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ABSTRACT 
 
 

Analysis of electromagnetic scattering of buried objects is a subject of great 

interest due to its practical importance in both military and civil applications, such as 

subsurface investigation and target detection. In reality, the earth is of layered structure of 

random rough interfaces, which leads to a greatly increased complexity of the analysis. 

However, it is necessary to incorporate the nature of random rough surface and the 

layered structure because they both have substantial impact on the scattered signature and 

hence affect the study of inverse scattering and detection of buried objects. 

In this dissertation, a Monte-Carlo multidomain pseudospectral time domain 

(MPSTD) method is developed for investigating the scattering from cylinders buried 

below a random rough surface separating two half spaces under various conditions. As a 

prelude, the formulation of multidomain PSTD algorithm is presented. Then, this 

formulation is extended and combined with the Monte-Carlo approach to analyze the 

scattering of an object buried below a random rough surface of finite length.  In the 

analysis, special attention is paid to the treatments of the random rough surface including 

its profile generation, matching with CGL points, and subdomain patching. Next, the 

scattering of a cylinder buried below a random rough surface of infinite length is studied 

and a two-step computation model based on the Monte-Carlo MPSTD method is 

developed.  Further, in order to better simulate the real situation, the analysis is then 

extended to study the scattering from one or more cylinders embedded in a layered half 

space with random rough surfaces. Finally, a near-zone field to far-zone field 

transformation technique is developed and presented.  Sample numerical results under 

different conditions, involving random rough surface of various roughness, lower half 



 
 

iii 
 

space with different permittivities, and cylinders of circular and rectangular shapes are 

presented, validated, and analyzed. Throughout this research, a numerical technique 

based on Monte-Carlo method and MPSTD approach has been developed and validated 

for investigating cylinders buried in a half space with random rough surfaces. It is 

observed that the roughness of the random rough surface and the electromagnetic 

properties of the lower half space can significantly affect the scattered signature of the 

buried object. 
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CHAPTER ONE  
 

INTRODUCTION 
 
 

In the Ph.D. dissertation research, an effective numerical technique is developed 

for the investigation of electromagnetic scattering by objects buried in a layered half 

space with random rough surfaces. 

Over the last few decades, significant research has been undertaken on the 

analysis of electromagnetic scattering of buried object for its practical importance in both 

military and civil applications, such as subsurface investigation, target detection, and 

remote sensing. In reality, the earth is of multi-layered structure with random rough 

surfaces, which leads to a greatly increased complexity of the analysis. However, it is 

necessary to incorporate the layered structure and the interface roughness in the 

electromagnetic scattering study as they can significantly influence the scattered 

signature. A number of frequency domain numerical methods have been published 

dealing with the scattered signature of objects near a random rough surface.  These 

methods include the Forward-backward method (FBM) [1], generalized FBM (GFBM) 

[2], [3], FBM-spectrum accelerate algorithm (FBM/SAA) [4], and finite element method 

(FEM) [5], [6]. And surface integral equations have been formulated and solved by the 

method of moments (MoM) [7-10].  The integral equation formulation has also been 

employed together with a steepest descent fast multipole method (SDFMM) for shallow 

objects buried under random rough surface [11-14].  In [14], the scattering from two-

layered random rough surfaces with and without buried objects has been studied using 

SDFMM. However, this analysis was limited to the case that the depth of the 
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underground interface must be less than one free-space wavelength to satisfy the quasi-

planar structure constraint of the SDFMM. 

An effective numerical technique for determining the scattering of an object near 

a random rough surface is the Monte-Carlo finite-difference time-domain (FDTD) 

technique. The FDTD method has been employed for studying the scattering by a random 

rough surface (without buried objects) [15] , from an object above a random rough 

surface [16] and a two-dimensional (2D) PEC cylinder above two-layered 1D random 

rough surface [17].  The FDTD algorithm can obtain direct solutions of the Maxwell’s 

equations in differential form, which avoids the complexity of solving large linear 

equations generally required by MoM. As indicated in [15], in contrast to the surface 

integral equation formulation, the FDTD approach is more effective for modeling 

inhomogeneous objects and complex geometries.  And either pulsed or continuous wave 

(CW) illumination can be used, propagation of both the total and scattered fields can be 

observed in the time domain. However, the FDTD method has major drawbacks.  As 

pointed out in [18] and [19], the FDTD approach based on the classical Yee scheme with 

quadratic cell mapping in space gives the modeled structures a “staircase nature” and 

requires a number of grids per wavelength. Numerous numerical examples reported in the 

literature have verified that a fine discretization of 10-20 cells per minimum wavelength 

is required to obtain acceptable accuracy of solutions.  Furthermore, the classical FDTD 

approach is ill-suited for arbitrary geometries with multiple materials as the 

electromagnetic boundary conditions are not automatically nor exactly imposed and 

satisfied at these boundaries. 
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In recent years, the pseudospectral time-domain (PSTD) method [20] has been 

developed and successfully applied to solve various problems of practical interest, 

including electromagnetic scattering problems. There are two types of PSTD approaches, 

the Fourier and Chebyshev PSTD algorithm. The Fourier PSTD algorithm is easy to 

implement and requires only two points per minimum wavelength, but its accuracy is 

lower when applied to curved boundaries, perfect conductors, and discontinuous material 

distributions. The Chebyshev PSTD, using Chebyshev collocation methods to 

approximate spatial derivatives, has shown a spectral accuracy for discontinuous 

materials but with slightly increased computational burden of π cells per minimum 

wavelength. 

Although both Fourier and Chebyshev PSTD method demonstrate a remarkable 

improvement in accuracy and efficiency over FDTD method, they suffer from intensive 

computation burden when solving problems with strong internal inhomogeneity. To 

overcome this difficulty, the multidomain PSTD method is a suitable alternative, in 

which the field components are evaluated locally within a series of non-overlapping 

subdomains.  The multidomain scheme can greatly reduce the cost in the evaluation of 

spatial derivatives, and can well resolve the strong local inhomogeneity since the 

subdomain curvature can be made conformal to the problem geometry.  The multidomain 

PSTD has been used for determining the electromagnetic scattering by objects placed in 

an open space [21] – [28] and for investigating the scattering of 2D cylinders buried in a 

half space with a planar or an undulating surface [19]. Being compared with the FDTD 

method, the PSTD method requires significantly less CPU time and core memory for the 

same or even higher accuracy, as illustrated by a number of numerical experiment results 
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reported in the literature [19], [24] and [29].  Moreover, the spatial grid is not staggered 

like the grid used in the classical FDTD Yee scheme, so that the programming is simpler 

and representation of materials is straightforward. Also, as indicated in [19], in contrast to 

the classical FDTD Yee scheme that gives “staircase nature”, the multidomain PSTD 

approach can deal with complex geometry with a great flexibility. This nature warrants a 

high potential of application of the multidomain PSTD method in the analysis of 

scattering involving random rough surfaces, the geometry of which is apparently complex 

and needs special attention. 

To the best of the author’s knowledge, the PSTD method that is more effective 

than the classic FDTD approach, has not been applied in combination with the Monte-

Carlo method for determining the scattering of objects buried below a random rough 

surface, which can better simulate the real situation and is of practical interest. Therefore, 

in the dissertation research, a Monte-Carlo multidomain PSTD algorithm is to be 

developed for investigating the scattering from a 2D object embedded in a layered half 

space with random rough surfaces. 

The rest of the dissertation is organized as the follows. In Chapter 2, the 

multidomain PSTD algorithm is formulated and then validated for studying the scattering 

of a cylinder in free space.  In Chapter 3, this formulation is extended and combined with 

the Monte-Carlo approach to analyze the scattering of an object buried below a random 

rough surface of finite length.  In the analysis, special attention is paid to the treatment of 

the random rough surface. In Chapter 4, the scattering of a cylinder buried below a 

random periodic rough surface of infinite length is studied and a two-step computation 

model is developed.  Then, the analysis of scattering from cylinders embedded in a 
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layered structure with random rough surfaces is presented in Chapter 5. Finally, in 

Chapter 6, the near-zone field to far-zone field transformation technique is discussed. 
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CHAPTER TWO 

FORMULATION AND IMPLEMENTATION OF MULTIDOMAIN PSTD  

ALGORITHM FOR THE SOLUTION OF 2D SCATTERING PROBLEMS  

IN FREE SPACE 

 
As a prelude of the execution of the dissertation proposed in Chapter 1, in this 

chapter, a multidomain Chybeshev PSTD algorithm is formulated and implemented for 

the solution of scattering of a 2D cylinder located in free space. Sample numerical results 

are presented to validate the accuracy, flexibility, and efficiency of the algorithm. 

 

2.1 Strategy of the Multidomain PSTD (MPSTD) Algorithm [20] 

1) The computational domain is decomposed into a series of non-overlapping 

subdomains. Each subdomain is then mapped to a unit square by coordinate 

transformation. 

2) The electromagnetic fields are calculated independently within each subdomain at 

each time step. 

3) Patching conditions are applied to pass information between the adjacent 

subdomains to recover the global solution at one time step. 

4) A Runge-Kutta method is utilized to advance the solution to the next time step. 

 

2.2 Formulation of the Multidomain PSTD Algorithm  

(1) Division of the Computation Domain and Subdomain Mapping  

As the first step of the formulation of the multidomain PSTD algorithm, the 

computation domain is divided into a number of quadrilateral non-overlapping 
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subdomains that are naturally conformal with the problem geometry and material 

distribution as shown in Fig. 2.1. For a general inhomogeneous medium each subdomain 

contains only smoothly varying materials. 

                             

Fig. 2.1 Division of the computation domain into non-overlapping subdomains. 

Then, each subdomain, which is in general a curved quadrilateral in (x, y) 

coordinates, is mapped into a unit square ([-1, 1] x [-1, 1]) in (ξ, η) coordinates by means 

of the coordinate transformation as illustrated in Fig. 2.2.  

                   

Fig. 2.2 Subdomain mapping from a curved quadrilateral to a unit square. 

For a subdomain of rectangular shape, we employ a linear transformation making 

use of the maxima and minima of x and y as 
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And for a curved quadrilateral, a curvilinear transformation, in terms of Lagrange 

polynomials based on knowledge of the anchor points, is used. If we denote these anchor 

points as for , then 

                                            

0 0

0 0

( ) ( ) ,

( ) ( ) .

QP
P Q

p q p q
p q

QP
P Q

p q p q
p q

x x f f

y y

 

   

 

 





 

                                     

(2.2) 

Next, making use of the coordinate transformation 
 
the 2-D 

Maxwell’s equations for TMz polarization in the (x, y) coordinates 
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can be rewritten in the (ξ, η)  coordinate system in matrix form as 
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(2) Chebyshev Spectral Collocation Procedure  

After the coordinate mapping, the Chebyshev spectral collocation procedure [20], 

[30]-[32] is performed for treating the electromagnetic field quantities and their spatial 

derivatives in the transformed (ξ, η) coordinate. First, the grid points in the transformed 

coordinates are taken at the Chebyshev-Gauss-Lobatto (CGL) points,   

                                                                                        (2.5) 

Then, the electromagnetic field components ( , )q    are interpolated by the tensor-

product Chebyshev-Lagarange polynomial as 

                                              
                                 (2.6) 

where the Lagrange interpolation polynomials are defined by 

                                                                                 
(2.7) 

in which and  is the N
th

-order Chebyshev polynomial 

.  Finally, with the interpolation in (2.7), the spatial derivatives of 

the field quantities ( , )q    with respect to   and   are expressed as 

                                                                                            (2.8) 

where the differentiation  matrix is given by 
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(3) Implementation of Well-Posed PML  

In order to truncate the unbounded medium and confine the solution in a finite 

computational domain, an absorbing boundary condition (ABC) is introduced, by 

implementing a well-posed perfectly matched layer (PML) [33] - [37] surrounding the 

“regular” region. In the PML, the complex coordinate-stretching variables  

                                      

( )( )
1 ,   1 ,yx

i yi x
x x y y


 

              
                         (2.10) 

are used to rewrite the Maxwell’s equations for the electromagnetic field in the PML 

region. Defining new field variables for the PML region,  

                                ˆ ˆ,    x x x x y y y yH H Q H H Q    
                                  (2.11)        

the Maxwell’s equation in PML region can be written as                                                                                    
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 .                     (2.13) 

The appropriate profiles of x and y  are selected for the complex coordinate-stretching 

variables to adjust the attenuation in the PML region.  

   

 (4) Subdomain Patching  

In the multidomain PSTD algorithm, after the solution in each individual 

subdomain, the fields at the interfaces between adjacent subdomains do not naturally 

satisfy the boundary conditions. And we need to exchange information between the 

subdomains to obtain the global solutions. This is done by means of the subdomain 

patching [19], [20], [24], that is, at an interface separating two subdomains, we enforce 

the physical boundary conditions that require continuity of the tangential components of 

the electric and magnetic field at a dielectric interface; and zero tangential electric field 

component and normal magnetic field component on a perfect electric conductor (PEC) 

surface.  
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(5) Plane Wave Excitation and TF/SF Formulation  

In the past, the total field/scattered field (TF/SF) formulation [19], [20], [38] and 

the pure scattered field method [39], [40] have both been employed to implement a plane 

wave incidence in the PSTD algorithm for the solution of scattering problems. However, 

as pointed out in [20], the pure scattered field method is potentially complicated if a 

complex surface shape is involved. Therefore, in the dissertation research, we employ the 

TF/SF formulation to enforce the plane wave excitation. The total field is calculated in 

the interior region and the scattered field is computed in the exterior region. Then, the 

boundary condition requirements of continuity of the tangential components of the 

electric and magnetic field are enforced at the interface between the TF and SF regions. 

 

(6) Time Stepping  

The 2-D Maxwell’s equation (2.4), formulated in the (ξ, η) coordinates contains 

both spatial derivatives and time derivatives. The spatial derivatives of the fields at the 

grid points are obtained by the Chebyshev spectral collocation procedure presented above. 

To take care of the time derivatives, we use a fourth order, five-stage Runge-Kutta 

method [41] – [43] for the time integration to advance the solution to the next time step. 

 

(7) Application of Filtering Technique 

As pointed in [20], numerical oscillations may appear when pseudospectral 

methods are applied. These oscillations are directly caused by the solution discontinuities, 

and have a high-frequency character. For the multidomain PSTD scheme, such 

discontinuities can arise from edges and corners at subdomain interfaces, potentially 
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causing late-time instability. The instability would be severe due to edges and corners on 

a random rough surface as a subdomain interface.  

The filtering technique [20] is an effective way to overcome this difficulty. By 

multiplying the Chebyshev coefficients with a gradually decreasing function n , it can 

reduce the high-frequency components and thus improve the stability of the MPSTD 

solutions. Moreover, with the utilization of the filtering technique, larger time step may 

be used, which can greatly reduce the computation time. The filtering is implemented 

after the fields are updated in the whole computational domain. The filtering function n  

is selected to be an exponential cut-off function [44], [45] for this research. 

 

2.3 Numerical Results and Discussion 

The MPSTD algorithm formulated above is implemented to determine the 

scattering of a 2D cylinder located in free space. Sample numerical results are presented 

and validated in this section.  For the numerical results presented, the excitation is taken 

to be a normal TMz plane wave incidence, the time domain function of which is the first 

derivative of Blackmann-Harris window function, 
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                       (2.14) 

where a1=-0.488, a2=0.145, a3=-0.01022222 and T=1.55/f,  f is the central frequency, 

which is taken to be 100MHz. 

 

(1) Plane Wave Propagation in Free Space 
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To validate the MPSTD algorithm, first, we employ it to compute the total field of 

a plane wave propagating in -y direction in an open space, in absence of scatterer. The 

computation domain is illustrated in Fig. 2.3(a), in which a grid with 14×14 cells is used 

for each subdomain. The computed total electric field Ez,total is compared with the incident 

field Ez,inc. From the comparison shown in Fig. 2.3 (b) one observes that the two curves 

fall on top of each other as expected. 

 
 (a) 

 
(b) 

Fig. 2.3 Plane wave propagation in free space 

 (a) Geometry of the computation domain,  

        (b) Comparison between the total field and the incident field. 
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(2) Scattering from a Square PEC Cylinder in Free Space 

In the second example, scattering of a square PEC cylinder with side length 2m 

under a normal plane wave incidence is presented. The geometry and the computation 

domain are depicted in Fig. 2.4(a). To check the result, we compare the tangential 

component of the total magnetic field at the center point on the illuminated side of the 

square PEC cylinder with that of the incident magnetic field. As shown in Fig. 2.4(b), the 

magnitude of the tangential component of the total magnetic field is about equal to that of 

the incident field doubled, as one would expect. 
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(b) 

Fig. 2.4 Plane wave scattering from a PEC square cylinder in free space  

(a) Computation domain, (b) Comparison of Hx,inc and Hx,total at (0, 1).  

 

(3) Scattering from a Circular PEC Cylinder in Free Space 

The third example considers the plane wave scattering from a PEC circular 

cylinder under normal incidence. The geometry and the grid points used are shown in Fig. 

2.5(a). The radius of the circular cylinder is 2m and the observation point is located at (-

2.1238, -1.9287).  The MPSTD computation result is compared with the analytical 

solution [46] in Fig. 2.5(b), in which an excellent agreement is observed. 
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 (a) 

 

(b) 

Fig. 2.5 Plane wave scattering from a PEC circular cylinder in free space  

(a) Computation domain, (b) Comparison of the MPSTD results with analytical solution.  
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(4) Scattering from a Dielectric Circular Cylinder in Free Space 

In the last example, we consider the scattering of a dielectric circular cylinder 

with radius of 2m, ɛr = 4 and µr = 1, centered at the origin.  The geometry is illustrated in 

Fig. 2.6(a). The MPSTD computation result of the normalized scattered field observed at 

(-2.1036, -2.1036) is presented in Fig. 2.6(b), which agrees with the published data given 

in [19]. 
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     (b) 

Fig. 2.6 Plane wave scattering from a dielectric cylinder in free space  

(a) Geometry of the computation domain,  

(b) Comparison of the MPSTD result with published data. 
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CHAPTER THREE 

MONTE-CARLO MPSTD ANALYSIS OF SCATTERING OF CYLINDERS BURIED 

BELOW A RANDOM ROUGH SURFACE OF FINITE LENGTH 

 
In this chapter, we present formulation of a Monte-Carlo MPSTD numerical 

technique for investigating the scattering from a cylinder buried below a random rough 

surface of finite length. In the formulation, special attention is paid to the treatment of the 

random rough surface. Sample numerical results of the scattering are presented, and 

analyzed. After validation of the formulation, it will be extended for the analysis of 

scattering of a cylinder buried below a periodic random rough surface of infinite length in 

the next chapter. 

 

3.1 Treatment of the Random Rough Surface in the Monte-Carlo Multidomain 

PSTD (MPSTD) Algorithm Formulation 

 (1) Generation of Random Rough Surface Profile 

Different from the previously published PSTD analysis of electromagnetic 

scattering problems, this research involves a random rough surface as shown in Fig. 3.1.  

            

0 2 0( , )r  

0 1 0( , )r  

 

Fig. 3.1 Cylinder buried below a random rough surface of finite length. 
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A random rough surface with Gaussian spectrum profile y = f(x) [47], [48] can be 

generated as the follows. First, a set of uniformly distributed sampling points is selected 

by 

                                             /mx mL N                                               (3.1) 

where L is the length of the random rough surface, N is the number of the sample points. 

Then the rough surface profile can be obtained using the inverse Fourier transform 
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where the inverse Fourier transform coefficients are given by 
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in which r and r  are random numbers and  
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                                                 (3.4) 

where h and l are the rms height and the correlation length of the random rough surface. 

Such generated a sample random rough surface profile is shown in Fig. 3.2 in blue color. 

 

(2) Random Rough Surface Profile Matching with CGL points 

Note that the random rough surface profile y = f(xm) is generated as a function of 

xm. But in a MPSTD subdomain that is partially bounded by the rough surface, the profile 



 
 

22 
 

ymapped is a function of xmapped. Both xmapped and ymapped are related to the CGL points in the 

(, ) coordinate by the coordinate transformation. Since xm are uniformly distributed but 

xmapped are not, they are normally different; hence the two profiles of y = f(xm) and ymapped 

in general do not coincide. However, for each point of xmapped, we can find the points xm 

adjacent to it, then employ an interpolation technique to match xm with xmapped; and 

subsequently y = f(xm) with ymapped. After the matching making use of the interpolation, a  

comparison of the random rough surface profile with Gaussian spectrum and that 

obtained using the mapped CGL points is illustrated in Fig. 3.2, from which we observe 

that these two profiles fall on top of each other. Then, using the values of y = f(xm) (or 

equivalently ymapped) on the random rough surface profile, the other grid points within a 

subdomain that is partially bounded by the random rough surface can be determined.    

 

Fig. 3.2 Comparison of a random rough surface profile with Gaussian spectrum and that 

obtained using mapped CGL points. 

 

(3) Subdomain Patching for Subdomains Separated by Random Rough Surface  

-4 -3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x (m)

y 
(m

)

 

 

 Generated random rough surface profile

 Interpolated profiles using mapped CGL points



 
 

23 
 

As shown in Chapter 2, in the multidomain PSTD algorithm, after the solution in 

each individual subdomain, it is necessary to execute the subdomain patching by 

enforcing the physical boundary conditions on the subdomain interfaces. In particular, at 

a random rough surface separating two dielectric subdomains of different 

electromagnetic properties, we enforce the continuity of the tangential components of 

the fields, and the details are presented below. As shown in Fig. 3.3, at a grid point on 

the random rough surface, the unit vector normal to the surface can be found by 

                                                    
2

ˆ ˆ'( )
ˆ ,

1 '( )

f x x y
n

f x

 



                                                  (3.5) 

and the unit vector tangential to the surface is  
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x f x y
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f x





                                                   (3.6) 

In equations (3.5) and (3.6), ' ( )f x is the slope of the random rough surface at that point. 

        

     Fig. 3.3 Unit vectors tangential and normal to a random rough surface. 

 Using these two equations, we can extract the normal and tangential component 

of the fields by taking dot products of n̂ or l̂ with the corresponding field. Then, by 

enforcing the condition that the tangential components of the fields must be continuous 

and the normal components of the fields are left unchanged, the updated electric field for 

TMz polarization can be determined by 
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and the updated magnetic field components are found to be 

1 1 2 1 2 1 12 2

1 1 '( )
' [ '( )( )] [ '( ) ],

2 1 '( ) 1 '( )x x x y y x y

f x
H H H f x H H f x H H

f x f x
      

 
    (3.8a) 

1 1 2 1 2 1 12 2

1 '( ) 1
' [ '( )( )] [ '( ) ],

2 1 '( ) 1 '( )y x x y y x y

f x
H H H f x H H f x H H

f x f x
      

 
     (3.8b) 

in region 1 and  

2 1 2 1 2 2 22 2

1 1 '( )
' [ '( )( )] [ '( ) ],

2 1 '( ) 1 '( )x x x y y x y

f x
H H H f x H H f x H H

f x f x
      

 
    (3.9a) 

2 1 2 1 2 2 22 2

1 '( ) 1
' [ '( )( )] [ '( ) ]

2 1 '( ) 1 '( )
.y x x y y x y

f x
H H H f x H H f x H H

f x f x
      

         
(3.9b) 

in region 2.  

 

3.2 Determination of the Composite Fields and Its Implementation in the TF/SF   

Formulation 

A buried cylinder shown in Fig. 3.1 is below a random rough surface separating 

two semi-infinite homogeneous spaces. A plane wave impinges at the rough surface and 

its time function may be a pulsed or continuous wave. The incident wave driving the 

scattering of a buried cylinder is different from that of an object in an open space. It 

should be determined by a “three-wave approach” that was used in FDTD analysis for the 

scattering of an object buried below a planar interface [49] – [51]. As pointed out in [49], 

the driving incident wave is the composite of the initial incident, reflected, and 

transmitted waves. In the upper half space, the driving composite field is the sum of the 

initial incident field plus the reflected field; and in the lower half space, the driving 
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composite field (the driving incident field to the buried cylinder) is the transmitted field. 

The initial incident field, the reflected and the transmitted filed can be calculated 

analytically in absence of the scatterer in time domain, taking into account the time delay 

for the fields to reach a point on the TF/SF interface. Such calculated driving composite 

field can be readily enforced on the TF/SF interface in the MPSTD algorithm. 

The driving composite field determined from the “three-wave approach” for the 

scattering of a cylinder buried below a planar interface is extended in the dissertation 

research for the analysis of the scattering of a cylinder buried below a random rough 

surface. For the calculation of the driving composite field, a virtual planar interface is 

placed at y = 0 along the rough surface as shown in Fig. 3.4. The random rough surface 

just causes additional inhomogeneities above/below the virtual planar interface; and these 

inhomogeneities can be treated as “additional scatterers” touching the virtual planar 

surface, illuminated by the composite fields that can be determined by the three-wave 

approach.  

                     

0 2 0( , )r  

0 1 0( , )r  

 

Fig. 3.4 A virtual planar interface for the calculation of composite driving fields. 
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3.3 Monte-Carlo Statistic Average 

Since the rough surface involved in the dissertation research has a random nature, 

a statistic average of the scattering of the buried cylinder needs to be determined. As 

pointed in [52], the Monte-Carlo method (MCM) is also known as the method of 

statistical trials. This method has been used in the past together with an integral equation 

formulation in the frequency domain [12] and with FDTD method in the time domain 

[15], [16] for the analysis of electromagnetic scattering involving a random rough surface. 

In this research, the Monte-Carlo analysis is carried out by the following steps. First, a set 

of random rough surfaces with Gaussian spectrum is generated. Then, the multidomain 

PSTD algorithm formulated above is employed to determine the scattering of a buried 

object below each of the rough surfaces generated. And finally, the statistic average of 

the scattering is determined. To make sure that the Monte-Carlo statistic average results 

converge, a series of numerical tests is performed and presented in the next section. 

 

3.4 Numerical Results and Discussion 

(1) Covergence Test for the Monte-Carlo MPSTD Method 

For the Monte-Carlo method as a method of statistical trials, its convergence is an 

important issue.  To make sure that the numerical results of the Monte-Carlo MPSTD 

technique formulated above converges, a set of N random rough surfaces is generated and 

the multidomain PSTD numerical technique is employed N times corresponding to each 

of the random rough surfaces generated, and then the Monte-Carlo statistic average is 

obtained. For the numerical tests, the upper half space is taken to be air 1( 1)r   and the 

lower half space is characterized by 2 3r  . The random rough surface is of length 
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010  (3.33 )L m  , correlation length 00.5  (0.167 )cl m  , and the rms height 

00.3  (0.1 )rms m  . 

In the first test, only the random rough surface, in absence of scatterer, is 

considered. The geometry and computation domain are illustrated in Fig. 3.5(a). The 

numerical results of electric field Ez obtained at an observation point (1, 2) corresponding 

to different number N are presented in Fig. 3.5(b). From the data shown in this figure, one 

notes that the numerical results have a significant change when N is increased from 2 to 8 

and 8 to 14, but the change becomes very little when N is further increased from 14 to 18 

and 22. In other words, the Monte-Carlo MPSTD results converge after it is executed 14 

times for solving this problem. 

 

  (a) 

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

x (m)

y 
(m

)



 
 

28 
 

 

     (b) 

Fig. 3.5 Scattering of random rough surfaces 

(a) Computational domain,  

(b) Convergence test results for various numbers of random rough surfaces. 

In the second numerical test, a rectangular lossy dielectric cylinder 

( 50,  1,  =0.01s/m)r r     of dimension 0 02 2  (0.67 0.67 )m m     is placed in a 

homogeneous medium below the random rough surface as shown in Fig. 3.6(a). The 

parameters of lower half space are 3,  1,  =0r r    . The numerical results of Ez 

observed at (-1, 2) are presented in Figs. 3.6(b), from which one observes the 

convergence of the numerical results similar to that of the previous numerical test. In 

addition, the electric field spatial distribution at t=15ns and t=30ns are given in 3.6(c) 

and 3.6(d) respectively, where the shape of the rough surface and part of the lossy 

dielectric buried cylinder are illustrated. 
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   (c)                                                                  (d) 

Fig. 3.6 Scattering of a rectangular lossy dielectric cylinder buried below a random rough 

surface observed at (1, 2)  

(a) Computational domain,  

(b) Convergence test results for various numbers of random rough surfaces,  

(c) Field distribution of Ez at t=15ns, (d) Field distribution of Ez at t=30ns. 

 

(2) Validation of the Monte-Carlo MPSTD Algorithm 

To validate the Monte-Carlo MPSTD algorithm formulated, next, we present 

numerical results of the scattering of a circular PEC cylinder of radius 1.414r m  

(0.470) buried below a random rough surface, which is of the same parameters given in 

the previous section. The computation domain with grids is depicted in Fig. 3.7(a). Fig. 

3.7(b) shows the numerical results of Ez observed above the rough surface at (0, 2) with 

various lower half space relative permittivity r2.  From the data presented, one notes that 

as r2  changes from 3, to 2, and finally to 1, the results gradually reduce to that for the 

circular PEC cylinder located in free space, as expected. Moreover, one observes that as 

r2 = 1, the numerical result shown in this figure is exactly the same as the analytical 
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solution, as it should be. Also, it is of interest to note that there is a time delay of the 

scattered wave propagation as r2 increases. This is due to the fact that the scattered wave 

propagates in the lower half space at a slower speed corresponding to a larger relative 

permittivity there. In addition, the data presented shows how the electromagnetic 

property of the lower half space can affect the scattered signature. But as the relative 

permittivity of the lower half space becomes 1, the contribution from the random rough 

surface disappears, because the media interface does not exist anymore as the relative 

permittivities of the two half spaces become the same.  
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(b) 

Fig. 3.7 Scattering of a circular PEC cylinder buried below a random rough surface  

(a) Geometry and the computation domain, (b) Ez observed at (0, 2) for various 2r .  

  

(3) Effect of Roughness of Random Rough Surface 

In the next two examples, we present the numerical results to illustrate the effect 

of roughness of a random rough surface on the scattering of normal plane wave incidence. 

The first one is for a random rough surface only; its geometry and computation domain 

remain to be the same as that illustrated previously in Fig. 3.5(a). The scattering of the 

random rough surface with various rms height rms , observed at (1, 2), is shown in Fig. 

3.8. As illustrated in this figure, the rms height of a random rough surface can 

significantly affect its scattering. It is of interest to observe that the scattering from a 

random rough surface is weaker than that by a flat surface, and when the roughness 

increases, the strength of the scattered field gets weaker. This is due to the fact that the 

scattered field by a flat surface under plane wave normal incidence is simply the reflected 
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wave. The waves reflected from all the points on the flat surface are in one single 

direction.  But for a random rough surface, the waves scattered from different points 

would be in different directions and they may unconstructively interfere each other. Also, 

it is worth noting that as the rms height reduces from 0.3m 0(0.1 )  to 0.2m 0(0.067 )  and 

then 0.1m 0(0.033 ) , the numerical results of the electric field Ez tend to gradually 

converge to the analytical result for a flat surface ( 0)rms  , as expected. 

 

Fig. 3.8 Scattering of a random rough surface observed at (1, 2) for various rms . 

 The next example is for the scattering of a circular PEC cylinder buried below the 

random rough surface studied in the previous example. The numerical results of Ez 

observed above the rough surface at (1, 2) for various rms height rms is presented in Fig. 

3.9, where a similar phenomenon is observed as seen in Fig. 3.8.  As rms reduces from 

0.3m 0(0.1 )  to 0.2m 0(0.067 ) and then 0.1m 0(0.033 ) , the numerical results of the 

electric field Ez tend to gradually converge to that for the circular cylinder buried below a 
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flat surface ( 0)rms  , as expected. In addition, this figure shows that the roughness of the 

random rough surface has a significant influence on the scattering of the buried cylinder. 

By comparing Figs. 3.8 and 3.9, one notes a big difference between the fields presented 

in these two figures, which represents a strong scattered signature of the buried cylinder.  

 

Fig. 3.9 Scattering of a circular PEC cylinder buried below a random rough surface 

observed at (1, 2) for various rms . 
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CHAPTER FOUR 

SCATTERING OF CYLINDERS BURIED BELOW A RANDOM PERIODIC ROUGH  

SURFACE OF INFINITE LENGTH 

 
The scattering of cylinders buried below a random rough surface of finite length 

has been studied in the previous chapter. However, in reality, the random rough surface 

could be of large (or infinite) length, which can be viewed as an extensive periodic 

structure. To take care of this more realistic case, in this chapter, we develop a Monte-

Carlo MPSTD numerical technique for investigating the scattering of a cylinder buried 

below a random periodic rough surface of infinite length. In the development, the 

periodic boundary condition (PBC) is enforced. The computation model is formulated by 

two steps as presented in details below. After the computation, sample numerical results 

are presented and analyzed to validate the numerical technique. 

 

4.1 Computation Model for Scattering from a Random Periodic Rough Surface 

Alone 

(1) Introduction to a Random Periodic Extensive Rough Surface  

In the computation model for simulating the scattering of an infinite-long rough 

surface, the rough surface must be artificially truncated at the two ends of the 

computation domain that is of finite length. This truncation would force the current on 

the rough surface to be zero at the truncation edges. Subsequently, such an abrupt change 

of surface current would cause artificial reflection from the two edges. To prevent the 

current discontinuity, a taped incident wave has been introduced in spatial or spectral 

domain to make the excitation decay gradually and become negligible at the surface 
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edges [48]. But as the incident angle increases, especially at low grazing angles, the 

illuminated area becomes large, which would require huge memory and causes 

complexity, making the numerical simulation difficult.  

In the dissertation research, we consider a random rough surface of infinite length 

as a periodic extensive structure as shown in Fig. 4.1, where L is the length of one period. 

To simulate the statistic characteristics of the roughness of a random rough surface, L 

should be greater than several correlation lengths lc and in general it is taken to be [53] 

                                                            15 cL l                                                              (4.1) 

Then the diffraction from the truncated edges can be eliminated by enforcing a periodic 

boundary condition (PBC) there [48, 54-55]. According to the Floquet Theorem [56], by 

enforcing the PBC, the fields along an extensive periodic rough surface can be readily 

described by the fields in one period cell. The advantage of using the periodic extensive 

structure and the PBC is that only one period of rough surface needs to be included in the 

computation domain, which can significantly improve the computation efficiency.  

 

Fig. 4.1 A random periodic rough surface. 

 

(2) Formulation of the Computation Model 

The MPSTD computation domain for studying the scattering from a periodic 

random rough surface is depicted in Fig. 4.2. For simplicity, the PML regions 
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surrounding the ‘regular’ region are not included there. As shown in this figure, the 

computation domain is divided into two regions: the total field region and the scattered 

field region. In the total field region enclosed by A’B’E’F’, the field is the sum of the 

incident field to the rough surface, which is the driving composite field described in 

Chapter 3, and the field scattered by the rough surface. In the scattered field region 

enclosed by C’D’F’E’, only the field scattered by the rough surface exists. The incident 

fields are enforced at the four TF/SF interfaces A’F’, F’E’, E’B’ and B’A’.  

Also, as shown in Fig. 4.2, a period of rough surface is included in the 

computation domain. At its side boundaries a’d’ and b’c’, the periodic boundary 

conditions, for Ez as an example, are enforced [57], 

                                                ' ' ' '( , , ) ( , , ),z zb c a d
x

LE x y t E x y t v                                   (4.2a) 

                                                ' ' ' '( , , ) ( , , ),z za d b c
x

LE x y t E x y t v                                   (4.2b)   

where / sinxv v  is the phase velocity in x  direction, and  is the incident angle. At 

normal incidence 0  , we can simply set the nodal values of the fields on the periodic 

boundaries at left- and right-hand sides equal at every time step.  
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Fig. 4.2 The computation domain for a random periodic rough surface only (First step). 

 

4.2 Computation Model for Scattering from Buried Cylinder below Random 

Periodic Rough Surface of Infinite Length 

After placing a cylinder below a random periodic rough surface of infinite length, 

the structure is no longer periodic. Hence, the periodic boundary condition cannot be 

used anymore and the computation model must be modified. The new computation 

procedure is thus decomposed into two steps [16].  The key idea of the two-step approach 

is similar to that of a “three-wave” method presented in [58-60], which has been 

successfully used in the finite-difference time-domain (FDTD) analysis of scattering of 

an object buried below a planar media interface. As shown in [58], in such an FDTD 

analysis, first, the incident, reflected, and transmitted fields associated with the planar 

media interface are calculated in the absence of an object. Then, the calculated composite 

field (also called as the “three-wave” field), which is the sum of the incident and reflected 
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field in the upper half space and the transmitted field in the lower half space, is employed 

as the driving field of an object near the interface to determine the scattering of the object 

and interface combination. It is indicated in [58] that in principle, the interface involved 

in this approach that consists of two steps may be of any geometry; but one understands 

that if the media interface is a random rough surface instead of a planar surface, the 

scattered field by the rough surface, rather than the reflected and transmitted field 

associated with a planar interface, should be calculated first. Based on this key idea, the 

computation presented in this paper is performed in two steps. In the first step, the 

scattering of a random periodic rough surface is computed in the absence of an object so 

that the periodic boundary condition can still be used to confine the computation domain 

in a finite region. The computation domain for this step is the same as that depicted in Fig. 

2, and the MPSTD algorithm is employed to compute the near-zone field, which is the 

sum of the incident field and the scattered field from the rough surface. In the second step, 

a cylinder is placed below the rough surface and the near-zone field obtained in the first 

step is used together with the incident field to excite the buried cylinder and the 

interaction between the buried cylinder and the rough surface is taken into account. In the 

first step, only the random rough surface is considered and the computation model is the 

same as that depicted in Fig. 4.2. The near-zone field obtained is the sum of the incident 

field and the scattered field due to the rough surface. In the second step, the buried 

cylinder is placed below the rough surface; and the computation domain is shown in Fig. 

4.3, where the total field (TF) region is enclosed by abef, and the region outside abef is 

defined as the scattered field (SF) region.  The dimensions of abef and fecd are the same 
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as that of a’b’e’f’ and f’e’c’d’ depicted in Fig. 4.2, respectively, and the boundaries ad, bc 

and fe correspond to a’d’, b’c’ and f’e’ used in Fig. 4.2. 

Then, the near-zone field obtained in step 1 is used together with the incident field 

in the second step as the excitation source to the buried cylinder, which is injected on the 

TF/SF boundaries. The source introduced at the top and bottom TF/SF boundaries are the 

incident field used in step 1. However, the source enforced at the left and right 

boundaries are the near-zone field obtained in step 1. In this way, the near-zone field in 

the region enclosed by a’b’c’d’ from step1 can be transported to the region enclosed by 

abcd in step 2.  

 

Fig. 4.3 The computation domain for cylinder buried below a random periodic rough 

surface (Second step).  

As the buried cylinder is included, the incident field excites the random rough 

surface first, and the field scattered by the rough surface is calculated in step 1. Then, the 

cylinder is excited by the near-zone field obtained in step1. In turn, the field scattered by 
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the object will excite the rough surface and their interactions starts from there. The field 

in the total field region enclosed by abef is the sum of (a) the incident field, (b) the 

scattered field from rough surface alone excited by incident wave, (c) the scattering due 

to the buried cylinder excited by the near-zone field obtained in step1, and (d) the 

scattering due to the interaction between the cylinder and the rough surface. The fields 

existing in the total-field and scattered-field regions in steps 1 and 2 are illustrated in Figs. 

4.4(a) and 4.4(b). One notes that among the three components of the scattered fields, part 

(b) - the scattered field from the random periodic rough surface alone is indeed from the 

entire periodic structure due to the application of PBC based on Floquet theorem; and 

hence part (c) - the scattering from the buried cylinder is due to the excitation from the 

entire random periodic rough surface. Only part (d) - the interaction between the buried 

cylinder and the random periodic rough surface is an approximation - it is taken to be for 

one period of the rough surface that is right above the buried cylinder only; the 

interaction between the buried cylinder and the other parts of the rough surface is 

neglected due to the requirement that the computation domain must be finite. Therefore, 

it is important to have the length L of one period of the random periodic rough surface to 

be sufficiently large compared with the size of the buried cylinder so that the interaction 

between the cylinder and the other periods of the rough surface, which are at larger 

distances away from the cylinder, is weaker; and hence can be neglected as a good 

approximation. This is to be demonstrated in a numerical example presented in Section 

4.3. In addition, L must be much greater than the correlation length lc to simulate the 

statistic characteristics of the roughness of a random rough surface as mentioned before.  
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(a) (b) 

Fig. 4.4 Illustration of the fields in the TF and SF regions   

(a) Step 1, (b) Step 2. 

 

4.3 Numerical Results and Discussion 

 Using the two-step approach formulated above, sample numerical results are 

presented and analyzed. For all the numerical results presented, the excitation is taken to 

be a normal TMz plane wave incidence propagating along –y direction, the time domain 

function of which is the first derivative of Blackmann-Harris window function with 

central frequency 100f MHz . The random periodic rough surface is of period 

08  (2.67 )L m  in parts (1) and (2) and of period 010  (3.33 )L m   in part (3), and the 

correlation length 00.3 (0.1 )cl m  , which satisfies the requirement 15 cL l . It is of rms 

height 00.3 (0.1 )rms m  , unless otherwise specified. The medium above the rough 

surface is assumed to be free space and the medium below the rough surface is an 

isotropic, lossless medium with 1r  and 3,r  unless otherwise indicated. In all the 

computation domains presented in this section, the most outer subdomains are the PML 

regions.  The statistic average of the scattering is taken for 15 – 18 realizations of the 
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random rough surface after a series of numerical tests as described in Chapter 3 to make 

sure that the results converge. 

 

 (1) Verification of the Periodic Boundary Condition and validation of the two-step 

approach 

In the first numerical example, we consider a random periodic rough surface of 

infinite length alone. The computation domain is shown in Fig. 4.5(a), in which the total 

field region is the region 6 6, 6 2x y      , and the scattered field exists in the region 

6 6,2 4.x y     The left and right periodic boundaries are located at 4x   and 

4.x   Based on the Monte-Carlo statistic average of 15 rough surfaces, Fig. 4.5(b) shows 

the numerical results of the electric field observed at two different observation points 

4.2182x    and 3.7818x   along y = 1, which are separated by a distance of the length 

of a period. From this figure, one sees that the fields at these two points are identical, 

which shows that the resulting fields are indeed periodic after applying the periodic 

boundary condition. 
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(b) 

Fig. 4.5 Scattering from an infinite-long random periodic rough surface  

(a) Computation domain, 

(b) Fields observed at two points separated by a period of the rough surface. 

 

The second example is devoted to validate the two-step MPSTD approach. Since 

there is not existing result in the literature for the same problem solved in this work, we 

employ the two-step approach to study a simpler geometry, which is a circular PEC 

cylinder buried below a random rough surface of finite length; and then compared the 

numerical results with published data. As shown in Fig. 4.6(a), the random rough surface 

exists in the region of  4 ≪ ≪ 4 , it becomes a flat interface for x<-4 and x>4. The 

numerical results of the electric field Ez  obtained by employing the two-step approach is 

observed at (0, 2) and compared with the published data [61]. From the comparison 

illustrated in Fig. 4.6(b), one sees that the two sets of data fall on top of each other.  
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(a) 

 

(b) 

Fig. 4.6 Electric field at (0, 2) for a circular PEC cylinder buried below a random rough 

surface of finite length 

(a) The computation domain, 

(b) Comparison of the two-step MPSTD results with published data. 

 

(2) Scattering from Random Periodic Rough Surface Alone 

As a partial check of the two-step approach, in this section, we employ it to 

compute the fields due to a random periodic rough surface, in absence of the buried 
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cylinder, first. The geometry and the computation domain are the same as that illustrated 

previously in Fig. 4.5(a), hence is not repeated here. The periodic boundaries are 

enforced at 4x    and 4x   in step 1 and the TF/SF boundaries are at 4x    and 4x   

in step 2. Since there is no buried cylinder, one would predict that the field in the total 

field region obtained in step 2 should be the same as that obtained in step 1; and no field 

should be found in the scattered field region in step 2 since there is no scatterer.  

Numerical results of spatial distribution of the electric field obtained at a specific 

moment t = 20ns in step1 and step 2 are shown in Figs. 4.7(a) and (b), respectively. The 

phenomena illustrated by the results shown are exactly as what is predicted above. The 

near zone field in step1 is successfully transferred to step 2 and no field exists in the 

scattered field region. In addition, it is of interest to note that the field distribution 

presented in both figures well represent the shape of the rough surface depicted in Fig. 

4.5(a). 

         

                             (a)                                                                      (b) 

Fig. 4.7 Spatial distribution of the electric field obtained at t = 20ns  

(a) In step1, (b) In step2. 
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Then, in Fig. 4.8, we preset the same results but as a function of time observed at 

four observation points. At point (1, 1), which is in the total field region in both steps 1 

and 2, the fields obtained in these two steps are exactly the same as expected. At (-1, 3) 

that is in the scattered field region in step 1 and is in the top scattered field region 

enclosed by fecd in step 2, the two sets of data also fall on top of each other as they are 

supposed to be. At points (-5, -5) and (5, 1), which are in the total field region in step 1 

but in the left and right scattered field region in step 2, the scattered field obtained in step 

2 is zero as expected since there is no scatterer. The observations made above can also 

serve as a partial check of the correctness of the numerical model developed.  

         

                                 (a)                                                                     (b)

  

                                 (c)                                                                     (d) 

Fig. 4.8 Electric field as a function of time observed at different points in step1 and step 2. 
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Next, we present the numerical results corresponding to different lower medium 

2r  and various rms height rms . The results shown in Fig. 4.9 are for the electric field 

fields observed at (0, 2) for 2 23,  2,r r   and 2 1r  . From the data presented, one 

notes that the electric filed gradually reduces to that in free space as 2r varies from 3, to 

2, then 1; as expected. 

 

Fig. 4.9 Electric field at (0, 2) for different lower medium relative permittivities. 

Fig. 4.10 illustrates the numerical results of the electric field observed at (0, 2) for  

various rms heights of the random rough surface, 0.3m 0(0.1 ) , 0.2m 0(0.067 ) , 0.1m

0(0.033 ) and for a flat surface. From this figure, one sees that the result of the field 

gradually converges to the analytical result for a flat surface ( 0rms  ) as the rms height 

of the rough surface decreases from 0.3 to 0.2, to 0.1, and finally 0, as it is supposed to be. 

The observations made on the two examples above can serve as a partial check of the 

correctness of the numerical technique developed. 
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Fig. 4.10 Electric field at (0, 2) for various rms heights of the rough surface. 

 

(3) Scattering from Buried Cylinder below a Random Periodic Rough Surface  

In the next a few examples, we present the numerical results of the scattering of a 

circular PEC cylinder buried below a random periodic rough surface first. As indicated in 

the previous section, it is important to have the length L of one period of the random 

periodic rough surface to be sufficiently large compared with the size of the buried 

cylinder so that the interaction between the cylinder and the other periods of the rough 

surface, which are at larger distances away from the cylinder, is weaker; and hence can 

be neglected as a good approximation. This is demonstrated in a numerical example 

presented below. As illustrated in Figs. 4.11(a), 4.11(b), and 4.11(c), a period of the 

rough surface right above the buried cylinder is located in 5 5x    and the length of a 

period L = 10m remains unchanged; but the computation domain is taken to be of 

different lengths of 14m ( 7 7x   ), 18m ( 9 9x   ), and 22m ( 11 11x   ). The 

numerical results of the electric field observed at (0, 2), (-3, 2), and (-4, 2) are presented 
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in Figs. 4.11(d), 4.11(e), and 4.11(f), respectively; and in each of these three figures, the 

numerical results for the different computation domain lengths are compared with each 

other. The comparisons show that increasing the computation domain length beyond the 

period right above the buried cylinder has little effect on the numerical results. This 

demonstrates that the length of the period of the random periodic surface considered in 

the computation is sufficiently large so that the interaction between the buried cylinder 

and the other periods of the rough surface (x<-5 and x>5) can indeed be neglected and the 

total length of the rough surface included in the finite computation domain is adequate; 

hence verifies that the two-step MPSTD approach presented in Section 2 works 

effectively for a random periodic rough surface with a period of sufficiently large length. 
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  (d) 
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(f) 

Fig. 4.11 Comparison of the numerical results for different computation domain lengths 

(a) Computation domain of length of 14m, (b) 18m, (c) 22m, 

(d) Comparison of the results at (0, 2), (e) at (-3, 2), (f) at (-4, 2). 

 

In addition, numerical tests have been performed to verify the effectiveness of the 

two-step approach as L increases. The results of the numerical tests show that using a 

laptop with an Intel Core i3 CPU processor, the CPU time needed for one realization is 

10 minutes for L = 10m and is 14 minutes as L is increased to 14m. From the limited CPU 

time increase, it is expected that the two-step MPSTD method can also effectively work 

well for larger L.  

Then, the spatial distributions of the electric field, for the configuration depicted 

in Fig. 4.11(a), obtained at t = 20ns, 26ns, and 50ns are shown in Figs. 4.12 (a), (c), and 

(e); and the corresponding magnetic field distributions are depicted in Figs. 4.12 (b), (d), 

and (f). It is of interest to observe that the electric field distribution obtained at t = 20ns 
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shown in Fig. 4.12(a) clearly illustrates the shape of the random rough surface but it only 

depicts a portion of the buried cylinder. This is due to the fact that the incident field hits 

the random rough surface first and then the buried cylinder; and at t = 20ns only a portion 

of the cylinder is illuminated by the incident wave. But as time progresses, the incident 

wave travel farther in the lower half space. At t =26ns, the scattering from the random 

rough surface as well as the buried cylinder appears in the left and right scattered field 

region. At t = 50ns, the incident field covers the whole buried cylinder and hence its 

complete shape is well illustrated in Figs. 4.12 (e) and (f), as expected. 

  

                              (a)                                                                    (b) 

   

                              (c)                                                                    (d) 
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                              (e)                                                                      (f) 

Fig. 4.12 Spatial distribution of the fields obtained at different moments   

(a) Geometry and computation domain, 

(b) Ez at t = 20ns, (c) Hy at t = 20ns, (d) Ez at t = 26ns,  

(e) Hy at t = 26ns, (f) Ez at t = 50ns, (g) Hy at t = 50ns. 

 As a partial check, next, we present the numerical results of the scattering 

corresponding to different relative permittivity 2r of the lower half space. As shown in 

Fig. 4.13(a), 2r can significantly alter the scattering, and as it changes from 3, to 2, then 

to 1.01, and finally to 1, the result converges to that in free space, which perfectly 

matches the analytic result presented in Fig. 4.13(b), as it is supposed to be.   
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(a) 

 

(b) 

Fig. 4.13 Scattering of a circular PEC cylinder buried below a random peirodic rough 

surface of infinite length observed at (1, 2) for various 2r  

(a) Ez observed for various 2r ,  

(b) Comparison of the two step Monte-Carlo MPSTD result  

with analytical solution  for 2r = 1. 
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Another partial check is performed by comparing the numerical result of the 

electric field obtained at (0, 2), which is in the middle of a period L of the random 

periodic rough surface with L = 10m as depicted in Fig. 4.11(a), with that observed at the 

same point for a random rough surface of finite length L, beyond the two ends of which is 

a flat interface (x<-5 and x>5), that is not a periodic structure. For a sufficiently large L 

compared with the dimension of the buried cylinder, one would expect that the two 

results should be about the same. This is exactly what is illustrated in Fig. 4.14. 

 

Fig. 4.14 Comparison of Ez at the middle point (0, 2) of a period of a random periodic 

             rough surface with that for a random rough surface of finite length. 

 

Next, we compare the two sets of data at a same point (4.434, 2), which is close to 

the right end of a period of the random periodic rough surface. The comparison presented 

in Fig. 15 shows a significance difference (the maximum difference is about 110%) of the 

scattering corresponding to the random periodic rough surface and that of finite length. 

This is due to the fact that the scattering observed at a point near the end of a period 
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contains the contribution from the adjacent period of the rough surface, which does not 

exist for a random rough surface of finite length. Such a significance difference between 

the two sets of numerical results indicates that it is necessary to extend the analysis of 

scattering involving a random rough surface of finite length to cover the more realistic 

case, in which a random periodic rough surface is considered.   

 

Fig. 4.15 Comparison of Ez at (4.434, 2) near the end point of a period of a random 

periodic rough surface with that for a random rough surface of finite length.  

 

In Fig. 4.16, the numerical results of the electric field corresponding to various 

rms height σrms of the random rough surface are presented. As illustrated in Fig. 4.16(a), 

when σrms varies from 0.3, to 0.2, then to 0.1, and finally to 0, the result converges to that 

for a flat media interface. Furthermore, as shown in Fig. 4.16(b), the results obtained by 

the two-step approach for the flat interface is exactly the same as that got from the 

“regular” MPSTD technique presented in Chapter 3, as expected. 
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(a) 

 

(b) 

Fig. 4.16 Scattering of a circular PEC cylinder buried below a random peirodic rough 

surface of infinite length observed at (-3, 2) for various rms  

(a) Ez observed for various rms ,  

(b) Comparison of the results obtained by two different methods for a flat interface. 
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The two-step Monte-Carlo MPSTD numerical technique developed in this work 

can be employed for determining the scattering of a cylinder of arbitrary shape buried 

below a random periodic rough surface of infinite length. The last sample numerical 

result is for the scattering of a rectangular PEC cylinder of dimension 

0 02 2  (0.67 0.67 )m m     with its axis along (0, -3) buried below a random periodic 

rough surface of infinite length. The geometry and computation domain with grids are 

depicted in Fig. 4.17(a). In Figs. 4.17(b) and (c), the spatial distributions of Ez at two 

moments t = 25ns and t = 50ns are presented. Similar to what has been seen in Fig. 4.12, 

one observes that the electric field distribution obtained at t = 25ns shown in Fig. 4.17(b) 

clearly illustrates the shape of the random rough surface but it only depicts a portion of 

the buried cylinder. This is due to the fact that the incident field hits the random rough 

surface first and then the buried cylinder; and at t = 25ns only a portion of the cylinder is 

illuminated by the incident wave. But as time progresses, the incident wave travel farther 

in the lower half space. At t = 50ns, the incident field covers the whole buried cylinder 

and hence its complete shape is well illustrated in Fig. 4.17(c). 
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                              (b)                                                                   (c) 

Fig. 4.17 Spatial distribution of Ez obtained at different moments   

(a) Geometry and computation domain, (b) Ez at t = 25ns, (c) Ez at t = 50ns. 

 
The benefit of using the two-step approach is described as the follows. As shown 

in previous subsection 4.2, after placing a cylinder below the random periodic rough 

surface, the structure is no longer periodic and the periodic boundary condition (PBC) 

does not hold any more, hence it is hard to solve this problem within a finite computation 

domain.  To overcome this difficulty, we decompose the solution of this complicated 

problem into two steps. In the first step, only the random rough surface is considered so 

that the PBC still holds and hence can be enforced to simulate the entire random periodic 

rough surface by only one period of the rough surface contained in a finite computation 

domain. Then, in the second step, the near-zone field obtained in the first step is used 

together with the incident field as the excitation source to the buried cylinder to 

determine the electromagnetic fields taking into account the scattering of the buried 

cylinder as well as the interaction between the buried cylinder and the rough surface.  
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CHAPTER FIVE 

SCATTERING OF CYLINDERS EMBEDED IN LAYERED LOWER HALF SPACE  

WITH RANDOM ROUGH SURFACES 

 
In the previous chapters, scattering of cylinder buried below a random rough 

surface has been studied. However, in reality, the lower half space may consist of 

stratified media. Therefore, in this chapter, the study is extended to the scattering of 

cylinders embedded in the lower half space of two layers, under plane wave incidence. 

The two-half-space interface is taken to be a random rough surface of finite length or 

with extensive periodic structure. The interface separating the two layers inside the lower 

half space is assumed to be planer surface or random rough surface of finite length. 

Correspondingly, the composite field in the layered structure driving the scattering of the 

buried cylinder is formulated and calculated. To validate this formulation, transmission-

line theory is employed to simulate the wave propagation in the layered structure. The 

analysis of scattering of cylinders embedded in such a layered structure employs the 

Monte-Carlo MPSTD method presented in Chapter 3. In particular, for the analysis 

involving a random rough surface with extensive periodic structure, the two-step 

approach developed in Chapter 4 is used. Sample numerical results are presented and 

analyzed.  

 

5.1 Formulation of the Incident Composite Field in the Layered Structure 

As presented in Chapter 3, the incident wave driving the scattering of a buried 

cylinder is calculated by a “three-wave approach”. The driving incident wave is the 

composite of the initial incident, reflected, and transmitted waves. However, different 
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from the model shown in Fig. 3.4, in this chapter, the lower half space consists of two 

layers separated by a planer surface or a random rough surface as illustrated in Fig. 5.1. 

The three regions depicted in this figure are all assumed to be lossless, nonmagnetic and 

homogeneous media characterized by 0 0( , )  , 0 1( , )   and 0 2( , )  respectively, where

0  ( 1,  2)i ri i    . Also shown in Fig. 5.1, two virtual planar interfaces are placed at 

0 and  along the rough surfaces, respectively. The random rough surfaces 

just cause additional inhomogeneities above/below the virtual planar interfaces; and these 

inhomogeneities can be treated as “additional scatterers” touching the virtual planar 

surfaces, illuminated by the composite fields. 

                 

x

Buried
Cylinder

Incident 
Wave

y

(μ0,ε0)

(μ0,ε1)

y = 0

y = -d

(μ0,ε2)(μ0,ε2)

 

      Fig. 5.1 Cylinder embedded in a layered half space. 

This structure with two virtual planar surfaces at  0 and  is similar to 

a dielectric slab ( 0)d y   , but the regions above and below it have different 

electromagnetic properties. Note that there are multiple reflections inside the slab

( 0)d y   . However, as stated in [62], since the interfaces are planar surfaces, the 

fields within the slab can be considered as upward- and downward-propagating plane 
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waves, which accounts for the effect of multiple reflections inside the slab. This idea can 

be utilized for the formulation of the composite field in the layered region.  

Fig. 5.2 shows a TMz time-harmonic plane wave propagating in the layered 

structure. As illustrated in this figure, in the upper half space which is assumed to be air, 

where y > 0, the field is due to the incident wave and the reflected wave from the virtual 

planar interface at y = 0. In the first layer of the lower half space (-d < y < 0), there are 

upward- and downward-propagating waves that accounts for the multi reflections within 

this layer; while in the second layer of the lower half space (y < -d), there is only 

downward transmitted wave. 

 

Fig. 5.2 A TMz plane wave propagating in a layered structure. 

 Then, the frequency domain electric and magnetic field in each of the three 

regions can be expressed by 
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                             (5.2) 

where E0 is the complex amplitude of the incident plane wave, 0 0 0k c      is the 

wave number in free space and ( 1,  2)i ri ik k i   is the wave number in each layer of 

the earth. By enforcing the continuity of zE  and xH  at y = 0 and y = -d and solving the 

resulting equations, the unknown field amplitudes 1 2 3 4,  ,   and E E E E  are determined as  
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                 (5.3d) 

where  ( 1,  2)i rin i  is the refractive index. 

For the incident wave that is a function of time, such as the first derivative of 

Blackmann-Harris window function used in this research, the Fourier transform is used to 

find its spectrum. Then, using equation (5.3), the composite fields of each spectral 

component can be obtained. Finally, the time-domain composite fields are determined 

using the inverse Fourier transform.  
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The composite fields are calculated analytically at each grid point as needed [63] 

and validated prior to the execution of the Monte-Carlo MPSTD numerical technique. 

 
5.2 Numerical Results and Discussion 

For all the numerical results presented, the excitation is taken to be a normal TMz 

plane wave incidence propagating in –y direction, the time domain function of which is 

the first derivative of Blackmann-Harris window function with central frequency 

100f MHz . A random rough surface of infinite length with extensive periodic structure 

is considered in parts (2) and (3). It has a period 08 (2.67 )L m   in part (2) and 

010  (3.33 )L m  in part (3). In part (4), the two random rough surfaces are assumed to 

be of finite length 010 (3.33 )L m  .  All the random rough surfaces considered in the 

following examples have correlation length 00.3 (0.1 )cl m  , which satisfies the 

requirement 15 cL l and are of rms height 00.3 (0.1 )rms m   unless otherwise specified.  

 
(1) Validation of Formulation of the Incident Composite Field 

To validate the formulation of the incident composite field, such calculated 

composite field is compared with the Advanced Design System (ADS) simulation results. 

The plane wave propagation with normal incidence in the layered structure, in which 

each layer is of infinite length, is a 1-D plane wave propagation problem. In this case, the 

wave equations have the same form as Telegraph equations of a lossless transmission line 

[64] with the following correspondence 

 
, ↔ , , 

                                                          	 , ↔ , ,                                                  (5.4)            
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↔ , 

↔ , 

 
where V and I are the voltage and current along the transmission line (TL), C and L are 

the capacitance and inductance per unit length, β is the propagation constant, and Z is the 

characteristic impedance of the transmission line. Therefore, the layered structure of 

infinite length can be transformed into a multi-section transmission-line model that can 

be simulated by a microwave circuit simulator, Agilent Advanced Design System (ADS) 

or AWR Microwave Office.  

As shown in Fig. 5.3, the thickness of each of the three layers from top to bottom 

in the computation domain is taken to be 2m, 6m and 2m, respectively. The two-half-

space interface is located at y = 0 and the interface separating the two layers in the lower 

half space is at 6y   . The observation points are on 1,  1  7y y and y     planes in 

each of the three layers, marked in red dash lines. The composite fields calculated at 

these observation points using the formulas derived above are compared with the 

corresponding ADS results in Fig. 5.4. The comparison shows a perfect match between 

these two sets of data, which validates the correctness of the formulation of the composite 

field in the layered structure.  
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Upper half space

Layer 1
εr1 = 2

Layer 2
εr2 = 4

L0 = 2 m

L1 = 6 m
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Plane Wave Incident

y = 0
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Fig. 5.3 Three-layer structure illustration. 

 

 

        (a) 

 

      (b) 
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     (c) 

Fig. 5.4 Comparison of the calculated composite fields Ez in a layered structure with the 

corresponding ADS results of transmission line (TL) voltage 

(a) At y = 1, (b) At y = -1, (c) At y = -7. 

 

(2) Results of Scattering by the Layered Structure without Buried Object 

To further validate the incident composite fields formulated above, it is used in 

the Monte-Carlo MPSTD analysis for determining the scattering by the layered structure 

in absence of embedded object. The computation domain is shown in Fig. 5.5(a). The 

first media interface is a random rough surface along y = 0 and the second interface is a 

planar interface at 6y   . The scattered field (SF) region is the region where 2 4y   

and the total field (TF) region is 8 2y   , which contains three layers. In the first 

example, we choose 1 21.04,  1.02r r    for the two layers in the earth so that the whole 

space is very close to a homogeneous free space region characterized by 1r  . For such 

a layered structure, the MPSTD computation results of the total fields observed at (5, 2) 

and (-1, -7) are compared with that obtained in free space. The comparison is presented in 

Figs. 5.5(b) and (c) where an excellent agreement is observed. 
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   (a) 

  

                                  (b)                                                                   (c) 

Fig. 5.5 The total fields in a layered structure with 1 21.04,  1.02r r    

(a) The computation domain, (b) Ez at (5, 2) compared with the free space result, 

(c) Ez at (-1, -7) compared with the free space result. 

 

(3) Results of Scattering by a Circular PEC Cylinder Embedded in a Layered 

Lower Half Space with a Random Periodic Rough Surface and a Planar Interface                  

In this section, results of the scattering of a circular PEC cylinder buried in the 

upper layer of the lower half space, as shown in Fig. 5.6(a), are presented.  The random 
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rough surface is with extensive periodic structure. Hence the two-step Monte-Carlo 

MPSTD approach formulated in Chapter 4 is employed. The TF and SF regions used in 

the MPSTD approach are the same as that specified in the previous subsection (2). 

First, we consider the cylinder embedded in a layered earth with 1 23 and r r   

varying from 2, to 2.5 and then 2.9.  Results of the total field observed at (0, 2) 

corresponding to the varying 2 r  are plotted in Fig. 5.6 (b) and compared with the 

results obtained for the cylinder buried in a two-half-space region where 

_ _1,  3r upper r lower   . To clearly illustrate the trend of the change of the field as 2r  

varies, the plot in the vicinity of t = 86ns is enlarged in Fig. 5.6 (c). From these two 

figures, one observes that as 2 r  varies from 2, to 2.5 and then 2.9, the computation 

results of the field gradually approach to the two-half-space results for _ 3r lower  , as 

expected. 
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(b) 

 

(c) 

Fig. 5.6 Scattering of a circular PEC cylinder embedded in the first layer of the lower half 

space with a random periodic rough surface and a planar interface, for various 2 r  

(a) Computation domain and geometry, 

(b) Ez at (1, 2) compared with the two-half-space result, 

(c) Close-up view of (b) in the vicinity of t = 86ns. 
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Next, we consider scattering of the cylinder embedded in a layered lower half 

space with 1 24 and 1.5r r   . The computation domain and geometry are the same as 

that shown in Fig. 5.6(a), the observation point is located at (1, 2). The result is compared 

with the two-half-space case in which _ _1,  3r upper r lower   , and the comparison is 

illustrated in Fig 5.7. The difference between the two sets of data shown in this figure 

represents a significant influence from the layered structure of the lower half space on the 

scattering. 

 

Fig. 5.7 Scattering of a circular PEC cylinder embedded in the first layer of the lower half 

space with a random periodic rough surface and a planar interface compared with two-

half-space result. 
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(4) Results of Scattering of Cylinders Embedded in a Layered Lower Half Space 

Involving Two Random Rough Surfaces of Finite Length 

In this section, the two-half-space interface is taken to be a random rough surface 

of finite length L=10m. And the interface separating the two layers of the lower half 

space is assumed to be a random rough surface of the same length.  The permittivities of 

the two layers are set to be 1 24 and 2r r   .  In the first example, the Monte-Carlo 

MPSTD is applied to obtain the scattering from the two random rough surfaces alone. 

The geometry and computation domain are depicted in Fig 5.8 (a). In Figs. 5.8 (b) and (c), 

the spatial distributions of Ez at two moments t=20ns and t=55ns are presented. One 

observes that the field distribution at t=20ns illustrates the shape of the upper rough 

surface. As time progresses, the incident wave travel farther in the lower half space. Then, 

both the scattering from the upper rough surface and the incident wave illuminate the 

lower rough interface. At t=55ns, the shape of the lower rough surface can be clearly 

seen.  
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                                   (b)                                                                 (c) 

Fig. 5.8 Scattering from a layered lower half space involving two random rough surfaces 

of finite length at different moments 

(a) Geometry and computation domain,  

(b) Spatial distribution of Ez at t=20ns, (c) Spatial distribution of Ez at t=55ns.     

  

Next, the results of scattering from a cylinder buried in different layers are 

presented. In the first case, a circular PEC cylinder is placed in the first layer of the lower 

half space (between the two rough surfaces).  The computation domain is given in Fig. 

5.9 (a). Numerical results of spatial distribution of Ez obtained at three different moments 

t=20ns, t=30ns, and t=55ns are shown in Figs. 5.9 (b), (c), and (d).  It is of interest to 

note that the field distribution at t=20ns well represents the shape of the rough surface 

and a small portion of the buried circular cylinder. As the incident wave travel farther in 

the lower half space, the field distribution at t=30ns illustrates the shape of PEC cylinder 

more clearly in Fig. 5.9 (c). At t=55ns, the incident field covers the whole buried cylinder 

and hence its complete shape is well shown in Fig. 5.9 (d), as expected.                           
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                                   (a)                                                               (b) 

 

                               (c)                                                                   (d) 

Fig. 5.9 Scattering from a circular PEC cylinder embedded in the first layer of the lower 

half space involving two random rough surfaces of finite length at different moments 

(a) Geometry and computation domain, (b) Spatial distribution of Ez at t=20ns,  

(c) Spatial distribution of  Ez at t=30ns, (d) Spatial distribution of  Ez at t=55ns. 
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Then, we consider a square PEC cylinder located in the second layer of the lower 

half space, the computation domain of which is depicted in Fig. 5.10 (a). In Figs. 5.10 (b), 

(c), and (d), the spatial distribution of Ez at three different moments t=20ns, t=60ns, and 

t=70ns are presented. It is of interest to note that the field distribution at t=20ns shown in 

Fig. 5.10 (b) is the same as the results given in Fig. 5.8(b), since there is no buried object 

in the first layer of the lower half space, the scattering at this moment attributes solely to 

the upper random rough surface. As time progresses, the incident wave propagates farther 

and illuminates the lower rough surface and the square PEC cylinder. At t=60ns, only a 

small portion of the square PEC cylinder is illustrated by the field distribution. At t=70ns, 

the incident field covers the whole buried cylinder and hence its complete shape is well 

shown in Fig. 5.10 (d), as expected. 
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                               (c)                                                                  (d) 

Fig. 5.10 Scattering from a square PEC cylinder embedded in the second layer of the 

lower half space involving two random rough surfaces of finite length  

at different moments 

(a) Geometry and computation domain, (b) Spatial distribution of  Ez at t=20ns,  

(c) Spatial distribution of  Ez at t=60ns, (d) Spatial distribution of  Ez at t=70ns. 

 

In the last example, a circular PEC cylinder and a square PEC cylinder are placed 

in the first and second layer of the lower half space, respectively. The geometry and 

computation domain are depicted in Fig. 5.11 (a). In Fig. 5.11(b), the spatial distribution 

of the electric field at t=85ns is illustrated, in which the shapes of these two buried 

cylinder can be observed clearly, as expected. 
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                                 (a)                                                                  (b) 

Fig. 5.11 Scattering from a circular PEC cylinder and a square PEC cylinder embedded in 

the first and second layer of the lower half space involving two random rough surfaces of 

finite length at at t=85ns 

(a) Geometry and computation domain, (b) Spatial distribution of  Ez. 
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CHAPTER SIX 

 NEAR-ZONE FIELD TO FAR-ZONE FIELD TRANSFORMATION 

 
In the previous chapters, the Monte-Carlo multidomain PSTD (MPSTD) 

algorithm has been developed to study the near-zone field of the scattering from a 

cylinder buried below a random rough surface. Based on knowledge of the near-zone 

field, the far-zone field pattern can be determined, which has many practical applications 

including remote sensing.  In this chapter, a near-field to far-field transformation 

technique is developed and presented. The equivalence principle is employed first to 

model a random rough surface of finite length and buried objects in terms of the 

equivalent electric and magnetic currents. Then, computation of the far-zone field 

radiated by these equivalent currents is formulated using reciprocity and duality theorem.  

 
6.1 General Idea and Formulation of the Equivalent Model 

In Fig. 6.1(a) is shown a two-dimensional object buried below a random rough 

surface of finite length, separating two semi-infinite homogeneous spaces characterized 

by ( , )o o   and 1( , )o r o   .  To model this structure, first, we introduce a virtual planar 

surface located at y = 0 separating regions a and b, as illustrated in Fig. 6.1 (b). The 

inhomogeneity above and below the virtual planar interface caused by the random rough 

surface can be viewed as additional scatterers, which are bounded by the random rough 

surface and the virtual planar interface. Now, the problem becomes determination of the 

scattering from a 2D object buried below a planar interface as well as that from the 

additional scatteres above/below the planar interface.  
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(a) 

                                            

(b) 

Fig. 6.1 An object buried below a random rough surface of finite length 

(a) Geometry; (b) Illustration of a virtual planar interface. 

 

Then, the equivalence principle [46] is used to construct the equivalent model, 

shown in Fig. 6.2, in the region external to the buried cylinder and the inhomogeneity 

caused by the random rough surface.  In the equivalent model, the buried cylinder is 

removed by placing the equivalent electric surface current sJ


 and magnetic surface 

current sM


 on its surface. The inhomogeneity enclosed by the random rough surface and 
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the virtual planar interface, some of them are above and some of them are below the 

virtual interface, can also be removed by placing the equivalent electric surface current 

snJ


 and magnetic surface current snM


(n = 1, 2…) on their boundaries.  

0
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Fig. 6.2 The equivalent model.  

            Now, in the equivalent model, all the equivalent surface currents radiate in a two-

half-space region with a planar interface. The values of sJ


 and sM


 can be determined by 

                                                       ˆ ,sJ n H 
 

                                                              (6.1) 

                                                      ˆ,sM E n 
 

                                                              (6.2) 

where E


and H


are the total fields on the surface of the buried object, calculated by the 

Monte-Carlo MPSTD approach, and n̂ is the outward unit vector normal to its surface. 

Note that the MPSTD results of the fields are obtained in the time domain, but the far-

zone fields will be calculated in the frequency domain. Therefore, the fast Fourier 

transform (FFT) will be used first to determine the spectrum of the frequency 

components of the fields. Then, the far-zone field pattern can be determined.  

For the zTM  polarization, the electric and magnetic field can be expressed as 

                                                                 ˆzE E z


                                                      (6.3) 
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ˆ ˆx yH H x H y 



                                                   
(6.4) 

 By substituting (6.3) and (6.4) into (6.1) and (6.2), sJ


 and sM


 become 

                                           
ˆ ˆ ˆ ˆ ˆ( )s x y zJ n H n H x H y J z     

 

                                    
(6.5) 

                                         
ˆ ˆ ˆ ˆˆs z sx syM E n E z n M x M y     

 
                                     (6.6) 

where zJ is a z-directed electric line source, sxM  and syM  are x- and y-directed magnetic 

line dipoles. 

 
6.2 Formulation of the Far-Zone Field Equations 

The next step is to calculate the far-zone field radiated by these equivalent 

currents. The equations for the far-zone electric field due to an electric line source have 

been derived in [65], using reciprocity [46]. Fig. 6.3 depicts a cross-sectional view of a 

line source near a planar interface separating two half spaces.  

       

     Fig. 6.3 A cross-sectional view of a line source near a planar interface. 

The far-zone electric fields observed at ,   due to an electric line source of 

unity strength ′ 	 ′ ̂  at ′, ′  are given as the follows. For an 

electric line source in region a,  
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And for an electric line source in region b,  

,
| |→∞ 4

2 ′ ′

, 

2 2
										 6.8a  

,
| |→∞ 4

2 ′ ′
Γ

′
.	 

2
3
2
										 6.8b  

 

In the equations above, the first superscript of ez indicates the region where the 

observation point is located, while the second is for the region where the source point is. 

In these equation, Γ 	and  are defined by 

                                               
cos cos

Γ ,
cos cos

t
b a a

a t
b a a

   
   





                                             (6.9a) 

and 
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a
a t

a b b

 
   




                                            (6.9b) 

in which cos t
a  is given by 

                                             2  cos 1t a a
a

b b

sin
  
 

                                                 (6.9c) 

Γ  and  can be obtained by interchanging a and b in (6.9a) and (6.9b), and then 

changing the sign in front of 	 ; and cos t
b  can be found from (6.9c) also by 

interchanging a and b. Using these equations, one can determine the far-zone electric 

fields due to each segment of the equivalent currents zJ on the surface of the buried 

object as well as that on the surface of the “additional scatterers”. 

The far-zone electric field radiated by magnetic line dipoles can be derived from 

[66]. In [66], the expressions of the far-zone magnetic fields due to the horizontal and 

vertical electric line dipoles are given.  By employing duality [46], the far-zone electric 

field ez generated by the magnetic line dipoles sxM  and syM of unity strength are obtained 

as shown below.  

For a horizontal unity strength magnetic line dipole sxM  in region a, 

,
| |→∞ 4

2
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And for a horizontal unity strength magnetic line dipole sxM  in region b, 

,
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2
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For a vertical unity strength magnetic line dipole syM  in region a, 

,
| |→∞ 4

2
sin
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And for a vertical unity strength magnetic line dipole syM  in region b, 

,
| |→∞ 4

2
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,
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2
sin

′ ′
Γ

′
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2
3
2
										 6.11d  

In (6.10) and (6.11), the subscripts h and v stand for horizontal and vertical to denote the 

direction of the line dipoles. In these equations , , and cost are given in (6.9). 

Using the equivalent surface currents given in equations (6.5) and (6.6) based on 

knowledge of the near-zone field and equations (6.7) – (6.11) for the far-zone fields due 

to the equivalent electric line current and magnetic line dipoles of unity strength, the far-

zone fields everywhere can be obtained as the superposition of the fields due to the unity-

strength surface currents. The superposition can be realized in a similar way as that 

presented in equation (4) in [66] and equation (11) in [67]. 

 

6.3 Numerical Results and Discussion 

In this section, the formulation presented in the previous section is implemented 

into computer codes, and the scattering of a 2D PEC cylinder buried in the lower half 

space with a planar or random rough surface is considered and sample results of the far-

zone field patterns in the upper half space are presented and discussed. For all the 

numerical results presented, the excitation is taken to be a normal TMz plane wave 

incidence propagating in –y direction, the time domain function of which is the first 

derivative of Blackmann-Harris window function with central frequency 100f MHz . 

The random rough surface considered is of finite length 010 (3.33 )L m   and 

correlation length 00.3 (0.1 )cl m  , which satisfies the requirement 15 cL l . The region 
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above the rough surface is assumed to be free space and the region below the rough 

surface is taken to be an isotropic, lossless medium with 1r  and 4r  , unless 

otherwise indicated. 

 

(1) Far-Zone Field Pattern Due to the Scattering by a Circular PEC Cylinder Under 

Planar Interface 

To validate the formulation, in the first numerical example, we consider a circular 

PEC cylinder placed below a planar media interface along y = 0. The geometry of the 

computation region is shown in Fig. 6.4. The circular cylinder is of radius 0.35 br  , 

and is centered by (0, -0.35b). 

 

    Fig.6.4 Geometry of the computation domain. 

The far-zone electric field pattern in the upper half space is illustrated in Fig. 6.5, 

and is compared with the results obtained from the Method Of Moments (MOM) [68]. As 

shown in this figure, the two sets of data have a perfect match, which validates the 

correctness of the formulation derived in the previous section. Note that the field pattern 
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exhibits symmetry, which is due to the fact that the cylinder is subjected to normally 

incident illumination. 

                                                     

                              X  

Fig. 6.5 Far-zone electric field pattern in the upper half space for a circular PEC cylinder 

buried below a planar media interface. 

 

 (2) Far-Zone Field Pattern Due to the Scattering by a Circular PEC Cylinder 

Buried Below a Random Rough Surface of Finite Length 

 When a random rough surface is included, the computation is carried out tens of 

times and in each of them, the technique developed earlier in this chapter is employed to 

obtain the far-zone radiation pattern. Then, the Monte-Carlo statistic average is taken to 

obtain the final result of the far-zone field pattern. It is noted that the number of average 

times increases as the height of the random rough surface grows. 

 MPSTD Results

MOM Results
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In the following numerical examples, a random rough surface of finite length is 

placed between 5 5x    along 	 0 . The geometry of the computation domain is 

illustrated in Fig. 6.6. The radius of the circular PEC cylinder is 2r m .  

 

     Fig. 6.6 Geometry of the computation domain. 

Different from the previous numerical example for a planar media interface, the 

far-zone field pattern now is contributed by the scattering of both the circular PEC 

cylinder and the random rough surface, which causes “additional scatterers”. The results 

of the far-zone field pattern scattered by a circular PEC cylinder buried below a random 

rough surface of different rms heights are presented in Fig. 6.7. Under the normal plane 

wave incidence, the far-zone field patterns are almost symmetric as they should be. One 

notes that when the random rough surface is of very small rms height 0.01rmsh m , the 

field pattern is almost the same as that for a flat surface because the contribution from the 

random rough surface with such a small rms height is negligible . But as the rms height 

increases from 0.01m to 0.05m, 0.1m and finally to 0.2m, it can be seen that the field 

pattern becomes more and more different from that for a flat surface, due to the fact that 

the rougher random rough surface, which causes larger “additional scatterers” would 

-9 -7 -5 -3 -1 1 3 5 7 9
-8

-6

-4

-2

0

2

4

6

x(m)

y(
m

)



 
 

90 
 

contribute more to the field pattern. In particular, one observes that the fields in the 

vertical direction (y-direction) becomes weaker as the rms height increases. This is 

because for a flat media interface, the waves reflected by the whole interface all 

propagate in the same direction, the vertical direction. But the waves scattered by 

different parts of a random rough surface would be in random directions, so that the 

superposition of the scattering in the vertical direction should be weaker compared with 

the flat-surface case, and it becomes weaker and weaker as the random rough surface gets 

rougher. This phenomenon is similar to the behavior of the near-zone field results 

presented in the previous chapters showing that the roughness of the random rough 

surface has a significant influence on the scattering of the buried object. 
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Fig.6.7 Far-zone field patterns in the upper half space scattered by a circular PEC 

cylinder buried below a random rough surface of different rms heights. 

 

In the last example, the far-zone field patterns for various lower half space 

relative permittivity r2  are presented.  The geometry remains the same as the previous 

example. The roughness of the surface is chosen to be 0.2m.  From the data presented in 

Fig. 6.8, one notes that as r2  changes from 4, to 2, to 1.01 and finally to 1, the results 

gradually reduce to that for the circular PEC cylinder located in free space, as expected. 
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Fig. 6.8 Far-zone field patterns in the upper half space scattered by a circular PEC 

cylinder buried below a random rough surface for various 2r . 
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