1,760 research outputs found

    Compositional Reactive Synthesis for Multi-Agent Systems

    Get PDF
    With growing complexity of systems and guarantees they are required to provide, the need for automated and formal design approaches that can guarantee safety and correctness of the designed system is becoming more evident. To this end, an ambitious goal in system design and control is to automatically synthesize the system from a high-level specification given in a formal language such as linear temporal logic. The goal of this dissertation is to investigate and develop the necessary tools and methods for automated synthesis of controllers from high-level specifications for multi-agent systems. We consider systems where a set of controlled agents react to their environment that includes other uncontrolled, dynamic and potentially adversarial agents. We are particularly interested in studying how the existing structure in systems can be exploited to achieve more efficient synthesis algorithms through compositional reasoning. We explore three different frameworks for compositional synthesis of controllers for multi-agent systems. In the first framework, we decompose the global specification into local ones, we then refine the local specifications until they become realizable, and we show that under certain conditions, the strategies synthesized for the local specifications guarantee the satisfaction of the global specification. In the second framework, we show how parametric and reactive controllers can be specified and synthesized, and how they can be automatically composed to enforce a high-level objective. Finally, in the third framework, we focus on a special but practically useful class of multi-agent systems, and show how by taking advantage of the structure in the system and its objective we can achieve significantly better scalability and can solve problems where the centralized synthesis algorithm is infeasible

    Parallelizing Synthesis from Temporal Logic Specifications by Identifying Equicontrollable States

    Get PDF
    For the synthesis of correct-by-construction control policies from temporal logic specifications the scalability of the synthesis algorithms is often a bottleneck. In this paper, we parallelize synthesis from specifications in the GR(1) fragment of linear temporal logic by introducing a hierarchical procedure that allows decoupling of the fixpoint computations. The state space is partitioned into equicontrollable sets using solutions to parametrized games that arise from decomposing the original GR(1) game into smaller reachability-persistence games. Following the partitioning, another synthesis problem is formulated for composing the strategies from the decomposed reachability games. The formulation guarantees that composing the synthesized controllers ensures satisfaction of the given GR(1) property. Experiments with robot planning problems demonstrate good performance of the approach

    Sound and Automated Synthesis of Digital Stabilizing Controllers for Continuous Plants

    Get PDF
    Modern control is implemented with digital microcontrollers, embedded within a dynamical plant that represents physical components. We present a new algorithm based on counter-example guided inductive synthesis that automates the design of digital controllers that are correct by construction. The synthesis result is sound with respect to the complete range of approximations, including time discretization, quantization effects, and finite-precision arithmetic and its rounding errors. We have implemented our new algorithm in a tool called DSSynth, and are able to automatically generate stable controllers for a set of intricate plant models taken from the literature within minutes.Comment: 10 page

    Scalable heating-up synthesis of monodisperse Cu2ZnSnS4 nanocrystals

    Get PDF
    Monodisperse Cu2ZnSnS4 (CZTS) nanocrystals (NCs), with quasi spherical shape, were prepared by a facile, high-yield, scalable, and high-concentration heat-up procedure. The key parameters to minimize the NC size distribution were efficient mixing and heat transfer in the reaction mixture through intensive argon bubbling and improved control of the heating ramp stability. Optimized synthetic conditions allowed the production of several grams of highly monodisperse CZTS NCs per batch, with up to 5 wt % concentration in a crude solution and a yield above 90%

    A Contract-Based Methodology for Aircraft Electric Power System Design

    Get PDF
    In an aircraft electric power system, one or more supervisory control units actuate a set of electromechanical switches to dynamically distribute power from generators to loads, while satisfying safety, reliability, and real-time performance requirements. To reduce expensive redesign steps, this control problem is generally addressed by minor incremental changes on top of consolidated solutions. A more systematic approach is hindered by a lack of rigorous design methodologies that allow estimating the impact of earlier design decisions on the final implementation. To achieve an optimal implementation that satisfies a set of requirements, we propose a platform-based methodology for electric power system design, which enables independent implementation of system topology (i.e., interconnection among elements) and control protocol by using a compositional approach. In our flow, design space exploration is carried out as a sequence of refinement steps from the initial specification toward a final implementation by mapping higher level behavioral and performance models into a set of either existing or virtual library components at the lower level of abstraction. Specifications are first expressed using the formalisms of linear temporal logic, signal temporal logic, and arithmetic constraints on Boolean variables. To reason about different requirements, we use specialized analysis and synthesis frameworks and formulate assume guarantee contracts at the articulation points in the design flow. We show the effectiveness of our approach on a proof-of-concept electric power system design
    corecore