use platoon merge protocol to combine two

platoons into one; The platoon leader and one of the platoon follower uses platoon split

protocol to split a platoon into two; a free agent vehicle uses the lane change protocol to
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communicate with the vehicle in the target lane and vehicles that can potentially move

into the target lane so as to steer into the target lane safely. The three protocols are by

far the earliest cooperative driving protocols that have been formally verified using formal

language COSPAN [Hardin et al., 1996].

The system in [Michaud et al., 2006] has procedures that manage failure experienced by

the leading vehicle of a platoon. The authors discuss several scenario that involves different

levels of communication between pairs of vehicles in the system. The system adopts a two-

level architecture. Behavioral level consists of a set of behavior-producing modules (BPM)

control vehicle’s actuators. For instance, there are a BPM that is used for collision avoidance

and another BPM that is used when driving in the platoon. Which BPM to be active is

determined by an FSM in the recommendation level according to the coordination scenarios.

Experiments with robots are conducted to evaluate each of the scenario as proof-of-concept,

while proving that the strategies to be fail-safe is not the focus of this work.

Prior to this work, there is an attempt to create a driver-assisted merge protocol of semi-

automated vehicle [Kim and Maxemchuk, 2012]. It considers a set of undesirable events

that may disturb the merge maneuvers. It employs an architecture composed of several

components to simplify the design. Timers are explicitly used in the protocol as human

drivers are more unpredictable. The authors use probabilistic verification [Maxemchuk and

Sabnani, 1989] to verify the protocol.

There are approaches for platoons to respond to the interference from human drivers.

The platoons in [Guo et al., 2012] are able to change formation to prevent the interfering

driver from splitting the platoon. The platoons in [Lam and Katupitiya, 2013] are able to

overtake other platoons one vehicle at a time. The vehicles are also able to temporarily

join another platoon if a slow vehicle is detected in the overtaking lane. These approaches

require sophisticated coordination among multiple vehicles.

Another fairly recent approach [Segata et al., 2014] on platoon maneuver considers the

effect of undesirable events on the platoon join protocol. The protocol includes procedures

for handling interfering vehicle during the maneuver, slow vehicle that prevents the join-

ing vehicle from completing the maneuver, and message loss. These events are explicitly

simulated to evaluate the effectiveness and the safety of the join protocol. However, there
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is a potential failure that is not part of the simulation scenario. During the maneuver, an

interfering vehicle occupying the gap causes the maneuver to be temporarily suspended. If

the interfering vehicle moves out of the gap before a timer times out, the protocol resumes

the maneuver. If the same vehicle suddenly moves back into the gap at the same time, the

behavior of the join protocol is undefined. While simulation is useful to demonstrate the

feasibility of the protocol, it has its limitation to evaluate the safety of a system.

2.3 Modeling Real-Time Systems

Timed automata [Alur and Dill, 1994; Alur, 1999] can be seen as finite-state machines

equipped with a set of clock variables that measure the time elapsed between events. A

timed automaton models the behavior of a single process or module of the system. Invariants

and clock guards are boolean expression. Invariants are placed on locations, which are the

TA equivalent states, which restrict the values of the clock variables for the automaton

to stay in the location. Guards are placed on transitions, enabling the transitions to be

taken when the clock variables satisfy their boolean expression evaluate to true. A real-time

system made up of multiple communicating processes is modeled as the parallel composition

of timed automata.

The correctness properties can be specified in TCTL. There are several tools, including

UPPAAL [Larsen et al., 1997] and KRONOS [Yovine, 1997], implement model checking

algorithm that checks timed automata. A system modeled in timed automata can be

represented as the modeling languages of UPPAAL or KRONOS. In addition, their modeling

language provide syntax for modeling cooperation and communications between processes.

UPPAAL model is slightly more expressive than timed automata, as it comes with more

general types of data variables such as boolean and integer variables.

Besides timed automata, there are other well-established timed models. They include

TCCS [Yi, 1991], real-time Maude [Ölveczky and Meseguer, 2002], Timed Rebeca [Reynis-

son et al., 2014], etc. These timed models are most useful when one would like to check

if the system satisfy some property within timing constraints or to find the set of timing

constraints for the system to satisfy timed property.
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These timed models introduce a discrete or dense time domain. This additional dimen-

sion further increases the already high complexity of model checking. In chapter 5, we show

that it is possible to separate the timing from the logic of state transition, thereby avoiding

the more expressive yet complex timed models.

2.4 Tackling State Explosion

A rich set of methods has been proposed to overcome state explosion and to improve the

scalability of model checking techniques. There are techniques that aim at reducing the size

of the state space. These techniques include symbolic model checking burch1990symbolic,

partial-order reduction methods [Godefroid et al., 1996; Katz and Peled, 1992], symmetry

reduction [Sistla and Godefroid, 2004], and bounded model checking [Clarke et al., 2001],

to name a few. A survey of these techniques can be found in [Clarke and Wang, 2014].

Another direction of reducing the state space is the compositional approach [Clarke

et al., 1989]. A system is divided into several processes to be individually verified. The

environment of a process PA is modeled by another process called an interface process

PI . The interface process is usually simpler than the full environment of PA, which often

contains several processes that interact with PA. In [Kwiatkowska et al., 2010], an assume-

guarantee verification technique is developed for probabilistic system, which serves as the

foundation of our approach to verify cooperative driving system within the multiple stack

architecture.

There is parallel set of techniques that attack the state explosion problem differently:

exploring some of the reachable states in the system. They are often based on the technique

of random sampling of executing a random walk over the system model. They are first

introduced in [West, 1989; Rudin, 1992], and they are then extended and formalized for

deciding if an LTL property holds with some probability [Hérault et al., 2004; Grosu and

Smolka, 2005]. These methods are efficient in terms of both time and space consumption,

however, the results they produce come with a confidence interval.

The stratified verification method in Chapter 6 is more a directed search rather than

a randomized search on probabilistic state transition system with exceedingly large state
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space. The method in [Sankaranarayanan et al., 2013] adopts directed search approach,

although it is developed for checking computer programs with real-valued variables rather

than for state transition systems. The analysis is done in two steps: first, it chooses an

adequate set of paths within the system; next, for each path chosen, the path probability

is estimated by performing a symbolic execution. The probability of each path is then

aggregated to form a final probability bound on the assertion. A drawback of the approach

is that it does not handle nondeterminsitic uncertainties or distribution.
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Chapter 3

Preliminaries

In this chapter, we study the models of finite-state machines (FSMs) and Markov decision

processes (MDPs) which will be used extensively in Chapter 5, Chapter 6, and Chapter

7. The verification of protocol systems amounts to model the protocol system as Markov

decision process and to verify that the model satisfies probabilistic safety properties. In this

thesis, we create two protocols, namely the lock protocol for conflict resolution and the merge

protocol for driver-assisted merging as finite-state machines. The stratified probabilistic

verification introduced in Chapter 6 is a model checking technique for verifying if a Markov

decision process or its variation satisfies probabilistic safety properties.

A protocol system consists of one or more finite-state machines and the models that de-

scribe the services and the environment that the finite-state machines rely on and interact

with. Services and environment contribute uncertainty to the protocol systems. In this the-

sis, they are modeled as a variation of probabilistic I/O automata that are compatible with

finite-state machines. They are referred to as service models. We describe the composition

rules of finite-state machines and services models. The result of composition is a Markov

decision process that models the protocol system. Markov decision processes are suitable

model for distributed system with concurrent and probabilistic behaviors. We check if a

Markov decision process satisfies a probabilistic safety property by means of reachability

test and solving a linear program. The reachability test finds the set of states that violate

the regular safety property component of probabilistic safety property, and the solution to

the linear program is the probability of reaching that set of states. The linear program con-
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structed is polynomial in the size of the Markov decision process, whose size is exponential

in the size of its constituting finite-state machines and service models.

In this chapter, we first present the finite-state machines and the service models (Section

3.1). Next, we present the standard definition of Markov decision processes and probabilistic

safety properties, and we describe how to check if a Markov decision process satisfied a given

probabilistic safety property. Then, we present the rules for constructing a Markov decision

process from finite-state machines and the service models (Section 3.3), Finally, we present

the verification of alternating-bit protocol (ABP) as an example (Section 3.5).

3.1 Constituting Components of a Protocol System

A cooperative driving system consists of various communicating modules. Some of the mod-

ules describe a protocol or a program and are deterministic. The others are the supporting

functions of the protocol such as adaptive cruise control or sensor systems, and they serve

as a way for a protocol or a program to interact with the physical world indirectly.

In this section, we present the definition of finite-state machines (FSMs) and the ser-

vice models, which is a adaptation of probabilistic I/O automata [Wu et al., 1997] that is

compatible to the FSMs. FSMs are deterministic and driven purely by external input. It

provides a way to specify a protocol in a formal and specific way, as compared to literal

description. Service models have probabilistic behaviors. An input to a service models may

lead to different state changes, and they create stimuli that drive FSMs.

3.1.1 Finite-State Machines

The model of FSMs is a variation of finite-state automata but is more suitable for protocol

specification as it specifies the input and output behaviors of an implementation of the

protocol. The input and output semantics makes FSM a viable target for conformance

testing [Sabnani and Dahbura, 1988; Aho et al., 1991; Linn Jr and Uyar, 2013]. In this

section, we give its definition. To reason about systems that include multiple processes, we

consider the composition of multiple FSMs. Each deterministic process in the system is

modeled as a single finite-state machine. The state of a process being modeled is defined as
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a stable condition in which the process rests until a stimulus, i.e. an input, is received. An

input triggers the module to generate an output and to transit to a new state, where it rests

and waits for the next input.The input and output behavior of the processes are described

by the syntax of communicating sequential processes (CSPs).

Definition 1 A finite-state machine is a 4-tuple F = (S, I,O, T ), where

• S is a finite set of states; s0 ∈ S is the initial state, which is the state F is in

immediately after being powered-up.

• I is the set of all permissible inputs that cause FSM F to execute a transition.

• O is the set of all permissible outputs that the machine generates on executing a

transition. Note that φ, the null output, is one of the permissible outputs.

• T : S × I ∪ φ → S × 2O is the set of edges in the FSM that move the FSM from one

state to another. It can also be an edge that departs from and returns to the same

state, which is called self-loop. These edges are transitions in the FSM.

An input to FSMs has the form F1?msg, which stands for receiving msg from another

FSM called F1.; an output of the FSM has the form of F2!msg, which represents that the

machine sending msg to another FSM with the name F2. A transition is typically triggered

by an input and it may generate zero, one, or several outputs on the transition. That is,

a transition can be of the form Fx?msg0 / Fy1 !msg1, Fy2 !msg2, . . ., Fyk !msgk or Fx?msg0

/ φ. Multiple outputs on the same transition are assumed to be atomic, in other word the

outputs are expected to be dispatched to their respective destination without interleaving

of other events.

A specification of an FSM is said to be fully specified if, for every state, every input in

its permissible input set I generates an output in the set O. Otherwise, the specification is

said to be partially specified. In a partially specified FSM, some of the inputs in set I are

not enabled in some of the states. The behavior of FSM on such inputs is undefined. A

partially specified FSM can be made fully specified if for any input that is not enabled in

a state, the FSM simply ignores it (by generating a null output) or transits into an error

state. We require that all protocols in this thesis to be fully specified.
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FSMs are deterministic. Fixing for any state s, there should not be two transitions

sharing the same input labels. Semantically, if an FSM F is in state s, an input message

msg received from another process Px always cause F to transit to the same target state s′

and to generate the same set of output(s).

FSMs are input-driven. An FSM F may only execute a transition, be it a self-loop or a

transition to a new state, when triggered by some input.

3.1.2 Models for Services and Environments

We introduce a variation of probabilistic I/O automata that are compatible to the FSMs

defined earlier. We refer to them as service models. They model the services depended by

FSMs and the interaction between FSMs and the environment, especially the external inputs

that trigger the FSMs. The change from probabilistic I/O automata to service models is

the use of CSP syntax that allow service models to interact with the FSMs.

Probabilistic transitions and transitions that are not triggered by external stimuli make

service models different from FSMs. When being composed with FSMs to form the model

of protocol systems, these types of transitions give rises to the probabilistic choices and

nondeterministic choices in MDPs. The rest of service model looks a lot like finite-state

machines in terms of definition.

Definition 2 A service model is a five-tuple G = (S, I,O, T, µ), where

• S is a finite set of states; s0 ∈ S is the initial state, which is the state G is in

immediately after being powered-up.

• I is the set of all permissible inputs that cause the model G to change states.

• O is the set of all permissible outputs that the model generates on executing a transi-

tion.

• T ⊆ S × I ∪ {φ} × 2O × S is the transition relation in the service model, which is the

set of edges that move the service model from one state to another.

• µ : S × I ∪ {φ} × 2O × S → [0, 1] is the transition probability function. It is required

to satisfy the following conditions:
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1. µ(q, x, y, r) > 0 iff (q, x, y, r) ∈ T and x 6= φ

2.
∑

r∈S,y∈2O µ(q, x, y, r) = 1, ∀q ∈ S, ∀x 6= φ

An input to service model has the same form as the input to FSMs: F1?msg, which

stands for receiving msg from another FSM called F1; an output of the service model has

the same form as the output of FSMs: F2!msg, which represents that the model generates

and sends msg to FSM with the name F2.

The following are possible combinations of input x and outputs y for a transition

(q, x, y, r) ∈ T :

1. x 6= φ and |y| ≥ 0

2. x = φ and |y| > 0

3. x = φ and |y| = 0

The transitions of the first type is similar to the transitions in FSMs: it receives an input

from another module and generates zero, one, or several outputs. For each state q, there

can be more than one transitions with the same input label. The transition probability

function µ describes the probability of choosing one transition with an input label x from

state q as opposed to another transition with the same input label x.

Probabilities are not ascribed to transitions of the second type and the third type.

Transitions with an output label describes an event that generates a stimulus to the destined

processes. The event occurs for some reason that we do not explicitly characterize or is not

relevant to the processes with which the service model interacts. Similarly, transitions

without a label describes an event that causes a change of state in the service model but

does not generate stimuli to any process in the system. A protocol system is modeled by

a collection of FSMs and the service models that act as the supporting components or the

environments. At any instance, there may be several transitions with output labels and

without labels that are available. This leads to nondeterministic choices in MDPs that we

will see in the next section.

Fig.3.1 shows a service model of a half-duplex channel. The model may represent a wire-

less channel with sophisticated contention resolution protocol or just some wired channel.
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Figure 3.1: Half-duplex channel service model

It exposes a simple interface. It models a transmission of message msg through a physical

communication channel by accepting msg from FSM F1 and moving to state 1, then, when

in state 1, by moving back to state 0 and generating msg destined for F2. Similarly, an

acknowledgement message from F2 to F1 is represented by a state change from state 0 to

state 2 when the channel model receives ack from F2 and completed by another state change

from state 2 back to state 1 and generating ack destined for F1 along the way.

The service model is for a communication channel with message loss rate of 0.01. Note

that, at state 0, there are two transitions having the same input label F1?msg. The transition

probability function assigns the one that goes from state 0 to state 1 with probability 0.99,

and it assigns the self-loop with probability 0.01. The transition from 0 to 1 leads to the

eventual delivery of message, which is more likely, while the channel drops the message in

the self-loop. The same applies to the two transitions from state 0 with label F2?ack.

3.2 Modeling and Verification of Probabilistic Systems

Cooperative driving systems are subject to various phenomena with stochastic nature, such

as sensor failures, erratic driver behaviors, message losses in communication channels, etc.

When they operate in an unpredictable environment, guaranteeing absolute satisfaction of
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properties becomes difficult or even impossible.

In this section, we review the definition of Markov decision processes (MDPs), which are

suitable for modeling of cooperative driving systems. In MDPs there are nondeterministic

choices and probabilistic choices. As for cooperative driving protocols, the nondeterminism

is appropriate to model concurrency between processes and the events whose probabilities

are hard to characterized, while probabilistic choices capture events such as module failures

and message losses. We then look at probabilistic safety properties, which specify the

properties we would like to evaluate for cooperative driving systems. Finally, we review a

standard technique that check if an MDP satisfies a given probabilistic safety property that

based on depth-first search and solving a linear program in the size polynomial of the MDP.

3.2.1 Markov Decision Processes

Unlike discrete-time Markov Chain (DTMC), in which the next state is always chosen

probabilistically, in any state of MDPs, a nondeterministic choice between probability dis-

tributions exists. Once a probability distribution has been chosen nondeterministically, the

next state is selected according to the chosen probability distribution.

Definition 3 A Markov decision process is a tuple M = (S,Act, P, Iinit), where

• S is a finite set of states

• Act is a set of non-deterministic actions

• P : S × Act × S → [0, 1] is the transition probability function satisfying that for all

states s ∈ S and actions α ∈ Act:∑
t∈S

P (s, a, t) = 0 or 1 (3.1)

• Iinit : S → [0, 1] is the initial distribution such that∑
s∈S

Iinit(s) = 1 (3.2)

An action α is said to be enabled in state s iff P (s, a, t) > 0 for some state t ∈ S, otherwise

α is disabled; Enabled(s) denotes the set of enabled actions in s. The α-successors of s are
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the set of state α − succ(s) = {t|P (s, a, t) > 0}, and the corresponding α-transitions from

s are the set of transitions α − trans(s) = {(s, a, t)|P (s, a, t) > 0}. The set trans(s) =⋃
a∈Act(s) a-trans(s) are the transitions from state s.

An MDP operates as follows. The starting state is decided according to the initial

distribution Iinit. A transition from state s is divided into two steps: a non-deterministic

choice is made by selecting an action α from the set Enabled(s). After action α is selected,

one of the states in α-succ(s) is selected probabilistically according to the distribution

P (s, a, .). That is, the next state is t with probability P (s, a, t).

An adversary resolves the nondeterministic choices in an MDP, based on the execution

history of the MDP. In the literature, adversaries are also known as scheduler, policy, or

strategy.

Definition 4 An adversary σ for MDP M is a function σ : S+ × Act → [0, 1] such that

∀s0s1 . . . sn ∈ S+

σ(s0s1 . . . sn)(α) = 0,∀α /∈ Enabled(sn) (3.3)

and ∑
α∈Act(sn)

σ(s0s1 . . . sn)(α) = 1 (3.4)

Here s0s1 . . . sn is the execution history of M . It is the sequence of states traversed, starting

from the initial state, during the execution. An adversary σ(s0s1 . . . sn) maps a finite path

to a probability distribution over the enabled actions in the last state of the path, sn. In

this thesis, we only consider memoryless adversaries.

Definition 5 Adversary σ is memoryless iff for each sequence s0s1 . . . sn and t0t1 . . . tm ∈

S+ with sn = tm:

σ(s0s1 . . . sn)(α) = σ(t0t1 . . . tm)(α) = σ(sn)(α), ∀α ∈ Enabled(sn) (3.5)

In other words, in a given state sn, memoryless adversaries always yield the same probability

distribution over the enabled actions, independent of what has happened in the execution

history.

The adversary assigns probability weights to the enabled actions when there are non-

deterministic choices to be made. It resolves all nondeterministic choices in an MDP and
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induces a Markov chain. We denote by AdvM the set of all possible adversaries for MDP M .

By PathσM , we denote the set of all paths through MDP M when controlled by adversary

σ. Under an adversary σ, we define a probability space PrσM over the set of paths PathσM .

The probability space captures the purely probabilistic behavior of M under σ.

s0 s1 s2

γ

α, prob= 1/2

β, prob= 1/2

γ

α, prob= 1/2

β, prob= 1/2

(a) Markov decision process

s0 s1 s2

1

1/2× 1/4 = 1/8

3/4× 1/2 = 3/8

1

1/2

(b) Markov chain induced by the adversary

Figure 3.2: An Adversary Resolves an MDP into a Markov Chain

Fig.3.2 is an example of having an adversary transform an MDP into a Markov chain.

Fig.3.2a is a simple MDP with three states. In the initial state s0 and state s2, γ is the

only enabled action. In state s1, α and β are enabled. When α is selected, the MDP stays

in s1 and moves to s0 both with probability 1/2, while when β is selected, the MDP stays

in s1 and moves to s2 both with probability 1/2. We consider the following memoryless

adversary

σ(s0)(γ) = 1

σ(s1)(α) = 1/4

σ(s1)(β) = 3/4

σ(s1)(γ) = 1

(3.6)

The memoryless adversary determines a probability distribution over enabled action only

based on the state the MDP is in. In s0 and s2, the probability distribution is trivial as

there is only one enabled action. In s1, probability weight of 1/4 is assigned to action α

and the rest 3/4 is assigned to action β. Fig.3.2b is the Markov chain induced by this
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memoryless adversary.

3.2.2 Probabilistic Safety Properties

A probabilistic safety property combines a regular safety property and a rational probability

bound. Regular safety properties are a subset of safety properties that can be represented

by deterministic finite automata (DFA). Checking a regular safety property Psafe on a finite-

transition system such as an MDP M can be reduced to reachability analysis on the product

of M and the DFA that represented the bad prefixes of Psafe.

A regular safety property Psafe represents a set of infinite words, denoted by L(Psafe), that

is characterized by a regular language of bad prefixed, which are finite words of which any

extension is not in L(Psafe). Typical regular safety properties in the context of cooperative

driving include “the lock protocol indicates successful cooperating group creation only when

all participants agree to cooperate” and “if an undesirable event occurs, the driver should

not be told to proceed to change lanes”. A regular safety property Psafe can be defined

more precisely by a complete DFA A∗ = (Q, q0, αA∗ , δA∗ , FA∗), where

• Q is the set of states

• q0 is the initial state of A∗

• αA∗ is the set of alphabets of A∗

• δA∗ : S × αA∗ → S is the transition function

• FA∗ ⊆ S is the set of accepting states

The language of the regular safety property is then the set of all words of the alphabet αA∗

whose prefix is an accepting run of A∗.

Probabilistic safety properties are similar to regular safety properties but are less ab-

solute. It does not require a properties to hold in ‘all’ instances but to hold within some

probability bound. For instance, “the maximum probability of the lock protocol indicat-

ing successful cooperating group creation without all participants agreeing to cooperate

is at most 10−10” and “the maximum probability of the driver being told to proceed to
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merge when an undesirable event is present is at most 10−14” are both probabilistic safety

properties.

Definition 6 A probabilistic safety property 〈A〉≥p constitutes of a regular safety property

A and a probability bound p. An MDP M satisfies 〈A〉≥p if the probability of satisfying A

is at least p for any adversary σ:

M |= 〈A〉≥p ⇔ ∀σ ∈ AdvM · PrσM (A) ≥ p⇔ Prmin
M (A) ≥ p (3.7)

The superscript min in Prmin
M (A) means that the minimum is taken over all possible adver-

saries.

3.2.3 Verification of Probabilistic Safety Properties for MDPs

Verifying if an MDP satisfies a probabilistic safety property consists of three steps. First, we

construct the product of the MDP and the DFA that defines the bad prefixes of the prob-

abilistic safety property. Next, a reachability test is conducted on the MDP-DFA product

to find the set of states that violate the regular safety property part of the probabilistic

safety property. The last step is to solve a linear program whose solution is a probability

bound of reaching the states that violate the property. The result is then compared to the

probability bound in the probability safety property to determine if the property holds.

The goal of verification is to decide if PrσM (Psafe) ≥ p for all possible adversaries σ of M .

Finding all the paths that satisfy Psafe and aggregating their probability is often difficult.

Checking regular safety properties in deterministic models such as finite-state automata

[Baier and Katoen, 2008] is reduced from checking path properties to reachability test by

constructing the product of finite-state automata and the DFA for the bad prefixes of the

regular safety properties. This technique is adapted to the probabilistic case. This involves

constructing the product of MDP and DFA.

Definition 7 The product of an MDP M = (S,Act, P, Iinit) and DFA A∗ = (Q, q0, αA∗ , δA∗ ,

FA∗) with αA∗ ⊆ Act is given by the MDP M ⊗A∗ = (S ×Q,Act, P ′, I ′init) where:
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• P ′(〈s, q〉, a, 〈s′, q′〉)) =


P (s, a, s′), if a ∈ αA∗ ∧ a ∈ Enabled(s) ∧ q′ = δA∗(q, a)

P (s, a, s′), if a /∈ αA∗ ∧ a ∈ Enabled(s) ∧ q′ = q

0, otherwise.

• I ′init(〈s, q〉) =


Iinit(s), if q = q0

0, otherwise.

The product M ⊗ A∗ unholds M by having the current state of A∗ encodes the path

fragment taken by M so far. For each path fragment π = s0
a0−→ s1

a1−→ s2
a2−→ . . . of M ,

there is a corresponding run q0
a0−→ q1

a1−→ q2
a2−→ . . .. Of course we still have qi+1 = qi if

ai /∈ αA∗ . We have a path fragment π+ = 〈s0, q0〉
a0−→ 〈s1, q1〉

a1−→ 〈s2, q2〉
a2−→ . . .. Therefore,

for a path fragment of M that violates Psafe, the corresponding run of A∗ ends up in its

accepting state. The DFA does not affect the probabilities.

Finding the paths that violate the regular safety property Psafe in M is then reduced

to finding the paths in M ⊗ A∗ that reach the set of states T = {〈s, q〉|q ∈ F}. Using the

temporal logic operator ’eventually’ ♦, we let s |= ♦T if there exists a path from s to the

set T . We have

PrσM (A) = 1−
∑
s∈S

ηinit(s)Pr
σ
M (s |= ♦T ) (3.8)

Set T represents the states that the paths end up in if they violate the regular safety

property. It can be decided by having a state traversal algorithm starts from set of initial

states. The following is a typical state traversal algorithm that is based on depth-first search

(DFS).

DFS is applicable to models that can be represented as graph. The product M ⊗ A∗

is such. It visits every state that is reachable from any of the initial states. It stores

all the states that have been examined in the container Explored, and the states whose

DFA component belongs to F in the container Target. Both Explored and Target can be

implemented efficiently as hash tables. Algorithm 1 here takes M ′ = M ⊗ A∗ as input

parameter.

It starts the subroutine DFS-visit from each initial state (line 2-7). For each state s,

it first checks if s is a deadlock or represents an error state (line 10). It then proceeds to
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Algorithm 1 Depth-first search

1: procedure DFS(M ′)

2: for all 〈s, q〉 ∈ I do

3: if 〈s, q〉 /∈ Explored then

4: Insert s into Explored

5: DFS-visit(M ′, 〈s, q〉)
6: end if

7: end for

8: end procedure

9: procedure DFS-visit(M ′, 〈s, q〉)
10: if A(〈s, q〉) = φ then

11: Report deadlock

12: end if

13: if q ∈ F then

14: Add q to set Target

15: end if

16: for all (〈s, q〉, α, 〈t, r〉) ∈ trans(〈s, q〉) do

17: if t /∈ Explored then

18: Insert t into Explored

19: DFS-visit(M ′, 〈t, r〉)
20: end if

21: end for

22: end procedure

examine every transitions in trans(s) (line 16). If a successor state t is not yet traversed, i.e.,

not stored in Explored, DFS-visit is called recursively to continue exploring the successors

of t (line 19). By the time the algorithm terminates, all states in M ′ should be traversed

and Target = T .

Recall that for a probabilistic safety property to hold, it requires that for all adversaries,

the aggregated probability of all paths that satisfy regular safety property Psafe to be greater

than p. That is, we determine if the aggregated probabiltiy of all paths that satisfy Psafe

minimized over all adversaries is greater than p. Or, we maximize the aggregated probability

of reaching states in T ,

Prmin
M (A) = 1−

∑
s∈S

Iinit(s)Pr
max
M (s |= ♦T ) (3.9)

The maximal probability Prmax
M (s |= ♦T ) can be computed by solving a linear program.

Specifically, the vector (xs)s∈S with xs = Prmax(s |= ♦T ) yields the unique solution of the
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linear program in (3.10).

min
∑
s∈S

xs

s. t. xs = 1, If s ∈ T

xs = 0, If there is no path from s to T

xs ≥ 0, ∀s ∈ S

xs ≤ 1, ∀s ∈ S

xs ≥
∑
s′∈S

P (s, α, s′)xs′ , If s /∈ T and ∃ path(s) from s to T, ∀α ∈ Enabled(s)

(3.10)

Simple inspection shows that the number of constraints is roughly the total number of

enabled actions in all states: O(
∑

s∈S |Enabled(s)|), or polynomial in the size of Markov

decision process. The proof that the solution to this linear program is the maximal proba-

bility can be found in [Baier and Katoen, 2008].

3.3 From Finite-State Machines and Service Models to Markov

Decision Process

In verification, we are interested in the behavior of a protocol system as a whole rather to

individual components. To reason about the property of a protocol system, we construct the

model of protocol system as a Markov decision process from its constituting components,

which are specified in FSMs or modeled as service models. In this section, we present the

composition rules that describe the interaction between FSM and FSM or between FSM

and service model. The system operate by having its constituting components interact

with each other. The composition rules lead to the transitions in the constructed MDP,

which stands for the executions of the system being modeled. The number of states in the

constructed MDP is exponential in the number of constituting modules.

As a protocol system comprises of the modules that are either modeled as FSMs or

service models, a state of the protocol system is a tuple of the states of the constituing

FSMs and service models. Suppose F1, . . . , Fn are the FSMs and G1, . . . , Gm are the service
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models, a state of the protocol system takes the following form:

〈F1 = s1, . . . , Fn = sn, G1 = t1, . . . , Gm = tm〉 (3.11)

where s1, . . . , sn and t1, . . . , tm are the states of FSMs F1, . . . , Fn and service modelsG1, . . . , Gm,

respectively. When the FSMs and the service models are clear from the context, it is short-

ened to 〈s1, . . . , sn, t1, . . . , tm〉.

A change in the system’s configuration is represented as an edge in the state transition

graph. It is also called a transition or a step from one state to another in the state transition

graph. A transition is a result of interaction between two modules, be them two FSMs, two

service models, or an FSM and a service model. This interaction is called handshaking,

because two processes interact by both participating in this action at the same time.

The handshaking is suitable for communication between modules that located at the

same physical location, allowing them to be connected reliably by a wires. Two modules that

are not co-located should not use handshaking. Instead, service models of communication

channel should be used to describe their communication.

The following transition rule is a handshaking action between two modules Mi and Mj ,

with Mi being the sender of the synchronization message msg and Mj being the receiver of

msg:

Mi : si
x/Mj !msg
−−−−−−→ s′i ∧Mj : sj

Mi?msg/y−−−−−−→ s′j
〈s1, . . . , si, . . . , sj , . . . , sn, t1, . . . , tm〉 → 〈s1, . . . , s′i, . . . , s′j , . . . , sn, t1, . . . , tm〉

(3.12)

, where x is the input that triggers Mi to move from si to s′i and y contains zero, one, or

more output that Mj generates on receiving msg from Mi when in state sj .

Recall that in the definition of FSMs and service models, a transition come with zero,

one, more several atomic output labels. A state transition of the protocol system is always

initiated by a service model executing a transition with no input label but some output

labels. The output of the service model triggers a transition s
x/y−−→ s′ at the destination

module. If the transition has no output in y, then the state change of the protocol system

is completely captured by the rule in (3.12). If otherwise y contains one or more outputs,

then the outputs will then trigger transitions in other modules.

Let us first consider that case in which y contains one output. Suppose we have service

model Gi having a transition ti
φ/Fj !msg1−−−−−−→ t′i, FSM Fj having a transition sj

Gi?msg1/Fk!msg2−−−−−−−−−−−→
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s′j , and FSM Fk having a transition sk
Fj?msg2/φ−−−−−−−→ s′k. These lead to two state changes of

the protocol system:

Gi : ti
φ/Fj !msg1−−−−−−→ t′i ∧ Fj : sj

Gi?msg1/Fk!msg2−−−−−−−−−−−→ s′j ∧ Fk : sk
Fj?msg2/φ−−−−−−−→ s′k

〈. . . , sj , . . . , sk, . . . , ti, . . .〉 → 〈. . . , s′j , . . . , sk, . . . , t′i, . . .〉 → 〈. . . , s′j , . . . , s′k, . . . , t′i, . . .〉
(3.13)

The first state change is a handshaking between Gi and Fj , which both change states.

The second state change is a handshaking between Fj and Fk, and only Fk changes state

since the state change of Fj has been accounted for. Sequence of state changes initiated

by the stimulus input generated by a service model does not interleave with another se-

quence of state changes. That is, the sequence of transitions is atomic. It represents a

collection of atomic executions within the protocol systems. The only possible state change

after 〈. . . , sj , . . . , sk, . . . , ti, . . .〉 → 〈. . . , s′j , . . . , sk, . . . , t′i, . . .〉 is 〈. . . , sj , . . . , sk, . . . , ti, . . .〉 →

〈. . . , s′j , . . . , s′k, . . . , t′i, . . .〉. This can be generalized to include several FSMs being triggered

in sequences:

Gi : ti
φ/Fj !msg1−−−−−−→ t′i ∧ Fj1 : sj1

Gi?msg1/Fj2 !msg2−−−−−−−−−−−−→ s′j1 ∧ . . . ∧ Fjr : sjr
Fjr−1?msg2/φ−−−−−−−−→ s′jr

〈. . . , sj1 , . . . , sjr , . . . , ti, . . .〉 → 〈. . . , s′j1 , . . . , sjr , . . . , t
′
i, . . .〉 → . . .→ 〈. . . , s′j1 , . . . , s

′
jr
, . . . , t′i, . . .〉

(3.14)

The chain of transitions alway start with the service model generating a stimulus input to

an FSM or another service model, and it always ends by not generating another output,

either in a FSM transition without an output, or a service model transition with input label.

Again, the sequence does not interleave with other sequences.

In fact, we have to distinguish states within a chain of transitions. Given a chain of

states and transitions, the states that are neither the first nor the last are intermediate

states. Intermediate state 〈. . . , s′j1 , . . . , sjr , . . . , t
′
i, . . .〉 only has a restricted enabled action,

while typical 〈. . . , s′j1 , . . . , sjr , . . . , t
′
i, . . .〉 state often has different set of enabled actions,

depending upon the φ-input transitions that the service models have given the states they

are in. It is more appropriate to append the intermediate states with the only enabled

actions they have. For example, (3.14) becomes

〈. . . , sj1 , . . . ,sjr , . . . , ti, . . .〉 → 〈. . . , s′j1 , . . . , sjr , . . . , t
′
i, . . .〉 · 〈Fj1 ,msg2 , Fj2〉 → . . .

→ 〈. . . , s′j1 , . . . , sjr , . . . , t
′
i, . . .〉 · 〈Fjr−1 ,msgr , Fjr〉 → 〈. . . , s′j1 , . . . , s

′
jr , . . . , t

′
i, . . .〉

(3.15)
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We now consider that some FSM transitions contain more than one outputs. The

outputs on the same transition are atomic, thus we would expect the sequence it leads to

does not interleave with other sequences, either. Again suppose a service model Gi has a

transition ti
φ/Fj !msg1−−−−−−→ t′i, but this time in the transition of FSM Fj there are two outputs

sj
Gi?msg1/Fk!msg2·Fl!msg3−−−−−−−−−−−−−−−−→ s′j . The last receiving FSMs Fk have transitions sk

Fj?msg2/φ−−−−−−−→ s′k

and sl
Fj?msg3/φ−−−−−−−→ s′l, respectively. The state changes are summarized as below:

. . . ∧ Fj : sj
x/Fk!msg2·Fl!msg3−−−−−−−−−−−−→ s′j ∧ Fk : sk

Fj?msg2/φ−−−−−−−→ s′k ∧ Fl : sl
Fj?msg3/φ−−−−−−−→ s′l

. . .→ 〈. . . , s′j , . . . , sk, . . . , sl, . . .〉 → 〈. . . , s′j , . . . , s′k, . . . , sl, . . .〉 → 〈. . . , s′j , . . . , s′k, . . . , s′l, . . .〉
(3.16)

In this case, the state change of Fk does not have to come before the state change of Fl. It

is expected that the order of transitions does not affect the last state in the sequence, so

that in verification one ordering of transitions is sufficient to represent the behavior of the

system. This is particularly important if the Fk and Fl in this example do generate outputs.

If however the ordering does matter, then it is not appropriate to model the interactions

using handshaking. Similarly, if within a chain a transitions there are transitions that have

more than one outputs, the set of enabled actions at intermediate states are also restricted.

We should append these intermediate states with the set of enabled actions as well. For

example, (5.5) becomes

. . .→ 〈. . . , s′j , . . . , sk, . . . , sl, . . .〉 · 〈Fj ,msg2 , Fk〉 · 〈Fj ,msg3 , Fl〉

→ 〈. . . , s′j , . . . , s′k, . . . , sl, . . .〉 · 〈Fj ,msg3 , Fl〉

→ 〈. . . , s′j , . . . , s′k, . . . , s′l, . . .〉

(3.17)

The rules discussed above combines a collection of FSMs and service models into an

MDP Mp = (S,Act, P, Iinit). A state of the protocol system 〈F1 = s1, . . . , Fn = sn, G1 =

t1, . . . , Gm = tm〉 is a state of Markov decision process.

〈s1, . . . , sn, t1, . . . , tm〉 ∈Mp.S, ∀ s1 ∈ F1.S, . . . , sn ∈ Fn.S, t1 ∈ G1.S, . . . tm ∈ Gm.S

(3.18)

Given a state that is not part of a sequence of transitions initiated by a service model,

there may be one or several service models that are in a state that has one or more transition

with output labels. These output labels are exactly the ones that initiate sequences of
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transitions. The union of these transitions with output labels is the set of nondeterministic

choices. Choosing a nondeterministic choice is selecting an output transition among service

models, and it leads to a sequence of transitions which are discussed earlier. Let the

service model whose output transition is chosen be Go, the receiving FSM or service model

be Fi or Gi, and the handshaking message be m, the action that corresponds to such

nondeterministic choice is

〈Go,m, Fi〉 ∈Mp.Act or 〈Go,m,Gi〉 ∈Mp.Act (3.19)

A sequence of transitions contains intermediate states. In these intermediate states, the

only nondeterminsitic choice is to continue to the next transition. The only enabled action

is

〈Fo,m, Fi〉 ∈Mp.Act (3.20)

where Fo is the message generating FSM, Fi is the receiving FSM, and m is the handshaking

message.

Singleton probabilistic choice arises if the receiving module is an FSM. In such case, the

only probability choice has distribution:

P (〈. . . , si, . . .〉, 〈Fo,m, Fi〉, 〈. . . , s′i, . . .〉) = 1 (3.21)

if FSM Fo is the one generates message m, and

P (〈. . . , si, . . .〉, 〈Go,m, Fi〉, 〈. . . , s′i, . . .〉) = 1 (3.22)

if service model Go is the one that generates message m.

If the last of a chain of transitions is a transition of service model, there can be more

than one probabilistic choices. Given a service model Gi in state ti, each transition with the

same input label, Fo?m if the handshaking message m comes from an FSM Fo or Go?m if

the handshaking message m comes from another service model Go, leads to a probabilistic

choice. The probabilistic choices have the following probability distribution:

P (〈. . . , ti, . . .〉, 〈Fo,m,Gi〉, 〈. . . , t′i, . . .〉) = µ(ti, Gi?m,φ, t
′
i) (3.23)

or

P (〈. . . , ti, . . .〉, 〈Go,m,Gi〉, 〈. . . , t′i, . . .〉) = µ(ti, Gi?m,φ, t
′
i) (3.24)



CHAPTER 3. PRELIMINARIES 44

where µ is its transition probability function of Gi.

The constructed MDP can potentially has up to

∏
1≤i≤n

|Fi(S)| ·
∏

1≤j≤m
|Gj(S)| (3.25)

states. The number of states grows polynomially in the number of states of each constituting

modules and exponentially in the number of modules being considered. This exponential

growth is known as state explosion problem.

During verification, reachability analysis, often based on DFS, is applied to the MDP. In

practice, it is not necessary to construct the complete MDP before state traversal. Using the

rules described in this section, the non-deterministic choices and the probabilistic choices

entailed can be determined on-the-fly by examing the state of MDP.

0start

Gtimer?timeout

Gchannel!msg

Gtimer!start

Gchannel?ack

Gtimer!cancel, Gchannel!msg, Gtimer!start

(a) Transmitter FSM Fxmit

0start
Gchannel?msg

Gchannel!ack

Gtimer!start

(b) Receiver FSM Frcvr

Figure 3.3: Specification of acknowledgment protocol

3.4 Example: Verifying Acknowledgement Protocol

As an example, we verify a simple acknowledgment protocol using the models and methods

discussed in the previous sections. The modules in the protocol systems, namely the trans-

mitter, receiver, communication channel, and timers, are specified and modeled as FSMs

and service models described in Section 3.1. The FSMs and the service models are then

combined to form an MDP using the rules in Section 3.3. The states in MDP is constructed

on-the-fly during state traversal. Only a portion of MDP is explored in this example. We
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compare the state traversal of the MDP and the traversal of the product of the MDP and

the DFA that represents the regular safety property part of the probabilistic safety property

we wish to check in Section 3.2.

The acknowledgment protocol is specified as two FSMs. They are the transmitter Fxmit

in Fig.3.3a and the receiver Frcvr in Fig.3.3b. Both FSMs are completely specified, as there

is only a single state in both the transmitter and the receiver.
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Figure 3.4: Service models used in verification of acknowledgment protocol

The two FSMs communicate through a half-duplex communication channel. The channel

is modeled as a service model as in Fig.3.4a. When a message is put into the channel

by either transmitter or receiver, a two-point probability distribution is at work. With

probability 0.99 the channel moves out of the empty state 0, while with probability 0.01

the channel stays in the empty state, meaning that the message is lost during transmission.

The channel is bounded, that is, it only allows one message being in transit at any time, be

it a transmitter message msg or a receiver message ack. If the transmitter or the receiver

attempts to put another message in the channel when there is already one, the message

that is already in transit is ‘pushed out’ of the channel to its destination, should the new

message does not get lost.
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Figure 3.5: A Portion of Constructed MDP

The transmitter also uses a timer to regulate the retransmission of messages. The timer

is also modeled as a service model as in Fig.3.4b. Note that the initial state of the timer

is in state 1, meaning that the timer is ‘set’. This is for the sake of convenience, as timer

expiring prompts the transmitter to retransmit a message to start the system.

Before constructing the MDP, we assume that at the transmitter side, there is a buffer

that contains unlimited supply of message from the application. Whenever the transmitter

is ready to transmit the next message, there is always a message in the buffer waiting to be

transmitted to the application on the receiver side.

The construction of a part of the MDP is shown in Fig.3.5. The initial state of the MDP

is 〈0, 0, E, 1〉. In the initial state, only the timer has a transition without input that is able to

cause state change in the transmitter, so 〈Gtimer, timeout , Fxmit〉 is the only nondeterministic

choice available. This leads to the next state 〈0, 0, E, 0〉 · 〈Fxmit,msg , Gchan〉. The trailing

〈Fxmit,msg , Gchan〉 indicates that the state is restricted to have single enabled action as it

is part of a chain of transitions.

In 〈0, 0, E, 0〉·〈Fxmit,msg , Gchan〉, 〈Fxmit,msg , Gchan〉 is the only choice, which yields two
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probabilistic choices with probability weights 0.99 and 0.01 according to the channel’s service

model. The choice with probability 0.01 leads to state 〈0, 0, E, 0〉·〈Fxmit, start , Gtimer〉. Note

that without the trailing 〈Fxmit, start , Gtimer〉 we cannot distinguish the new state from the

last. The next state after this is the end of the chain of transitions and returns to the

already explored 〈0, 0, E, 0〉. Back to the branch of probabilistic choices, the choice of 0.99

probability leads to 〈0, 0,M, 0〉 · 〈Fxmit, start , Gtimer〉, whose only enabled action starts the

timer and arrives at the end of the chain of transitions 〈0, 0,M, 1〉.

In 〈0, 0,M, 1〉 both channel and timer have transition without input stimulus. This leads

to two nondeterministic transitions: 〈Gchan,msg , Frcvr〉 and 〈Gtimer, timeout , Fxmit〉. As we

are using DFS, we may opt to explore the states by choosing the former choice, and return

to the later choices after all states after the former choice have been explored. The explored

states shown in Fig.3.5 are all states explored after choosing 〈Gchan,msg , Frcvr〉 here, and

〈Gchan, ack , Fxmit〉 when facing another two nondeterministic choices.

0start 1 2

〈Gchan,msg , Frcvr〉

〈Gchan, ack , Fxmit〉

〈Gchan, ack , Fxmit〉

〈Gchan,msg , Frcvr〉

Figure 3.6: Bad prefix DFA of the regular safety property

Constructing MDP alone is fine when checking state invariant properties. When check-

ing MDP against regular safety property, the MDP-DFA product is being constructed when

state traversal is at work. For the acknowledgment protocol, a correct message delivery from

the transmitting side to the receiving side would be alternating between retrieving a mes-

sage from the buffer and delivery the message to the receiving application. The DFA in

Fig.3.6 accepts the sequence that do not obey the expected behavior. 〈Gchan, ack , Frcvr〉

corresponds to the retrieval of message from the buffer, this happens every time an ac-

knowledgment is received at the transmitter, which means successful delivery of the pre-

vious message. 〈Gchan,msg , Frcvr〉 corresponds to the delivery of message to the receiving

application, and this happen whenever a message is received from the channel. Note that
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a correct alternating sequence starts with label 〈Gchan,msg , Frcvr〉. This is also for the sake

of expediency, because the protocol system starts in a state where timer is ‘set’ and a new

message is put into the channel to be received by the receiver when timer expires.
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Figure 3.7: Portion of MDP-DFA product

Now we are ready to explore the MDP-DFA product. Fig.3.7 shows the state traver-

sal of a portion of MDP-DFA product. The state traversal starts from the initial state

of the product, 〈0, 0, E, 1, 0〉, with the fifth element in the tuple being the state of the
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DFA. States and transitions are pretty much the same until state 〈0, 0,M, 1, 0〉. It has

two nondeterministic choices, and we choose 〈Gchan,msg , Frcvr〉 like what we did in the

exploration of MDP. In current discussion, we always choose to explore the choice other

than 〈Gtimer, timeout , Fxmit〉 whenever we face nondeterministic choice. After the transition

MDP has state 〈0, 0, E, 1, 0〉 · 〈Frcvr, ack , Gchan〉. The state of the DFA changes to 1, as per

the definition.

At this point the traversal faces two probabilistic choices. The choice with probability

0.99 leads to a loop of state and transitions back to 〈0, 0, E, 1, 0〉 · 〈Frcvr, ack , Gchan〉. This

loop is the correct operation of the protocol. The system alternates between retrieval of

message and delivery of message. The choice with probability 0.01 eventually leads to state

〈0, 0, E, 1, 2〉 · 〈Frcvr, ack , Gchan〉 (the only boldfaced state in the diagram). The DFA then

moves into state 2, meaning that a bad prefix is found. Following the series of transitions we

see that action 〈Gchan,msg , Frcvr〉, or delivery of message, appears twice in a row without

〈Gchan, ack , Fxmit〉, or retrieval of new message from the buffer. On reaching state 2 of DFA,

the state traversal algorithm puts such state in the set T and stop continuing along such

path. The algorithm continues from the previous unexplored branches, for instance, choice

〈Gtimer, timeout , Fxmit〉.

By the time the algorithm terminates, we construct the linear program to compute the

probability of reaching T from the initial state. This is the probability for the acknowledg-

ment protocol to violate the property, which is then compared to the part of probability

bound in the probabilistic safety property to determine whether the probabilistic safety

property holds or not.

3.5 Conclusions

In this chapter, we provided definitions of the formal modeling construct for modules in a

protocol systems. FSMs model those protocol instances which are input-driven and deter-

ministic; service models describe the modules that interact with the physical world directly

and indirectly and thus have probabilistic behaviors. Next, we described MDPs for mod-

eling probabilistic systems and probabilistic safety properties. It was then shown that an
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MDP modeling the protocol system can be constructed from FSMs and service models using

the given composition rules.

In later chapters, we use FSMs to specify the lock protocol (Chapter 5) and the driver-

assisted merge protocol (Chapter 7). The environment where these protocols reside in,

including communcation channels, sensors, safe spacing system, and the timing stack are

modeled as service model. The stratified verification technique considers a discretized vari-

ation of MDPs (Chapter 6).
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Chapter 4

Multiple Stack Architecture

This chapter introduces a multiple stack architecture for cooperative driving applications.

Each stack in the architecture addresses a particular aspect of vehicle’s interaction with the

physical world. Within each stack the modules are arranged in layers, which allows new

technogies to be introduced to existing architecture and verification to be done in a layered

fashion.

Intelligent vehicles are similar to communication networks, whether they cooperate us-

ing communication channels or not. They interact with the physical world using devices

that are rapidly evolving. The design of intelligent vehicle architectures involves the inte-

gration of new features into existing vehicle architectures under the guarantee of robustness.

The problem is defined as what functional characteristics should be added to make vehicles

intelligent, and how to do the integration. Different intelligent vehicle projects have their

own designed architectures to meet the specific objectives, but in common, they inherit gen-

eral characteristics of all automotive systems. However, architectures with a single stack

cannot compose the whole picture of intelligent vehilces. Different from communications

networks, intelligent vehicles interact with the physical world in several ways, rather than

one, and because many of the interactions are time critical. While it is necessary to ac-

commodate changes in all of the technologies, a simple layered architecture is not sufficient,

which motivates the adoption of multiple stacks.

In this chapter, we describe the functions of layers in each stack (section 4.1), then

we discuss the implication of layered structure to the verification of cooperative driving
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protocol (section 4.2).

4.1 Multiple Interactions with the Physical World

Intelligent driving systems interact with the physical world in several ways. In addition to

communications, intelligent vehicles have sensors that detect the surroundings, measuring

devices that monitor the operation of the vehicle, and devices that control the operation

of the vehicle. Each type of the layered architectures described above only deals with one

aspect of the physical domain. We organize the interactions into separate stacks, so that

we can isolate the hardware that controls or monitors the physical world from the software

that uses the information or issues commands, as shown in Fig.4.1. A precursor of this

architecture is described in [Lin and Maxemchuk, 2012].

Figure 4.1: Multiple stack layered architecture for cooperative driving system

The arrows represent service provide/use relationship between modules. For example, in

each stack there are arrows pointing upward between layers, which indicates that module(s)

in a lower layer provides services to the module(s) that resides one layer higher than it. To

state it in another way, module(s) in a higher layer uses on the services provided by the
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module(s) one layer beneath them.

Besides providing services to the layer directly above, modules in a layer can also pro-

vide services to components residing in other stacks. For instance, the coordination layer

in the sensor stack requires group communication service from the local communications

stack to exchange sensor information with nearby vehicle, and clock synchronization layer

also requires communications. A collaborative driving application may also depend on the

services in different stacks, as long as the dependencies do not constitute to directed cycles.

4.1.1 The Vehicle Stack

The vehicle stack consists of applications that control the vehicle and interface to the vehi-

cle’s hardware. The organization of this stack is similar to the stack in the PATH project.

The applications are organized to allow more complex applications to use the services pro-

vided by more basic applications, so that complicated applications can be designed and

tested more easily.

The vehicle’s hardware is the physical layer for the applications, consisting of devices that

monitor the operation of the vehicle (monitors) and devices that control the movement of

the vehicle (actuators). The monitors include speedometer, sensors measuring tire rotation,

sensors within the engine, and etc. The actuators control the brakes, throttles, and steering.

The applications in the vehicle layer only use information within the vehicle. For in-

stance, an antilock braking system monitors tire rotation and individually actuates the

brakes to avoid skids. Cruise control systems monitor the vehicle speed and control the

throttle, and possibly the brakes. The implementations of applications in the vehicle layer

are governed by feedback laws: the antilock braking system applies the brakes depending

upon the measurements, which changes the measurements, and changes the command from

the antilock braking. The objective is to stop the vehicle as quickly as possible without

skidding or losing control of the vehicle. The design of an antilock braking system is de-

pendent on the physics of motion and control theory. The implementation depends on the

characteristics of the vehicle.

The applications in the vehicle stack “hide” the implementation details from the driver

and the applications in one layer above, the vehicle plus environment layer. The antilock
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brakes present an interface to the higher layer that is independent of the physical layer.

A driver presses the brakes harder if she/he wants to stop more quickly, and the antilock

braking system applies the brakes in order to stop safely. The cruise control system allows

the driver to set the desired speed, and it is good to go. The driver retains longitudinal

control by stepping on the brake or by pressing a button on the steering wheel. No matter

how the antilock brakes and the cruise control are implemented, the services provided across

the vehicle layer interface remain the same.

The vehicle plus environment layer uses information from local sensors that detect ad-

jacent vehicles. And automatic braking system monitors the distance to the lead vehicle to

actuate the antilock brakes in the event that a rear end collision will occur. An adaptive

cruise control system takes a driver-specified headway and speed, and it uses the cruise

control to maintain the speed when there is no vehicle in front and reduces the speed set

by cruise control to maintain the desired gap when the the preceding vehicle is detected.

A lane departure warning system uses camera to detect the line markings on the highway

and notifies the driver when the vehicle deviates. A park assist system detects parked cars

and the marking of parking spot and controls the throttle, brakes, and steering.

The multi-vehicle layer uses sensors and monitors from adjacent vehicles to improve the

operation of the single vehicle system. Using sensors from adjacent vehicles provides a map

of vehicles beyond the range of the local sensors, improves the distance estaimates from the

local sensors by making multiple measurements of the same gaps, and detects potentially

defective sensors. In addition, communications provides a notification that the lead vehicle

is braking, which allows an earlier response for an emergency braking system than detecting

the change in the relative position of that vehicle. In addition, measurements on the recent

stopping distance for the vehicle as well as its neighboring vehicles, under the current road

conditions and load in the vehicles, allow for a safer and more accurate calculation of

the safe space between vehicles. The authors of [Tientrakool et al., 2011] show that this

will significantly increase the highway capacity in comparison with an automatic braking

protocol that uses insurance industry standards. The lock protocol is described in Chapter

5.

The cooperative driving layer uses communication between nearby vehicles to coordinate
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their operation. Platooning systems create convoys of cars and trucks on highways. The

driver-assisted merge protocol, which is one of the main objective of this thesis, is described

in more detail in Chapter 7.

4.1.2 The Communication Stacks

There are two communication stacks in the architecture, a local communication stack that is

used to communicate with nearby vehicles and and an infrastructure communication stack

that is used for all other communications. The TCP/IP stack, used in the Internet, is

currently the dominant architecture and is recommended for the infrastructure stack.

The Internet is a “best effort” network. There are no delay guarantees. If a message

is lost in transit, it may be retransmitted several times and can arrive at the destination

tens of seconds later. Cooperative driving applications the coordinate the maneuvers of

adjacent vehicles have severe constraints on delay. While it is possible to construct a local

network within the framework of the TCP/IP protocols, the network must provide service

guarantees that are different from the Internet.

The infrastructure communication stack accounts for vehicle-to-infrastructure (V2I)

communications. It is used to gather traffic reports for route planning and incident re-

ports for the roadway that is beyond a driver’s view. In a more centralized system, such

as the one envisioned by the PATH project, the routing commands given to platoons of

vehicles are computed in a centralized location then dispatched to the vehicles using V2I

communications.

The local communication stack accounts for vehicle-to-vehicle (V2V) communications.

The media access control (MAC) layer for V2V communication has been under active re-

search. This layer contains DSRC, which has several layers of its own or similar channel

sharing protocols.

The group communications layer provides reliable communication between collaborat-

ing vehicles, for instance, the three participants in a merge protocol, or the members of a

platoon. The Mobile Reliable Broadcast Protocol (MRBP) [Maxemchuk et al., 2007] and

Timed Reliable Broadcast Protocol (TRBP) [Maxemchuk and Shur, 2001] are group com-

munication protocols that provide a common list of messages to all of the receivers within
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a deadline.

MRBP and TRBP are scheduled token passing protocols. Each member of the group is

scheduled to transmit information, a list of the messages it has not received or recovered,

and a vote on the messages that it is certain that other receivers have received, at specified

times. The time that each user is scheduled to transmit is rotated in a round-robin order.

If a group member does not receive a scheduled transmission, it starts the recovery process

immediately after the message is scheduled, instead of waiting for the source to retransmit

a message that is not acknowledged. After one cycle of the token plus the time allowed

for message recovery, all of the members of the group have reported any messages that

they have not received and begin a distributed voting procedure to decide which messages

to include in the common list of messages. Any receivers that are uncertain about the

outcome of the vote leave the group and stop transmitting.

The Fail-Safe Broadcast Protocol (FSBP) [Gu et al., 2015] is also a group communication

protocol. It is based synchronous clocks described in Chapter 5, and it ensures a message is

received by everyone in the group within a deadline, otherwise a failure is detected within

a time constraint.

In [Kim and Maxemchuk, 2012], an early version of the driver-assisted protocol in this

thesis survived communication failure or a communicating vehicle moving out of range.

This earlier version of the merge protocol was made fail-safe by requiring an unanimous

vote of the messages in the common group and aborting the merge when unanimity for any

message could not be guaranteed.

4.1.3 The Timing Stack

The purpose of the timing stack is to supply the cooperative driving application within an

intelligent vehicle with accurate clocks with respective to the timing information supplied

by GPS. With applications on different vehicles having accessed to this fairly accurate

clocks, one may assume that the applications are operating according to the same clock.

This is particularly true since GPS provides the timing information that is accurate within

hundreds of nanoseconds, which is more than sufficient for intelligent vehicle.

The timing stack has three layers: 1) The hardware layer, 2) clock synchronization
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layer, and 3) synchronized operations layer. All timed events are initiated from the routines

in synchronized operations layer, thus there are no timers or clocks in any of the other

protocols. By removing time from the other protocols, it is possible to use verification and

conformance testing techniques that have been developed for communications protocols to

prove that these protocols will operate properly.

The hardware stack uses GPS receivers and crystal oscillators to maintain a local clock.

A possible arrangement is having a main oscillator circuit that is constantly adjusted ac-

cording to the GPS signal received. This circuit is called GPS disciplined crystal oscillator.

The other circuits provides redundancy. They are adjusted periodically to the reading of

the main circuit and can help detect errors in the main circuit.

The clock synchronization layer provides additional synchronization for a group of ve-

hicles within the same neighborhood or the vehicles that are engaging in a cooperative

maneuver by using PTP over wireless communication. When GPS signal is available, this

layer does not have effect. When GPS signal is temporarily unavailable, the crystal oscil-

lator runs freely and its accuracy with respect to UTC deteriorate. When the oscillator

is not adjusted for an extended period of time, synchronization over wireless comes into

effect to ensure that clocks on a group of vehicles are still synchronized within the order of

microseconds, which is still sufficient for most cooperative driving applications.

The synchronized operations layer maintains a list of timed events for the modules

in the intelligent vehicle. A module in the system sets one or more timestamps for the

event it expects to occur in the future, and the layer generates a message that indicates

the occurrence of the event when the clock reads its corresponding timestamp. Its use is

elaborated with more details in Chapter 5.

4.1.4 The Sensor Stack

The sensor stack in this architecture is similar to the one developed by BMW research

[Aeberhard et al., 2012]. There is a fusion layer that combines readings from all of the

sensors in the vehicle to create a map of the vehicles and obstacles surrounding the vehicles.

The hardware and fusion layer are separate so that new sensor technologies can be developed

without changing the algorithm in the fusion layer.
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The additional layer in the sensor stack is a coordination layer. This layer considers the

sensor readings from different vehicles, and it guarantees that all of the participants are

using identical maps. For instance, if the distance that a vehicle measures to an adjacent

vehicle differs from the distance that vehicle measures, both vehicles can use the safer

distance estimate or they can decide not to cooperate. Exchanging measurements with

other vehicles detects possible failures or inaccuracies in sensors, or malicious users who

have inserted erroneous measurements. The design of a secure sensor fusion algorithm for

the coordination layer is, however, beyond the scope of this thesis.

4.2 Layered Architecture and Verification

The multiple stack architecture organizes a cooperative driving system into multiple inter-

acting modules, which are arranged as layers in different stack. Using layered architectures,

rather than the more general, modular architectures that are common in computer pro-

grams and several cooperative driving projects, also simplifies the problem of verifying that

a system operates correctly. The benefits are twofold: First, layers can be verified sepa-

rately. A single layer is much smaller compared to the complete system, which reduces the

complexity of verification and mitigates state explosion problem. Secondly, it makes holis-

tic verification of a cooperative driving application possible as different layers are better

characterized by different mathematical models, which require different types of verification

techniques.

In a layered architecture we can independently verify each module, by proving that

each layer provides the service to the next higher layer, given that it receives the proper

service from the lower layer. Consider an application on the topmost layer of the vehicle

stack as shown in Fig.4.2a. Suppose that it depends on a service at the top layer of the

communication stack as well as the service in the layer directedly below it. When we

verify the module separately, the composition of the two systems may consist of up to

(N1N2N3N4N5M1M2)
2 states. Furthermore, while FSMs are suitable for modeling the

coordination function of driver-assisted merge protocol, but it cannot characterize the cruise

control (in the second layer of the vehicle stack) or the MAC/PHY layer of communication



CHAPTER 4. MULTIPLE STACK ARCHITECTURE 59

stack (the bottom layer) properly. The modeling and verification of these layers requires

different techniques and math models.

(a) An application that involves two vehicles and two stacks

(b) Verifying the application based on simplified interface

Figure 4.2: Simplifying verification

The layered structure allows us to verify the system layer-by-layer, with appropriate

models and techniques. First the actuator and monitor layer is verified that it satisfies an

interface I1,2, then the cruise control is verified to satisfy another interface I2,3 by assuming

I1,2, and so on. In the communication layer, the MAC layer is first verified to provide

an interface J1,2 by considering the parties on both vehicle, then MRBP is verified basing
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on interface J1,2. The process continues until that M3 satisfies an interface J1,2 on both

sides of parties. Finally, N5, an application involves two vehicles, is verified assuming the

service provided through interface I4,5 by the applications in the stack below it and the

service provided through interface J2,3, as illustrated in Fig.4.2b. The number of states of

verification is thus reduced to (N5N
′
4M
′
2)

2, where N ′4 and M ′2 are the number of states of

the interfaces I4,5 and J2,3 which are less than N4 and M2.

Note that in Fig.4.1, the directed edges that represent service provide/use relationship

between modules do not contain cycles. This is deliberately done so that the modules can

be verified in a layered fashion even there are dependency relationship that appear between

stacks. In a more general, modular architecture, in which the output from a module directly,

or indirectly, feeds back to a module that it receives data from, which comprises a circular

dependency, we must simultaneously prove that all of the modules operate correctly.

4.3 Conclusions

A multiple stack architecture for cooperative driving systems is presented in this chapter.

The layered structure in each stacks makes it possible for an system engineer to develop

collaborative driving applications without being familiar with the details of physical in-

teractions such as the feedback rules that govern the vehicle control, or the sensor fusion

algorithms that produce mapping of objects in the surrounding environment. With multi-

ple stacks, which extend the modular approaches in other architectures, an application can

interact with physical world in different ways with sufficient abstraction. From a high level

perspective, the stacks with well-defined interfaces between layers simplify verification of a

cooperative driving system by dividing it into verification of individual layers. However, it

is not trivial to verify a system with some of its components being verified only within a

probability bound. Compositional verification cannot applied directly. Chapter 6 describes

compositional verification for probabilistic systems such as cooperative driving systems.
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Chapter 5

Synchronous Clocks

In this chapter, we present a framework for the protocols that are specified as FSMs to

take advantage for the accurate clocks provided by the Global Positioning System (GPS).

It allows protocols to operate like human making appointments — by indicating a future

time at which event should take place. Both the driver-assisted merging and the lock proto-

col that resolves conflicting requests execute synchronized operations using these accurate

clocks to synchronize actions instead of using timers. Having actions executed simultane-

ously at physically-separated locations eliminates the interleaving of actions that are caused

by communication delay and multiple timers.

With the widely available commercial GPS receiver, fairly accurate clock readings with

respect to Coordinated Universal Time (UTC) can be obtained everywhere in a system.

Processes on different locations may coordinate their actions based on the accurate clocks

and execute simultaneous transitions as if they were situated closely and connected by

wires. This reduces interleaving of actions that arises when processes communicate over

delay-prone communication channels and register future events with timers. It leads to an

entirely new class of protocols that take advantage of these accurate clocks by interacting

with the timing stack, in which GPS-disciplined clocks reside. We start off by considering a

novel design of the lock protocol that resolves conflicting merge requests for driver-assisted

merging. We conceive of a simplified interface of the accurate clocks, i.e., a framework

consisting of the timing stack and a modification of FSMs. Within the framework protocols

may take advantage of the accurate clocks without much consideration about timed events
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and timing constraints, which is the main objective timed automata. The lock protocol can

then be specified using the modified FSM. The framework also comes with the service model

for the timing stack and an additional set of compositional rules that allow the timing stack

to be included when constructing the MDP for verification. The FSM specification of the

lock protocol will serve as a running example for the composition rules.

In this chapter, we motivate the use of GPS clocks by considering our expectation and

design of the lock protocol (section 5.1). Next, we describe the interface of timing stack

and present a small addition to the FSM defined in Chapter 3, and we specify the lock

protocol using the modified FSMs (section 5.2). The service model representation of the

timing stack is then explained (section 5.3), which leads to an additional set of composition

rules (section 5.4).

5.1 The Lock Protocol

In a toll plaza, or a reasonably loaded section of public highway, it is highly probable that

more than one vehicles attempt to change lanes and merge between the other two vehicles

in the target lane. Without an infrastructure to coordinate maneuvers from a more global

perspective, it is difficult for a vehicle to cooperate in separate merge at the same time. A

conflict resolution mechanism must be in place.

The lock protocol presented in this section is a simple solution that resolves conflict-

ing request to common resource. In driver-assisted merging, the resource is the exclusive

cooperation of an intelligent vehicle on a merge maneuver. In Chapter 7, we will see that

throughout a merge maneuver, driver-assisted merging has three phases, each phase is de-

marcated by an attempt of the lock protocol. That is, driver-assisted merging uses the lock

protocol three times during a successful merge.

We first describe the design of the lock protocol informally, in English and in diagrams.

Then we attempt to formalize the specification of the lock protocol in timed automata, or

more specifically, in the model specification language of UPPAAL, which is based on timed

automata.



CHAPTER 5. SYNCHRONOUS CLOCKS 63

5.1.1 Real World Analogy

The goal of the lock protocol is to allow the driver-assisted protocol on the merging vehicle

to solicit cooperation from the neighboring vehicles in the target lane for a given amount

of time. The lock protocol notifies the merge protocol if both vehicles in the target lane

agrees to cooperate. It should ensures that, within the given time, both of the cooperating

vehicles will continue to cooperate and only cooperate with the merging vehicle.

A straightforward solution is to have each vehicle equipped with a timer. Suppose the

merging vehicle estimates that the merge maneuver should take 30 seconds to complete. It

first starts a timer of 40 seconds, to be conservative on time usage, and sends out requests

to both of the neighboring vehicles. On receiving the request, each of the neighboring

vehicles also sets a timer that lasts 40 seconds and responds to the merging vehicle by

a granted message. Before the timer expires, it no longer responds to the requests from

other vehicles. If the merging vehicle receives both granted messages, then it knows that

it has both the neighboring vehicle cooperating before its timer expires. However, the

timers on the merging vehicle and the neighboring vehicles always expire at different points.

This create interleaving sequences that significantly increase the complexity of verification,

especially when we consider an already-complex system that includes up to 7 vehicles within

a neighborhood, as shown in the figure. Also when the timer on the merging vehicle expires,

it is unnecessary for any of the neighboring vehicles not to respond to a new merge request.

Synchronized clocks are often used to coordinate actions among humans and this results

in an unambiguous sequence of operation. Consider three battalions led by a general and

his lieutenants. The general dispatches messengers to give orders to his lieutenants. The

time taken by the messengers to deliver the orders may vary due to road condition. If

the general orders each battalion to attack a certain time after the messenger arrives,

there will be a range of attack times for the two remote battalions, which result in a

range of differences in the time between attacks. If the objective is to have all the armies

attack simultaneously, and the battalions attack when the messengers arrive, there will be

size different possible sequences of attacks, with the probability of simultaneous attacks

approaching zero. However, if the general and lieutenants synchronize their watches, and

the general orders them to attack at a specific time, that is greater than the arrival times
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of the messengers, then the attacks will occur simultaneously. We still need a protocol to

guarantee that the messages have been received or to initiate an alternative plan when there

is uncertainty, say, the messengers being intercepted by the enemy.

Inspired by the way us human arrange timed events, we redesign the operations by

replacing the timers with reference to synchronized clocks. Instead of starting a timer that

expires 40 seconds after, the merging vehicle check current time t and sends out requests that

are appended with a parameter t + 40. On receiving the request, each of the neighboring

vehicles take note of the time t + 40 and responds to the merging vehicle by a granted

message. Before the clock reads t + 40, it no longer responds to additional requests from

other vehicles. If the merging vehicle receives both granted messages, then it knows that

it has both the neighboring vehicle cooperating before the clock reads t + 40. When the

clock reads t+40, the cooperating group is dismissed. The merging vehicle stops the merge

maneuver and both neighboring vehicles return to a state in which they respond to merge

requests.

5.1.2 The Operation

The lock protocol hides conflict resolution from the merge protocol and replace it with

a simpler interface. The merge protocol simply issues to the lock protocol an attempt

command including the identifier of the two vehicles it wishes to cooperate with and a

deadline before which it expects the merge maneuver to complete. If both the two vehicles

agree to cooperate, the lock protocol ensures the mutual exclusiveness of the group until

the deadline and notifies the merge protocol of success. The participants that are agreed to

cooperate returns to the initial state on reaching the deadline when there is a message loss

or either one or both of the vehicles cannot cooperate.

On every merge-enabled vehicle there is an instance of the lock protocol. If the merge

vehicle attempts to execute merge maneuver, it uses the lock protocol to create a cooperating

group and that instance of the lock protocol assumes the role of master. When a vehicle

that is not participating in any group receives a request to cooperate, it agrees and assumes

the role of slave.

Fig.5.1 illustrates the operation of the lock protocol. Suppose the driver of vehicles
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Figure 5.1: Normal Operation of the Lock Protocol

signals his/her intention to merge between vehicles b and c. The merge protocol issues

command attempt(b, c, td), where b and c are the identifiers of the lock protocol’s process

on vehicles b and c and td is the expected time instant when the merge maneuver should

finish. The lock protocol on vehicle a becomes master and sends out request message with

parameter td to the instances of lock protocol on vehicles b and c through communication

channel. It records td to be the deadline when the cooperating group is being dismissed.

After becoming master, the instance of lock protocol ignores all request message it receives

before time td.

If vehicles b and c are not being in any cooperating group, they become slave locks

when receiving request. Each of them records parameter td that comes along with request

message, then it responds to master lock with message granted. The slave lock initiate

necessary function of the driver-assisted merge protocol for cooperation. After becoming

slave, the instance of lock protocol also ignores all request message it receives before time

td.

The master expects granted messages from both of the slaves after it sends out request

messages. After successfully collecting granted from the two slaves, it knows that both

vehicles b and c are cooperating until td. It now notifies the merge protocol on vehicle a

that the cooperating group is formed and the necessary functions of the merge protocol on
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vehicles b and c are initiated.

If any message is lost during a transmission, the master will not be able to collect granted

messages from both slaves. When this occurs, the lock protocol instance on either vehicle

b or c may or may not become slave. The use of deadline td ensures that, if an instance

becomes slave but the group is not formed successfully, every participant returns to the

initial state after td.

5.1.3 Specification in Timed Automata

Time-critical systems are often modeled by timed automata. Here we attempt to specify

the behavior of the lock protocol using UPPAAL model. The lock protocol modeled as

an UPPAAL model is shown in Fig.5.2. The diagram here represents an instance the

lock protocol on a single vehicle. The complete system contain the model of communication

channels in addition to the model of lock protocol instance. An input of verification contains

the UPPAAL models of each component in the system. The toolbox carries out verification

by composing the component models and check the system against specified properties.

It is worth mentioning the two variables in the model, namely x and td. Clock variable

x is initialized to zero, which denotes the accurate clock that the lock protocol instance

can access. Parameter td specifies the time by when driver-assisted merge protocol expects

to complete the merge maneuver. The cooperating group should persist until the specified

time td.

The edges of the automaton are decorated with three types of labels.

1. Guard expresses a condition on the values of clock variable that must be satisfied in

order for the edge to be taken. The edge from wait both state to the start state has

guard x > td, meaning that the edge is taken only when the clock variable x reads a

value greater than td.

2. Synchronization action is performed when the edge is taken. Synchronization actions

the one appended with either an exclamation mark or a question mark. Synchro-

nization actions pair up in a way similar to handshaking: a transmitting action with

a exclamation mark ending occurs simultaneously as a receiving action of the same
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Figure 5.2: Specification of the Lock Protocol in UPPAAL model

name but with a question mark ending. When combining several UPPAAL models,

a pair of synchronization actions cause transitions of two models together.

3. A number of clock resets and clock assignments to clock variable. The only type integer

reset/assignment appears within the lock protocol model is td := x + 40, which sets

the value of deadline td to 40 seconds later than current time x. Some of the states of

the automaton come with invariants, which are conditions expressing constraints on

the clock values in order for control to remain in a particular state. The combination

of an invariant x <= td and a guard x > td on an edge captures the event of returning

to the initial state when the clock reads td.

Two states with latin letter ‘C’ on them are committed locations. Committed location is

a syntax used by UPPAAL modeling language that ensure that atomicity of several transi-
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tions. If a system component arrives at some committed location, on the next transition it

must leave that committed location. Other component cannot interfere. This is similar to

the chain of transitions when we consider the composition of FSMs and service models in

Chapter 3. The committed location on the right ensures that request messages are put into

the channel toward the two neighboring vehicles atomically, and the one on the left ensures

that the instance of the lock protocol responds with granted message on receiving request

message.

In general, td may take arbitrary value, as driver-assisted merge protocol needs different

amount of time to complete a merge maneuver for different road condition, vehicle speed,

etc. Accounting for the behavior of a protocol when different td’s are supplied requires the

use of timed automata. That is, timed automata account for different behaviors of a system

when different timing constraints are provided.

In the next section, we introduce an interface for the timing stack, with which we

separate the timing rules to a different process from the logic of message exchange between

instances of lock protocol. The logic stays the same without having to account for the

timing. Lock protocol, or any protocol that requires timing, may operate according to

the accurate clocks provided by the timing stack. We shall see shortly that this simplifies

protocols, allows them to be specified using a simpler and less expressive model — FSMs.

5.2 Revisit the Timing Stack

In this section, we revisit the timing stack that has been introduced in Chapter 4. This

time we focus on the interface of timing stack as seen from the perspective of FSMs, and its

implication. First of all, as shown in Fig.5.3a, we separate a process into two parts: the part

that is modeled as an FSM controls state transitions and messages exchanges, and the part

called timestamp decision function (TDF) determines the time instant that a timed event

should occur. The setup of timed events are replaced by sending a message from the FSM

to the timing stack. The occurrence of a timed event is triggered by an ‘alarm’ message

generated by the timing stack. FSMs are adequate for modeling systems with synchronized

clocks with a small modification. The lock protocol can then be specified with this newly
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conceived model.

(a) Divide a process into TDF and

FSM

(b) Schedule timed event that occurs at different locations

Figure 5.3: Interacting with the Timing Stack

5.2.1 Interface of Timing Stack

In Chapter 4 we have seen that with GPS, crystal oscillators, and synchronization protocols,

a reasonably accurate clock is maintained within the timing stack. On each physical entity,

e.g. an intelligent vehicle, there is a timing stack. It ensures that this accurate clock is

readily available to all modules co-located with the timing stack.

For the ease of use of this accurate clock, the timing stack provides interface from which
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instances protocol access timing information. Recall that in the acknowledgment protocol

example in Chapter 3, the transmitter controls timing by sending command to the timer.

Similarly, suppose a protocol wishes an event to take place at some future time t, it submits

timestamp t to the timing stack. By the time the clock reads t, the timing stack dispatches

a message to the protocol instance, which executes the action accordingly.

The timing stack maintains a list of pending timestamps and remembers which module

in an intelligent vehicle submitted each timestamp. Whenever the clock reads the value of a

timestamps it stores, it notifies the registrant of the timestamps, that is, the module which

submitted the timestamp in the first place.

There are two messages reserved for timing stack. Message set(di, ti) is a message that a

protocol instance uses to submit a timestamp of value ti and to assign the timestamp with

identifier di. Message alarm(di) is generated by the timing stack indicating that the clock

now reads the value of the timestamp of identifier di.

5.2.2 Finite-State Machines with Timestamps

A separate timing stack relieves a process of the responsibility of handling timing. The

timing stack should be implemented on the same physical location as the process itself.

As long as we are only interested in the temporal properties rather than timed properties,

we distinguish different timestamps by their identifiers instead of their values. Here we

introduce a small modification to the original FSM definition. Unlike timed automata, in

modified FSMs the time of occurrence of events is no longer a concern.

There are two ways to submit timestamps to the timing stack. The first being submit-

ting a value determined by a TDF. For instance, in driver-assisted merge protocol, TDF

decides how long the merge maneuver is expected to complete by considering weather, road

condition, highway congestion, and etc. Another way is to receive a value through hand-

shaking or communication channel from the process whose TDF has determined that value,

and submit that value to the timing stack.

Several FSMs may coordinate simultaneous actions using synchronous clocks and times-

tamps. An example is shown in Fig.5.3b. First, FSM A wishes to schedule an events that

should take place simultaneously at different locations. It submits a timestamp di to the
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timing stack, with its value ti supplied by its accompanying TDF. The value of the times-

tamp is distributed to FSM B that is located at a different location, through a message that

includes the identifier di and the value ti. On receiving the timestamp, FSM B submits the

timestamp di to its respective timing stack, with its value ti obtained from the message.

FSM C is also prompted to submit the same timestamp by handshaking, however, it does

not have to submit the value because it shares the same timing stack with FSM A. When

the clock reads ti, the timing stacks on different physical entities will send alarm messages to

FSMs A, B, and C at the same time. When FSMs A, B, and C receive the alarm messages,

they execute the actions that have been associated with timestamp di.

After a the value of a timestamp is determined, it never changes. Therefore, when con-

structing the model of protocol systems, the timestamps are distinguished by its identifier.

The same value is used by the FSM whose TDF has decided its value and the FSMs that

receive this timestamp by means of handshaking or communication channels. The actual

implementation of the FSM should provide a mechanism to pass the values of timestamps

around. That is, embedding di in a message being sent through a communication channel

requires its value ti to be included in the same message.

We aim for minimal modification to the FSM model. The timestamp may take arbitrary

value that represents some instance since a specified epoch (January 1, 1970 for UNIX-based

system). Reasoning about the system by consider the identifier of the timestamp rather

than its value preserves the finiteness of FSM model.

The following messages are added to the set of inputs and the set of outputs of a FSM.

They stand for interaction with the timing stack.

• Inputs: there are alarm messages generated by the timing stack. They are of the form

GTiming?alarm(dy), which represents the alarm message sent from the timing stack

that indicates that the clock reads the value of timestamp dy

• Inputs: there are messages that have identifier(s) of timestamp(s) embedded as their

parameter. They are of the form Fj?msg(dy) and Fj?msg(dy,passed). The former

stands for receiving a timestamp that has not passed yet, while the latter stands for

receiving an outdated timestamp.
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• Outputs: there are messages used to set up timestamps that expire at some later time.

They are of the form GTiming!set(dy), which register the FSM as a recipient of alarm

message for dy.

• Outputs: there are messages that have identifier(s) of timestamp(s) embedded as their

parameter. They are of the form Fi!msg(dy)

The output labels GTiming!set(dy) should comply to the two ways of submitting values

of timestamps to the timing stack. If the FSM has an accompanying TDF that supplies

the value for the timestamp, then the timing stack should require that the identifier dy is

either used the first time or that the clock has passed the last instance of dy.

Figure 5.4: Validity Check when Receving Messages Containing Timestamp(s)

If on a transition the implementation of the FSM is expected to receive the timestamp

from others then submit that timestamp to the timing stack, the input label of the transition

that the label GTiming!set(dy) is on should be a label that receives a message containing the

identifier dy, e.g. Gchannel?msg(dy) or Fj !msg(dy). We require that, in implementation of

a FSM with timestamp, the timestamp delivered by a message sent through a delay-prone

communication channel is first checked for its validity, as shown in Fig.5.4. That is, its

value is compared to the current clock reading to decide if it has an outdated value. This
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is because a message that delivers the value of some timestamp di may arrive after di has

already expired. The validity check is part of the timing stack’s functions and it lets the

implementation of a FSM knows whether a timestamp is valid (value less than current

time) or invalid (value greater than or equal to current time). In every state of a fully-

specified FSM, it is required that the input labels that receives an outdated timestamp, e.g.

Gchannel?msg(dy,passed), are specified.

The definition circumvents around the complexity of considering actual timestamp val-

ues, which requires models to be constructed using timed automata or other timed models.

The mechanism for determining the timestamps is transparent to the protocol designer if

we only look at the FSMs. The FSMs would be sufficient in modeling the system as long

as we are interested in the sequences of events rather than the timing of the events.

5.2.3 Specification of Lock Protocol

The system includes processes of lock protocol that exchange messages through commu-

nication channels. On each intelligent vehicle there can be more than one process of lock

protocol, with each process controlling the access of a specific resource. We do not place

any assumption on the communication channel, and a minimal best-effort communication

protocol would suffice.

The diagram in Fig.5.5 is the specification of a lock protocol process with identifier i, or

lock i. Any input that is not in the diagram is ignored by the FSM, that is, has an empty

output. A process becomes a master lock when it moves from s0 to s2, and during its stay

in states s2, s3, s
′
3 and s4; it becomes a slave lock when it is in state s1. Being in state s0

means that this instance is not cooperate with anyone nor has attempted to create a group.

Note that the diagram is a compact representation of the FSM Flock,i. An edge from

s0 to s1 represents multiple transitions. Here, m is a variable, and there are distinct

transitions triggered by Gchannel,m for any process identifier m. When receiving request(dm)

from Flock,m, it submits timestamp dm and responds by sending back granted(dm). The

process then notifies the necessary function of driver-assisted merging application that it

should start cooperate until timestamp dm (Ffront!cooperate(dm)). The FSM does not leave

state s1 until the timing stack delivers alarm(dm). It is important to keep in mind that if
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Figure 5.5: Specification of the lock protocol, id= i (Flock,i)

any message with an identifier dm in its parameter is sent through communication channel,

the implementation should include its value tm in the message being transmitted.

The FSM moves from state s0 to s2 if driver-assisted merge protocol attempt to create a

cooperating group with the front car and the back car (Fmerge?attempt(di, f, b)). Parameter

di refers to the timestamp whose value denotes the time until when the cooperating group

should last. Parameters f and b are the identifiers of the lock process on the front car and

the back car, respectively. On the transition it sends out requests toward processes f and

b, and submits timestamp di. The identifier i of the process will be used by the slave locks

on the front car and the back car to decides which process they are currently cooperating

with.

In states s2, s3 and s′3, it collects granted(di) message from processes f and b and moves
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Figure 5.6: The System Appears to Have a Single Stack

into s4 after collecting both. If it fails to collect messages from both f and b before di

expires, it returns to the initial state. Otherwise it proceeds to s4 and notifies the higher

level function that the cooperating group is formed (Fmerge!success). The FSM stays in

state s4 until di expires.

5.3 Modeling of Protocol Systems with Timing Stacks

In this section, we present the service model of the timing stacks so that they are included

in the MDP model construction of the protocol system. Although in a system there are

multiple timing stacks at different physical locations, in the models of protocol systems the

timing stack appears as a single service model as a result of synchronization of the clock

readings.

The fact that every timing stack is synchronized to the GPS clocks and that the alarm

messages are delivered to all FSMs that have submitted the value of the same timestamp

creates an ’illusion’ that a single timing stack distributes this alarm message to every FSM

in the system. Logically, the system appears as illustrated in Fig.5.6.

The timing stack model, which is the logical illusion of multiple timing stacks at separate
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locations, maintains a list of identifiers of pending timestamps. The physical implementation

of timing stack is responsible for storing their values. However, the timing stack model only

keeps track of the set of FSMs that have submitted the value of the same timestamp. For

example, FSM A is the first FSM that submits a value for timestamp di. FSM B and FSM

C submits the same value for timestamp di after they receive timestamps from FSM A. The

timing stack model should associate identifier di with FSMs A, B, and C so that it is able

to distribute alarm messages to the three FSMs on the same transition.

Suppose that there are at most k distinct timestamps in the system. For each timestamp

di, the state of the timing stack model should keep track of which FSMs that have submitted

di, even though in effect it is the TDF on one of them that decides its value. Consequently,

the state of the timing stack model could be written as a set of k key-value pairs with each

key corresponding to a timestamp and the value being a set of FSMs that are its registrants.

A state of the timing stack model takes the form of

[d1 : D1, d2 : D2, . . . , dk : Dk] (5.1)

where D1, D2, . . . , Dk are the set of FSMs that have been registered with timestamps

d1, d2, . . . , dk, respectively. Initially, Dj = φ for all 1 ≤ j ≤ k. Set Dj being empty

means that there has not been anyone submitted timestamp dj . In F, initially the state

of the timing stack is [di : {}]. When FSM A submits timestamp di, its accompanying

TDF determines the value of di. FSM A then passes msg(di) to FSM C by handshaking,

which prompts FSM C to submit di as well. Now the timing stack model is in the state

[di : {A,C}].

As we remove timing information, there is no relationship between different deadlines,

such as time difference, ordering, etc.. Set Dj being non-empty simply implies that times-

tamp dj and its value have been submitted sometime earlier. Timestamp dj expiring is

then a valid event, and it incurs sending alarm message to all the FSMs in the set Dj . If

both Dj and D′j are non-empty, both dj expiring and d′j expiring are valid events as we

did not place any restrictions on the values of dj and d′j . If there are more than one sets

among D1, . . . , Dk being non-empty, then expirations of their associated timestamps are

valid events.
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Assume that, in G, the timing stack model is in state [di : {A,C}] when somemsg(di)

is in transit from FSM A toward FSM B. In this case di expiring is valid. In such event,

alarm(di) is sent to FSM B and FSM C on the same transition while FSM B has not

received timestamp di yet. When somemsg(di) is delivered, timestamp di is checked for

validity. FSM B then knows whether the received timestamp di has expired.

5.4 Transition Rules

The timestamps allow physically-separated entities to execute actions at the same time.

This is stronger than the two-way handshaking in the composition rules described in Chapter

3. The timing stack model adds additional rules that are directly related to the setup of

timestamps and the expirations of timestamp. In this section, we discuss the compatibility

of FSMs with timestamps, then introduce three more composition rules to constructing the

model of protocol systems. Finally, execution sequences of a 4-process system of the lock

protocol are used as examples of transition rules at work.

5.4.1 Compatibility of FSMs with Timestamps

Compatibility of FSMs with timestamps require that each timestamp in the composite

system is determined uniquely by a single TDF accompanying one of the constituting FSMs.

This makes it impossible for a timestamp to have more than one value.

Suppose on the contrary that there are two FSMs, F1 and F2, and each of them has

TDF that computes the value for the same timestamp di. Suppose F1 submits t1 to be the

value of di, while F2 submits t2 to be the value of di at the same time. Both F1 and F2

pass on their determined values of di to a third FSM F3, while F3 submits the value of di

accordingly when it receives the assigned value of di from either F1 or F2. This creates an

ambiguity: we do not know the value of timestamp submitted by F3 can be either t1 or t2.

To solve this problem, we define ownership of timestamps.

Definition 8 Timestamp di is said to be owned by a FSM F iff

1. F is accompanied by a TDF that determines the value for di.
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2. F does not have any receiving input labels for messages that contain di in its param-

eter.

3. F has an utput label of Gtiming!set(di) on at least one of its transitions

We define D(F ) to be the set of timestamps owned by FSM F.

With ownership of timestamp, we may then consider the compatibility of FSMs.

Definition 9 FSMs F1, . . . , Fn with timestamp are said to be compatible if

D(Fi) ∩D(Fj) = φ, ∀ i 6= j (5.2)

If all FSMs are compatible, every timestamp has a single owner FSM. The timestamps

in a transition system that consists of compatible FSMs are only assigned values by their

respective owners. Hence, any timestamp will not be assigned different values before it

expires.

5.4.2 Transition rules imposed by the timing stack model

A timestamp di become relevant when is is first submitted to the timing stackby the FSM

that owns di. Its value is determined by the TDF. At this point, no other FSM has registered

itself with di, otherwise the FSMs in the system model must be incompatible. Hence we

have the first rule:

The first FSM that execute a transition containing output label GTiming!set(di)

should be the FSM which owns di.

The FSMs that do not own di may submit di to the timing stack only after it receives di

in a message that can be attributed to the FSM that owns it. Submission of di only takes

place on a transition that represents reception of di. Here goes the second rule:

FSMs that do not own dj may register itself with dj only after the owner of dj

has its TDF determine and submit the value of dj ; moreover, it may only do so

on the transition on which it receives identifier dj contained in some message

If on a transition an outdated value assignment is received, e.g. Fx?msg(dj,passed), then the

value is behind current time and the FSM should not submit it to the timing stack.
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As seen in the previous section, when considering a single timestamp dj , several timing

stacks operate as a logically single entity and deliver alarm(dj) to the FSMs that have

submitted the value of dj . We have also seen that it is possible for the message bearing

timestamps to be delayed after the clock has passed the timestamp. When a protocol

implementation receives a message that has a timestamp among its parameters, it always

does a validity check on the timestamp before execute any transitions. An input to an FSM

is always an identifier of a timestamp, e.g. dj , or an identifier of an outdated timestamp,

e.g. dj,passed. Equivalently, when a timestamp expires while there are timestamp-bearing

messages in transit, we mark the parameter in these messages as passed when the message

is in transit. We summarize the discussion above as the third rule:

The expiration of timestamp dj is a valid event after timestamp dj is submit-

ted, i.e., Dj is non-empty. All messages in communication channel that have

identifier dj in its parameter are marked as passed after the transition

Let ts = [d1 : D1, . . . , dk : Dk] be the state of the timing stack model. We consider

the states of channels c1, c2, . . . , cm separately from the states of FSMs and service models

s1, . . . , sn. Rule 1 becomes

di ∈ D(Fx) ∧Di = φ ∧ Fx : sx
a/b−−→ s′x ∧Gtiming!set(di) ∈ b

〈s1 . . . , sx, . . . , sn, c1 . . . , cm, ts〉 → 〈s1 . . . , s′x, . . . , sn, c1 . . . , cm, t′s〉
(5.3)

where t′s = [d1 : D′1, . . . , dk : D′k] and D′j = Dj for all j 6= i, D′i = {Fx}.

If the owner FSM of di is executing some transition whose output label containsGtiming!set(di)

while Di is non-empty, this implies that the owner FSM is attempting to overwrite the times-

tamp of di, which has been determined earlier. This is considered a design flaw and should

be fixed.

Rule 2 becomes

di /∈ D(Fx) ∧Di 6= φ ∧ Fx : sx
Gchannel,j?msg(di)/b−−−−−−−−−−−−→ s′x ∧Gtiming!set(di) ∈ b

〈s1 . . . , sx, . . . , sn, c1 . . . cj , . . . , cm, ts〉 → 〈s1 . . . , s′x, . . . , sn, c1 . . . , c′j , . . . , cm, t′s〉
(5.4)

where ts = [d1 : D1, . . . , dk : Dk] and Dj = D′j for all j 6= i, D′i = Di ∪ {Fx}, and

c′j = cj \msg(di).

Rule 3 becomes

Di 6= φ ∧ ∀Fx ∈ Di · Fx : sx
Gtiming?alarm(di)/b−−−−−−−−−−−−→ s′x

〈s1 . . . , sx, . . . , sn, c1 . . . c′m, ts〉 → 〈s1 . . . , s′x, . . . , sn, c1′, . . . , cm, t′s〉
(5.5)
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where Dj = D′j for all j 6= i, D′i = φ. s′y = sy∀y /∈ Di and Fx changes state from sx

to s′x if x ∈ Di. If there is any message in transit that have di among its parameters,

the parameter di should be marked as passed: if msg(di) ∈ cy for some y and any msg,

then c′y = (cy −msg(di)∪msg(di,passed); if otherwise cy does not contain any message with

parameter di, c
′
y = cy.

5.5 Example: Execution Sequences of the Lock Protocol

Figure 5.7: Four lock protocol processes on four vehicles

We see the transition rules in action through the following example. There are four

different vehicles in Fig.5.7, and each of them is equipped with an implementation of the

lock protocol and a timing stack. Two among the lock protocol implementation, namely

FSM A and FSM D, issue competing requests contains different timing requirements. FSM

A attempts to create a group by soliciting cooperation from FSM B and FSM C, while FSM

D also attempts to create a group by soliciting cooperation from FSM B and FSM C as

well. We immediately see that at most one of FSM A and FSM D and it cannot be both.
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(a) Car A succeeds

(b) No one succeeds

Figure 5.8: Competing Requests of Lock Protocol

FSM A owns timestamp dA. Its accompanying TDF determines its value. The value of

dA is then piggybacked on the request messages sent toward FSM B and FSM C. The same

goes to FSM D, which owns timestamp dD.

The TDF can be part of the higher level function that relies on the lock protocol to

solve conflicting request and create mutual exclusive group. The value of the timestamp

may be decided based on purpose of the higher level function. The value of dA and the

value of dD do not relate to each other. We should consider the case where the value of dA

could be less than the value of dD, and vice versa.
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If the requests from FSM A reach FSM B and FSM C before the requests from FSM D

do, FSM B and FSM C choose to operate using the timestamp dA. FSM A succeeded to

create a group, while FSM D failed and had to wait. It is also possible that none of FSM

A and FSM D succeeds: if the request from FSM A reaches FSM B first and the request

from FSM D reaches FSM C first, FSM B operate according to timestamp dA while FSM

C uses timestamp dC . The timeline inFig.5.8 depicts such scenario:

Figure 5.9: Logical View of the Four-Instance System

To construct the composite machine for verification, we consider the logical view (Fig.5.9)

of the system that consists of four FSMs, communication channels connecting the FSMs,

and a single timing stack model. They are the constituting modules of the composite ma-

chine. The execution sequences of the composite machine are the possible evolutions of the

whole system.

To see the transition rules in action, we consider the sequence that reflects the timeline

we just saw. As lock B agrees to cooperate with lock A, it uses timestamp dA. Lock C

agrees to cooperate with lock D, so it becomes registered with timestamp dD. The sets of

registrants keyed by dA and dD list the FSMs to which the timing stack should send alarm
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messages when dA and dD expires.

〈FA, FB, FC , FD, GA→B, GA→C , GB→A, GC→A, GD→B, GD→C , GB→D, GC→D, Gtiming〉 :

〈s0, s0, s0, s0, φ, φ, φ, φ, φ, φ, φ, φ, [dA : {}, dD : {}〉

→ 〈s2, s0, s0, s0, req(dA), req(dA), φ, φ, φ, φ, φ, φ, [dA : {FA}, dD : {}〉

→ 〈s2, s0, s0, s2, req(dA), req(dA), φ, φ, req(dD), req(dD), φ, φ, [dA : {FA}, dD : {FD}〉

→ 〈s2, s1, s0, s2, φ, req(dA), gra(dA), φ, req(dD), req(dD), φ, φ, [dA : {FA, FB}, dD : {FD}〉

→ 〈s2, s1, s1, s2, φ, req(dA), gra(dA), φ, req(dD), φ, φ, gra(dD),

[dA : {FA, FB}, dD : {FC , FD}〉

→ 〈s2, s1, s1, s2, φ, φ, gra(dA), φ, req(dD), φ, φ, gra(dD), [dA : {FA, FB}, dD : {FC , FD}〉

→ 〈s2, s1, s1, s2, φ, φ, gra(dA), φ, φ, φ, φ, gra(dD), [dA : {FA, FB}, dD : {FC , FD}〉

→ 〈s3, s1, s1, s2, φ, φ, φ, φ, φ, φ, φ, gra(dD), [dA : {FA, FB}, dD : {FC , FD}〉

→ 〈s3, s1, s1, s2, φ, φ, φ, φ, φ, φ, φ, φ, [dA : {FA, FB}, dD : {FC , FD}〉

→ 〈s0, s0, s1, s2, φ, φ, φ, φ, φ, φ, φ, φ, [dA : {}, dD : {FC , FD}〉

→ 〈s0, s0, s0, s0, φ, φ, φ, φ, φ, φ, φ, φ, [dA : {}, dD : {}〉
(5.6)

Suppose that request(dA) and request(dD) suffer delay in channel from FSM A to FSM

C and the channel from FSM D to FSM C, respectively, transition rule 3 requires that the
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message to be marked ‘passed’ when deadlines expire:

〈FA, FB, FC , FD, GA→B, GA→C , GB→A, GC→A, GD→B, GD→C , GB→D, GC→D, Gtiming〉 :

〈s0, s0, s0, s0, φ, φ, φ, φ, φ, φ, φ, φ, [dA : {}, dD : {}〉

→ 〈s2, s0, s0, s0, req(dA), req(dA), φ, φ, φ, φ, φ, φ, [dA : {FA}, dD : {}〉

→ 〈s2, s0, s0, s2, req(dA), req(dA), φ, φ, req(dD), req(dD), φ, φ, [dA : {FA}, dD : {FD}〉

→ 〈s2, s1, s0, s2, φ, req(dA), gra(dA), φ, req(dD), req(dD), φ, φ, [dA : {FA, FB}, dD : {FD}〉

→ 〈s3, s1, s0, s2, φ, req(dA), φ, φ, req(dD), φ, φ, gra(dD), [dA : {FA, FB}, dD : {FD}〉

→ 〈s0, s0, s0, s2, φ, req(dA,passed), φ, φ, req(dD), φ, φ, gra(dd), [dA : {}, dD : {FD}〉

→ 〈s0, s0, s0, s2, φ, φ, φ, φ, req(dD), φ, φ, gra(dd), [dA : {}, dD : {FD}〉

→ 〈s0, s0, s0, s0, φ, φ, φ, φ, req(dD,passed), φ, φ, gra(dD,passed), [dA : {}, dD : {}〉

→ 〈s0, s0, s0, s0, φ, φ, φ, φ, φ, φ, φ, gra(dD,passed), [dA : {}, dD : {}〉

→ 〈s0, s0, s0, s0, φ, φ, φ, φ, φ, φ, φ, φ, [dA : {}, dD : {}〉
(5.7)

5.6 Conclusions

In this chapter, we presented a framework for the protocols to use GPS clocks as a way

to coordinate synchronous actions. It is possible to separate timing from the logic of state

transitions by relegating timing management to a separate timing stack, which also main-

tains an accurate clock. Without considering timing constraint, the logic can be described

by using only FSMs. Furthermore, having actions executed synchronously even when they

are separated by distance eliminates the interleaving of actions that are caused by commu-

nication delay and multiple timers.

We presented the service model of the timing stack, which interacts with FSMs by

receiving messages that set up future events at a particular time and dispatching messages

that indicate such events when the time comes. In a cooperative driving system, the model

of timing stack still appears as a single entity from the perspective of modules, even if the

modules may located within different vehicles. The additional composition rules introduced

in this chapter ensure that the transitions reflect the synchronous actions executed by



CHAPTER 5. SYNCHRONOUS CLOCKS 85

modules.

Additionally, we design a lock protocol that resolves conflicting requests issued by dif-

ferent vehicles which attempt to merge. The lock protocol uses GPS clock to keep track of

a specific time until which a vehicle needs to remain cooperative with the merging vehicle.
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Chapter 6

Stratified Probabilistic Verification

This chapter introduces stratified probabilistic verification technique that conducts reacha-

bility analysis and checks probabilistic safety properties on Markov decision processes with

very large state spaces. It derives from the probabilistic verification technique presented in

[Maxemchuk and Sabnani, 1989]. By considering probabilistic choices with discretized levels

of distribution, the technique prioritizes the traversal of the states that are more likely to

be encountered during system execution. As the algorithm proceeds, the unexplored states

are less significant in terms of reachability probability. When the algorithm stops when

using up available memory, it computes the probability bound of reaching the error states

by solving a linear program.

In cooperative driving systems, the problem of state explosion is prominent. Besides

the cooperating vehicles, we often have to consider the behavior of multiple vehicles within

their neighborhood. Furthermore, there are probabilistic events whose distributions are dif-

ficult to obtain. The stratified probabilistic verification technique addresses both problems.

Discretized levels of probability distribution not only allows state traversal to prioritize the

more probable states but also accepts events whose probability weights are characterized

by discretized bounds rather than exact weights. By the time the memory used to store

the explored states exceeds memory limit, the procedure constructs a linear program whose

solution is an upper bound of the probability for a regular safety property to hold, even

though the probabilities in the system model are not exact. In most cases it is able to

determine whether a probabilistic safety property holds. Linear programs yield a much
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tighter bound than the one obtained by the precursor probabilistic verification technique.

The technique is well-suited for the multiple stack architecture or other modular ar-

chitectures. It verifies those modules whose state spaces are too large to be tractable

using conventional techniques and determines if they satisfy given probabilistic guarantees.

Modules are then replaced with simpler interfaces constructed from the deterministic fi-

nite automata that represent the guarantees. This divides the problem of verifying a large

composite system into subproblems of verifying individual modules.

In this chapter, we start by introducing the discretized levels of distribution for prob-

abilistic choices and related definitions (section 6.1). We then present the stratified state

traversal algorithm, the construction of linear program, and their proofs, and we compare

its verification results with those of the predecessor technique and PRISM model checker

(section 6.2). Next, we describe how verification of a complex system is divided into ver-

ification of subsystems (section 6.3). Finally, we show that the stratified technique also

applies to standard MDPs (section 6.4).

6.1 Discretized Probability Levels

In probabilistic systems modeled as MDPs, the probabilistic choices may serve to model

and quantify the possible outcomes of randomized actions with specific probabilistic dis-

tributions. In case where probabilistic distribution is unavailable, nondeterministic choices

are often used. However, in some systems there are events that occur most of the time,

while the other events are much less often, although without a specific distribution. Using

nondeterministic choices to model those events overestimates their probabilities.

In this section, a variation of MDP, namely, discretized-probability Markov decision

process (DMDP) is defined. The probabilistic choices are no longer associated with exact

distribution, but are labeled as high probability choices or different levels of low probability

choices. For instance, in communication protocol, most of the time messages are received

correctly, which are high probability events; infrequent message losses are low probability

events. Events that are labeled as high probability are more common than the events labeled

as low probability. There are different levels of low probability choices: a message loss on
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a channel can be infrequent, while the complete failure of error recovery protocol is even

rarer.

Even though exact distributions are not available, with the discretization levels we may

still calculate upper bounds on the probability of a sequence of states and transitions. This

leads to equivalent classes of reachable states. Finally, we define errors that occur in the

model in addition to the functional errors characterized by DFA.

6.1.1 Discretized-probability Markov Decision Processes

Definition 10 A discretized-probability Markov decision process (DMDP) is a tuple M =

(S,Act, p̂, π, ιinit), where

• S is a countable set of states

• Act is a set of non-deterministic actions

• 0 < p̂ < 1 is the discretization parameter, which stands for the maximum value of the

probability of infrequent events

• π : S × A × S → {0} ∪ Z+ is a partial function such that for all states s ∈ S and

actions α ∈ Act,

– π(s, α, t) = i implies that 0 < P (s, α, t) ≤ p̂i.

– π(s, α, t) is undefined if P (s, α, t) = 0.

• ιinit : S → {0} ∪ Z+ is a partial function such that for all states s ∈ S:

– ιinit(s) = i implies that Iinit(s) has a non-zero initial probability weight Iinit(s) ≤

p̂i.

– ιinit(s) is undefined if Iinit(s) = 0.

The definition of an action being enabled or disabled follows from the standard def-

initions of MDPs given in Chapter 3. An action α is said to be enabled in s if and

only if π(s, α, t) is defined for some state t ∈ S, otherwise α is disabled; Act(s) denotes

the set of enabled actions in s. The α-successors of s are the set of states α-succ(s) =
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{t|π(s, α, t) is defined}, and the corresponding α-transitions from s are the set of transi-

tions α-trans(s) = {(s, α, t)|π(s, α, s′) is defined}. The set trans(s) =
⋃
α∈Act(s) α-trans(s)

are the transitions from state s.

The high probability choices lead to transitions with π(.) = 0. Those leading to tran-

sitions with π(.) > 0 are low probability choices, and there can be multiple levels of low

probability choices. Different levels of low probability choices differ greatly in their frequen-

cies. A level-1 low probability choice that leads to a transition with π(.) = 1 occurs much

more often than a level-2 low probability choice leading to a transition with π(.) = 2, and

so forth.

Low probability probabilistic choices can often be used to model message losses in com-

munication systems, sensor inaccuracies or mechanical malfunction in intelligent vehicles.

The adversaries in DMDP are also discretized. A discretized adversary is a partial

function that maps an execution history to a discretization level rather than a probability

weight over the set of enabled actions.

Definition 11 A discretized adversary σD for DMDP M is a function σD : S+ → {0}∪Z+

such that ∀s0s1 . . . sn ∈ S+

• σD(s0s1 . . . sn)(α) = i implies that the actual probability weight σ(s0s1 . . . sn)(α) ≤ p̂i.

• σD(s0s1 . . . sn)(α) is undefined if α /∈ Act(sn).

σ(s0s1 . . . sn)(α) can be undefined for some α ∈ Act(sn) but not all, because an adversary

may not choose an action if there are alternative choices. In the discretized model, only

memoryless adversaries are considered in this thesis as well.

6.1.2 Execution sequence and structure of reachable graph

An execution sequence of protocol systems corresponds to a sequence of states and transi-

tions in the Markov decision process. It originates at some initial state s0,where ιinit(s0) is

defined. An execution sequence can be either finite or infinite. We start by considering

finite execution sequences in protocol systems, and we shall see later a desirable property

of a system is that a system should not stay in a cycle indefinitely.
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Consider a finite execution sequence ψ = s0α0s1α1s2 . . . αn−1sn, where si’s are states

and αi ∈ Act(si). We omit the action from the representation of ψ wherever it is not

relevant to the context. We use ψ0 to denote the first state in ψ and ψ−1 to denote the last

state. To characterize the probability of a given sequence, we use the following definition.

Definition 12 L(ψ) is the sum of the labels π(.) of all transitions in ψ,

L(ψ) =
∑

(u,α,v)∈ψ

π(u, α, v) (6.1)

Similar to paths in Markov chain, execution sequences in DMDPs can be associated with

probabilities. Although we cannot find the exact probability of each possible sequence with-

out exact probability distribution, a sequence ψ = s0α0s1α1s2 . . . αn−1sn can be associated

with a probability bound

P (ψ) = P (s0, α0, s1) · P (s1, α1, s2) . . . P (sn−1, αn−1, sn) ≤ p̂L(ψ) (6.2)

A sequence may contain zero or several low probability transitions. If the transitions

in this sequence are all high probability transitions, i.e., L(ψ) = 0, we refer to it as a high

probability sequence. It has a probability bound

P (ψ) ≤ p̂L(ψ) = 1 (6.3)

If a sequence ψ = s0α0s1α1s2 . . . αn−1sn contains at least one low probability transition,

then L(ψ) > 0. For instance, suppose that ψ contains three low probability transitions,

specifically π(s0, α0, s1) = π(s2, α2, s3) = 2, and π(sn−1, αn−1, sn) = 1, has L(ψ) = 5 and

P (σ) ≤ p̂L(ψ) = p̂5.

The labeling function π transforms the structure of the reachable graph into layers, or

equivalent classes. We can now define equivalence classes in the transition system.

Definition 13 A state s belongs to Ck (equivalence class k) if s is reachable from one of

the initial states via an execution sequence ψ s.t. L(ψ) = k, and there does not exist any

execution sequence ψ from any of the initial states to s with L(ψ) < k.

Intuitively speaking, given a state s in equivalence class Ck, there can be multiple exe-

cution sequences that reach s. The execution sequence which is most likely to be taken to

reach state s has a probability no greater than p̂k.
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The equivalence classes have the following properties:

Property 1 Ci ∩ Cj = φ, ∀ i 6= j

Property 2
⋃
i≥0 Ci = All the reachable states

The two properties imply that we can explore equivalence classes in the increasing order

and eventually we traverse all the reachable states. They motivate the stratified algorithm

in the next section.

6.1.3 Correctness properties

Beside state invariants and functional correctness properties which are checked by taking

product of the DMDP and a DFA, we also look for deadlocks and high probability cycles

in a system. The definition of deadlocks is standard, while we find high probability cycles

instead of livelocks in discretized model.

Definition 14 A state s is considered a deadlock if Act(s) = φ, i.e., there is no enabled

action at state s.

If this is the case, then state s has no successor. A deadlock is an undesirable system

state. The system cannot proceed further once it arrives at a deadlock.

Definition 15 A cycle ψ = s0α0s1α1s2α2 . . . snαns0 is a livelock if all the transitions are

deterministic and all the states on the cycle are neither initial states nor states that indicate

progress.

A livelock is a loop in which the system does not perform useful work, and it is considered

a system failure. Once entering the loop, the system stays in it forever. A system has infinite

sequence if it has a livelock. In stratified model, we extend the definition of livelock and

look for high probability cycles.

Definition 16 A cycle ψ = s0α0s1α1s2α2 . . . snαns0 is a high probability cycle if all the

transitions are high probability transitions, that is, L(ψ) = 0, and all states on the cycle are

neither initial states nor states that indicate progress.
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Starting at state s0, the probability of traversing a high probability cycle and returning

to s0 is upper-bounded by p̂L(σ) = 1. Systems that have high probability cycles tend to

have a large average number of steps in their execution sequences without performing useful

work, which leads to inefficient protocols.

For a system that does not have high probability cycle, all of its cycles (if any) must

contain some low probability transition. The probability of traversing a cycle containing

low probability transitions and returning to the starting point must be less than p̂. The

system stays in such a cycle with small probability. A desirable property of a system is not

to possess high probability cycles, for which we do not have to consider infinite execution

sequences.

6.2 Stratified State Traversal Algorithm

We present Stratified State Traversal Algorithm, or Stratified Algorithm for short. It is

a composition of depth-first search and probabilistic search. It prioritizes traversal of the

states that are more likely to be encountered during system executions, and it attempts to

heuristically reduce the probability for the system to reach those states that have not been

examined. By the time the algorithm terminates, it constructs a linear program to upper

bound the probability for a given regular safety property to be violated.

In this section, we demonstrate how to check if a DMDP M satisfies a probabilistic

safety property 〈A〉≥p using stratified algorithm. The check is done in two steps. First, the

algorithm traverses as many states as possible, roughly in the order of how likely a state

is encountered. Next, we construct a linear program to compute an upper bound of the

probability for the regular safety property A to be falsified.

We introduce stratified algorithm by looking at the pseudocode and a small example.

The algorithm is then proved to traverse all the states in increasing order of equivalent

classes, and errors are identified during the state traversal. We then show how to construct

a linear program whose optimal solution yields the upper bound we wish to find. Finally,

we show that the bounds obtained by solving the linear program is significantly tighter

than the bounds obtained by the predecessor algorithm, and we also show that stratified
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algorithm is able to obtain a probability bound when being constrained in memory while

the explicit engine of PRISM cannot produce a result before using up all the memory.

6.2.1 Integrate Probabilistic Search into Depth-First Search

The stratified algorithm is a result of introducing probabilistic search into standard DFS.

It explores states in the decreasing order of how likely they are to appear during system

executions. The algorithm attempts to examine all states in equivalence class C0, then the

states in C1, etc. It terminates when all the states in the DMDP are explored, or when it

uses up all the memory on the computer. We prove that after the algorithm finishes its

k-th iteration, all states in Ck have been examined during that iteration.

Stratified DFS consists of two procedures described in Algorithm 2. Stratified-verify

is the main procedure, which takes a DMDP M ′ = M or the product of a DMDP and a

DFA M ′ = M ⊗ A∗, and a parameter lim. A state s in the algorithm is a state of DMDP

if M ′ is a DMDP, or it is a product state 〈s, q〉 if M ′ is a product of DMDP and DFA. In

the latter case, s.q refers to the DFA state of 〈s, q〉.

The algorithm contains a loop (line 3 - 10). We use iteration 0 to refer to the first pass of

the loop, iteration 1 refers to the second pass of the loop, etc. The subroutine Stratified-

DFS-visit implements the stratified DFS. It takes M ′ and two parameters s and k. The

former is the starting point of DFS traversal, and the latter refers to the iteration that

the procedure is currently in. The subroutine recursively traverse all the states that are

reachable from s without going through any low probability transition.

Class[.] and Entry[.] are two data structures that serve as containers for reachable states.

Class[i] is used to store the states that have been traversed in iteration i, and Entry[i] stores

the states from which we start the stratified DFS in iteration i. Both containers can be

implemented efficiently using hash table and state fingerprinting [Holzmann, 1998].

Target is yet another container. Its purpose is to store the states that are considered

errors. They include deadlocks, states whose DFA components are acceptance states, and

states on high probability cycles.

At the beginning of iteration 0, Entry[0] is initialized to the set of initial states. The

initial states are the states whose ιinit(·) are defined. Stratified-DFS-visit is used to
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Algorithm 2 Stratified Verification

1: procedure Stratified-verify(M ′, lim)

2: Entry[0]← initial states

3: for k ← [0 . . . lim] do . iteration [0 . . . lim]

4: for all s ∈ Entry[k] do

5: if s /∈ Class[i], ∀i ≤ k then

6: Insert s into Class[k]

7: Stratified-DFS-visit(M∗, s, k)

8: end if

9: end for

10: end for

11: end procedure

12: procedure Stratified-DFS-visit(M ′, s, k)

13: Push s onto DFS-stack

14: if Act(s) = φ ∨ s.q ∈ F then

15: Insert s into Target . deadlock or acceptance state

16: end if

17: for all (s, α, t) ∈ trans(s) do

18: if π(s, α, t) > 0 then

19: Insert t into Entry[k + π(s, α, t)]

20: else

21: if t ∈ DFS-stack then

22: Cycle found. Insert the states on cycle into Target . high prob. cycle

23: else if t /∈ Class[i], ∀i ≤ k then

24: Insert t into Class[k]

25: Stratified-DFS-visit(M ′, t, k)

26: end if

27: end if

28: end for

29: Pop DFS-stack

30: end procedure

examine all the states that are reachable from every state s ∈ Entry[0] without traversing

any low probability transition. The states that have been examined are being placed in

Class[0]. All the states that are discovered by traversing a low probability transition are

placed in Entry[j] for some j > 0, depending on the level of low probability transition taken

to reach them.

In iteration 1, the algorithm starts the stratified DFS from the states in Entry[1]. Again,

all the states that are reachable without traversing any low probability transition are placed

in the container Class[1], while those discovered after a low probability transition are placed
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in Entry[j] for some j > 1.

Next we take a closer look at Stratified-DFS-visit. On entering the subroutine, the

state s is push to a stack (line 13). When leaving the subroutine, s is popped from the

stack (line 18). There are checks for deadlock and error before the transitions from s are

examined (line 14). Note that we do not need to enumerate all the states in M before the

algorithm starts. The set trans(s) can be generated on-the-fly as the procedure proceeds

by examining the state s.

The key difference between the stratified DFS and the standard DFS is that whenever

a state is reached by traversing a low probability transition, unlike standard DFS, we

do not continue the recursive traversal on such state. Rather, the state is inserted into

Entry[k + π(.)] (line 19), and will be traversed in later iteration of the algorithm (line 5).

When Stratified-DFS-visit subroutine terminates, it would have traversed all the states

to which there exists at least one high probability path from the state where it was originally

started.

If a transition (s, α, t) is not a low probability transition, the stratified DFS behaves

the same as DFS. It first check if t already belongs to the DFS stack (line 22). If yes,

then (s, α, t) is a backward edge, and the content in the stack constitutes a high probability

cycle, which is a livelock according to our extended definition; otherwise, we then check if t

is already stored in Class[m] for some 0 ≤ m ≤ k (line 23), if t is not explored yet, then t is

placed into Class[k] and Stratified-DFS-visit is called recursively to continue exploring

the successors of t (line 24-25).

Sometimes when discovering a deadlock, an error state, or a high probability cycle is

found, we are interested in the sequence of events that lead to these states. To obtain a such

counterexample, we could start typical DFS again from the initial state that traverses the

states that have been stored in Class[.]. On reaching the error state, the counterexample is

the content of the recursion stack.

A small example is shown in Fig.6.1.

• Iteration 0: Mod-DFS-visit starts from the initial states. x0, x1, x2, y0, y1 are put into

Class[0], x3, y2 are put into Entry[1], and x4, y3 are put into Entry[2].

• Iteration 1: Mod-DFS-visit starts from states in Entry[1]. x3, y2 are put into Class[1],
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Figure 6.1: An example of verification

and y4 is put into Entry[2].

• Iteration 2: Mod-DFS-visit starts from states in Entry[2]. x4, y3, y4 are put into

Class[2], while Entry[i]= φ, i > 2.

The iterations are repeated until one of the following terminating condition occurs:

1. On finishing iteration k, there are no states in Entry[i] for all i > k, in which case the

state space of the transition system is fully searched.

2. The computer on which the algorithm executes is running out of memory to store the

states in containers Class[.] and Entry[.].

3. The algorithm finishes iteration lim, where lim is a parameter to the algorithm that

specifies the upper bound of equivalence class to be examined.
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6.2.2 Proof of Correctness

When the verification algorithm terminates, we would want to make sure that all the ex-

plored states in Class[.] have been checked. The following theorem and its corollaries assert

that when iteration k terminates, it follows that among all the execution paths that con-

tain states from classes C0, . . . , Ck, all the error states among C0, . . . , Ck have been found and

stored in Target. As a result, the first terminating condition implies that we have conducted

a complete search on all the reachable states, and even though the second and the third

terminating conditions leave the transition system to be partially explored, all the error

states are identified.

Theorem 3 When iteration k terminates, Class[k] = Ck, ∀k ≥ 0

This theorem implies that when iteration k finishes, all states in Ck have been checked

for errors and placed into container Class[k]. Furthermore, deadlock states, states 〈s, q〉

that have DFA state q ∈ F , and the states on high probability cycles have been placed into

container Target. The algorithm starts by traversing the states that are more likely to occur,

which are states in equivalence class C0. As the iteration repeats, the equivalence classes

are explored one after another, with the probability of the occurrence of states becoming

smaller.

We shall prove the theorem by arguing that all the states in Ck can be reached from

at least one state in Entry[k] via a high probability path. Hence, all states in Ck will be

reached by Stratified-DFS starting from some state in Entry[k] and be placed in Class[k]

during iteration k.

Proof. We prove the theorem by mathematical induction. First start with the case k = 0.

In iteration 0, the stratified DFS starts from the initial states. Let

R0 = {q|∃ψ s. t. ιinit(ψ0) ≥ 0 ∧ ψ−1 = q ∧ L(ψ) = 0} (6.4)

Note that as there exists at least one high probability path from s0 to q, the stratified DFS

is guaranteed to encounter q when started from one of the initial states. When iteration 0

terminates, all states in R0 will be placed into Class[0]. Recall the definition of equivalence

class, R0 = C0 and hence Class[0] = C0.
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For the induction hypothesis, suppose that Class[k]= Ck, ∀k ≤ m. At the beginning of

iteration m+ 1, line 19 of Algorithm 2 implies that

Entry[m+ 1] = {s′|∃(s, α, s′) s. t. s ∈ Class[n], π(s, α, s′) = m+ 1− n} (6.5)

Note that not all states in Entry[m + 1] belong to Cm+1. The check on line 5 rules out

those have already been reached earlier and were placed in Class[i] for some i ≤ m. Let

Entry[m + 1]∗ be the set of states that survive the check, and Entry[m + 1]∗ ⊆ Cm+1, as

they can only be reached via an execution sequence ψ such that L(ψ) ≥ m+ 1. For all s ∈

Entry[m+ 1]∗, there exists at least one execution sequence ψ such that L(ψ) = m+ 1 and

ψ−1 = s. Stratified DFS only starts from the states in Entry[m+ 1]∗.

By definition, a state t in Cm+1 is reachable from one of the initial states through an

execution sequence ψ such that L(ψ) = m+1, while there is no path such that L(ψ) < m+1.

Let ψ = s0α0s1α1 . . . αn−1snαn . . . sn+j−1αn+j−1sn+j , where sn+j = t, π(sn−1, αn−1, sn) >

0, and π(sn, αn, sn+1) = π(sn+1, αn+1, sn+2) = . . . = π(sn+j−1, αn+j−1, sn+j) = 0. That

is, the last low probability transition on ψ is (sn−1, αn−1, sn). We have a length-j suffix

ψn,n+j−1 = snαn . . . sn+j−1αn+j−1sn+j being a high probability sequence, and sn must

belong to Entry[m+ 1]∗.

The existence of high probability sequence ψn,n+j−1 implies that for all states t′ in Cm+1,

there exists a high probability path to t′ from some state(s) in Entry[m+1]∗. Stratified DFS

can reached t′ recursively in iteration m + 1 without putting t′ into yet another container

Entry[m′], m′ > m+1. Therefore, every state t′ in Cm+1 and only the states in Cm+1 will be

examined and be placed into container Class[m+1] during iteration m+1. Therefore, when

iteration m+ 1 terminates without being interrupted by discovering a state that represents

system error, Class[m+ 1] = Cm+1. �

Since the algorithm fills the container Class[0], Class[1], up to Class[k] in that order, we

obtain the following corollary immediately

Corollary 4 On finishing the k-th iteration, all states in C0, C1, . . . , Ck have been traversed

and are checked for errors.

At this point, we know that all states in
⋃

0≤i≤k Ci have been checked for deadlocks,

functional errors, which are indicated by entering an acceptance state of the DFA, and high
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probability cycles containing the states entirely within the same equivalent class. The error

states are stored in container Target. The following corollary shows that
⋃

0≤i≤k Ci is free

of high probability cycle if there is not any in Ci for 0 ≤ i ≤ k.

Corollary 5 If the k-th iteration has terminated without finding any high probability cycle,

then there is no high probability cycle among states in
⋃

0≤i≤k Ci

Proof. First we know that within each equivalence class there is no high probability

cycle, hence a cycle must contain states from different equivalence classes. Let the cycle

be ψ = s1s2 . . . sns1 and let si and sj be the states on the cycle that are from different

equivalence classes, specifically si in Ci and sj in Cj . Assume without losing generality that

j > i. Then the path from si to sj must contain at least one low probability transition.

Otherwise, if the path is high probability path, si and sj cannot be of different equivalence

classes. Therefore, there cannot be any high probability cycle among states in the union of

C0, C1, . . . , Ck. �

Corollary 6 On finishing the k-th iteration, if Entry[i] is empty for all i > k, then the

union of C0, C1, . . . , Ck is the complete transition system.

Finally, the last corollary states that if the algorithm terminates on condition 1, then

the whole system is traversed and error states are stored in container Target.

Proof. Since Entry[i] is empty for all i > k, Class[i] is empty for all i > k, and hence Ci is

empty for all i > k. �

6.2.3 Bound Computation

We cannot determine the exact probability for a system to violate a given safety property

if not all the reachable states have been explored. Even if all the reachable states are

traversed, as long as there are error states, the exact probability still cannot be determined

because we are given with a discretized model in which the probability distributions of some

probability choices cannot be obtained. We may conclude that the safety property holds

with probability one only if there are no error states found after all the reachable states

explored.
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Still, it is possible to upper-bound the probability for the system to reach some error

states. When verifying a system, we are interested in whether the system, when it starts

from one of the initial states or states that indicate progress, will

1. return to any of the initial states or states that indicate progress

2. arrive at an error state

3. arrive at any state that has not been explored by the algorithm, which can possibly

lead to an error.

We compute the upper-bound of the probability for the system to take some execution

paths that lead to the second and the third cases.

In the predecessor algorithm, the algorithm stops when discovering an error state. When

error states cannot be found and the memory is running out, the algorithm computes the

probability bound of reaching the unexplored states, assuming that they possibly lead to

error. The bound is simply the product of the number of distinct execution sequences

having the same number of low probability transitions, and the probability of taking such

execution sequence.

In the stratified search, the algorithm no longer stops when discovering an error state.

Furthermore, it improves bound computation by combining those execution sequences in-

duced by probabilistic choices that have probabilities sum to one. The bound is improved

significantly by solving a linear program, whose constraints are obtained by examining the

transitions of each explored state. We look at the linear program and justify that its optimal

solution is indeed the desired probability bound.

Our objective is to bound the probability for the system to end up in the set of error

states or unexplored states when starting from the initial states or states that indicate

progress. Let the set of the explored error states be T , and it contains exactly the states in

Target, according to Corollary 4 and Corollary 5.

Suppose when the verification algorithm terminates, all states in class[0], . . ., class[k],

or equivalently, states in C0, . . . , Ck, have been examined, while the states in class[k + 1],

class[k+ 2], . . ., have not been examined. The reachable states of the transition system can
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be divided into two disjoint sets: the set of explored states R =
⋃

0≤i≤k Ci, and the set of

unexplored states U =
⋃
i>k Ci.

Let P̂e(s) be the maximum probability for the system to start the execution from state

s and arrive at some state in either T or U , instead of returning to any of the initial states

or states that indicate progress. That is, we have

P̂e(s) = Pmax
M ′ (s |= ♦T ) + Pmax

M ′ (s |= ♦U) (6.6)

It is an upper bound of the error state, assuming that unexplored states lead to errors.

Then the probability bound for a system to possibly end up in error is

Pe ≤
∑
{P̂e(s) · Iinit(s)|s ∈ R, Iinit(s) > 0}

≤ max{P̂e(s)|s ∈ R, ιinit(s) is defined}
(6.7)

It is worth noting that if T = φ, the probability for the regular safety property to be violated

is upper-bounded by the probability of reaching U .

In the following theorem, we shall see that the solution to a linear program yields an

upper-bound to Pe.

Theorem 7 Let M be a partially explored DMDP, with T being the explored error states

of M and U being the unexplored states of M . Also, let J be the union of initial states and

the states that indicate progress. The optimal solution vector (x∗s)s∈R to the following linear

program yields tha maximal reachabilibty probabilities with P̂e(s) = Pmax
M∗ (s |= T ∪ U) = x∗s.

min
∑

xs∈R∪U
xs

s. t. xs = 1, ∀s ∈ T ∪ U

xs = 0, if there is no path from s to T ∪ U

xs ≥ 0, ∀s ∈ R \ T

xs ≤ 1, ∀s ∈ R \ T

xs ≥
∑

t∈α-succ(s)∩R

q(s,α,t) · xt +
∑

u∈α-succ(s)∩U

q(s,α,u) + xb,

∀ b ∈ R ∧ π(s, α, b) = 0, ∀s ∈ R,α ∈ Act(s)

(6.8)



CHAPTER 6. STRATIFIED PROBABILISTIC VERIFICATION 102

where

q(v,α,w) =


0 if π(v, α, w) = 0 ∨ w ∈ J

p̂π(v,α,w) if π(v, α, w) > 0

(6.9)

Proof. The main idea of the proof is that, if the algorithm is unable to fully explore the

state space, which leaves U 6= φ, then we assume that all states in U lead to the set of error

states or acceptance states T . This leads to the first constraint. The second constraint

considers the states such that, for any adversary, all paths leaving the states do not reach

T or U , that is, they eventually return to some state in J .The third set and the fourth set

of constraints ensure that xs is a probability for all s ∈ R \ T .

The fifth set of constraints account for the probability relation between transitions for

a given state. First consider P̂e(s) in an MDP with explicit probability distribution for all

probabilistic choices. The semantic of MDP implies that the transition from some state

s can be separated into selecting a non-deterministic choice and selecting a probabilistic

choice according to probability distribution. Given any memoryless adversary σ,

P̂e(s) =
∑

α∈Act(s)

σ(s)(α) · P̂e(s|α) (6.10)

For any adversary
∑

α∈Act(s) σ(s)(α) = 1. Then (6.10) becomes

P̂e(s) ≤

 ∑
α∈Act(s)

σ(s)(α)

 · max
α∈Act(s)

{P̂e(s|α)}

≤ max
α∈Act(s)

{P̂e(s|α)}

(6.11)

Suppose that the transitions have explicit probability distribution. Given that a non-

deterministic action α ∈ Act(s) is selected, we have

P̂e(s|α) = P (s, α, t0)P̂e(t0) + P (s, α, t1)P̂e(t1) . . .+ P (s, α, tn)P̂e(tn) (6.12)

, where t0, . . . , tn are the α-successors of s with states in J removed. The paths toward set

J do not contribute to the probability of reaching unexplored state. If t is an unexplored

state, that is, t ∈ U , then P̂e(t) = 1.

Since DMDPs do not come with explicit probability distribution for all probabilistic

choices, (6.12) does not apply anymore. Fortunately, we can still find the largest possible
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Figure 6.2: Possible transitions from a given state s

values of P̂e(s|α) and P̂e(s). Consider possible transitions from state s after an action α

is selected in Fig.6.2. The transitions to the states in set J are eliminated as they do not

contribute to the probability of reaching an unexplored state. Given that α is selected,

state s has n high probability transitions that lead to state b1, . . . , bn, m low probability

transitions with various levels leading to state c1, . . . , cm, and r low probability transitions

with various levels leading to some unexplored states not shown in the figure. Note that

b1, . . . , bn, c1, . . . , cm must be distinct. By definition, we have P (v, α, w) ≤ p̂π(v,α,w), and∑
w∈α-succ(v) P (v, α, w) = 1, so we can upper-bound P̂e(s|α):

P̂e(s|α)

= P (s, α, b1)P̂e(b1) + P (s, α, b2)P̂e(b2) + . . . P (s, α, bn)P̂e(bn)

+ P (s, α, c1)P̂e(c1) + P (s, α, c2)P̂e(c2) + . . .+ P (s, α, cm)P̂e(cm)

+ P (s, α, d1) + P (s, α, d2) + . . .+ P (s, α, dr)

≤max {P̂e(b1), . . . , P̂e(bn)} ·
[
P̂e(b1) + . . .+ P̂e(bn)

]
+ P (s, α, c1)P̂e(c1) + P (s, α, c2)P̂e(c2) + . . .+ P (s, α, cm)P̂e(cm)

+ P (s, α, d1) + P (s, α, d2) + . . .+ P (s, α, dr)

≤ max {P̂e(b1), . . . , P̂e(bn)}

+ q(s,α,c1)P̂e(c1) + . . .+ q(s,α,cm)P̂e(cm)

+ q(s,α,d1) + . . .+ q(s,α,dr)

(6.13)
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Substituting (6.13) into (6.11) yields the set of inequalities for each state s ∈ T

P̂e(s) ≤ max
α∈Act(s)


max{P̂e(b1), P̂e(b2), . . . , P̂e(bn)}

+q(s,α,c1)P̂e(c1) + . . .+ q(s,α,cm)P̂e(cm)

+q(s,α,d1) + q(s,α,d2) + . . .+ q(s,α,dr)



≤ max
α∈Act(s)

 max
b∈R,π(s,α,b)=0


P̂e(b)

+q(s,α,c1)P̂e(c1) + . . .+ q(s,α,cm)P̂e(cm)

+q(s,α,d1) + q(s,α,d2) + . . .+ q(s,α,dr)




(6.14)

Thus we have

x∗s ≥


x∗b

+q(s,α,c1)x
∗
c1 + . . .+ q(s,α,cm)x

∗
cm

+q(s,α,d1) + . . .+ q(s,α,dr)

 ≥ P̂e(s) (6.15)

�.

Finally, we can use linear program solver to find the optimal solution, then using (6.7)

we find the tightest bound for Pe. Moreover, the set of constraints are reasonably sparse,

which gives ways for the solver to employ more sophisticated algorithms.

A probability bound obtained by solving a linear optimization problem yields a bound

that is as tight as possible without violating the constraints reflected by the information

we have on probabilistic choices. In the predecessor of probabilistic verification, a bound is

obtained by counting the number of distinct paths originated at the initial states and end

up in the unexplored state. This number can potentially be exponential in the number of

explored states.

6.2.4 Stratified Technique versus Original Probabilistic Verification

The stratified algorithm produces a significantly tighter bound for the probability of reaching

unexplored states than that produced by the original probabilistic verification algorithm

[Maxemchuk and Sabnani, 1989]. We apply the two algorithms to the lock protocol system

shown in Fig.6.3, where the lock protocol resolves merging requests from car 4 and car

6, and the driver-assisted merging that will be described in the next chapter. Next, we

compare the bounds obtained by solving linear programs and by counting the number of

distinct paths that lead to unexplored states.
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Figure 6.3: Lock protocol system resolving two conflicting requests

Lock with 2 conflicting reqs Driver-assisted merging

Original Stratified Original Stratified

Sequences w/o low prob. edge 4.44× 106p 24.0012p 12837p 0.0015p

Up to sequences bounded by p 2.68× 107p2 105.008p2 3.78× 106p2 13.0002p2

Up to sequences bounded by p2 7.91× 107p3 62.0082p3 1.11× 109p3 2.0013p3

Up to sequences bounded by p3 1.39× 108p4 4p4 TLE 15p4

Table 6.1: Comparison of probability bounds obtained by the original probabilistic verifi-

cation and by using linear programming

Table 6.1 summarizes the bounds obtained using two methods. When verifying systems

using the original probabilistic verification, we evaluate all sequences that have probability

upper-bounded by p, p2, and p3. We stop examining those sequences with a lower probability

bound. The bound for probability of reaching unexplored states is obtained by counting

the number of distinct paths that are upper-bounded by p4 or lower. When using stratified

algorithm, we examine all reachable states up to equivalent class C3. We solve the linear

program so as to compute the bound for probability of reaching unexplored states.

It can be immediately seen that the bounds obtained by solving linear programs are

significantly tighter than the bounds obtained by counting paths. The reason is twofold.

First, linear programs combine the transitions that have probabilities sum to less than

one, which is done in (6.13), even though we do not have exact probability distribution.

Secondly, the states in both the lock protocol and driver-assisted merging often have several

nondeterministic transitions. This leads to an exponential increase in the number of distinct

paths. This is particularly evident when sequences with probability upper-bounded by p3

are considered, the number of distinct paths grows to a point that cannot be accounted for
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Lock with 5 conflicting reqs

PRISM Stratified

75MB out of memory 40.0312p

100MB out of memory 406.118p2

150MB out of memory 983.204p3

Table 6.2: Comparison of PRISM and stratified algorithm

within an hour of running time.

6.2.5 Stratified Technique versus PRISM Model Checker

When the system model has a large number of reachable states that cannot fit into limited

amount of memory, the stratified algorithm traverses the more probable states and computes

probability bound of reaching those unexplored ones. Typical model checkers that require

completely traversal of the state space run out of memory when being supplied with such

system. In this experiment, we apply the stratified algorithm and PRISM model checker

to the lock protocol system shown in Fig.6.4. We compare their performance by fixing the

amount of memory at disposal.

Figure 6.4: Lock protocol system resolving five conflicting requests

It should be noted that PRISM is run using explicit engine. That is, it does not use

symbolic data structure in model construction. We deliberately use this setting to avoid

using any optimizing options in PRISM so as to make the comparison meaningful. We

would like to emphasize the advantage of directed search over state space over complete

traversal when memory is constrained.

Table 6.2 summarizes the result of verification. We see that PRISM model checker
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cannot complete verification as it uses up all the available memory to store the explored

states. On the other hand, stratified algorithm prioritizes state traversal on those states that

are encountered more often during system execution. When there are only 75MB of memory

available, it traverses all states in class C0 and computes the probability of reaching those

states beyond C0. When the available amount of memory is increased to 100MB, it is able to

traverse the states in C1 in addition to the states in C0. It then computes the probability of

reaching the unexplored states. As there are more available memory, the stratified algorithm

is able to traverse more reachable states, and the probability of reaching the unexplored

states decreases.

6.3 Compositional Verification with Stratified Technique

In this section, we describe a compositional verification technique for probabilistic systems

with discretized distributions. The multiple stack architecture introduced in Chapter 4

divides a cooperative driving system into multiple interacting modules. Verification of the

whole system can be done by examining each module in isolation.

The compositional verification technique is based on the assume-guarantee approach in

[Kwiatkowska et al., 2010], in which both the assumptions made about system modules and

the guarantees that they provide are regular safety properties, which can be represented

as DFAs. The previous work reduces compositional verification to multi-objective model

checking [Etessami et al., 2007]. We approach the problem differently as the systems we

considered have discretized probability distribution. Instead, by introducing an additional

acceptance state to the DFA and considering a restricted set of adversaries, the compo-

sitional verification problem is reduced to reachability test that can be done by stratified

algorithm.

First, we consider probabilistic assume-guarantee triples of the form 〈A〉≥pAM〈G〉≥pG ,

where 〈A〉≥pA and 〈G〉≥pG are probabilistic safety properties, M is an MDP or a DMDP.

The triple means that whenever M is part of a system that satisfies A with probability at

least pA, then M satisfies G with probability at least pG. Defining this formally:

Definition 17 If 〈A〉≥pA and 〈G〉≥pG are probabilistic safety properties, M is an MDP or
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a DMDP and αG ⊆ αA ∪M.Act, then

〈A〉≥pAM〈G〉≥pG ⇔ ∀σ ∈ Adv · [Pr
σ
M (A) ≥ pA ⇒ PrσM (G) ≥ pG] (6.16)

We write 〈true〉 M 〈G〉≥pG to denote the absence of any assumption. This is equivalent

to M |= 〈G〉≥pG , which can be determined by standard probabilistic model checking, if M

is an MDP, and by stratified probabilistic verifcation, if M is a DMDP.

The definitions above come with the following assume-guarantee proof rules to allow

compositional verification. Their proofs are available in [Kwiatkowska et al., 2010].

1. Given an appropriate assumption 〈A〉≥pA , we can check the correctness of a proba-

bilistic safety property 〈G〉≥pG on the composition M1 ‖ M2, without constructing

and checking the whole model:

〈true〉M1〈A〉≥pA ∧ 〈A〉≥pAM2〈G〉≥pG ⇒ 〈true〉M1 ‖M2〈G〉≥pG (6.17)

2. Using 〈A1, . . . , Ak〉≥p1,...,pk to denote the conjunction of probabilistic safety properties

〈A1〉≥p1 for i = 1, . . . , k, we have the first rule extended to k assumptions:

〈true〉M1〈A1, . . . , Ak〉≥p1,...,pk

〈A1, . . . , Ak〉≥p1,...,pkM2〈G〉≥pG
〈true〉M1 ‖M2〈G〉≥pG

(6.18)

3. By having the first rules repeatedly applied, one obtains

〈true〉M1〈A1〉≥p1

〈A1〉M2〈A2〉≥p2

. . .

〈Ak−1〉Mk−1〈Ak〉≥pk

〈Ak〉Mk〈G〉≥pG
〈true〉M1 ‖M2 ‖ . . . ‖Mk−1 ‖Mk〈G〉≥pG

(6.19)

When given a standard MDP, multi-objective model checking technique in [Etessami

et al., 2007] is used to determine if (6.16) holds. This is not the case for DMDPs. How-

ever, verification of 〈A〉≥pAM〈G〉≥pG is reducible to a problem that can be approached by



CHAPTER 6. STRATIFIED PROBABILISTIC VERIFICATION 109

stratified verification by considering a restricted set of adversaries AdvA that includes all

adversary σ such that

AdvA = {σ ∈ Adv|σ(〈s, q〉)(α) ≤ 1− pA if α ∈ Act(s) ∧ δA∗(q, α) ∈ F} (6.20)

Intuitively, with probability less than 1−pA, adversaries in AdvA chooses a nondeterministic

action α that moves the system into the acceptance state from the current state in one step.

It can be shown that for any adversary σ′ such that P σM (A) ≥ pA, σ′ ∈ AdvA. If we can

show that

∀σ′ ∈ AdvA · P σ′M (G) ≥ pG (6.21)

, we have the following

∀σ ∈ Adv · [P σM (A) ≥ pA ⇒ P σM (G) ≥ pG] (6.22)

This can be generalized to the verification of 〈A1, . . . , Ak〉≥p1,...,pkM〈G〉≥pG . For each

regular safety property Ai, there is a corresponding set of adversaries AdvAi . For any

adversary σ′ such that P σM (A1) ≥ p1 ∧ . . . ∧ P σM (Ak) ≥ pk, σ
′ ∈ AdvA1 ∩ . . . ∩ AdvAk .

Similarly, showing that

∀σ′ ∈ AdvA1 ∩ . . . ∩AdvAk · P σ′M (G) ≥ pG (6.23)

implies

∀σ ∈ Adv · [P σM (A1) ≥ p1 ∧ . . . ∧ P σM (Ak) ≥ pk ⇒ P σM (G) ≥ pG] (6.24)

With a small modification, we can use stratified verification to determine if (6.21) and

(6.23) hold. First and foremost, the adversaries being considered must be discretized. Fixing

a discretization parameter p̂, for a given probability bound pA we find the largest integer c

such that p̂c ≥ 1 − pA. We include more adversaries into the restricted set by raising the

criterion from 1− pA to p̂c:

AdvA
′

= {σ ∈ Adv|σ(〈s, q〉)(α) ≤ p̂c if α ∈ Act(s) ∧ δA∗(q, α) ∈ F} (6.25)

Since AdvA
′ ⊇ AdvA, proving that ∀σ ∈ AdvA′ · P σM (G) ≥ pG also implies (6.21).
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The set of discretized adversaries that corresponds to AdvA
′

is

AdvAD =

σD ∈ AdvD
∣∣∣∣∣∣∣σD(〈s, q〉)(α) =

c ≡ blogp̂(1− pA)c if α ∈ Act(s) ∧ δA∗(q, α) ∈ F,

0, otherwise


(6.26)

Algorithm 3 and Theorem 8 are the appropriate modifications to the stratified algorithm

and the linear program that only account for restricted sets of discretized adversaries.

The changes to Stratified-DFS-visit only appear on line 7 and line 8. When decid-

ing whether to defer a state to later iteration, the algorithm used to consider all possible

adversaries, assuming conservatively that σ(s)(α) ≤ 1. Now given the restricted set, for

some action α we have σD(s)(α) = c > 0. As a result, the state t is reached by selecting

action α with probability ≤ p̂c then taking probability choice with probability ≤ p̂π(s,α,t).

Algorithm 3 Stratified Verification on Restricted Set of Adversaries

1: procedure Stratified-DFS-visit(M∗, s, k)

2: Push s onto DFS-stack

3: if Act(s) = φ ∨ s.q ∈ F then

4: Insert s into Target . deadlock or acceptance state

5: end if

6: for all (s, α, t) ∈ trans(s) do

7: if π(s, α, t) + σD(s)(α) > 0 then

8: Insert t into Entry[k + π(s, α, t) + σD(s)(α)]

9: else

10: if t ∈ DFS-stack then

11: Cycle found. Insert the states on cycle into Target . high prob. cycle

12: else if t /∈ Class[i], ∀i ≤ k then

13: Insert t into Class[k]

14: Stratified-DFS-visit(M∗, t, k)

15: end if

16: end if

17: end for

18: Pop DFS-stack

19: end procedure

Change in Theorem 8 is the definition of q(v,α,w). The probability of a transition is a

product of the weight assigned by the adversary and the weight of the probabilistic choice.

Previously no restriction on adversaries are placed, and the algorithm simply assumes that

adversaries assign to each nondeterministic action with weight ≤ 1. Therefore the transition

probability is only determined by the weight of probabilistic choice. The given restricted
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set now specifies that some actions are only selected with probability ≤ p̂c. The probability

of a transition becomes upper-bounded by p̂π(v,α,w) · p̂σD(v,α) = p̂π(v,α,w)+σD(v,α).

Theorem 8 Let M be a partially explored DMDP, with T being the explored error states

of M and U being the unexplored states of M . The optimal solution vector (x∗s)s∈R to

the following linear program yields tha maximal reachabilibty probabilities with P̂e(s) =

maxσ∈AdvA PM∗(s |= T ∪ U) = x∗s.

min
∑

xs∈R∪U
xs

s. t. xs = 1, ∀s ∈ T ∪ U

xs = 0, if there is no path from s to T ∪ U

xs ≥ 0, ∀s ∈ R \ T

xs ≤ 1, ∀s ∈ R \ T

xs ≥
∑

t∈α-succ(s)∩R

q(s,α,t) · xt +
∑

u∈α-succ(s)∩U

q(s,α,u) + xb,

∀ b ∈ R ∧ π(s, α, b) = 0, ∀s ∈ R,α ∈ Act(s)

(6.27)

where

q(v,α,w) =


0 if π(v, α, w) + σD(v)(α) = 0 ∨ w ∈ J

p̂π(v,α,w)+σD(v)(α) if π(v, α, w) + σD(v) > 0

(6.28)

6.4 Stratified Algorithm for Standard Markov Decision Pro-

cesses

Although the stratified technique is initially developed for DMDP, it also applies to MDP

with exact probability distribution. It explores states in roughly the descending order of

how likely they appear in a system. As the states are generated on-the-fly, they are put

into layers (the same notion as equivalent classes in DMDP), the higher of which contains

the states that are more likely to be encountered. When the memory is no longer able to

store the discovered states, the search stops. We then compute an estimate of the target

probability by solving linear programs.
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Figure 6.5: Example: layering parameter p̂ = 0.1

Stratified DFS breaks the state space of an MDP-DFA product M ⊗ Aerr into layers

by classifying transitions according to their probability, as shown in Fig.6.5. Fixing a

layering parameter p̂, the transitions are assigned to different discretized levels, demarcated

by powers of p̂. Transitions with probability > p̂ are high probability transitions, otherwise

they are low probability transitions. Any states discovered via low probability transitions

are less likely to appear throughout system execution, so they are put into Entry[.] further

from the current layer according to the discretization level of transition probability and will

be explored later. States in Layer[1] are those reachable from the initial states by traversing

only high probability transitions, and they are examined first. The states in Layer[2] are

examined next, then the states in Layer[3], and so forth. In the example, the algorithm

just finished examining states in Layer[3], and states in Entry[4] and Entry[5] are bounded

to be examined next. They are the “frontier states” through which we may discover more

states.

Algorithm 4 describes stratified DFS as two procedures. Stratified-DFS is the main

one that takes an MDP-DFA product M ′ = M ⊗ A∗, and a layering parameter p̂. Layer[.]

and Entry[.] are two data structures that serve as containers for reachable states. They

can be implemented as hashed tables or priority queues. In each iteration of the while loop

(line 4), the subroutine Stratified-DFS-visit starts a modified version of DFS from the

states s ∈ Entry[k]. It traverses the state space recursively and put the traversed states

in Layer[k] as does typical DFS, with one exception: it does not continue recursion when

discovering a new state via a low probability transition, instead, the new state is put in
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Entry[.] for it to be examined later (line 25).

Algorithm 4 Stratified Verification for MDP

1: procedure Stratified-DFS(M ′, p̂)

2: Entry[1]← {s ∈ S|ηinit(s) > 0}
3: k ← 1

4: while ∃i ≥ k s.t. Entry[i]6= φ do

5: for all s ∈ Entry[k] do

6: if s /∈ Layer[i], ∀i ≤ k then

7: Insert s into Layer[k]

8: Stratified-DFS-visit(M ′, p̂, s, k)

9: end if

10: end for

11: k ← k + 1

12: end while

13: end procedure

14: procedure Stratified-DFS-visit(M ′, p̂, s, k)

15: if s.q ∈ F then

16: Insert s into Target

17: end if

18: for all (s, α, t) ∈ trans(s) do

19: if P (s, α, t) > p̂ then . high prob. transition

20: if t /∈ Layer[i], ∀i ≤ k and t /∈ I then

21: Insert t into Layer[k]

22: Stratified-DFS-visit(M ′, t, k)

23: end if

24: else . low prob. transition

25: Insert t into Entry[k + blogp̂P (s, α, t)c]
26: end if

27: end for

28: end procedure

If the procedure stops when the state space is completely traversed, Target contains all

reachable error states. We decide whether 〈A〉≥p holds by checking

Prmin
M (A) = 1− Prmax

M (♦Target) ≥ p (6.29)

Otherwise, suppose that the procedure stops at iteration k, we compute the min-

imum probability for the regular safety property A to hold over all adversaries. Let

U = ∪i≥kEntry[i] be the set of frontier states. Since we do not know whether there are

acceptance states reachable from states in U , Prmax
M (♦U) adds uncertainty to the result:

〈A〉≥p holds if 1−Prmax
M (♦Target∨♦U), fails to hold if 1−Prmax

M (♦Target) < p, or uncertain
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otherwise.

6.5 Conclusion

In this chapter, we presented stratified probabilistic verification technique. It is inherently

different to the existing approaches to state explosion, which often aim at reducing the size

of the state space. It adopts directed state traversal and prioritizes examining the more

probable states. It is able to determine if a DMDP satisfies a given probabilistic safety

property without completely traversal of state space. Furthermore, the stratified technique

computes significantly tighter probability bounds than its predecessor algorithm. It is also

worth noting that the stratified algorithm applies to not only the DMDP model introduced

in this chapter but also MDP with standard definition.

The stratified verification technique is applicable to compositional verification. It is

well-suited for the multiple stack architecture in that it verifies modules within the archi-

tecture individually, which reduce the complexity of verifying the complete system. As the

modules in the architecture are often not perfect and fail with small probability or cannot

be completely verified, stratified algorithm may assume that modules provide guarantee

with at least some confidence and check properties on the system that depends on these

modules.
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Chapter 7

The Merge Protocol

This chapter evaluates the safety of the driver-assisted merging. We shall see that the

techniques discussed in Chapter 3 through Chapter 6 are put to work. A merge protocol

is designed at the top of multiple stack architecture. The result of stratified verification

shows that the driver-assisted merge cannot fail with probability greater than 1 − 10−16.

This degree of confidence cannot be provided by simulations and test tracks.

The merge protocol specified in this chapter is reasonably simple. It is specified as a

collection of four FSMs. Within multiple stack architecture, the logic of the merge protocol

can be simplified to an extent that it is able to focus on the the coordination of message

exchange, commands to the components, and responses toward events on the roadway.

Furthermore, the timing stack allows the timing to be extracted to a separate process that

determines the time needed for a merge maneuver to complete.

In the verification, the components in the architecture are replaced by simple service

models. They interact with the FSMs of the merge protocol using simple messages. We

assume that these components deliver a set of probabilistic guarantees. For instance, the

mapping protocol is expected not to have a sensor malfunction with a high probability.

When the sensor malfunction does occur, it reports to the merge protocol so that merge

protocol can notify the driver to abort merging. These set of probabilistic guarantees,

along with the guarantees we expect the driver-assisted merging to deliver, are represented

as a collection of DFAs. Furthermore, we separate the verification of the lock protocol and

the verification of driver-assisted merge. The lock protocol is first verified to deliver its
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guarantee with required probability, after which the verification of driver-assisted merging

is conducted given that the lock protocol along with the other components deliver the

guarantees with promised probability. The stratified verification technique is able to bound

the error probability of driver-assisted merging.

In this chapter, we start by discussing the role of the merge protocol in the multiple

stack architecture and how driver-assisted merging is realized (section 7.1). We then present

the specification of the merge protocol in FSMs (section 7.2). Next, we describe the service

models of the components and the service guarantees in the form of probabilistic safety

properties that are represented by DFAs. Finally, we apply the stratified verification to the

composition of the FSM specification, the service models, and the DFAs (section 7.3).

7.1 Driver-assisted Merging

The driver-assisted merging is a collaborative effort that includes vehicle control, wireless

communication, environment sensing and timing. We are mainly interested in the logic

that coordinates joint actions among the three cooperating vehicle, sends commands to

the peripheral components within a vehicle, and responds to the events generated by the

components that interact with the environment. We call this logic the merge protocol.

Fig.7.1 shows the relation between the merge protocol and the components that provide

interfaces to interact indirectly with the physical world. The merge protocol is specified as

a set of four FSMs, which will be explained further in the next section. In this section, we

discuss the peripheral components and the functions they provide.

The merge protocol does not concern of the details of measuring distance, speed control,

sending message wireless, etc. It interacts with the physical world through components

including safe spacing system, lock protocol, mapping protocol, TRBP, and synchronized

operation function in the timing stack, as shown in Fig.7.1. Based on currently feasible

technologies, these components are assumed to provide the following services:

• The safe spacing system controls the distance between vehicles. It operates in a way

similar to the CACC system in [Milanés et al., 2014]. It uses ACC to adjust the speed

and headway according to the output of the mapping protocol. During a merge, the
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Figure 7.1: Driver-assisted Merge Protocol in the Architecture

safe system on the front car simply maintains constant headway to the preceding

vehicle; the safe system on the back car creates a headway between itself and the

front car so that the gap becomes large enough for the merging car to safely fit in;

the safe system on the merging car aligns the merging vehicle with the gap between

the front car and the back car by adjusting speed and headway settings accordingly.

• The lock protocol resolves conflicting merge requests issued by different vehicles. It

creates a cooperating group among the three vehicle and ensures that each vehicle

only participates in this group. The group only expires at a prespecified time. Its

specification is presented in Chapter 5.

• TRBP detects communication failure and distributes messages when there are emer-

gency incidents occurring in the vicinity of the cooperating group. It periodically

circulates control messages, broadcasts and recovers messages among the three vehi-

cles. The broadcasted emergency messages are guaranteed to be delivered to every

vehicle in the cooperating group within a specified time, otherwise a communication

failure is reported if any of the broadcasted messages is not recovered before the

deadline.
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• The mapping protocol maintains a list of objects in the surroundings of the three

cooperating vehicles by fusing the object lists obtained from the fusion layer in each

of the three vehicles. It uses TRBP to distribute lists of objects to every participant

in the group. During normal operation, it monitors the gap size between the front

car and the back car. It notifies the merge protocol when the gap is large enough

to accomodate the merging vehicle and the mering vehicle is aligned with the gap.

It also monitors non-participating vehicles around the cooperating group. When a

vehicle brakes hard in front of the group or a interfering vehicle swoops into the

gap, it dispatches warning to the merge protocol for it to take appropriate measures.

TRBP guarantees that the object lists received by each partipant are up-to-date with

a latency upper-bounded by token circulating period, which is in the order of few

milliseconds, therefore we assume that the warning are received at each cooperating

vehicle at the same time.

• The timing stack provides accurately synchronized clocks. It exposes an interface to

the merge protocol as described in Chapter 5.

These components provide their service to the merge protocol through an interface

comprising of simple messages. The messages are summarized in Table 7.1. The merge

protocol interact with these components through handshaking, as they are connected by

wire and are located reasonably close to the implementation of the merge protocol.

7.2 Specification of the Merge Protocol and its Safety Guar-

antees

The merge protocol is the main logic that dictates the actions of the three participating

vehicle. In this section, we present the FSM specification of the merge protocol. The FSMs

jointly describe how they work together with the other components in the system in order

to assist the driver merging between the other two vehicles. The implementation details

of the peripheral components are hidden from the FSMs by interfaces consisting of simple

messages in Table 7.1. The FSMs send commands to them and receive notifications of
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Component Receiving Sending

Safe spacing system reset

align

make-gap

maintain

Mapping protocol gap-taken

gap-ready

sensor-malfunction (malfunc)

TRBP emergency

communication-failure (comm-fail)

Lock protocol attempt success

cooperate

Timing stack set(d) alarm(d)

Table 7.1: Messages on the Interface

incidents from them through these interfacing messages.

The merge protocol operates in three phases, with each phase accompanied by a request

to the lock protocol. In phase 1 it uses the lock protocol to create a cooperating group

consisting of the merging vehicle and the two in the target lane. Next, in phase 2 it

instructs the safe spacing system to create a gap and to align the merging vehicle with the

gap. Finally, in phase 3 the driver is prompted to steer into the gap. The merge protocol

includes several escape sequences to handle undesirable events, such as an interfering driver

or a sensor malfunction.

On each vehicle there are implementations of all four FSMs of the merge protocol,

namely Fmerge (Fig.7.2), Ffront, Fback (Fig.7.4), and Fhmi (Fig.7.3). Fmerge is activated

whenever a driver switches on the turn signal so as to change lanes. Fhmi represents the

human machine interface (HMI) between the implementation of the merge protocol and the

driver. Ffront and Fback are nearly identical in their FSM specification, except that they issue

different commands to the safe spacing system. The labels of Fback are in the parentheses.
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Figure 7.2: Finite-state machine Fmerge

Ffront and Fback are activated when a vehicle that is not participating in another merge

receives a request from the merging vehicle through the lock protocol; Ffront is activated

when the participating vehicle is in front of the target gap, while Fback is activated when

the participating vehicle is behind the target gap.

To construct the model of the protocol system, we refer to the block diagram in Fig.7.5

that shows that how messages are passed between interfaces and the FSMs across different

vehicle. Although the mapping protocol, TRBP, and the lock protocol appear as a single

block across three vehicles, each of them consists of a three distinct implementations, one on

each of the three vehicles. They appear as congruent blocks as the communications between

the physically-separated implementations are hidden from the merge protocol. Fmerge, Ffront

and Fback do not talk to each other directly. Fmerge communicates with Ffront and Fback

through the lock protocol. Ffront and Fback create gap by giving instructions to safe spacing
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Figure 7.3: Finite-state machine Fhmi

systems on the respective vehicles in which they reside.

The merge protocol operates in three phases, each phase accompanied by a lock request

which allocates time for the merge protocol to complete required actions during each phase.

A merge maneuver is successful only if all three phases are completed. The successive

completion of three phases is shown as the solid arrows in the specification diagrams.

1. Phase 1 starts when the driver switches on the turn signal (Fhmi : sa → sb). As Fmerge

being activated, it uses the lock protocol to form a group until time t1, and it also

sets an alarm that will expire at time t1 (Fmerge: sa → sb). If both car f and car b

have the merge protocol available and not participating in any action, Ffront and Fback

are then activated and agree to cooperate (Ffront/Fback: sa → sb). The lock protocol

returns success message and the merge protocol moves on to phase 2.

2. In phase 2 the merge protocol attempts to create the gap. It uses the lock protocol

to extend the group to expire at t2 > t1, and it sets an alarm at time t2 (Fmerge:

sb → sc). On receiving cooperate request from the lock protocol, Ffront instructs the

safe spacing system to maintain speed while Fback instructs the safe spacing system

to increase headway (Ffront/Fback: sb → sc). When notified of the success, Fmerge

instructs the safe spacing system to align itself with the gap by following car f or car

x, whichever is closer, as shown in Fig.7.6a and Fig.7.6b (Fmerge: sc → sd). When

the mapping protocol reports that the gap is large enough for merging, the protocol

moves on to phase 3.
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Figure 7.4: Finite-state machine Ffront (Fback)

3. The driver is required to steer the vehicle into the gap in phase 3. It again uses the

lock protocol to extend the expiration of the group to t3 > t2 and sets the alarm at t3

(Fmerge: sd → se). After both Ffront and Fback agree to cooperate until t3 (Ffront/Fback:

sc → sd), the Fmerge issue a greenlight message to the HMI that notifies the driver that

it is clear to change lanes (Fmerge: se → sf , Fhmi : sb → sc). After steering into the

target lane, the driver completes the action by switching off the turn signal. Fmerge

returns to the initial state (Fmerge: sf → sa, Ffront/Fback : sd → sa, Fhmi : sc → sa).

When any of the undesirable events occurs, such as communication loss, the appearance of

an interfering vehicle that does not belong to the group, or driver ignoring or being unaware

of the prompt to switch lanes, the protocol executes escaping transitions (dashed arrows in

the specification), notifies the driver, reset the safe spacing system for a safe, autonomous

driving mode in which the vehicle maintains its lane and safe spacing.

Note that determining the value of t1, t2, and t3, which are essentially the respective

duration of phase 1, phase 2, and phase 3, is beyond the scope of this paper. Phase 1 can

be short, within which the merge protocol only has to establish a group. The duration of

phase 2 must be long enough to account for the time needed for the ACC to create a gap,
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Figure 7.5: Interactions between FSMs and the interfaces

and it depends on the vehicles’ speed, acceleration, traffic condition, etc. The duration of

phase 3 must be long enough for the driver to react to the green light and steer into the

gap without haste.

The merge protocol is expected to satisfy the following properties. We use stratified

verification to establish the bound of the probability that these properties are violated.

1. Creates the gap and notifies the driver only if none of the undesirable events occurs

2. If any of the undesirable events occurs, the driver is notified and the safe spacing

system is reset to conservative mode for emergency maneuver

Undesirable events include failures of any component, occurrence of incidents in the vicinity

of the cooperating group, interfering vehicle occupying the gap, and driver ignoring the

notification to change lanes.

The first property is checked by determinining if there is a path from the initial state

to the state where the driver is notified to change lanes. The second property can be
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(a) (b)

Figure 7.6: Car m attempts to merge between car f and car b

represented as a regular safety property Amerge, which is elaborated further in the following

section.

7.3 Verification of the Driver-assisted Merging

In this section, the driver-assisted merging is put under scrutiny. We check if the merge

protocol satisfies the properties presented at the end of last section. Recall that verifica-

tion of a protocol systems consist of three stages: model construction, running the model

checker, and result analysis. First the DMDP model Mmerge of driver-assisted merging is

constructed from the FSMs of the merge protocol and the service models that represent

the component on which the merge protocol depends. Also, we construct the DFAs that

represent various safety properties of the components and the merge protocol. Next, we

use stratified verification to find the probability bound for the driver-assisted merging to

violate the properties in last section, when all the components deliver their guarantees with

required probabilities. Finally, we shows that the probability bound we find is sufficiently

low.

The stratified verification is done under a compositional framework. The components

other than the merge protocol are assumed to be verified to provide their guarantees before

the verification of the whole system is conducted. The guarantees they provide are repre-

sented as DFAs and the restricted set of adversaries that reflect the failure probabilities of

the guarantees. The following are the requirements of the mapping protocol, TRBP, and
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the lock protocol.

〈true〉Mmapping〈Amapping,1, Amapping,2〉≥pmapping,1,pmapping,2

〈true〉Mtrbp〈Atrbp〉≥pTRBP

〈true〉Mlock〈Alock〉≥plock

(7.1)

Safety property Amapping,1 means that the mapping protocol should not have a detectable

sensor malfunction with probability greater than pmapping,1. Safety property Amapping,2

means that the mapping protocol should not have a failure goes undetected with proba-

bility greater than pmapping,2. Safety property Atrbp is about the communication failure

experienced by TRBP. Such communication failure arises from unrecoverable token or mes-

sages and is assumed not to occur with probability greater than pTRBP. In this thesis, we

do not show that the sensor systems. Rather, we consider them assumptions that we place

on the sensor system and TRBP.

Safety property Alock is sligntly more complex. It requires that the success in group

creation is preceded by both the front vehicle and the back vehicle agreeing to cooperate,

which are then preceded by the merging vehicle making an attempt to create a cooperating

group. In this section, we use stratified verification to show that the lock protocol satisfies

Alock with probability greater than plock. That is, it exhibits an unexpected sequences with

probability less than 1− plock.

We would like to show that driver-assisted merging satisfies Amerge given that the sensor

system, TRBP, and the lock protocol deliver their guarantees with required probabilities.

That is, we are to show that

〈Amapping,1, Amapping,2, Atrbp, Alock〉≥pmapping,1,pmapping,2,ptrbp,plockFmerge〈Amerge〉≥pmerge (7.2)

This can be shown by having stratified verification traverse that state space within the

restricted set of adversaries. With (7.1) and (7.2), we have

〈true〉Mmapping ‖Mtrbp ‖Mlock ‖ Fmerge〈Amerge〉≥pmerge (7.3)

Dividing the verification of driver-assisted merging into verification of (7.1) and (7.2)

greatly reduces the complexity of verification. This can be seen from that the number of
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states traversed during verification of the merge protocol is a lot less than the number of

states traversed when verifying the lock protocol.

Note that the design of the merge protocol cannot be satisfactory on the first try.

The design process of the merge protocol involves repeating efforts of specifying the merge

protocol, constructing the model, running the model checker, then analyzing the result to

decide the causes of errors. The process is repeated until the error probability is low enough.

The specification of the merge protocol presented in Section 7.2 is the final design of the

merge protocol that is deemed robust enough.

In this section, we first describe the service models of the components (Gspacing,m,

Gspacing,f , Gspacing,b, Gtrbp, Gmapping, Glock,m, Glock,f , Glock,b, and Gdriver) and the DFAs

that represent the safety properties (A∗mapping,1, A
∗
mapping,2, A

∗
trbp, and A∗lock) as the require-

ments we place on the components and the guarantees we expect the driver-assisted merging

to satisfy. We deviate a bit by using stratified verification to find the probability for the

lock protocol to satisfy Alock. Finally we run stratified verification on the restricted set of

adversaries and show that the failure probability of driver-assisted merging is sufficiently

small.

7.3.1 Service Models of Components

The environment and the interfaces of the components that the merge protocol depends

on are represented as the service models shown in Fig.??. They are extremely simple,

especially when being compared with their actual implementation.

The service models of the safe spacing systems (Gspacing,m, Gspacing,f , and Gspacing,b,

Fig.7.7a) on each vehicle are also highly simplified. There are only two states: s0 represents

normal driving and s1 represents adjustment of headway and speed settings for gap creation.

The safe spacing systems work differently when the vehicle takes different role in a merge.

When on the mering car, safe spacing system takes command align; on the back car, safe

spacing system takes command make-gap; on the front car, safe spacing takes command

maintain.

The mapping protocol (Gmapping, Fig.7.7d) and TRBP (Gtrbp, Fig.7.7c) have similar

service models. These two components monitor the surroundings of the cooperating group
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s0 s1

Fmerge?align(Fback?makegap)(Ffront?maintain)

Fmerge?reset(Fback?reset)(Ffront?reset)

(a) Safe spacing system Gspacing,m

(Gspacing,f , Gspacing,b)

s0 s1

Fhmi!turn-signal-on

Fhmi!turn-signal-off

(b) Driver Gdriver

s0

Fmerge!comm-fail,

Ffront!comm-fail,

Fback!comm-fail

Fmerge!emergency,

Ffront!emergency,

Fback!emergency

(c) TRBP

s0

Fmerge!gap-ready

Fmerge!gap-ready

Fmerge!malfunc,

Ffront!malfunc,

Fback!malfunc

(d) The mapping protocol Gmapping

Figure 7.7: Service models of the components, part 1

and the condition of communication. They are stateless, and they simply generate messages

that indicate the events that might occur during a merge maneuver.

The service model of the driver (Gdriver, Fig.7.7b) provides external stimuli that initiate

the merge maneuver. Given the simple interface exposed to the driver, i.e., the FSM FHMI,

the driver can do but two things: switching on and off the turn signal.

The service models of the lock protocol on the merging vehicle (Glock,m, Glock,f , and

Glock,b, Fig.7.8a) allows Fmerge to create a cooperating group (Fmerge?attempt(d)). Normally

it respond by saying a cooperating group is created successfully (Fmerge!success), while

sometimes it expires before a group can be created due to causes including message loss.

Eventually the cooperating group is dismissed on reaching the timestamp d. The service

models on the front car or the back car is simpler (Fig.7.8b). It prompts Ffront or Fback

to start cooperating with the merging car and to carry out required actions. It eventually

expires on reaching timestamp d as well.

7.3.2 Service Guarantees as Regular Safety Properties

Next, we look at the probabilistic safety properties that we expect the merge protocol to

satisfy and the probabilistic safety properties that are assumed to be satisfied by coordinated
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s0 s1 s2
Fmerge?attempt(d)

Fmerge!success

Gtiming?alarm(d)/Fmerge!expire

Gtiming?alarm(d)/Fmerge!expire

(a) Lock protocol on Merging Car Glock,m

s0 s1

Ffront!cooperate (Fback!cooperate)

Gtiming?alarm(d)/Ffront!expire (Gtiming?alarm(d)/Fback!expire)

(b) Lock protocol on Front Car Glock,f (Back Car Glock,b)

Figure 7.8: Service models of the components, part 2
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Figure 7.9: DFA A∗merge: the labels in the alphabet that are not shown result in self-loop

sensors, TRBP, and the lock protocol. They are 〈Amapping,1〉≥pmapping,1 , 〈Amapping,2〉≥pmapping,2 ,

〈Atrbp〉≥ptrbp , and 〈Alock〉≥plock . Their regular safety properties parts are represented as

DFAs. For each probabilistic safety properties, we define the restricted set of adversaries

that are required for proving (7.2) using stratified verification.

Since the mapping protocol uses multiple sensors to estimate a distance, it is resistant

to single sensor failure. The fusion algorithm can reject an incorrect sensor readings by

comparing it with readings of other sensors. Sensor malfunction is assumed to occur with

probability less than 1 − pmapping,1. However, it is possible on some rare occasions for all

of the sensors to provide incorrect measurements, which can result in an incorrect mapping
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〈Gtrbp, comm-fail , Fmerge〉

(c) DFA A∗trbp

Figure 7.10: DFAs representing regular safety properties

of the surrounding objects. The mapping protocol still renders the mapping, and may

incorrectly notify the merge protocol that the target gap is large enough while in fact

otherwise. This failure should be extremely rare, and it is assumed to occur with probability

less than 1 − pmapping,2 � 1 − pmapping,1. Even though the probability of such rare events

can be reduced by either introducing more sensors or employing a more sophisticated fusion

algorithm, the probability of failure 1− pmapping,1 cannot be reduced to zero.

Whenever an execution includes a sensor malfunction event, it is an accepting run of

property Amapping,1 (Fig.7.10a). The corresponding set of adversaries is

Advmapping,1 =
{
σ ∈ Adv

∣∣∣σ(〈s, q〉)(α) ≤ 1− pmapping,1if α ∈ Act(s) ∧ δA∗mapping,1
(q, α) = q2

}
(7.4)

Mapping protocol also fails silently when all sensors malfunctioning so that there is

no way to tell which sensor has failed (Fig.7.10b). The silent failure is represented as a

τ -transition. The corresponding set of adversaries is

Advmapping,2 =
{
σ ∈ Adv

∣∣∣σ(〈s, q〉)(α) ≤ 1− pmapping,2if α ∈ Act(s) ∧ δA∗mapping,2
(q, α) = q1

}
(7.5)
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TRBP fails (Fig.7.10c) when a token or a broadcasted message is not recovered within

a deadline. The causes could be consecutive message losses or vehicle moving out of range.

The probability of vehicle moving out of range is difficult to characterize. The corresponding

set of adversaries is

Advtrbp =
{
σ ∈ Adv

∣∣∣σ(〈s, q〉)(α) ≤ 1− ptrbp if α ∈ Act(s) ∧ δA∗trbp(q, α) = q1

}
(7.6)

Although the property of the lock protocol may seem complex (Fig.7.11), it simply

requires that the whole process starts with an attempt of Fmerge, which is then followed by

both Fback and Ffront agreeing to cooperate. The lock protocol then notifies Fmerge that a

cooperating group is formed after both Ffront and Fback agrees to cooperate. In every state

of DFA, it is possible for the group creation to fail and the attempt of group creation simply

expires (q1 → q6, q2 → q6, q3 → q6, q4 → q6, and q5 → q6). Any sequence other than the

ones described above is an error sequence. The corresponding set of adversaries is

Advlock =
{
σ ∈ Adv

∣∣∣σ(〈s, q〉)(α) ≤ 1− plock if α ∈ Act(s) ∧ δA∗lock(q, α) = q7

}
(7.7)

To see if 〈true〉Mlock〈Alock〉≥plock , we consider the 7-vehicle scenario shown in Fig.7.12.

There are four users, namely user 2, user 3, user 5, and user 6, that attempt to create co-

operating group. The system model of DMDP Mlock is contructed from the 7 FSMs of the

lock protocol specification, full-duplex channel service models between each pair of FSMs,

the service model of the timing stack, and the service models of the merge protocol, which

make merge request. Specifically, we look at user 2, which attempt to create a group with

user 6 and user 7 or a group with user 3 and user 5. The MDP-DFA product involves the al-

phabet set: {〈Gmerge, attempt , Flock,m〉, 〈Flock,m, success, Gmerge〉, 〈Flock,f , cooperate, Gfront〉,

〈Gtiming, alarm(d), Flock,m〉}.

The stratified verification in Algorithm 4 is applied to M∗ = Mlock ⊗ A∗lock with all

adversaries being considered. We require that the message loss rate of the communication

channel is less than p̂ = 10−5. This is also used as the discretization parameter. The

algorithm is able to explore 1,002,242 reachable states, including all states up to equivalent

class 4, using 2.2GB of memory. It concludes that plock = 1− 3.35× 10−20.
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Figure 7.11: DFA A∗lock

7.3.3 Verifying the Merge Protocol

We are now ready to apply stratified verification to driver-assisted mering. It is modeled as

a DMDP

Mmerge =Fmerge ⊗ Ffront ⊗ Fback ⊗ Fhmi⊗

Gspacing,m ⊗Gspacing,f ⊗Gspacing,b⊗

Gtrbp ⊗Gmapping ⊗Glock,m ⊗Glock,f ⊗Glock,b ⊗Gdriver

(7.8)

We verify if the merge protocol satisfies 〈Amerge〉≥pmerge with a sufficiently high probability

bound pmerge, assuming that all components provide their guarantees with required proba-

bility. Specifically, we use stratified verification to show that (7.2) holds by showing that

∀σ ∈ AdvAmapping,1 ∩AdvAmapping,2 ∩AdvAtrbp ∩AdvAlock · P σMmerge
(Amerge) ≥ pmerge (7.9)

Then we show that the bound we find is sufficiently small.



CHAPTER 7. THE MERGE PROTOCOL 132

Figure 7.12: 7-party scenario of the lock protocol

In verification of the merge protocol, we assume that following: pmapping,1 = 1 − 10−4,

pmapping,2 = 1 − 10−16, and ptrbp = 0. That is, a detectable sensor malfunction occurs

with probability less than 1 − pmapping,1 = 10−4, and a undetectable sensor failure occurs

with extremely low probability 1− pmapping,2 = 10−16. TRBP may fail if the driver on the

front car or the back car steering the car out of the cooperating group, so we conservatively

assume that this probability is less than 1− ptrbp = 1 at best.

Setting the discretization parameter p̂ = 10−4, the sets of adversaries that correspond

to the assumptions can be discretized. Thus we have the following

Adv
Amapping,1

D =

σ ∈ AdvD
∣∣∣∣∣∣∣σD(〈s, qs,1〉)(α) =

1 if α ∈ Act(s) ∧ δAmapping,1
∗(qs,1, α) = q2,

0, otherwise


(7.10)

Adv
Amapping,2

D =

σ ∈ AdvD
∣∣∣∣∣∣∣σD(〈s, qs,2〉)(α) =

4 if α ∈ Act(s) ∧ δAmapping,2
∗(qs,2, α) = q1,

0, otherwise


(7.11)

Adv
Atrbp

D = {σ ∈ AdvD |σD(〈s, qt〉)(α) = 0 if α ∈ Act(s)} (7.12)

AdvAlock
D =

σ ∈ AdvD
∣∣∣∣∣∣∣σD(〈s, ql〉)(α) =

4 if α ∈ Act(s) ∧ δAlock
∗(ql, α) = q7,

0, otherwise

 (7.13)

where qs,1 is the state of A∗mapping,1, qs,2 is the state of A∗mapping,2, qt is the state of A∗trbp,

and ql is the state of A∗lock.

Let 〈s, qs,1, qs,2, qt, ql〉 be a state of Mmerge⊗A∗mapping,1⊗A∗mapping,2⊗A∗trbp⊗A∗lock, where
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s is the composite state of DMDP Mmerge. The intersection of restricted adversary sets is

AdvallD = Advmapping,1
D ∪Advmapping,2

D ∪AdvtrbpD ∪AdvlockD

=


σD ∈ AdvD

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σD(〈s, qs,1, qs,2, qt, ql〉)(α) =

1, if α ∈ Act(s) ∧ δA∗mapping,1
(qs,1, α) = q2

4, if α ∈ Act(s) ∧ (δA∗mapping,2
(qs,2, α) = q1 ∨ δA∗lock(ql, α) = q7)

0, otherwise.


(7.14)

Now we use Algorithm 3 to explore the state space of M ′ = Mmerge ⊗ A∗mapping,1 ⊗

A∗mapping,2 ⊗ A∗trbp ⊗ A∗lock ⊗ A∗merge. Stratified verification traverses 402 distinct states

without finding an error up to the equivalent class 3. While there are still reachable states

that are yet to be explored, the procedure is able to compute the upper-bound of probability

for the system to take those unexamined sequences. The linear program yields a bound of

1− pmerge = p̂4 = 1× 10−16.

We may conclude that the protocol is safe if the bound is sufficiently small to provide

the confidence required by the cooperative driving application. It means that an error

occurs less than once every 1 × 1016 protocol invocations. Suppose there are 500 million

vehicles 1 equipped with the merge protocol, and each of which travels 200,000 miles during

its lifetime [Ford, 2012]. The driver of the vehicle should drive extremely aggressive and

use the merge protocol to change lane 100 times every mile 2, on the average less than one

unexplored state will occur during the lifetime of all these vehicles. Clearly, this level of

confidence will never be achieved by driving vehicles on a test track.

If we continue probabilistic verification to consider those states reachable via sequences

with bound as low as p̂4, we encounter level-4 low probability transitions. The level-4 low

probability transitions are the ‘silent’ failures that cannot be detected by the merge protocol

and therefore no handling of such failures can be done. These types of failure prevent the

merge protocol from being perfectly safe, but stratified verification can upper-bound the

error probability and ensure that the error probability is sufficiently small for the purpose

187 million vehicles are produced in the single year of 2013 [OIAC, 2015]

2US drivers average one lane change every 2.8 miles [NHTSA, 2015]
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of cooperative driving application.

If, however, the bound we have still does not give the expected degree of confidence,

probabilistic verification has identified the cause of failure being those level-4 low probability

events that correspond to the silent failures. We may improve the mapping protocol by

introducing redundancy to the set of sensor or using a more advanced fusion algorithm so as

to drive the probability of silent failure smaller. We should also replace the acknowledgment-

based communication protocol that the lock protocol depends on by a more sophisticated

communication protocol so that the lock protocol exhibit unexpected behaviors with even

smaller probability.

7.4 Conclusions

In this chapter, we designed driver-assisted merging and verified its safety. The multiple

stack architecture divides driver-assisted merging into components with distinct functions.

A reasonably simple top-level logic called the merge protocol coordinates joint actions among

the three cooperating vehicles, sends commands to the lower-level components and responds

to events detected by the components that interact with the physical world. We presented

its specification, described as a collection of FSMs, and the safety guarantees which it should

deliver.

Verification of driver-assisted merging was done in several steps. First, the components

with which the merge protocol interacts are modeled as service models. The properties they

are assumed to deliver are described as regular safety properties, which can be represented

as DFAs. We placed probabilistic assumption on the failure probability of these components

except for the lock protocol, to which we also applied stratified verification to prove that

it satisfies the property with the assumed probability. Finally, as driver-assisted merging is

the composition of the merge protocol and the components it depends on, we used stratified

verification in the compositional framework to evaluate its safety. We were able to guarantee

that driver-assisted merging can only fail with an extremely low probability that cannot be

achieved by simulation or test tracks.
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Chapter 8

Conclusions

In this thesis we consider the techniques that address the challenges we face when applying

formal verification techniques to cooperative driving systems. They include a multiple

stack architecture, a framework for leveraging GPS clocks in protocol design, and stratified

probabilistic verification. Finally, we present our design of driver-assisted merging and use

the discussed technique to prove that it is safe to a degree that cannot be guranteed by

simulation or test tracks.

We faced several challenged when designing a driver-assisted merging application. It in-

teracts with the physical world in multiple ways. The multiple stack architecture is designed

to have each stack in the architecture address a particular way of interaction. The top-level

logic of a cooperative driving application can be reasonably simplified with the layered

structure. The top-level logic of driver-assisted merging application, the merge protocol,

can be thus specified as FSMs. Having functions arranged in a layered fashion helps us

divide the verification of the whole system into smaller subproblems of independent module

verification. In driver-assisted merging application, both the merge protocol and the lock

protocol that resolves conflicting merge requests for driver-assisted merging need to execute

time-critical actions. We introduced the timing stack, which separates a process into two

parts: the part modeled as an finite-state machine that controls state transitions and mes-

sages exchanges, and the part that determines the exact moment that a timed event should

occur. This also reduces the complexity of protocol specification as timing constraints are

controlled by a separate processes. Moreover, having accurate clocks at different locations
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allows processes to execute actions simultaneously, reducing interleaving that often arises

in systems that use multiple timers to control timed events. To alleviate state explosion,

we presented stratified probabilistic verification. It greatly improves the probability bound

obtained in the original probabilistic verification algorithm. It prioritizes the states that are

more likely to be encountered during system execution. When running out of memory, it

constructs a linear program whose solution is the upper bound for the probability of reach-

ing the unexplored states and the error states. Along with the multiple stack architecture,

the stratified algorithm is particularly useful when verifying a protocol system that depends

on several imperfect components that may fail with small but hard-to-quantify probabili-

ties. We adopted a compositional approach to verify a collection of components, assuming

that the components have inexact probability guarantees. We applied stratified verification

to driver-assisted merging, which is already simplified by the architecture and the use of

GPS clocks during its design stage. The verdict: the driver-assisted merging application

fails less than once every 5× 1013 merge attempts.
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of real-time and hybrid systems in rewriting logic. Theoretical Computer Science,

285(2):359–405, 2002.

[Papadimitratos et al., 2009] Panos Papadimitratos, A La Fortelle, Knut Evenssen,

Roberto Brignolo, and Stefano Cosenza. Vehicular communication systems: Enabling

technologies, applications, and future outlook on intelligent transportation. Communi-

cations Magazine, IEEE, 47(11):84–95, 2009.

[PATH, ] PATH. California path.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs. In Foundations of Computer

Science, 1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.



BIBLIOGRAPHY 148

[Reynisson et al., 2014] Arni Hermann Reynisson, Marjan Sirjani, Luca Aceto, Matteo Ci-

mini, Ali Jafari, Anna Ingolfsdottir, and Steinar Hugi Sigurdarson. Modelling and sim-

ulation of asynchronous real-time systems using timed rebeca. Science of Computer

Programming, 89:41–68, 2014.

[Rudin, 1992] Harry Rudin. Protocol development success stories: Part 1. In Proceedings

of the IFIP TC6/WG6. 1 Twelth International Symposium on Protocol Specification,

Testing and Verification XII, pages 149–160. North-Holland Publishing Co., 1992.

[Sabnani and Dahbura, 1988] Krishan Sabnani and Anton Dahbura. A protocol test gen-

eration procedure. Computer Networks and ISDN systems, 15(4):285–297, 1988.

[Sankaranarayanan et al., 2013] Sriram Sankaranarayanan, Aleksandar Chakarov, and

Sumit Gulwani. Static analysis for probabilistic programs: inferring whole program

properties from finitely many paths. ACM SIGPLAN Notices, 48(6):447–458, 2013.

[SARTRE, ] SARTRE. SARTRE project.

[Scopigno and Cozzetti, 2009] Riccardo Scopigno and Hector Agustin Cozzetti. Gnss syn-

chronization in vanets. In New Technologies, Mobility and Security (NTMS), 2009 3rd

International Conference on, pages 1–5. IEEE, 2009.

[Segata et al., 2014] Michele Segata, Bastian Bloessl, Stefan Joerer, Falko Dressler, and

Renato Lo Cigno. Supporting platooning maneuvers through ivc: An initial protocol

analysis for the join maneuver. In Wireless On-demand Network Systems and Services

(WONS), 2014 11th Annual Conference on, pages 130–137. IEEE, 2014.

[Sichitiu and Kihl, 2008] Mihail L Sichitiu and Maria Kihl. Inter-vehicle communication

systems: a survey. Communications Surveys & Tutorials, IEEE, 10(2):88–105, 2008.

[Sinha and Suri, 1999] Purnendu Sinha and Neeraj Suri. On the use of formal techniques

for analyzing dependable real-time protocols. In Real-Time Systems Symposium, 1999.

Proceedings. The 20th IEEE, pages 126–135. IEEE, 1999.



BIBLIOGRAPHY 149

[Sistla and Godefroid, 2004] A Prasad Sistla and Patrice Godefroid. Symmetry and re-

duced symmetry in model checking. ACM Transactions on Programming Languages and

Systems (TOPLAS), 26(4):702–734, 2004.

[Swaroop et al., 1994] DVAHG Swaroop, JK Hedrick, CC Chien, and P Ioannou. A compar-

ision of spacing and headway control laws for automatically controlled vehicles1. Vehicle

System Dynamics, 23(1):597–625, 1994.

[Tientrakool et al., 2011] Patcharinee Tientrakool, Ya-Chi Ho, and Nicholas F Maxemchuk.

Highway capacity benefits from using vehicle-to-vehicle communication and sensors for

collision avoidance. In Vehicular Technology Conference (VTC Fall), 2011 IEEE, pages

1–5. IEEE, 2011.

[Tsugawa et al., 2000] Sasayuki Tsugawa, Shin Kato, Takeshi Matsui, Hiroshi Naganawa,

and H Fujii. An architecture for cooperative driving of automated vehicles. In Intelligent

Transportation Systems, 2000. Proceedings. 2000 IEEE, pages 422–427. IEEE, 2000.

[Uzcategui and Acosta-Marum, 2009] R Uzcategui and Guillermo Acosta-Marum. Wave: a

tutorial. Communications Magazine, IEEE, 47(5):126–133, 2009.

[van Nunen et al., 2012] Ellen van Nunen, RJAE Kwakkernaat, Jeroen Ploeg, and Bart D

Netten. Cooperative competition for future mobility. Intelligent Transportation Systems,

IEEE Transactions on, 13(3):1018–1025, 2012.

[Varaiya, 1993] Pravin Varaiya. Smart cars on smart roads: problems of control. Automatic

Control, IEEE Transactions on, 38(2):195–207, 1993.

[West, 1989] Colin H West. Protocol validation in complex systems, volume 19. ACM, 1989.

[Wu et al., 1997] Sue-Hwey Wu, Scott A Smolka, and Eugene W Stark. Composition and

behaviors of probabilistic i/o automata. Theoretical Computer Science, 176(1):1–38, 1997.

[Yang et al., 2006] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.

Using model checking to find serious file system errors. ACM Transactions on Computer

Systems (TOCS), 24(4):393–423, 2006.



BIBLIOGRAPHY 150

[Yannakakis and Lee, 1993] Mihalis Yannakakis and David Lee. An efficient algorithm for

minimizing real-time transition systems. In Computer Aided Verification, pages 210–224.

Springer, 1993.

[Yi, 1991] Wang Yi. Ccs+ time= an interleaving model for real time systems. In Automata,

Languages and Programming, pages 217–228. Springer, 1991.

[Yovine, 1997] Sergio Yovine. Kronos: A verification tool for real-time systems. Interna-

tional Journal on Software Tools for Technology Transfer (STTT), 1(1):123–133, 1997.

[Yuan et al., 2015] Ting Yuan, Tobias Roth, Qi Chen, Jakob Breu, Miro Bogdanovic, and

Christian A Weiss. Track-to-track association for object matching in an inter-vehicle

communication system. SPIE Optical Engineering+ Applications, pages 959609–959609,

2015.


	List of Figures
	List of Tables
	1 Introduction
	1.1 Driver-assisted Merge Protocol
	1.2 Architecture for Intelligent Vehicles
	1.2.1 Platoon control architecture
	1.2.2 Sensor System Architecture

	1.3 Coordinate Timely Actions
	1.4 Verification of the Protocol Systems
	1.5 Summary of Contributions
	1.5.1 A Multiple Stack Architecture for Cooperative Driving Applications
	1.5.2 Protocol Synchronization Based on GPS Clocks
	1.5.3 Stratified Probabilistic Verification
	1.5.4 A Driver-Assisted Merge Protocol


	2 Related Works
	2.1 Architectures for cooperative driving systems
	2.2 Highway Lane Change / Merge Solutions
	2.3 Modeling Real-Time Systems
	2.4 Tackling State Explosion

	3 Preliminaries
	3.1 Constituting Components of a Protocol System
	3.1.1 Finite-State Machines
	3.1.2 Models for Services and Environments

	3.2 Modeling and Verification of Probabilistic Systems
	3.2.1 Markov Decision Processes
	3.2.2 Probabilistic Safety Properties
	3.2.3 Verification of Probabilistic Safety Properties for MDPs

	3.3 From Finite-State Machines and Service Models to Markov Decision Process
	3.4 Example: Verifying Acknowledgement Protocol
	3.5 Conclusions

	4 Multiple Stack Architecture
	4.1 Multiple Interactions with the Physical World
	4.1.1 The Vehicle Stack
	4.1.2 The Communication Stacks
	4.1.3 The Timing Stack
	4.1.4 The Sensor Stack

	4.2 Layered Architecture and Verification
	4.3 Conclusions

	5 Synchronous Clocks
	5.1 The Lock Protocol
	5.1.1 Real World Analogy
	5.1.2 The Operation
	5.1.3 Specification in Timed Automata

	5.2 Revisit the Timing Stack
	5.2.1 Interface of Timing Stack
	5.2.2 Finite-State Machines with Timestamps
	5.2.3 Specification of Lock Protocol

	5.3 Modeling of Protocol Systems with Timing Stacks
	5.4 Transition Rules
	5.4.1 Compatibility of FSMs with Timestamps
	5.4.2 Transition rules imposed by the timing stack model

	5.5 Example: Execution Sequences of the Lock Protocol
	5.6 Conclusions

	6 Stratified Probabilistic Verification
	6.1 Discretized Probability Levels
	6.1.1 Discretized-probability Markov Decision Processes
	6.1.2 Execution sequence and structure of reachable graph
	6.1.3 Correctness properties

	6.2 Stratified State Traversal Algorithm
	6.2.1 Integrate Probabilistic Search into Depth-First Search
	6.2.2 Proof of Correctness
	6.2.3 Bound Computation
	6.2.4 Stratified Technique versus Original Probabilistic Verification
	6.2.5 Stratified Technique versus PRISM Model Checker

	6.3 Compositional Verification with Stratified Technique
	6.4 Stratified Algorithm for Standard Markov Decision Processes
	6.5 Conclusion

	7 The Merge Protocol
	7.1 Driver-assisted Merging
	7.2 Specification of the Merge Protocol and its Safety Guarantees
	7.3 Verification of the Driver-assisted Merging
	7.3.1 Service Models of Components
	7.3.2 Service Guarantees as Regular Safety Properties
	7.3.3 Verifying the Merge Protocol

	7.4 Conclusions

	8 Conclusions
	Bibliography

