5,569 research outputs found

    Evaluation of the present theoretical basis for determination of planetary surface properties by earth-based radar

    Get PDF
    Spaceflight programs such as the planned Viking landing on Mars require the determination of planetary surface slopes and surface dielectric constants by earth-based methods. Heavy reliance is often placed on radar backscattering data for estimation of these surface properties. An assessment is presented of the basic theory by which the raw radar data are interpreted, and it is shown that serious difficulties and internal inconsistencies are present in the available theoretical formulas. The discussion brings into question the reliability of the presently available results for these surface properties as obtained by earth-based radar methods

    Backscatter of Electromagnetic Waves from a Rough Layer

    Get PDF
    Backscatter of electromagnetic waves from rough surfac

    Study on Electromagnetic Scattering of Cylinders Buried in a Half Space with Random Rough Surfaces of Finite/Infinite Length

    Get PDF
    Analysis of electromagnetic scattering of buried objects is a subject of great interest due to its practical importance in both military and civil applications, such as subsurface investigation and target detection. In reality, the earth is of layered structure of random rough interfaces, which leads to a greatly increased complexity of the analysis. However, it is necessary to incorporate the nature of random rough surface and the layered structure because they both have substantial impact on the scattered signature and hence affect the study of inverse scattering and detection of buried objects. In this dissertation, a Monte-Carlo multidomain pseudospectral time domain (MPSTD) method is developed for investigating the scattering from cylinders buried below a random rough surface separating two half spaces under various conditions. As a prelude, the formulation of multidomain PSTD algorithm is presented. Then, this formulation is extended and combined with the Monte-Carlo approach to analyze the scattering of an object buried below a random rough surface of finite length. In the analysis, special attention is paid to the treatments of the random rough surface including its profile generation, matching with CGL points, and subdomain patching. Next, the scattering of a cylinder buried below a random rough surface of infinite length is studied and a two-step computation model based on the Monte-Carlo MPSTD method is developed. Further, in order to better simulate the real situation, the analysis is then extended to study the scattering from one or more cylinders embedded in a layered half space with random rough surfaces. Finally, a near-zone field to far-zone field transformation technique is developed and presented. Sample numerical results under different conditions, involving random rough surface of various roughness, lower half space with different permittivities, and cylinders of circular and rectangular shapes are presented, validated, and analyzed. Throughout this research, a numerical technique based on Monte-Carlo method and MPSTD approach has been developed and validated for investigating cylinders buried in a half space with random rough surfaces. It is observed that the roughness of the random rough surface and the electromagnetic properties of the lower half space can significantly affect the scattered signature of the buried object

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on nine research projects and a list of publications.National Aeronautics and Space Administration Contract 958461U.S. Navy - Office of Naval Research Grant N00014-92-J-1616University of California/Jet Propulsion Laboratory Contract 960408U.S. Army - Corps of Engineers/Cold Regions Research and Engineering Laboratory Contract DACA89-95-K-0014Mitsubishi CorporationU.S. Navy - Office of Naval Research Agreement N00014-92-J-4098Federal Aviation AdministrationDEMACOJoint Services Electronics Program Grant DAAHO4-95-1-003

    Radar Sub-surface Sensing for Mapping the Extent of Hydraulic Fractures and for Monitoring Lake Ice and Design of Some Novel Antennas.

    Full text link
    Hydraulic fracturing, which is a fast-developing well-stimulation technique, has greatly expanded oil and natural gas production in the United States. As the use of hydraulic fracturing has grown, concerns about its environmental impacts have also increased. A sub-surface imaging radar that can detect the extent of hydraulic fractures is highly demanded, but existing radar designs cannot meet the requirement of penetration range on the order of kilometers due to the exorbitant propagation loss in the ground. In the thesis, a medium frequency (MF) band sub-surface radar sensing system is proposed to extend the detectable range to kilometers in rock layers. Algorithms for cross-hole and single-hole configurations are developed based on simulations using point targets and realistic fractured rock models. A super-miniaturized borehole antenna and its feeding network are also designed for this radar system. Also application of imaging radars for sub-surface sensing frozen lakes at Arctic regions is investigated. The scattering mechanism is the key point to understand the radar data and to extract useful information. To explore this topic, a full-wave simulation model to analyze lake ice scattering phenomenology that includes columnar air bubbles is presented. Based on this model, the scattering mechanism from the rough ice/water interface and columnar air bubbles in the ice at C band is addressed and concludes that the roughness at the interface between ice and water is the dominate contributor to backscatter and once the lake is completely frozen the backscatter diminishes significantly. Radar remote sensing systems often require high-performance antennas with special specifications. Besides the borehole antenna for MF band subsurface imaging system, several other antennas are also designed for potential radar systems. Surface-to-borehole setup is an alternative configuration for subsurface imaging system, which requires a miniaturized planar antenna placed on the surface. Such antenna is developed with using artificial electromagnetic materials for size reduction. Furthermore, circularly polarized (CP) waveform can be used for imaging system and omnidirectional CP antenna is needed. Thus, a low-profile planar azimuthal omnidirectional CP antenna with gain of 1dB and bandwidth of 40MHz is designed at 2.4GHz by combining a novel slot antenna and a PIFA antenna.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120674/1/wujf_1.pd

    Fundamental limits to optical response in absorptive systems

    Get PDF
    At visible and infrared frequencies, metals show tantalizing promise for strong subwavelength resonances, but material loss typically dampens the response. We derive fundamental limits to the optical response of absorptive systems, bounding the largest enhancements possible given intrinsic material losses. Through basic conservation-of-energy principles, we derive geometry-independent limits to per-volume absorption and scattering rates, and to local-density-of-states enhancements that represent the power radiated or expended by a dipole near a material body. We provide examples of structures that approach our absorption and scattering limits at any frequency, by contrast, we find that common "antenna" structures fall far short of our radiative LDOS bounds, suggesting the possibility for significant further improvement. Underlying the limits is a simple metric, χ2/Imχ|\chi|^2 / \operatorname{Im} \chi for a material with susceptibility χ\chi, that enables broad technological evaluation of lossy materials across optical frequencies.Comment: 21 pages and 6 figures (excluding appendices, references

    Echo statistics associated with discrete scatterers: A tutorial on physics-based methods

    Get PDF
    Author Posting. © Acoustical Society of America, 2018. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America, 144(6), (2018): 3124-3171. doi: 10.1121/1.5052255.When a beam emitted from an active monostatic sensor system sweeps across a volume, the echoes from scatterers present will fluctuate from ping to ping due to various interference phenomena and statistical processes. Observations of these fluctuations can be used, in combination with models, to infer properties of the scatterers such as numerical density. Modeling the fluctuations can also help predict system performance and associated uncertainties in expected echoes. This tutorial focuses on “physics-based statistics,” which is a predictive form of modeling the fluctuations. The modeling is based principally on the physics of the scattering by individual scatterers, addition of echoes from randomized multiple scatterers, system effects involving the beampattern and signal type, and signal theory including matched filter processing. Some consideration is also given to environment-specific effects such as the presence of boundaries and heterogeneities in the medium. Although the modeling was inspired by applications of sonar in the field of underwater acoustics, the material is presented in a general form, and involving only scalar fields. Therefore, it is broadly applicable to other areas such as medical ultrasound, non-destructive acoustic testing, in-air acoustics, as well as radar and lasers.The content of this work is based on research conducted in the past from years of support from the U.S. Office of Naval Research and the Woods Hole Oceanographic Institution, Woods Hole, MA. Writing of the manuscript by W.-J.L. was also supported by the Science and Engineering Enrichment and Development Postdoctoral Fellowship from the Applied Physics Laboratory, University of Washington, WA. The authors are grateful to Dr. Benjamin A. Jones of the Naval Postgraduate School, Monterey, CA for his thoughtful suggestions on an early draft of the manuscript. The authors are also grateful to the reviewer for the in-depth and constructive recommendations. W.-J.L. and K.B. contributed equally to this work.2019-06-0

    Applications of numerical models for rough surface scattering

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (p. 273-286).by Joel Tidmore Johnson.Ph.D

    Applications on Ultrasonic Wave

    Get PDF
    This book presents applications on the ultrasonic wave for material characterization and nondestructive evaluations. It could be of interest to the researchers and students who are studying on the fields of ultrasonic waves

    Examining the Validity of Using a Gaussian Schell-Model Source To Model the Scattering of A Fully Coherent Gaussian Beam From A Rough Impedance Surface

    Get PDF
    Military applications that use adaptive optics (AO) often require a point source beacon at the target to measure and correct for wavefront aberrations introduced by atmospheric turbulence. However, turbulence prevents the formation of such a point beacon. The extended beacons that are created instead have finite spatial extents and exhibit varying degrees of spatial coherence. Modeling these extended beacons using a Gaussian Schell-model (GSM) form for the autocorrelation function would be a convenient approach due to the analytical tractability of Gaussian functions. We examine the validity of using such a model by evaluating the field scattered from a rough impedance surface using a full-wave computational technique called the method of moments (MoM). The MoM improves the fidelity of the analysis since it captures all the physics of the laser-target interaction, such as masking, shadowing, multiple reflections, etc. Two rough-surface targets with different roughness statistics are analyzed. The simulation results are verified with experimental bidirectional reflectance distribution function measurements. It is seen that for rough surfaces, in general, the scattered-field autocorrelation function is not of a GSM form. However, under certain conditions, modeling an extended beacon as a GSM source is legitimate. This analysis will aid in understanding the behavior of extended beacons and how they affect the overall performance of an AO system
    corecore