9,435 research outputs found

    A Generative Model for Parts-based Object Segmentation

    Get PDF
    The Shape Boltzmann Machine (SBM) [1] has recently been introduced as a stateof-the-art model of foreground/background object shape. We extend the SBM to account for the foreground object’s parts. Our new model, the Multinomial SBM (MSBM), can capture both local and global statistics of part shapes accurately. We combine the MSBM with an appearance model to form a fully generative model of images of objects. Parts-based object segmentations are obtained simply by performing probabilistic inference in the model. We apply the model to two challenging datasets which exhibit significant shape and appearance variability, and find that it obtains results that are comparable to the state-of-the-art. There has been significant focus in computer vision on object recognition and detection e.g. [2], but a strong desire remains to obtain richer descriptions of objects than just their bounding boxes. One such description is a parts-based object segmentation, in which an image is partitioned into multiple sets of pixels, each belonging to either a part of the object of interest, or its background. The significance of parts in computer vision has been recognized since the earliest days of th

    Vibration-Based structural health monitoring using piezoelectric transducers and parametric t-SNE

    Get PDF
    In this paper, we evaluate the performance of the so-called parametric t-distributed stochastic neighbor embedding (P-t-SNE), comparing it to the performance of the t-SNE, the non-parametric version. The methodology used in this study is introduced for the detection and classification of structural changes in the field of structural health monitoring. This method is based on the combination of principal component analysis (PCA) and P-t-SNE, and it is applied to an experimental case study of an aluminum plate with four piezoelectric transducers. The basic steps of the detection and classification process are: (i) the raw data are scaled using mean-centered group scaling and then PCA is applied to reduce its dimensionality; (ii) P-t-SNE is applied to represent the scaled and reduced data as 2-dimensional points, defining a cluster for each structural state; and (iii) the current structure to be diagnosed is associated with a cluster employing two strategies: (a) majority voting; and (b) the sum of the inverse distances. The results in the frequency domain manifest the strong performance of P-t-SNE, which is comparable to the performance of t-SNE but outperforms t-SNE in terms of computational cost and runtime. When the method is based on P-t-SNE, the overall accuracy fluctuates between 99.5% and 99.75%.Peer ReviewedPostprint (published version

    Routine pattern discovery and anomaly detection in individual travel behavior

    Full text link
    Discovering patterns and detecting anomalies in individual travel behavior is a crucial problem in both research and practice. In this paper, we address this problem by building a probabilistic framework to model individual spatiotemporal travel behavior data (e.g., trip records and trajectory data). We develop a two-dimensional latent Dirichlet allocation (LDA) model to characterize the generative mechanism of spatiotemporal trip records of each traveler. This model introduces two separate factor matrices for the spatial dimension and the temporal dimension, respectively, and use a two-dimensional core structure at the individual level to effectively model the joint interactions and complex dependencies. This model can efficiently summarize travel behavior patterns on both spatial and temporal dimensions from very sparse trip sequences in an unsupervised way. In this way, complex travel behavior can be modeled as a mixture of representative and interpretable spatiotemporal patterns. By applying the trained model on future/unseen spatiotemporal records of a traveler, we can detect her behavior anomalies by scoring those observations using perplexity. We demonstrate the effectiveness of the proposed modeling framework on a real-world license plate recognition (LPR) data set. The results confirm the advantage of statistical learning methods in modeling sparse individual travel behavior data. This type of pattern discovery and anomaly detection applications can provide useful insights for traffic monitoring, law enforcement, and individual travel behavior profiling

    Towards End-to-end Car License Plate Location and Recognition in Unconstrained Scenarios

    Full text link
    Benefiting from the rapid development of convolutional neural networks, the performance of car license plate detection and recognition has been largely improved. Nonetheless, challenges still exist especially for real-world applications. In this paper, we present an efficient and accurate framework to solve the license plate detection and recognition tasks simultaneously. It is a lightweight and unified deep neural network, that can be optimized end-to-end and work in real-time. Specifically, for unconstrained scenarios, an anchor-free method is adopted to efficiently detect the bounding box and four corners of a license plate, which are used to extract and rectify the target region features. Then, a novel convolutional neural network branch is designed to further extract features of characters without segmentation. Finally, recognition task is treated as sequence labelling problems, which are solved by Connectionist Temporal Classification (CTC) directly. Several public datasets including images collected from different scenarios under various conditions are chosen for evaluation. A large number of experiments indicate that the proposed method significantly outperforms the previous state-of-the-art methods in both speed and precision

    Parking lot monitoring system using an autonomous quadrotor UAV

    Get PDF
    The main goal of this thesis is to develop a drone-based parking lot monitoring system using low-cost hardware and open-source software. Similar to wall-mounted surveillance cameras, a drone-based system can monitor parking lots without affecting the flow of traffic while also offering the mobility of patrol vehicles. The Parrot AR Drone 2.0 is the quadrotor drone used in this work due to its modularity and cost efficiency. Video and navigation data (including GPS) are communicated to a host computer using a Wi-Fi connection. The host computer analyzes navigation data using a custom flight control loop to determine control commands to be sent to the drone. A new license plate recognition pipeline is used to identify license plates of vehicles from video received from the drone

    Text localization and recognition in natural scene images

    Get PDF
    Text localization and recognition (text spotting) in natural scene images is an interesting task that finds many practical applications. Algorithms for text spotting may be used in helping visually impaired subjects during navigation in unknown environments; building autonomous driving systems that automatically avoid collisions with pedestrians or automatically identify speed limits and warn the driver about possible infractions that are being committed; and to ease or solve some tedious and repetitive data entry tasks that are still manually carried out by humans. While Optical Character Recognition (OCR) from scanned documents is a solved problem, the same cannot be said for text spotting in natural images. In fact, this latest class of images contains plenty of difficult situations that algorithms for text spotting need to deal with in order to reach acceptable recognition rates. During my PhD research I focused my studies on the development of novel systems for text localization and recognition in natural scene images. The two main works that I have presented during these three years of PhD studies are presented in this thesis: (i) in my first work I propose a hybrid system which exploits the key ideas of region-based and connected components (CC)-based text localization approaches to localize uncommon fonts and writings in natural images; (ii) in my second work I describe a novel deep-based system which exploits Convolutional Neural Networks and enhanced stable CC to achieve good text spotting results on challenging data sets. During the development of both these methods, my focus has always been on maintaining an acceptable computational complexity and a high reproducibility of the achieved results
    • …
    corecore