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Abstract: In this paper, we evaluate the performance of the so-called parametric t-distributed
stochastic neighbor embedding (P-t-SNE), comparing it to the performance of the t-SNE,
the non-parametric version. The methodology used in this study is introduced for the detection
and classification of structural changes in the field of structural health monitoring. This method is
based on the combination of principal component analysis (PCA) and P-t-SNE, and it is applied to
an experimental case study of an aluminum plate with four piezoelectric transducers. The basic steps
of the detection and classification process are: (i) the raw data are scaled using mean-centered group
scaling and then PCA is applied to reduce its dimensionality; (ii) P-t-SNE is applied to represent
the scaled and reduced data as 2-dimensional points, defining a cluster for each structural state;
and (iii) the current structure to be diagnosed is associated with a cluster employing two strategies:
(a) majority voting; and (b) the sum of the inverse distances. The results in the frequency domain
manifest the strong performance of P-t-SNE, which is comparable to the performance of t-SNE but
outperforms t-SNE in terms of computational cost and runtime. When the method is based on
P-t-SNE, the overall accuracy fluctuates between 99.5% and 99.75%.

Keywords: classification; detection; parametric t-distributed stochastic neighbor embedding
(P-t-SNE); piezoelectric transducers (PZTs); principal component analysis (PCA); structural health
monitoring (SHM); vibration-based SHM

1. Introduction

In structural health monitoring (SHM), an important process for engineering structures, many
methods have been applied for damage detection. In [1], the use of the Treed Gaussian Process
model—a class of powerful switching response surface model—is illustrated in the context of the SHM
of bridges. In [2], a SHM methodology, based on the system-identification techniques, is proposed to
quantify the structural degradation in laminated composite booms used in satellite application. In [3],
it is casted SHM in the context of statistical pattern recognition, and damage or structural changes
are detected using two techniques based on time series analysis. In [4], three optimization-algorithm
based support vector machines for damage detection in SHM are presented, which are expected to
help engineers to process high-dimensional data.

Real-world datasets usually have high dimensionality, and their dimensionality may need to
be reduced to facilitate data processing. Dimensionality reduction is the process of reducing the
number of high-dimensional variables by obtaining a low-dimensional set of variables. This reduced
representation must correspond to the intrinsic information of the data. Dimensionality reduction is
very important, because it alleviates undesired properties of high-dimensional spaces, such as “the
curse of dimensionality” [5]. In the literature, various dimensionality reduction methods have been
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proposed: (i) linear methods, such as principal component analysis (PCA) [6,7] and linear discriminant
analysis (LDA) [8,9], and (ii) nonlinear methods, such as isometric mapping (ISOMAP) [10,11] and the
non-parametric version of t-distributed stochastic neighbor embedding (t-SNE) [12].

In general, real-world data are likely to be highly nonlinear. Therefore, unsupervised nonlinear
dimensionality reduction techniques are widely used in many applications for pattern recognition or
classification [13,14], visualization [15,16], and compression [17] of big datasets. Among these types
of techniques, t-SNE is extensively adopted. However, this method is not designed to support the
incorporation of out-of-sample data—that is, the embedding of new data. To avoid this problem,
the so-called parametric t-SNE (P-t-SNE) method [18] was proposed. This method uses a neural
network (NN) to learn an explicit parametric mapping function from a high-dimensional data space to
a low-dimensional space. Thus, P-t-SNE can incorporate out-of-sample data. Another advantage of
P-t-SNE is that it can be applied to large-scale datasets, while t-SNE can only be applied to datasets
with a size not greater than the order of thousands.

To address the above-mentioned problems of t-SNE, in this work, we propose a strategy that
combines PCA and P-t-SNE to detect and classify damage to structures to diagnose. This combination is
much better than a combination of PCA with t-SNE: the proposed method achieves similar embedding
performance but with a much lower computational cost and runtime. This was confirmed by our
experimental results on an aluminum plate instrumented with four piezoelectric transducers (PZTs).
Therefore, the aims of this paper are (i) to compare two approaches (P-t-SNE versus t-SNE) and (ii) to
identify the advantages of the parametric version. To do this, we will use scenarios 1 and 3 from [19],
because these two scenarios are two extreme cases. In addition, we will approach the damage detection
and classification problem in the frequency domain, as recommended in the same paper [19]. The final
classification of the current state of the structure is based on two different voting systems: the so-called
majority voting and the sum of the inverse distances [19].

The contributions of this study are summarized in the following list. These contributions mainly
refer to the data preprocessing, divided into three parts: data integration, data transformation,
and data reduction.

1. Data preprocessing: Data integration. According to [20], there are six different ways to arrange
the raw data collected by multiple sensors that collected measurements for several seconds in
different experiments. The type of integration of raw data affects the posterior analysis. In this
work, we have considered type-E unfolding.

2. Data preprocessing: Data normalization. The second step, before data transformation, is the data
normalization. We perform the mean-centered group scaling (MCGS), as detailed in [21].

3. Data preprocessing: Data transformation. We build the PCA model (P) so that the normalized
data X̆ are transformed into the projected data T = X̆P. Notably, matrices X̆ and T have equal
dimensions; hence, no reduction is performed at this stage.

4. Data preprocessing: Data reduction (phase I). We use PCA for the data reduction. The number of
principal components ` ∈ N is chosen so that the proportion of the variance explained is greater
than or equal to 95%.

5. Data preprocessing: Data reduction (phase II). We now propose P-t-SNE, avoiding the limitations
of t-SNE, as a second phase to reduce the dimensionality from ` to 2. This is one of the first
approaches that use P-t-SNE in the field of SHM.

6. Data postprocessing: Classification. For the classification, we propose the majority voting and the
sum of the inverse distances, where each actuation phase casts a vote.

As a summary, the contribution of the present work is, precisely, the combination of existing
preprocessing methods with a very promising approach: P-t-SNE.

The remainder of this paper is structured as follows. In Section 2, we present the P-t-SNE method.
Section 3 describes the preprocessing of the baseline data, reduction of the global dimension of the
data, and creation of the clusters using P-t-SNE. Section 4 describes the damage diagnosis procedure.
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Subsequently, the application of the proposed method is presented in Section 5. Section 6 shows the
results. Finally, Section 7 provides our conclusions.

2. Parametric t-SNE (P-t-SNE)

The non-parametric version of t-SNE has a huge computational cost of optimization: to map new
data, the optimization has to run for the complete set again. To avoid the heavy optimization of the
t-SNE, the P-t-SNE was proposed. P-t-SNE is an unsupervised dimensionality reduction technique
that learns a parametric mapping between the high-dimensional data space and the low-dimensional
latent space, preserving the local structure of the data in the latent space as well as possible.

In the P-t-SNE method, the mapping f : X → Y from the high-dimensional space X to the
low-dimensional space Y is parameterized through a feed-forward NN with weights W. The NN
is trained in such a way that it retains the local structure of the data in the low-dimensional space.
There are two main stages in the training procedure:

1. Pretraining with a restricted Boltzmann machine (RBM). RBM is used to construct a pretrained
P-t-SNE network. The main aim of the pretraining stage is to define an initialization of the model
parameters for the next stage.

2. Fine-tuning using the cost function of P-t-SNE. In this stage, the weights of the pretrained
NN are fine-tuned in such a way that the NN preserves the local structure of the data in the
low-dimensional space. In the feed-forward NN, term qij [12,19] of the t-SNE is adapted as follows:

qij =

[
1 + ‖ f (xi|W)− f (xj|W)‖2/α

]−(α+1)/2

∑
k 6=l

[1 + ‖ f (xk|W)− f (xl |W)‖2/α]
−(α+1)/2

,

where α denotes the degrees of freedom of the Student’s t-distribution.

Restricted Boltzmann Machine

In this section, a short introduction to RBM [22,23] is given.
An RBM is a two-layer stochastic NN. This network consists of a visible, or input, layer (visible

nodes v) and a hidden layer (hidden nodes h). Values of the nodes are normally Bernoulli-distributed.
Each visible node is connected to all hidden nodes using weighted connections, but there are no
intra-layer connections. The structure of the RBM is illustrated in Figure 1.

…

…

a1 a2 a3 aN a ∈ RN

hidden layer h1 h2 h3 hN h ∈ {0,1}N

W1,1 WN,M W ∈ RN×M

visible layer v1 v2 v3 vM v ∈ {0,1}M

b1 b2 b3 bM b ∈ RM

Figure 3: Original EPS imageFigure 1. Structure of the RBM.
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Boltzmann distribution is specified by the energy function E(v, h), and this distribution gives the
joint distribution over all nodes, P(v, h):

E(v, h) = −∑
i,j

Wijvihj −∑
i

bivi −∑
j

ajhj,

P(v, h) =
exp(−E(v, h))

∑v,h exp(−E(v, h))
,

where Wij is the weight of the connection between a visible node vi and a hidden node hj; and bi
and aj are the biases of visible and hidden nodes, respectively. Moreover, conditional probabilities
P(vi = 1|h) and P(hj = 1|v) are given by the sigmoid function:

P(vi = 1|h) = 1
1 + exp(−∑j Wijhj − bi)

, (1)

P(hj = 1|v) = 1
1 + exp(−∑i Wijvi − aj)

. (2)

The RBM can calculate the values of visible nodes from the values of hidden nodes by Equation (1);
similarly, the RBM can calculate the values of hidden nodes from the visible nodes by Equation (2).

The model parameters W, b, and a are learned so that the marginal distribution over the visible
nodes under model Pmodel(v) is close to the true distribution of data, Pdata(v). In particular, the RBM
uses the Kullback–Leibler (KL) divergence to measure the distance between the true distribution
Pdata(v) and the distribution based on the model Pmodel(v). The gradient of the KL divergence with
respect to Wij is given by

∂KL(Pdata||Pmodel)

∂Wij
= E[vihj]Pdata −E[vihj]Pmodel ,

where E[vihj]Pdata is the expected value under the true distribution, and E[vihj]Pmodel is the expected
value under the model distribution.

However, the model expectation, E[vihj]Pmodel , cannot be computed analytically. To avoid
computing the model, we follow an approximation: the gradient of a slightly different objective
function that is called contrastive divergence (CD) [24]. The CD measures how the model distribution
gets away from the true distribution of data through KL(Pdata||Pmodel)−KL(P1||Pmodel), where P1(v)
is the distribution over the visible nodes because the RBM can run for one iteration (that is, one Gibbs
sweep) when initialized according to the true distribution. Using standard gradient descent techniques,
the CD can be minimized efficiently:

E[vihj]Pdata −E[vihj]P1 .

The second term, E[vihj]P1 , is estimated from the samples obtained using Gibbs sampling.

3. Baseline Data: Preprocessing and Clustering

In this section, data preprocessing is presented briefly, because a more detailed description can be
found in [19]. The preprocessing has three stages: data integration (Section 3.1), data transformation
(Section 3.2), and data reduction (Section 3.3). Subsequently, data are organized in clusters in Section 3.4.
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3.1. Data Integration: Unfolding and Scaling

The collected data contain different response signals measured by sensors on a vibrating structure
in the time domain. Under different structural states, multiple observations of these responses
are measured. Then, using the fast Fourier transform (FFT) algorithm, these response signals are
transformed into the frequency domain. All these observations in the frequency domain are collected
in a matrix that is defined as follows:

X =
(

xk,l
i,j

)
=



x1,1
1,1 · · · x1,L

1,1 x2,1
1,1 · · · x2,L

1,1 · · · xK,1
1,1 · · · xK,L

1,1
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1,1
n1 ,1 · · · x1,L

n1 ,1 x2,1
n1 ,1 · · · x2,L

n1 ,1 · · · xK,1
n1 ,1 · · · xK,L

n1 ,1

x1,1
1,2 · · · x1,L

1,2 x2,1
1,2 · · · x2,L

1,2 · · · xK,1
1,2 · · · xK,L

1,2
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1,1
n2 ,2 · · · x1,L

n2 ,2 x2,1
n2 ,2 · · · x2,L

n2 ,2 · · · xK,1
n2 ,2 · · · xK,L

n2 ,2

...
. . .

...
...

. . .
...

. . .
...

. . .
...

x1,1
1,J · · · x1,L

1,J x2,1
1,J · · · x2,L

1,J · · · xK,1
1,J · · · xK,L

1,J
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1,1
nJ ,J · · · x1,L

nJ ,J x2,1
nJ ,J · · · x2,L

nJ ,J · · · xK,1
nJ ,J · · · xK,L

nJ ,J



∈ M(n1+···+nJ)×(K·L)
(R), (3)

where K ∈ N is the number of sensors and k = 1, . . . , K identifies the sensor that is measuring; L ∈ N
is the number of components in each signal and l = 1, . . . , L indicates the l-th measurement in the
frequency domain; J ∈ N is the number of different structural states that are considered and j = 1, . . . , J
represents the structural state that is measured; finally, nj, j = 1, . . . , J, is the number of observations
per structural state and i = 1, . . . , nj is the i-th observation related to the j-th structural state.

Matrix X in Equation (3) is a particular unfolded version of a 3-dimensional (n1 + · · ·+ nJ)×K× L
data matrix, where the first dimension is observation, the second dimension is sensor, and the third
dimension is time. Numerous approaches have been proposed to handle 3-dimensional matrices.
The most widely adopted approaches are based on the unfolding of these matrices. There are six
alternative ways of arranging a 3-dimensional data matrix [20] that affect the performance of the
overall strategy, and we have considered type E in this work, because type-E unfolding simplifies the
study of variability among samples.

Matrix X in Equation (3) is rescaled through MCGS [21] because of the different magnitudes and
scales in the measurements.

3.2. Data Transformation

Data transformation means applying a particular mathematical function. The transformation that
we apply in this study is PCA, because the final aim is dimensionality reduction. We build the PCA
model, P, so that the normalized data X using MCGS, X̆, are transformed to the projected data T = X̆P.
Notably, matrices X̆ and T have equal dimensions; hence, no reduction is performed at this stage.

3.3. Data Reduction: PCA and P-t-SNE

In this work, we use two methods of data reduction. On the one hand, we apply PCA to represent
the normalized matrix X̆ in a new space with reduced dimensions and without a significant loss
of information. On the other hand, we apply P-t-SNE as a 2-dimensional representation technique.
These two approaches are combined to reduce the data complexity, computational effort, and time.
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3.4. Clustering Effect

The first dimensionality reduction is performed using PCA. Specifically, for n = n1 + · · ·+ nJ
observations, the rows of matrix X in Equation (3) under J different structural states are projected and
transformed into a lower-dimensional space.

Next, the second dimensionality reduction is applied to the projected and transformed data
using P-t-SNE. The aim is to find a collection of 2-dimensional points that represent the projected
and transformed data by PCA with no explicit loss of information and preserve the local structure
of this dataset. After the application of P-t-SNE, we expect to observe J clusters related to J different
structural states.

As mentioned at the beginning of Section 3, see [19] for more details on these stages.

4. Structure to Diagnose: Damage Detection and Classification Procedure

In this section, we describe the vibration-based damage detection and classification procedure to
diagnose a new structure.

For damage detection and classification, a single observation of the current structure is required to
diagnose it. The collected data are composed of different response signals measured by K sensors and
L components in each signal, as in Equation (3). When these measures are obtained in the frequency
domain, we build a new data vector z:

z> =
[

z1,1 · · · z1,L z2,1 · · · z2,L · · · zK,1 · · · zK,L
]
∈ RK·L.

4.1. Scaling (MCGS)

First, we have to scale the row vector z> to define a scaled row vector z̆>:

z̆k,l =
zk,l − µk,l

σk , k = 1, . . . , K, l = 1, . . . , L, (4)

where µk,l is the arithmetic mean of all the elements in the [(k − 1)L + l]-th column of matrix X
in Equation (3) (that is, the l-th column of the k-th sensor) and σk is the standard deviation of
all measurements of the k-th sensor relative to the mean value µk (the arithmetic mean of all the
measurements of the k-th sensor).

4.2. Projection (PCA)

The scaled row vector z̆> ∈ RK·L is projected into the space spanned by the first ` principal
components in P` through the vector-to-matrix multiplication:

xn+1 = z̆> · P` ∈ R`.

Notably, the vector containing the data of the structure to be diagnosed initially has dimension
K · L but later dimension `. We add this new point to the projected and transformed data by PCA
(X = {x1, . . . , xn} ⊂ R`) to define a new set:

X ′ = {x1, . . . , xn} ∪ {xn+1} = {x1, . . . , xn, xn+1} ⊂ R`, (5)

where

xi = e>i X̆P`, i = 1, . . . , n

and ei ∈ Rn is the i-th element of the canonical basis. The network is trained with {x1, . . . , xn}.
Then, {xn+1} will be passed through the trained network.
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4.3. P-t-SNE and Final Classification

Finally, we apply P-t-SNE to the `-dimensional set X ′ in Equation (5) to find a collection
of 2-dimensional map points Y ′ = {y1, . . . , yn, yn+1} ⊂ R2 that represent the original set X =

{x1, . . . , xn} ⊂ R` (the data projected and transformed by PCA) with no explicit loss of information
and retaining the local structure of this set. Furthermore, the map point yn+1, associated with the data
point xn+1, is included. That is, the embedded data are constructed applying the trained network: input
X ′ and output Y ′. We expect to observe the same J clusters related to the J different structural states.

For each cluster, we calculate its centroid: the mean of the values of the data points in the cluster.
For instance, the centroid associated with the first structural state is

Y ′1 :=
1
n1

n1

∑
i=1

yi =
y1 + · · ·+ yn1

n1
∈ R2.

In general, the centroid associated with the j-th structural state, j = 1, . . . , J, is the 2-dimensional point
defined as

Y ′j :=
1
nj

nj

∑
i=1

y

(
j−1
∑

m=0
nm

)
+j
∈ R2, j = 1, . . . , J, (6)

where n0 = 0. As a result, the current structure to diagnose is associated with the j-th structural state if

j = arg min
j=1,...,J

‖Y ′j − yn+1‖2,

that is, if the minimum distance between yn+1 and each centroid corresponds to the Euclidean distance
between Y ′j and yn+1. We call this approach the smallest point-centroid distance (see Figure 2).

The proposed procedure is shown in Figure 3.

structural state #1

structural state #2

structural state #3

smallest point-centroid
distance

?

structural state #4

Figure 2. Current structure to diagnose is associated with the structural state with the smallest
point-centroid distance.
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MCGS

PCA

data coming from a structure to 
be diagnosed

baseline data

P

P-t-SNE

L time steps

L x K

CLUSTERING

smallest point-centroid distance
majority voting

 sum of the 
inverse distances

n

multiple actuation phases

transformed into 
the frequency domain

…

…

L x K

Figure 3. Flowchart of the proposed procedure. Data coming from a structure are first scaled by MCGS
and then projected into the PCA model. Finally, P-t-SNE is applied to generate the clusters that will be
used in the vibration-based detection and classification of structural changes.

5. Application of the SHM System on an Aluminum Plate with Four PZTs

In this study, we reuse the structure and experiment from [19]. Therefore, we can use this structure
as a benchmark to compare our results.

5.1. Structure

A square aluminum plate was manufactured to demonstrate the accuracy of the vibration-based
method of damage detection and classification presented in Sections 3 and 4. The dimension of the
plate is 40× 40× 0.2 cm. The plate is instrumented with four PZTs and a mass of 17.2916 g is introduced
to simulate the damage in a non-destructive way, producing changes in the propagated wave (see
Figure 4a). Each PZT can work in two modes: excite the aluminum plate (actuator mode) with a burst
signal or detect a time-varying mechanical response (sensor mode). The location of the mass defines
each damage, and J = 4 structural states are considered: healthy state and three different types of
damage (Figure 4b). The plate is isolated from the vibration and noise in the laboratory (Figure 4b).
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20 cm

40 cm

1
2

.5
 c

m

1
2

.5
 c

m

5 cm 5 cm

12.5 cm

5
 c

m
5

 c
m

2
0

 c
m

12.5 cm

S1

S2

S3

S4

damage 1 damage 2

damage 3

(a)

no damage damage 1

damage 2 damage 3

(b)

Figure 4. (a) Aluminum plate with four piezoelectric sensors (S1, S2, S3, and S4); (b) the four structural
states considered.

5.2. Scenarios and Actuation Phases

Unlike [19], in this study, the experimental setup includes only two scenarios (the two extreme
cases) to determine the performance of the proposed method:

• Scenario 1. The signals are obtained using a short wire (0.5 m) from the digitizer to the
piezoelectric sensors. Next, the Savitzky–Golay [25] algorithm is used to filter these signals
after adding white Gaussian noise. This filter is used to smoothen the data.

• Scenario 2. The signals are obtained using a long wire (2.5 m) from the digitizers to the
piezoelectric sensors. Signals are also filtered with the Savitzky–Golay algorithm.

As discussed in Section 5.1, there are four PZTs (S1, S2, S3, and S4) that excite the plate and collect
the measured signal. This sensor network works in what we call actuation phases. In each actuation
phase, a PZT is used as an actuator (which excites the plate with the burst signal), and the rest of the
PZTs are used as sensors (which measure signals). Therefore, we have as many actuation phases as
sensors: in actuation phase 1, S1 is used as the actuator and the rest of PZTs are used as sensors; in
actuation phase 2, S2 is used as the actuator and the rest of PZTs are used as sensors; and so on.

5.3. Data Collection

Given a certain scenario, as the two defined in Section 5.2, four matrices X[ϕ], ϕ = 1, . . . , 4,
are obtained, one for each actuation phase. Each matrix X[ϕ], ϕ = 1, . . . , 4, is constructed as follows:

• n1 = n2 = n3 = n4 = 25 observations are performed for each of the four structural states.
Therefore, each matrix X[ϕ], ϕ = 1, . . . , 4, contains 100 rows: n1 + n2 + n3 + n4 = 25 · 4.
Specifically, the first 25 rows represent the healthy state, the next 25 are observations with damage
1, and so on.

• For each actuation phase ϕ, ϕ = 1, . . . , 4, K = 3 PZTs working as sensors are measured during 60000
time instants. Next, these measurements are transformed into the frequency domain. As a result,
the number of columns of matrix X[ϕ], ϕ = 1, . . . , 4, is equal to K · L = 3 · ((60000/2) + 1) = 90003.

Therefore, the matrix that collects all observations under the different structural states in the
frequency domain is as follows (see Equation (3); here, L = 30001 and J = 4):
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X[ϕ] =
(

x[ϕ]k,l
i,j

)
∈ M100×90003(R). (7)

The damage detection and classification method described in Sections 3 and 4 can be applied
to each matrix X[ϕ], ϕ = 1, . . . , 4, in Equation (7), leading to one classification per actuation phase.
Then, we will use these four classifications to obtain a final decision based on the four actuation phases.
This strategy will be detailed in Section 5.5.

5.4. κ-Fold Nonexhaustive Leave-p-Out Cross-Validation

The proposed approach is evaluated by comparing test data (the new observations in unknown
state under the same conditions) with baseline data (data from the structure under the four different
structural states). For that purpose, the κ-fold nonexhaustive leave-p-out cross-validation [19] is used.
Hence, the sum of all elements in the confusion matrices that are presented in Section 6 is equal to 400.
We use the notation X to represent the matrix that is used as the baseline to build the model. Matrix X
has 20 rows: five for each structural state.

5.5. Damage Detection and Classification

The strategy for damage detection and classification is as follows: the classification will be based
on the four matrices X[1], X[2], X[3], and X[4], defined in Equation (7), with κ-fold nonexhaustive
leave-p-out cross-validation. Each actuation phase will cast a vote that will determine the final
classification.

In this strategy, the next steps are followed:

• Step 1. The data matrix X is scaled by MCGS, obtaining matrix X̆.
• Step 2. PCA is applied to matrix X̆, obtaining the PCA model P.
• Step 3. The reduced PCA model P` is chosen such that the proportion of variance explained is at

least 95%.
• Step 4. An observation z> ∈ R3·30001 = R90003 of the current structure-to-diagnose is needed.

Then, z> is scaled by Equation (4) to obtain z̆>, which is projected into the space spanned by the
first ` principal components in P`.

• Step 5. Dataset X ′ = {x1, . . . , x20} ∪ {x21} = {x1, . . . , x20, x21} ⊂ R` is defined by Equation (5).
The network is trained with {x1, . . . , x20}. Then, {x21}will be passed through the trained network.

• Step 6. P-t-SNE is applied toX ′ to find a set of 2-dimensional points: Y ′ = {y1, . . . , y20, y21} ⊂ R2.
Thus, the embedded data are constructed using the trained network: input X ′ and output Y ′.

• Step 7. J = 4 clusters are obtained, one per structural state. These clusters are formed by the
2-dimensional points: {y1, . . . , y5} ⊂ Y ′, related to the healthy state; {y6, . . . , y10} ⊂ Y ′, related
to damage 1; {y11, . . . , y15} ⊂ Y ′, related to damage 2; and {y16, . . . , y20} ⊂ Y ′, related to damage
3. Centroid Y ′j , j = 1, . . . , J, associated with the j-th structural state is calculated by Equation (6).

• Step 8. With the information given by the four actuation phases, the structure that must be
diagnosed is finally classified considering two approaches: majority voting and sum of the inverse
distances. For details of both approaches, see [19].

6. Results

In this section, confusion matrices summarize the results of the damage detection and classification
method presented in Sections 3 and 4 and detailed in Sections 5.3–5.5. The results for each scenario are
shown in different subsections. Four different structural states are considered in both scenarios:

• The healthy state (D0)—the aluminum plate with no damage;
• Three states with damage (D1, D2, and D3)—the aluminum plate with an added mass at the

positions indicated in Figure 4.
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Five iterations (κ = 5) of a nonexhaustive leave-p-out cross-validation, with p = 80, are performed
to validate the damage detection and classification method. At each iteration, 80 observations are
considered: 20 observations per structural state (D0, D1, D2, and D3). Therefore, the sum of all
elements in the confusion matrices is equal to 5 · 80 = 400.

Two different confusion matrices are shown for each of the two scenarios:

• Majority voting. The damage detection and classification method is applied to the four matrices
X[ϕ], ϕ = 1, . . . , 4. Each actuation phase emits a vote, and the final classification is made by the
majority voting [19].

• Sum of the inverse distances. The damage detection and classification method is applied to the
four matrices X[ϕ], ϕ = 1, . . . , 4. Each actuation phase emits a vote, and the final classification is
made using the maximum sum of the inverse distances [19].

Finally, we have included the confusion matrices for t-SNE, to compare its performance
with P-t-SNE.

6.1. Scenario 1

In this section, we describe the results for Scenario 1 from Section 5.2. Tables 1 and 2 show the
four confusion matrices. The green background cells correspond to observations that are correctly
classified, while the red background cells represent the misclassifications. The color intensity (green or
red) is related to the proportion of correct or wrong decisions.

With P-t-SNE and the majority voting (Table 1), the overall accuracy is very good. Specifically, 398
out of 400 observations have been correctly classified, which corresponds to the overall accuracy of
99.5%. With t-SNE, the overall accuracy is 100% (Table 1).

Using the sum of the inverse distances (Table 2) for the P-t-SNE-based damage detection and
classification, 399 out of 400 observations have been correctly classified; hence, the overall accuracy is
99.75%. For t-SNE, 400 out of 400 observations have been correctly classified (100% accuracy).

Furthermore, other metrics are calculated. The most common metrics for choosing the best
solution in a binary classification problem are as follows:

• Accuracy, defined as the proportion of true results among the total number of cases examined.
• Precision or positive predictive value (PPV) that attempts to answer the question “what proportion

of positive identifications is actually correct?”.
• Sensitivity or true positive rate (TPR) that measures the proportion of actual positives that are

correctly identified as such.
• F1 score, defined as the harmonic mean of PPV and TPR.
• Specificity or true negative rate (TNR) that measures the proportion of actual negatives that are

correctly identified as such.

These metrics are easy to calculate for binary and multiclass classification problems [26]. When the
classification problem is multiclass, as in the current work, according to [27,28], the result is the average
obtained by adding the result of each class and dividing over the total number of classes.

In all cases (P-t-SNE, t-SNE, the majority voting, and the sum of the inverse distances), these five
metrics vary between 99.5% and 100% (Tables 3 and 4).

As can be seen, both parametric and non-parametric approaches obtain practically the same
results. However, P-t-SNE dramatically reduces the processing time: it decreases from 40 min and
15 s (t-SNE) to 2 min and 34 s (P-t-SNE) on an Intel Core i7 4.20 GHz computer with 32 GB RAM.
Using P-t-SNE, a decision is made in just a few milliseconds. The reduced time (2 min and 34 s)
includes both the pretraining and the fine-tuning of the NN, as well as the classification of the current
state of the structure. The total computational cost of P-t-SNE is reduced by approximately 94%
compared with t-SNE.
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Table 1. Confusion matrix of the application of P-t-SNE and t-SNE damage detection and classification
method presented in Sections 3 and 4: scenario 1 and the majority voting approach.

True
Predicted P-t-SNE t-SNE

D0 D1 D2 D3 D0 D1 D2 D3
D0 100 0 0 0 100 0 0 0
D1 0 100 0 0 0 100 0 0
D2 0 0 100 0 0 0 100 0
D3 0 0 2 98 0 0 0 100

1 D0: healthy state of the structure; D1, D2, and D3: added masses at the positions indicated in Figure 4.

Table 2. Confusion matrix of the application of P-t-SNE and t-SNE damage detection and classification
method presented in Sections 3 and 4: scenario 1 and the sum of the inverse distances approach.

True
Predicted P-t-SNE t-SNE

D0 D1 D2 D3 D0 D1 D2 D3
D0 100 0 0 0 100 0 0 0
D1 0 100 0 0 0 100 0 0
D2 0 0 99 1 0 0 100 0
D3 0 0 0 100 0 0 0 100

1 D0: healthy state of the structure; D1, D2, and D3: added masses at the positions indicated in Figure 4.

Table 3. Accuracy, PPV, TPR, F1 score, and TNR of the application of P-t-SNE and t-SNE damage
detection and classification method presented in Sections 3 and the 4: scenario 1 and the majority
voting approach.

P-t-SNE t-SNE

Accuracy 99.8% 100.0%
PPV 99.5% 100.0%
TPR 99.5% 100.0%
F1 score 99.5% 100.0%
TNR 99.8% 100.0%

Table 4. Accuracy, PPV, TPR, F1 score, and TNR of the application of P-t-SNE and t-SNE damage
detection and classification method presented in Sections 3 and 4: scenario 1 and the sum of the inverse
distances approach.

P-t-SNE t-SNE

Accuracy 99.9% 100.0%
PPV 99.8% 100.0%
TPR 99.8% 100.0%
F1 score 99.7% 100.0%
TNR 99.9% 100.0%

6.2. Scenario 2

In this section, we describe the results for Scenario 2 from Section 5.2. Tables 5 and 6 show the
four confusion matrices.

With P-t-SNE and the majority voting (Table 5), the overall accuracy is also very good.
Specifically, 398 out of 400 observations have been correctly classified; this corresponds to the overall
accuracy of 99.5%. With t-SNE and the majority voting, the overall accuracy is 100% (Table 5).

Using the maximum sum of the inverse distances to take a final decision (Table 6) with P-t-SNE,
399 out of 400 observations have been correctly classified (the overall accuracy of 99.75%). With t-SNE,
400 out of 400 observations have been correctly classified (the overall accuracy of 100%).

In the non-parametric approach, using the majority voting and the sum of the inverse distances,
the five metrics presented in Section 6.1 achieve 100%. In contrast, in the parametric approach, these
metrics slightly decrease (between 0.1% and 0.5%, see Tables 7 and 8).
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Again, as in scenario 1, parametric and non-parametric methods obtain similar results.
However, as before, the P-t-SNE approach dramatically reduces the processing time: from 42 min and
1 s (t-SNE) to 2 min and 32 s (P-t-SNE). As in the previous scenario, the total computational cost of
P-t-SNE is reduced by approximately 94% compared with t-SNE.

Table 5. Confusion matrix of the application of P-t-SNE and t-SNE damage detection and classification
method presented in Sections 3 and 4: scenario 2 and the majority voting approach.

True
Predicted P-t-SNE t-SNE

D0 D1 D2 D3 D0 D1 D2 D3
D0 100 0 0 0 100 0 0 0
D1 1 99 0 0 0 100 0 0
D2 1 0 99 0 0 0 100 0
D3 0 0 0 100 0 0 0 100

1 D0: healthy state of the structure; D1, D2, and D3: added masses at the positions indicated in Figure 4.

Table 6. Confusion matrix of the application of P-t-SNE and t-SNE damage detection and classification
method presented in Sections 3 and 4: scenario 2 and the sum of the inverse distances approach.

True
Predicted P-t-SNE t-SNE

D0 D1 D2 D3 D0 D1 D2 D3
D0 100 0 0 0 100 0 0 0
D1 1 99 0 0 0 100 0 0
D2 0 0 100 0 0 0 100 0
D3 0 0 0 100 0 0 0 100

1 D0: healthy state of the structure; D1, D2, and D3: added masses at the positions indicated in Figure 4.

Table 7. Accuracy, PPV, TPR, F1 score, and TNR of the application of P-t-SNE and t-SNE damage
detection and classification method presented in Sections 3 and 4: scenario 2 and the majority
voting approach.

P-t-SNE t-SNE

Accuracy 99.8% 100.0%
PPV 99.5% 100.0%
TPR 99.5% 100.0%
F1 score 99.5% 100.0%
TNR 99.8% 100.0%

Table 8. Accuracy, PPV, TPR, F1 score, and TNR of the application of P-t-SNE and t-SNE damage
detection and classification method presented in Sections 3 and 4: scenario 2 and the sum of the inverse
distances approach.

P-t-SNE t-SNE

Accuracy 99.9% 100.0%
PPV 99.8% 100.0%
TPR 99.8% 100.0%
F1 score 99.7% 100.0%
TNR 99.9% 100.0%

6.3. Repeatability

We use error bars to give the reader a general idea of the uncertainty in the results. Figure 5 shows
the mean of each structural state with error bars representing the standard error. As it can be seen both
in Figure 5 and in Tables 9–12, the standard error is very small, when we repeat the procedure 10 times.
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Figure 5. Repeatability of the SHM strategy (10 times), graphs with error bars: (a) scenario 1 and
majority voting approach; (b) scenario 1 and sum of the inverse distances approach; (c) scenario 2 and
majority voting approach; (d) scenario 2 and sum of the inverse distances approach. D0: healthy state
of the structure; D1, D2, and D3: added masses at the positions indicated in Figure 4.

Table 9. Repeatability of the SHM strategy (10 times): scenario 1 and majority voting approach.
D0: healthy state of the structure; D1, D2, and D3: added masses at the positions indicated in Figure 4.

D0 D1 D2 D3

Mean 100.00 100.00 99.80 99.40
Standard deviation 0.00 0.00 0.42 0.84
Standard error 0.00 0.00 0.13 0.27

Table 10. Repeatability of the SHM strategy (10 times): scenario 1 and sum of the inverse distances
approach. D0: healthy state of the structure; D1, D2, and D3: added masses at the positions indicated
in Figure 4.

D0 D1 D2 D3

Mean 100.00 100.00 99.80 100.00
Standard deviation 0.00 0.00 0.42 0.00
Standard error 0.00 0.00 0.13 0.00

Table 11. Repeatability of the SHM strategy (10 times): scenario 2 and majority voting approach.
D0: healthy state of the structure; D1, D2, and D3: added masses at the positions indicated in Figure 4.

D0 D1 D2 D3

Mean 100.00 98.10 99.70 100.00
Standard deviation 0.00 2.33 0.67 0.00
Standard error 0.00 0.74 0.21 0.00
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Table 12. Repeatability of the SHM strategy (10 times): scenario 2 and sum of the inverse distances
approach. D0: healthy state of the structure; D1, D2, and D3: added masses at the positions indicated
in Figure 4.

D0 D1 D2 D3

Mean 100.00 99.90 100.00 99.90
Standard deviation 0.00 0.32 0.00 0.32
Standard error 0.00 0.10 0.00 0.10

7. Conclusions

In this paper, we proposed an SHM strategy for the detection and classification of structural
changes combining PCA and P-t-SNE. We evaluated the proposed method with experimental data.
The obtained results show that its performance is very good, given its high classification accuracy.
In addition, we have compared the parametric version of t-SNE with the non-parametric version.

According to the results shown in Sections 6.1 and 6.2, the performance is very satisfactory and
similar in both approaches: P-t-SNE and t-SNE. However, in terms of processing time, it is better
to make a decision considering the P-t-SNE-based damage detection and classification rather than
working with the t-SNE-based method: although the non-parametric approach slightly outperforms
the parametric approach, the parametric approach can reduce the total computational cost by
approximately 94%. Hence, P-t-SNE can classify a current structure in just a few milliseconds. This is
the first indication that P-t-SNE is better compared with the t-SNE. Other advantages of using P-t-SNE
are as follows:

1. P-t-SNE can handle large-scale datasets, while t-SNE can only handle datasets with a size not
greater than the order of thousands.

2. The t-SNE method requires an extremely large computational cost for the optimization: to map
a new data sample, the optimization has to run for the whole dataset again. However, P-t-SNE
can learn from the training data and be applied when a new observation arises; hence, it can
work with real-time observations. Therefore, the parametric approach can make inferences about
new samples to be diagnosed without having to recalculate everything; the model predicts on
out-of-sample data.

Based on the foregoing, and seeing the strong performance of the P-t-SNE-based approach,
we conclude that it is better to work with the parametric version of t-SNE than with the
non-parametric version.

Many possible fields of application exist. For example, in aeronautics, parts of an airplane (wings
or fuselage) can be simulated with similar aluminum plates; for wind turbines, this methodology can
be applied to detect damage and faults. In general, if a sensor network can be installed in a structure,
and various actuation phases can be defined, the proposed approach can be considered.

In our future work, we contemplate to apply the proposed methodology to handle imbalanced
data, as well as to determine its effectiveness in different environmental and operational conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

CD contrastive divergence
FFT fast Fourier transform
ISOMAP isometric mapping
KL Kullback–Leibler
LDA linear discriminant analysis
MCGS mean-centered group scaling
NN neural network
PCA principal component analysis
PPV positive predictive value
P-t-SNE parametric t-distributed stochastic neighbor embedding
PZT piezoelectric transducers
RBM restricted Boltzmann machine
SHM structural health monitoring
TNR true negative rate
TPR true positive rate
t-SNE t-distributed stochastic neighbor embedding
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