49 research outputs found

    Micro motion stages with flexure hinges-design and control

    Get PDF
    The developments in micro and nano technologies brought the need of high precision micropositioning stages to be used in micro/nano applications such as cell manipulation, surgery, aerospace, micro fluidics, optical systems, micromachining and microassembly etc. Micro motion stages with flexible joints called compliant mechanisms are built to provide the needed accuracy and precision. This thesis aims to build compliant planar micro motion stages using flexure hinges to be used as micropositioning devices in x-y directions by applying new control methods. First 3- RRR planar parallel kinematic structure is selected which is also popular in the literature. Then the mechanism is developed to have a new structure which is a 3-PRR mechanism. The necessary geometric parameters are selected by using Finite Element Analysis (FEA). The displacement, stress and frequency behaviors of the mechanisms are compared and discussed. Modeling of the flexure based mechanisms is also studied for 3-PRR compliant stage by using Kinetostatic modeling method which combines the compliance calculations of flexure hinges with kinematics of the mechanism. Piezoelectric actuators and optical 2d position sensor which uses a laser source are used for actuation and measurement of the stages. After the experimental studies it's seen that the results are not compatible with FEA because of the unpredictable errors caused by manufacturing and assembly. We have succeeded to eliminate those errors by implementing a control methodology based on Sliding Mode Control with Disturbance Observer which is also based on Sliding Mode Control using linear piezoelectric actuator models. Finally, we have extracted experimental models for each actuation direction of the stage and used those models instead of piezoelectric actuator models which lowered our errors in the accuracy of our measurement and ready to be used as a high precision micro positioning stage for our micro system applications

    A Compliant PKM Mesomanipulator: Kinematic and Dynamic Analyses.

    Get PDF
    The kinematic and dynamic analyses of a PKM mesomanipulator are addressed in this paper: the proposed robot architecture allows only pure translations for the mobile platform, while the presence of flexure hinges introduces compliance into the structure. The analytical solutions to direct and inverse kinematic problems are evaluated after a brief introduction of the basic adopted nomenclature, the manipulator workspace and the robot singularity configurations are then described, and the analytical solution to the inverse dynamic problem is presented. Thereafter, an overview on some of the simulations results obtained through a software implementation of the described algorithms is addressed, and the most salient aspects of this topic are summarized in the final conclusions

    Design and analysis of symmetric and compact 2R1T (in-plane 3-DOC) flexure parallel mechanisms

    Get PDF
    Symmetry is very necessary in flexure mechanisms, which can eliminate parasitic motions, avoid buckling, and minimize thermal and manufacturing sensitivity. This paper proposes two symmetric and compact flexure designs, in-plane 3-DOC (degree of constraint) mechanisms, which are composed of 4 and 6 identical wire beams, respectively. Compared to traditional leaf-beam-based designs, the two present designs have lower stiffness in the primary motion directions, and have smaller stiffness reduction in the parasitic directions. Analytical modelling is conducted to derive the symbolic compliance equations, enabling quick analysis and comparisons of compliances of the two mechanisms. A prototype has been tested statically to compare with analytical models

    Design and Characterization of Curved and Spherical Flexure Hinges for Planar and Spatial Compliant Mechanisms

    Get PDF
    A flexure hinge is a flexible connector that can provide a limited rotational motion between two rigid parts by means of material deformation. These connectors can be used to substitute traditional kinematic pairs (like bearing couplings) in rigid-body mechanisms. When compared to their rigid-body counterpart, flexure hinges are characterized by reduced weight, absence of backlash and friction, part-count reduction, but restricted range of motion. There are several types of flexure hinges in the literature that have been studied and characterized for different applications. In our study, we have introduced new types of flexures with curved structures i.e. circularly curved-beam flexures and spherical flexures. These flexures have been utilized for both planar applications (e.g. articulated robotic fingers) and spatial applications (e.g. spherical compliant mechanisms). We have derived closed-form compliance equations for both circularly curved-beam flexures and spherical flexures. Each element of the spatial compliance matrix is analytically computed as a function of hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. A case study is also presented for each class of flexures, concerning the potential applications in the optimal design of planar and spatial compliant mechanisms. Each case study is followed by comparing the performance of these novel flexures with the performance of commonly used geometries in terms of principle compliance factors, parasitic motions and maximum stress demands. Furthermore, we have extended our study to the design and analysis of serial and parallel compliant mechanisms, where the proposed flexures have been employed to achieve spatial motions e.g. compliant spherical joints

    A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism

    Get PDF
    This paper presents a 2-degrees of freedom flexure-based micropositioning stage with a flexible decoupling mechanism. The stage is composed of an upper planar stage and four vertical support links to improve the out-of-plane stiffness. The moving platform is driven by two voice coil motors, and thus it has the capability of large working stroke. The upper stage is connected with the base through six double parallel four-bar linkages mechanisms, which are orthogonally arranged to implement the motion decoupling in the x and y directions. The vertical support links with serially connected hook joints are utilized to guarantee good planar motion with heavy-loads. The static stiffness and the dynamic resonant frequencies are obtained based on the theoretical analyses. Finite element analysis is used to investigate the characteristics of the developed stage. Experiments are carried out to validate the established models and the performance of the developed stage. It is noted that the developed stage has the capability of translational motion stroke of 1.8 mm and 1.78 mm in working axes. The maximum coupling errors in the x and y directions are 0.65% and 0.82%, respectively, and the motion resolution is less than 200 nm. The experimental results show that the developed stage has good capability for trajectory tracking

    Compliance and Fatigue Life Analysis of U-shaped Flexure Hinge

    Get PDF
    corecore