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Abstract

A flexure hinge is a flexible connector that can provide a limited rotational motionbetween two

rigid parts by means of material deformation. These connectors can be used to substitute tradi-

tional kinematic pairs (like bearing couplings) in rigid-body mechanisms. Whencompared to their

rigid-body counterpart, flexure hinges are characterized by reduced weight, absence of backlash

and friction, part-count reduction, but restricted range of motion. There are several types of flexure

hinges in the literature that have been studied and characterized for different applications. In our

study, we have introduced new types of flexures with curved structuresi.e. circularly curved-beam

flexures and spherical flexures. These flexures have been utilized for both planar applications

(e.g. articulated robotic fingers) and spatial applications (e.g. sphericalcompliant mechanisms).

We have derived closed-form compliance equations for both circularly curved-beam flexures and

spherical flexures. Each element of the spatial compliance matrix is analytically computed as a

function of hinge dimensions and employed material. The theoretical model is then validated by

comparing analytical data with the results obtained through Finite Element Analysis. A case study

is also presented for each class of flexures, concerning the potential applications in the optimal

design of planar and spatial compliant mechanisms. Each case study is followed by comparing the

performance of these novel flexures with the performance of commonly used geometries in terms

of principle compliance factors, parasitic motions and maximum stress demands.Furthermore,

we have extended our study to the design and analysis of serial and parallel compliant mecha-

nisms, where the proposed flexures have been employed to achieve spatial motions e.g. compliant

spherical joints.
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Chapter 1

Introduction and Thesis Outline

This chapter briefly introduces compliant mechanisms, their advantages anddisad-
vantages in comparison with ordinary mechanisms and explains their contributions
in different fields of mechanical and precision engineering. The motivationand
outline of this thesis is further described.

1.1 Introduction to Compliant Mechanisms

A mechanism is a mechanical part or combination of parts that transforms inputloads and motions

into a desired set of output motions. A mechanism is commonly modeled as a set ofinterconnected

rigid links by means of ideal rigid joints (kinematic pairs) which provide relativemovements be-

tween the rigid links. Kinematic pairs ideally constrain the relative motion between rigid links

i.e. constraining the pure rotational motion about a single point, or prismatic motionto a line,

thus prevent any undesired motion produced from deflections and elasticdeformations. When the

flexibility and elastic deformations are used to provide desired relative motions, we meet a new

class of mechanisms called compliant mechanisms. Compliant mechanisms gain their mobility by

transforming an input force or energy into an output motion, undergoing an elastic deformation,

due to the existence of flexible members in these mechanisms. The concept of using compliant

members dates back to the late Paleolithic (about 35000 to 8000 B.C.) [1] when archery seems to

have been invented by the late stone-age humans for war and hunting purposes (Fig. 1.1). Pulling

the arrow, strain energy is stored in the arc and by releasing the arc, it is transformed to kinetic en-

ergy of the arrow creating the output motion. Strain energy is the same as elastic potential energy

that is stored in a spring. This concept has been extended to use in more heavier weapons later, i.e.

catapults that first used by Syracusean Greeks in 399 B.C. [2]. Catapults were the artillery of the
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Figure 1.1: The bow and arrow Figure 1.2: Greek palintone: A

torsion-powered catapult

ancient armies to hurl heavy objects or arrows over a large distance in early battles for winning the

war. A Greek ”Palintone” type ballista catapult is shown in Fig. 1.2. It was capable of throwing a

three pound concrete ball more than 200 yards [3]. Palintone is called a torsion-powered catapult

since strain energy is provided by using tightly string coils of rope like a torsional spring.

The use of compliant members were limited mostly for war machines until the last century. Re-

cently, compliant mechanisms become important components for various applications in different

research areas such as micro-electromechanical systems (MEMS), robotics, precision engineering,

biomechanics, etc. They are also used frequently in our daily life. Some of the most commonly

used compliant mechanisms are shown in Fig. 1.3.

1.2 Advantages

Compliant mechanisms encompass several advantages in comparison with kinematic pairs that

make them suitable for a wide range of applications. These advantages canbe classified as fol-

lows [4]:

• Single Layer Fabrication: Compliant mechanisms can be made from a single layer of ma-

terial. This makes them compatible with different fabrication methods available for MEMS,

such as surface micromachining, bulk micromachining and the LIGA (Lithographie or lithogra-

phy/Galvanoformung or electroforming/Abformung or molding) process using a compact syn-

chrotron radiation (SR) source [5].
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Figure 1.3: Commonly used compliant devices: Binder clips, paper clips, hairclips, backpack

latch, eyelash curlers and nail clippers

• No Need for Assembly:Fully compliant mechanisms that gain all of their motion from the de-

flection of flexible members are usually fabricated in a single piece and do notrequire assembly

of different components.

• Compactness:Some compliant mechanisms can be manufactured in a compact form, making

them ideal for micro-scale and precision engineering applications.

• No Friction Losses: Considering the fact that compliant mechanisms gain their motion from

deflection of flexible members rather than rigid body joints, the friction relevant to rubbing sur-

faces can be removed. This eliminates the need for lubrication and reduceswear.

• Absence of Wear: Wear is the erosion caused by physical interactions between contacting

surfaces and occurs in kinematic pairs. It can be particularly problematic for small range ap-

plications in biomechanics and precision mechanisms. Wear can be removed byeliminating

friction between contacting surfaces. This will increase the life cycles of mechanical systems.

• No Need for Lubrication: Absence of friction losses in compliant mechanisms, eliminates the

need for lubrication. This could have a significant role in applications that suffer an easy lubri-
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cation process.

• High Accuracy: The absence of friction and wear, as described above, along with the backlash-

free motion inherent in compliant mechanisms, increase their precision and make them prefer-

able to use in high accuracy instruments.

• High Reliability: The aforementioned characteristics of compliant mechanisms, their light

weight and reduced maintenance result in high reliability.

1.3 Challenges

Despite all the advantages that compliant mechanisms comprise in comparison withordinary

mechanisms, they also have some challenges:

• Limited Range of Motion: Since the relative motion between rigid parts is provided by means

of material deformation, compliant mechanisms are unable to undergo continuous motions and

are capable of providing limited range of motion.

• Parasitic Motions: The relative motion provided by compliant mechanisms is not a pure mo-

tion and there are always secondary undesired motions produced by thecomplex deformation

behavior of these mechanisms. The secondary undesired motions are called parasitic motions.

• Nonlinear Motions: Some compliant mechanisms require to undergo large deformations where

linearized beam equations are no longer valid. Nonlinear equations that account for the geo-

metric nonlinearities caused by large deflections must be used. This can maketheir design and

analysis more complicated.

• Fatigue Failures: Most compliant mechanisms need to undergo repeated loading and to operate

under cyclic stress conditions which make them vulnerable to fatigue failures.

1.4 Motivation

As previously described, compliant mechanisms gain their mobility from the deflection of flex-

ible members. These flexible members are called flexure hinges. A flexure hinge, is a flexible

and slender region between two rigid parts that can provide a relative rotation between the rigid

parts by means of material deformation. They can be usually obtained by machining a blank

piece of material, thus obtaining the so-called Flexure-Based Compliant Mechanisms (FCMs) in

which compliance is concentrated within the relatively small regions of the flexures. FCMs are
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Figure 1.4: Pulley-based articulated robotic

finger [6]

Figure 1.5: FCM-based articulated robotic

finger [6]

widely used in different research areas considering their wide advantages over traditional rigid-

body mechanisms. Some examples of implementing FCMs in different fields are translation micro-

positioning stages, piezoelectric actuators and motors, high-accuracy alignment devices for optical

fibers, missile-control devices, displacement and force amplifiers/deamplifiers, orthotic prosthe-

ses, antennas, valves, scanning tunneling microscopes, accelerometers, gyroscopes, high-precision

cameras, nano-lithography, robotic micro-displacement mechanisms, nano-scale bioengineering,

small-scale insect-like walking robots, actuation devices for unmanned micro aerial vehicles, or

nano-imprint technology.

The main focus of this study is on designing and developing FCMs for possibleapplications par-

ticularly in areas as mechanical and precision engineering, robotics, andbiomedical engineering.

For instance, Fig. 1.4 shows an articulated robotic finger for applications inanthropomorphic

robotic hands. Anthropomorphic robotic hands have been widely studied because of their inherent

similarity to the human hand and their contribution in various fields ranges from hand prosthet-

ics to healthcare robots and robotic surgeries to space explorations. However, it has been always

difficult to mimic the human hand due to its unique biological features and kinematic behavior.

Thus, robotic hands often require complicated joint mechanism such as hinges, linkages, pulleys,

belts and sensors to be designed and developed in a small space in order toachieve the complex

behavior of the human hand.

From a design perspective, the introduction of FCMs in serial articulated chains, like anthropo-

morphic hands and prosthesis, seems promising as it can allow the generationof very slender and

light mechanisms that better reproduce biological structures with a reducednumber of parts, easy

to be manufactured and assembled, cheap and compatible with the required features. The example

of such an articulated robotic finger is shown in Fig. 1.5.
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1.5 Contribution

The main contribution of this thesis is to design and characterize new types of flexure hinges with

curved centroidal axes for both planar and spatial applications. First, Circularly Curved-Beam

Flexures (CCBFs) will be characterized and particularly designed for planar applications such as

articulated robotic fingers. The spatial compliance of these flexures will beevaluated and their

closed-form compliance equations will be derived. Spherical Flexures(SFs) will be then intro-

duced and specifically designed for spatial applications. These flexures will be evaluated concern-

ing their capabilities in generating spherical motions and they will be used in compliant spherical

chains (in particular, for the design of a new compliant spherical joint). Further evaluations will

be carried out to compare the main characteristics of the aforementioned flexures with commonly

used flexure hinges.

1.6 Thesis outline

• Chapter 1 briefly introduces compliant mechanisms, their advantages and disadvantages in com-

parison with ordinary mechanisms and explains their contributions in different fields of mechan-

ical and precision engineering. The motivation and outline of this thesis is further described in

this chapter.

• Chapter 2 is dedicated to a brief presentation of flexure hinges which are the main components

of flexure-based compliant mechanisms. Flexure hinges provide the relative motion between

the adjoining rigid parts by means of elastic deformation. The common methods used for de-

signing and analyzing flexure hinges accompanied by their literature revieware described in

this chapter.

• In Chapter 3, the closed-form compliance equations for circularly curved-beam flexures are de-

rived. Following a general modeling procedure, each element of the spatial compliance matrix is

analytically computed as a function of both hinge dimensions and employed material. The the-

oretical model is then validated by comparing analytical data with the results obtained through

finite element analysis. Finally, a case study is presented concerning the potential application

of these types of flexures in the optimal design of compliant robotic fingers.

• In Chapter 4, the closed-form compliance equations for spherical flexures are derived. Each

element of the spatial compliance matrix is analytically computed as a function of both hinge

dimensions and employed material. The theoretical model is then validated by relating an-

alytical data with the results obtained through finite element analysis. Finally, for a generic

loading condition, spherical flexures are compared to circularly curved-beam flexures in terms

of secondary compliance factors and maximum stress.

• Chapter 5 introduces and investigates a fully compliant spherical chain thatis obtained by the in-

series connection of two identical primitive spherical flexures with coincident center of spherical
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motion. The compliance matrix of the proposed chain is obtained via an analyticalprocedure

and validated via finite element analysis. Comparison with an equivalent fully compliant chain

employing straight beam flexures is also provided to highlight the added benefits when using

primitive spherical flexures.

• Chapter 6 represents a new type of passive compliant spherical joint. The joint is made by the

in-parallel connection of two fully compliant spherical chains. Each chainis composed of three

identical spherical flexures connected in-series with mutually orthogonalaxes. The closed-form

compliance equations for the spherical joint are derived via the previously described analytical

method. The compliant spherical chain is also evaluated comparing with the equivalent compli-

ant serial chain employing straight beam flexures.

• Chapter 7 summarizes the main contributions of this thesis.
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Chapter 2

Background and Literature

This chapter is dedicated to a brief presentation of flexure hinges which are the
main components of flexure-based compliant mechanisms. Flexure hinges provide
the relative motion between the adjoining rigid parts by means of elastic defor-
mation. The common methods used for designing and analyzing flexure hinges
accompanied by their literature review are described in this chapter.

2.1 Flexure Hinges

A flexure hinge is a slender flexible connector that provides the relative rotational motion between

two adjacent rigid members via material deformation rather than by the sliding or rolling of mating

surfaces (Fig. 2.1). The flexure hinge is also called as ”flexural pivot” or simply ”flexure”. When

compared to their rigid-body counterparts, flexure hinges are characterized by reduced weight, ab-

sence of backlash and friction, one-piece manufacturing with no need ofassembling (i.e. reduced

production costs), but restricted range of motion.

Flexure hinges can be classified as single-axis, two-axis and multi-axis flexures [7]. Single-axis

flexure hinges are supposed to be compliant with respect to one single axis(compliant or sensi-

tive axis) and stiff as much as possible about all other axes. Single-axis flexures are designed for

two-dimensional applications that have a planar motion and they can be fabricated by removing

material from a blank piece using manufacturing processes such as end-milling, electrodischarge

machining (EDM), laser cutting, metal stamping, or photolithographic techniques for MEMS.

Two- and multi-axis flexure hinges possess two or more compliant axes and are suitable for three-

dimensional applications with spatial motions. They can be usually machined by lathe-turning or

precision casting.
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Rigid links Rigid links

Rotational joint Flexure hinge

(a) (b)

Figure 2.1: (a) Conventional rigid-body joint (b) Flexure hinge

Although flexure hinges provide monolithic connections with no backlash andhysteresis, they

usually bring the following disadvantages: limited range of motion, parasitic motions and stress

concentrations. For this reason, to be effective, flexure hinges needto be conceived and optimized

for the specific application at hand. However it is not always straight forward to study and analyze

flexure hinges to achieve design demands for different applications. Analytical methods provide

accurate and precise means of evaluating and designing flexure hinges but they can be complicated

when flexures infold complex geometrical shapes or deforming out of linearized beam theory ap-

proximation. Finite Element Analysis (FEA) and simplified analytical methods such as Pseudo-

Rigid-Body Model (PRBM) are also efficient tools that can be utilized to tackle such difficulties.

In the following of this chapter, the available techniques on designing and characterizing flexure

hinges, are briefly reviewed.

2.2 Pseudo-Rigid-Body Model

The PRBM is a tool that connects rigid-body mechanism theory to compliant mechanism theory

and provides the possibility of using traditional rigid-body modeling methods in the design and

analysis of compliant mechanisms. The PRBM principally treats flexures as rigid links connected

at appropriately placed pins, with torsional springs to represent the compliance behavior of flexible

members that undergo large and nonlinear deflections. Several works have been dedicated to study

and develop the PRBM for applications both in macro-scale range( [4], [8], [9], [10], [11], [12]

and etc.) and MEMS( [13], [14], [15], [16] and etc.).

Let us consider a small-length flexural pivot [9] shown in Fig. 2.2. Whenthe length of the flexural

pivot (l) is much smaller than the length of the rigid part (L), and the flexural pivot is much less

stiffer than the rigid part, the motion of the system can be modeled by a pin joint connecting two
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Ll l L
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MM

MM

Figure 2.2: (a) A small-length flexural pivot (b) Its pseudo-rigid-bodymodel

rigid links, called as ”the characteristic pivot”. The characteristic pivot islocated at the center of

the flexural pivot and the length of the pseudo-rigid link,r, is defined as follows:

r = L+
l
2

(2.1)

The elastic deformation of the flexural pivot is modeled by a torsional spring with the spring

constantK:

K =
EI
l

(2.2)

whereE, is the material Young’s modulus andI is the second moment of area.

The PRBM can be extended to other segments such as fixed-guided flexiblesegments, pinned-

pinned segments, beams loaded with a moment at the end, and beams with followerloads. Com-

plete details for pseudo-rigid-body modeling of different types of segments can be found in [4].

2.3 Compliance-Based Design of Flexure Hinges

In spite of the fact that the PRBM is an exclusive tool in modeling and designing FCMs, it can

suffer from some limitations. First, torsional springs are incapable of modeling axial and lateral de-

formations resulting from axial and transversal forces that usually exist in loading flexure hinges.

Second, there are several FCMs that are intended to operate in small-displacement range, pro-

ducing small levels of output motion within acceptable levels of stress, where large-displacement

theory does not apply. Compliance-based design of flexure hinges canovercome such difficulties.
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Figure 2.3: Straight beam flexure loaded at the free end

In this approach, a flexure hinge is treated as a complex spring element with full degrees of free-

dom in response to quasi-static loading. Closed-form compliance equationsfor flexure hinges are

derived via analytical or finite element methods to design and characterize flexure hinges in terms

of its geometrical parameters and the employed material. Within the validity limits of the super-

position principle (which assumes linear elastic materials and small deflections), the kineto-static

behavior of a flexural hinge in the 3D space can be deduced by the analysis of its compliance

matrix [17]. For instance, let us consider a Straight Beam Flexure (SBF)with length l that is

generically loaded at the free end (Fig. 2.3). Given an external perturbation wrench,pw, acting on

the flexure free end whose components are expressed with respect to the beam free end coordinate

frameSp (with axesxp, yp, zp), the incremental displacement vector,ps, can be expressed as:

ps=
[

pu
pθθθ

]
= pC ·

[
pf

pm

]
= pC · pw (2.3)

whereps is composed of an incremental translationpu =
[
u v w

]T
and an incremental rota-

tion pθ =
[
α φ ψ

]T
, whereaspw is composed of a force vectorpf =

[
fx fy fz

]T
and a

torque vectorpm =
[
mx my mz

]T
. As a consequence, the compliance matrixpC is a 6x6 matrix

with frame-dependent entries of non homogenous physical dimensions, which relates the external

wrench to the resulting translations and rotations and it can be expresses as follows [18]:
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pC =




l
EA 0 0 0 0 0

0 l3

3EIy
0 0 0 l2

2EIy

0 0 l3

3EIx
0 − l2

2EIx
0

0 0 0 l
GJ 0 0

0 0 − l2

2EIx
0 l

EIx
0

0 l2

2EIy
0 0 0 l

EIy




(2.4)

whereA, Ix, Iy, J, E andG are respectively cross section area, principal and polar moments of

inertia of the beams cross section, Youngs modulus and shear modulus of theemployed material.

In this scenario, the knowledge of the hinge compliance behavior, even in the small displacement

range, can be extremely useful both for comparison purposes and forfirst-attempt sizing the hinge

dimensions. Closed-form compliance equations provide useful means to evaluate flexure hinges

on different basis i.e. principle compliance factors, sensitivity to undesired or parasitic motions

and maximum stress levels. Several studies have been proposed to designand characterize flexure

hinges on this basis. For instance, Paros and Weisbord [19] represented circular flexure hinges

(Fig. 2.4(a)) and provided compliance equations for them. Zettl et al. [20]performed FEA to

model right-circular flexure hinges. Xu and King [21] used this techniquefor investigating the

performance of elliptical (Fig. 2.4(b)) and corner-filleted flexure hinges (Fig. 2.4(c)). Lobontiu et

al. [22] represented the equations for corner-filleted flexure hinges using the Castigliano’s second

theorem. Schotborgh et al. [23] applied FEA to present dimensionless design graphs for three typ-

ical circular, corner-filleted and cross flexure hinges (Fig. 2.4(d)) inorder to provide a reasonable

comparison between them for design purposes. Tian et al [24] used numerical methods for dimen-

sionless graph analysis of three filleted V-shaped (Fig. 2.4(e)), cycloidal (Fig. 2.4(f)) and circular

flexure hinges. Chen et al. [25] obtained analytical equations for elliptical-arc-fillet flexure hinges.

In this thesis, we have introduced new types of flexure hinges with curvedaxes i.e. CCBFs (Fig.

2.4(g)) and SFs (Fig. 2.4(h)) for both planar applications like articulated robotic fingers and spatial

applications such as compliant spherical mechanisms. All the closed-form compliance equations

for these flexures are derived and represented as a function of the hinge geometric parameters

and employed material. Further analysis have been carried out to evaluate the performance of the

proposed flexures with commonly used ones such as SBFs.
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(a) Circular flexures (b) Elliptical flexures

(c) Corner-filleted flexures (d) Cross flexures

(e) Filleted V-shaped flexures (f) Cycloidal flexures

(g) Circularly curved-beam flexures (h) Spherical flexures

Figure 2.4: Different types of flexures



Chapter 3

Design and Characterization of

Circularly Curved-Beam Flexure

Hinges for Planar Compliant

Mechanisms

In this chapter, the closed-form compliance equations for circularly curved-beam
flexures are derived. Following a general modeling procedure, eachelement of
the spatial compliance matrix is analytically computed as a function of both hinge
dimensions and employed material. The theoretical model is then validated by
comparing analytical data with the results obtained through finite element analysis.
Finally, a case study is presented concerning the potential application of these types
of flexures in the optimal design of compliant robotic fingers.

3.1 Introduction

As described earlier, flexure hinges have found a wide range of applications in different fields

such as serial articulated chains, like anthropomorphic hands and prosthesis. For instance, Fig.

3.1 and Fig. 3.2 depict two compliant robotic fingers, previously proposedby Lotti and Vassura

[26], that employ either SBFs or CCBFs as possible substitutes for traditional revolute joints (the

corresponding hinge rotation being defined as principal rotation [27]).In this case, regardless

of the flexure topology, the use of flexible joints allows one-piece manufacturing and enhanced

performance in terms of robustness and safety when interacting with unknown environments or
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Figure 3.1: Mono-piece robotic finger

employing SBFs [26]

Figure 3.2: Mono-piece robotic finger

employing CCBFs [26]

humans (e.g. [28]). In this chapter, the general approach for deriving compliance equations of

cantilever curved beams is first described and the closed-form compliance equations for CCBFs are

obtained. CCBFs are then evaluated and compared with SBFs in terms of selective compliance and

maximum achievable principal rotation for possible applications like robotic fingers as depicted in

Fig. 3.1 and Fig. 3.2.

The relevant contribution of this chapter is published in [29] and [30].

3.2 General Approach for Deriving Compliance Equations of Can-

tilever Curved Beams

The direct analytical method proposed in [31] is used for explicitly deriving the closed-form com-

pliance equations of cantilever curved beams. With reference to Fig. 3.3, let consider a cantilever

curved beam with a uniform cross section and generically loaded at the free end. Node 1 and

node 2 are located on the beam fixed and free end respectively. Let theexternal load,gw, and the

corresponding deformation,gsbe expressed with respect to a predefined global coordinate system

Sg.

Then, a local coordinate systemSl centered on the centroid of a generic beam cross section can be

defined. In particular, this local coordinates are denoted byl, m andn, namely the tangent vector

and the principal vectors of the cross section. The relation between localand global coordinates

can be written as follows:



l

m

n


=




lx(s) ly(s) lz(s)

mx(s) my(s) mz(s)

nx(s) ny(s) nz(s)


 .




i

j

k


= lRg(s) ·




i

j

k


 (3.1)

wheres refers to the coordinate variable along the curve andlRg(s) is the rotation matrix that

relates global and local coordinate frames. Omitting for clarity the superfixg or l in the vec-

tor elements, the curve defining the centroid of the beam cross sections, curve C, in the global
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 Node 1  Node 2

  Fixed

end  

ds

wCurve Cs

S
g

S
l

x
g

z
g

y
g

x
l

y
l

z
l

Figure 3.3: Cantilever curved beam loaded at the free end

coordinates can be expressed by:

gr(s) = x(s)i+ y(s)j + z(s)k (3.2)

The loadgw acting on the free end is balanced by a loadlw′ acting on elementds of the curveC.

This loadlw′ produces a deformation per unit length,E, on the same element. The vectorslw′ and
lE and the corresponding analytical relation can be expressed as:

lw′ =
[

fl fm fn ml mm mn

]T
(3.3)

lE =
[
εll γlm γln κll κlm κln

]T

lw′ = K · lE

The matrixK is the stiffness matrix of the elementds that can be written as:

K =




EA 0 0 0 0 0

0 bmGA 0 0 0 0

0 0 bnGA 0 0 0

0 0 0 GJ 0 0

0 0 0 0 EIm 0

0 0 0 0 0 EIn




(3.4)

whereA, bm, bn, Im, In, J, E andG are, respectively, cross section area, shear coefficients, principal

moments of inertia and polar moment of inertia of the beam’s cross section, Young’s modulus and

shear modulus of the employed material. The deformation,dls′, of the elementds, due to the load
lw′, is defined by:

dls′ =
[
du′ dv′ dw′ dα ′ dφ ′ dψ ′

]T
= E ·ds (3.5)
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whereu′, v′, w′ andα ′, φ ′, ψ ′ are respectively displacements and rotations of the elementds in

the l , m andn directions. The loadlw′, acting onds due to the presence of the loadgw on the

free end, can be computed via the adjoint transformation matrixlTg between the global and local

coordinates. In particular, The following relation holds:

lw′ = lTg ·
gw (3.6)

The adjoint matrixlTg is a function of the curvilinear coordinates and can be computed from Eq.

3.1 and Eq. 3.2:

gTl(s) =

[
gRl(s) 0

gRl(s) · gr̃(s) gRl(s)

]
(3.7)

wheregr s =
gr2−

gr is the position vector connecting the centroid of the section to node 2. In

addition, the deformation of the elementds, dls′, causes a deformation at the free end,dgs, that

can be calculated using the following equation:

dgs= lT
T
g ·dls′ (3.8)

By merging Eqs. 3.3, 3.5, 3.6 and 3.8 one can obtain:

dgs= lT
T
g ·K−1 · lTg ·

gw ·ds (3.9)

By integrating Eq. 3.9, the relation between the loadgw and the deformationgs of the free node

becomes as follows:
gs= gC · gw (3.10)

where:
gC =

∫

C

lT
T
g ·K−1 · lTg ·ds (3.11)

The matrixgC is the compliance matrix for a general cantilever curved beam loaded at the free

end and represents the relationship between the applied loads at the beam free end and the cor-

responding deformations. Applying this method for a general cantilever curved beam (Fig. 3.3)

with constant cross section, matrixgC can be computed as the following:

gC =




Cx, fx Cx, fy 0 0 0 Cx,mz

Cy, fx Cy, fy 0 0 0 Cy,mz

0 0 Cz, fz Cz,mx Cz,my 0

0 0 Cθx, fz Cθx,mx Cθx,my 0

0 0 Cθy, fz Cθy,mx Cθy,my 0

Cθz, fx Cθz, fy 0 0 0 Cθz,mz




(3.12)

The analytical expression of the matrix entries are reported in Table 3.1.
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Table 3.1: Compliance factors for the cantilever curved beam loaded at thefree end

Cx, fx =−
R(−AR2(3θ+sin(θ)(cos(θ)−4))−In(EA2Gbm(θ−sin(θ)cos(θ))+θ+sin(θ)cos(θ)))

2EAIn

Cx, fy =Cy, fx =
R((cos(θ)−1)(−AR2(cos(θ)−1)+In(cos(θ)+1)(EA2Gbm−1)))

2EAIn

Cx,mz =Cθz, fx =
R2(sin(θ)−θ)

EIn

Cy, fy =
R(EA2GInbm(θ+sin(θ)cos(θ))+(AR2+In)(θ−sin(θ)cos(θ)))

2EAIn

Cy,mz =Cθz, fz =−R2(cos(θ)−1)
EIn

Cz, fz =
R(GJR2(θ−sin(θ)cos(θ))+ 1

2EIm(4AG2θJbn+R2(6θ−8sin(θ)+sin(2θ))))
2EGJIm

Cz,mx =Cθx, fz =
R2(GJ(θ−sin(θ)cos(θ))+EIm(θ+sin(θ)(cos(θ)−2)))

2EGJIm

Cz,my =Cθy, fz =−
R2(−GJ cos2(θ)+GJ+4EIm sin4( θ

2))
2EGJIm

Cθx,mx =
R(GJ(θ−sin(θ)cos(θ))+EIm(θ+sin(θ)cos(θ)))

2EGJIm

Cθx,my =Cθy,mx =
sin2(θ)R(−GJ+EIm)

2EGJIm

Cθy,my =−R(−GJ(θ+sin(θ)cos(θ))+EIm(sin(θ)cos(θ)−θ))
2EGJIm

Cθz,mz =
θR
EIn

3.3 Evaluating the Spatial Compliance of Circularly Curved-Beam

Flexures

The proposed method is applied to a CCBF with radiusR and angleθ with its center located at

O0 (Fig. 3.4), in order to estimate its compliant behavior under a generalized loading condition.

z
gx

g

θ

O
g

R

O
0

Figure 3.4: Geometric parameters of the CCBF

Centroid

t

w

x
l
(n)

z
l
(m)

Figure 3.5: Cross section properties of the

CCBF
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The cross section properties of the flexure is depicted in Fig. 3.5. The CCBF compliance matrix

is derived in its analytical form:

gC =




Cx, fx 0 0 0 Cx,my Cx,mz

0 Cy, fy Cy, fz Cy,mx 0 0

0 Cz, fy Cz, fz Cz,mx 0 0

0 Cθx, fy Cθx, fz Cθx,mx 0 0

Cθy, fx 0 0 0 Cθy,my Cθy,mz

Cθz, fx 0 0 0 Cθz,my Cθz,mz




(3.13)

The analytical expression of the matrix entries are reported in Table 3.2. Shear induced defor-

mations are neglected, due to the slender structure of the flexure. It can be noticed that each

compliance factor is written in terms of the cross section area, principal and polar moments of

inertia (namelyA, Im, In, andJ). For a rectangular cross section, this terms can be assessed as

follows:

A = wt, Im =
1
12

tw3, In =
1
12

wt3, J = Im + In =
1
12

wt
(
t2+w2) (3.14)

Table 3.2: Compliance factors for the CCBF loaded at the free end

Cx, fx = 1/2 R3(3EImθ−4EIm sin(θ)+EIm cos(θ)sin(θ)−GJ cos(θ)sin(θ)+GJθ)
GJEIm

Cy,mx =Cθx, fy =−R2(−θ+sin(θ))
EIn

Cx,my =Cθy, fx =−1/2 R2(−2EIm sin(θ)+EIm cos(θ)sin(θ)+EImθ−GJ cos(θ)sin(θ)+GJθ)
GJEIm

Cz,mx =Cθx, fz =−R2(−1+cos(θ))
EIn

Cx,mz =Cθz, fx =−1/2
R2(EIm+GJ+EIm(cos(θ))2−2EIm cos(θ)−(cos(θ))2GJ)

GJEIm

Cθx,mx =
Rθ
EIn

Cy, fy = 1/2
R(In cos(θ)sin(θ)+Inθ+3R2Aθ−4R2Asin(θ)+R2Acos(θ)sin(θ))

EAIn

Cθy,my = 1/2 R(EIm cos(θ)sin(θ)+EImθ−GJ cos(θ)sin(θ)+GJθ)
GJEIm

Cy, fz =Cz, fy = 1/2
R(−In+R2A+(cos(θ))2In+R2A(cos(θ))2−2R2Acos(θ))

EAIn

Cθy,mz =Cθz,my = 1/2
R(EIm−GJ)(−1+(cos(θ))2)

GJEIm

Cz, fz =−1/2
R(cos(θ)sin(θ)−θ)(In+R2A)

EAIn

Cθz,mz =−1/2 R(EIm cos(θ)sin(θ)−EImθ−GJ cos(θ)sin(θ)−GJθ)
GJEIm
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3.4 Numerical Example and Model Validation

As a case study, the compliant behavior of the CCBF and of the SBF depictedin Fig. 3.1 and

Fig. 3.2 are numerically evaluated. As for the CCBF, the following geometric parameters are con-

sidered, namelyR = 30mm, t = 1.2mm,w = 6mm andθ = π/4. The flexure hinge connects two

rigid links located at a distancel = 2Rsin(θ/2) and is made of Acrylic Plastic with Young’s mod-

ulusE = 3000Mpa, Poisson’s ratioν = 0.33, shear modulusG = 1130Mpa. The principal hinge

compliance [27] for the considered application isCθx,mx = 12Rθ
/

Ewt3 = 9rad/Nm. The method

described in previous section is used for computing the overall CCBF compliance matrix, whereas

FEA is performed in order to validate the theoretical model. Fig. 3.6 depicts, asan example, the

CCBF undeformed and deformed shapes when subject to a flexural moment applied on the hinge

free end.

Similar FEA simulations are carried out by individually loading the CCBF at the free end for each

component of the loadP (that is individual forces and moments are applied) and obtaining the

corresponding deformations (displacements and rotations). The ratio between each load and de-

formation component simply represents the compliance factors along different axes. The overall

numerical results are shown in Table 3.3, which also depicts the percentageerror between analyt-

ical and FEA methods. A maximum percentage error of less than 3% confirms the validity of the

proposed modeling technique.

The same procedure is then applied to compute the SBF compliance matrix whose analytical

solution is known from the literature [18]. As said, the SBF is designed so asto connect the same

rigid links of the previous example and to provide the same principal complianceas the CCBF

previously modeled. Henceforth, the SBF length isl = 2Rsin(θ/2), the SBF principal compli-

α

Figure 3.6: FEA of the CCBF
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Table 3.3: Compliance factors for the CCBF and comparison between analytical and FEA results

Compliance factors Cx, fx Cx,my =Cθy, fx Cx,mz =Cθz, fx Cy, fy Cy, fz =Cz, fy Cθx,mx

Analytic 8.001e-5 3.016e-4 -5e-3 1.466e-4 4.483e-4 9.0903

FEA 7.746e-5 3.015e-4 -4.99e-3 1.457e-4 4.457e-4 9.0897

Percentage error 3.3 4.7e-2 6e-2 5.9e-1 5.8e-1 4.9e-4

Compliance factors Cz, fz Cz,mx =Cθx, fz Cy,mx =Cθx, fy Cθy,my Cθy,mz =Cθz,my Cθz,mz

Analytic 1.5e-3 1.017e-1 2.72e-2 8.256e-1 -1.797e-1 4.662e-1

FEA 1.486e-3 1.017e-1 2.72e-2 8.271e-1 -1.803e-1 4.664e-1

Percentage error 3.4e-1 0 0 1.8e-1 3.2e-1 4.5e-2

ance isCθx,mx = 12l
/

Ewt3 = 9rad/Nm, whereas the SBF thickness,t, is chosen accordingly as

t = t
(
2sin(θ/2)

/
θ
)1/3

.

The numerical values of the compliance matrix entries are depicted in Fig. 3.7 and Fig. 3.8 respec-

tively. Similarly to [27], this 3D bar graph representation allows a qualitative comparison of the

hinge behavior in terms of selective compliance. It can be noticed that, in this particular case, the

two solutions behave similarly. However, CCBF outperforms SBF in terms of maximum achiev-

able principal rotation.The maximum principal rotation before failure is limited by the employed

material yield strengthSy. Concerning CCBF, the maximum principal rotation is given by [18]:

αCCBF = max(α1,α2) (3.15)

where:

α1 =
6R(t +R)Syθ

(
−2t +(t +2R)Log

[
t+R

R

])

t2E
(
−t +(t +R)Log

[
t+R

R

]) (3.16)

α2 = 6E−1RSyθ

(
t +2R

t2 +
1

−t +RLog
[

t+R
R

]
)

(3.17)

Note that the switching condition of Eq. 3.15 is due to the fact that, depending on the hinge

dimensions, the highest stress may occur at either inner or outer surface.

Concerning SBF, the maximum principal rotation is given by:

αSBF = 2
t
l

Sy

E
(3.18)

A comparison in terms of maximum achievable rotation can be made by computingαCCBF
/

αSBF .

In particular, Fig. 3.9 depicts the comparison of the maximum achievable rotationas a function

of the CCBF radius,R ∈ [20−40]mm, and thickness,t ∈ [0.5−3]mm (for θ = 1
4π). Note that the

value ofαCCBF
/

αSBF does not depend on the hinge width,w. The comparison clearly shows that

CCBF must be preferred in terms of principal rotation capabilities as long asαCCBF
/

αSBF > 1.
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Figure 3.7: 3D bar representation for the compliance matrix of the CCBF

Figure 3.8: 3D bar representation for the compliance matrix of the SBF
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α
CCBF

/α
SBF

R

t

Figure 3.9: Comparison of the maximum achievable rotation,αCCBF
/

αSBF , as a function of the

CCBF radius,R, and thickness,t.



Chapter 4

Design and Characterization of

Spherical Flexure Hinges for Spatial

Compliant Mechanisms

In this chapter, the closed-form compliance equations for spherical flexures are de-
rived. Each element of the spatial compliance matrix is analytically computed as a
function of both hinge dimensions and employed material. The theoretical model
is then validated by relating analytical data with the results obtained through fi-
nite element analysis. Finally, for a generic loading condition, spherical flexures
are compared to circularly curved-beam flexures in terms of secondarycompliance
factors and maximum stress.

4.1 Introduction

Most of the aforementioned flexures discussed in previous chapters have been specifically applied

and conceived for prevalent planar motions only. Despite the practical relevance, investigations

on flexure hinges particularly designed for spatial motions are instead quitelimited. For instance,

Lobontiu et al. [32, 33] investigated the two- and three-axis flexure hinges. The former consists

of two collocated notches that are cut perpendicular to each other; the latter consists of an axial-

symmetric notch. In both cases, the resulting hinge features a small cross-sectional area and is

prone to unintentional rotations or buckling even when loaded with small forces. Jagirdar [34]

used PRBM to study the kinematics and elasticity of curved beams. Li and Chen[35] employed

two CCBFs with rectangular cross-section to devise a spherical Young parallel mechanism using
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PRBM. Considering the fact that a flexure hinge should be compliant about its principle compli-

ant axis (axes) and as stiff as possible in other directions, this characteristic can be achieved for

spherical motions, by using CCBFs that are compliant along their curve with respect to the axes

intersecting in the center of the sphere.

In this chapter, Spherical Flexures (SFs) have been specifically designed and evaluated for preva-

lent spherical motions in spherical compliant mechanisms and are compared interms of parasitic

motions and maximum stress to CCBFs with rectangular cross section that feature equivalent com-

pliant behavior with respect to moment-induced rotations.

The relevant contribution of this chapter will be published in [36].

4.2 Closed-Form Compliance Equations for Spherical Flexure Hinges

A SF features an arc of a circle as centroidal axis and an annulus sectoras cross-section. Circle

and annulus have a common center coinciding to that of the desired spherical motion. The axis

of the smaller SF central moment of inertia points towards the desired center ofspherical motion.

With reference to Fig. 4.1, let us consider a SF with subtended centroidal radiusR and angleθ
with the center located atO0. The flexure is loaded at its free end denoted by a global frame

with corresponding axesxg, yg, zg and origin pointOg centered at hinge cross section centroid.

Following the general approach described in Section 3.2, the compliance matrix for the SF, can be

z
g

θ

O
g

R

y
g

O
0

Figure 4.1: Geometric parameters of the SF
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obtained as follows:

gC =




Cx, fx Cx, fy 0 0 0 Cx,mz

Cy, fx Cy, fy 0 0 0 Cy,mz

0 0 Cz, fz Cz,mx Cz,my 0

0 0 Cθx, fz Cθx,mx Cθx,my 0

0 0 Cθy, fz Cθy,mx Cθy,my 0

Cθz, fx Cθz, fy 0 0 0 Cθz,mz




(4.1)

Neglecting shear deformations, being a slender beam, the compliance factors for the matrixgC is

reported in Table 4.1. Each compliance factor is written in terms of the cross section area, area

and polar moments of inertia (namelyA, Im, In, andJ). In particular, these properties are derived

as a function of the SF geometric parameters in the following section.

4.3 Defining Cross Section Properties for the Spherical Flexure

In particular, the SF cross section is an annular sector (Fig. 4.2), that can be considered as the

common section of two concentric circular sectors with different radius. Let us considerri andro

as the radius of the inner and the outer circular sectors respectively. Assumingβ as the subtended

Table 4.1: Compliance factors for the SF loaded at the free end

Cx, fx =
R(Acos(θ)sin(θ)R2−4Asin(θ)R2+3AR2θ+cos(θ)sin(θ)In+Inθ)

2EAIn

Cx, fy =Cy, fx =−
R(A(cos(θ))2R2−2R2Acos(θ)+R2A+(cos(θ))2In−In)

2EAIn

Cx,mz =Cθz, fx =
R2(sin(θ)−θ)

EIn

Cy, fy =−
R(cos(θ)sin(θ)−θ)(R2A+In)

2EAIn

Cy,mz =Cθz, fy =−R2(cos(θ)−1)
EIn

Cz, fz =
R3(EIm cos(θ)sin(θ)−GJ cos(θ)sin(θ)−4EIm sin(θ)+3EImθ+GJθ)

2GJEIm

Cz,mx =Cθx, fz =
R2(EIm cos(θ)sin(θ)−GJ cos(θ)sin(θ)−2EIm sin(θ)+EImθ+GJθ)

2GJEIm

Cz,my =Cθy, fz =−
R2(EIm(cos(θ))2−GJ(cos(θ))2−2EIm cos(θ)+EIm+GJ)

2GJEIm

Cθx,mx =
R(EIm cos(θ)sin(θ)−GJ cos(θ)sin(θ)+EImθ+GJθ)

2GJEIm

Cθx,my =Cθy,mx =
R(EIm−GJ)(sin(θ))2

2GJEIm

Cθy,my =− R(EIm cos(θ)sin(θ)−GJ cos(θ)sin(θ)−EImθ−GJθ)
2GJEIm

Cθz,mz =
Rθ
EIn
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angle of the annular sector, the cross section area can be obtained by using definite integration

over the annular sector as follows:

A =

β/2∫

−β/2

ro∫

ri

r dr dβ =
r2

oβ
2

−
r2

i β
2

=
(r2

o − r2
i )β

2
(4.2)

In order to derive area and polar moments of inertia with respect to the centroidal axis, we need to

locate the centroid of the annular cross section. Using the definition for the first moment of area,

one can obtain:

Sy = Az̄ =
∫

A
zdA =

β/2∫

−β/2

ro∫

ri

(r sinβ )r dr dβ = 0⇒ z̄ = Sy/A = 0 (4.3)

Sz = Aȳ =
∫

A
ydA =

β/2∫

−β/2

ro∫

ri

(r cosβ )r dr dβ =
2
3
(r3

o − r3
i )sinβ/2

⇒ ȳ = Sz/A =
4
3
(r3

o − r3
i )sinβ/2

(r2
o − r2

i )β
= R

(4.4)

whereSy andSz are the first moments of area abouty andz axes. The area moments of inertia with

respect toy andz axes, can then be written as:

Iy =
∫

A
z2 dA =

β/2∫

−β/2

ro∫

ri

(r sinβ )2r dr dβ =
1
8
(r4

o − r4
i )(β −sinβ ) (4.5)
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Iz =
∫

A
y2 dA =

β/2∫

−β/2

ro∫

ri

(r cosβ )2r dr dβ =
1
8
(r4

o − r4
i )(β +sinβ ) (4.6)

By applying parallel axis theorem [37], one can find the area and polar moments of inertia with

respect to the centroidal axis, transfering them fromy andz to yl andzl axes:

Im = Iy =
1
8
(r4

o − r4
i )(β −sinβ ) (4.7)

In = Iz −AR2 =
1
8
(r4

o − r4
i )(β +sinβ )−

8
9
(r3

o − r3
i )

2sin2(β/2)

(r2
o − r2

i )β
(4.8)

J = Im + In =
1
4
(r4

o − r4
i )β −

8
9
(r3

o − r3
i )

2sin2(β/2)

(r2
o − r2

i )β
(4.9)

Replacing Eqs. 4.2,4.7,4.8 and 4.9 in Table 4.1, the compliance matrix for the SF willbe deter-

mined as a function of the hinge geometric parameters and the applied material.

4.4 Stress Considerations

Stress distribution over different cross sections of a flexure hinge is theresult of normal stresses

that are produced through bending and tension/compression, and tangential stresses that are pro-

duced through torsion [22]. Considering the von Mises criterion for plane stress condition, the

maximum stress occurs at any cross section of the flexure hinge, can be expressed as:

σmax =
√
(σ2+3τ2)max (4.10)

Curved beam theories i.e. Winkler-Bach formula should have been considered to evaluate stress

distribution of curved flexuers [38]. However, we are generally interested in knowing the maxi-

mum stress in the flexure. In order to fulfill this goal, we use stress concentration factors that were

proposed by Wilson and Quereau [39] conducting a numerous strings ofexperiments on curved

beams with various cross sections to simplify the procedure of determining stress in this type of

flexural members.

Let us consider the SF depicted in Fig. 4.1 loaded with a generic loadgw = [ fx fy fz mx my mz]
T at

its free end. Maximum stress terms across an arbitrary cross section of theflexure can be written

as:

σmax = max(
kmnyl

In
+

kmmzl

Im
+

k fl

A
) (4.11)

τmax =
kml

√
y2

l + z2
l

J
(4.12)

where:
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fl = fx cos(θ)+ fy sin(θ)

ml =− fzR(1−cos(θ))+mx cos(θ)+my sin(θ)

mn =− fxR(1−cos(θ))+mz + fyRsin(θ)

mm =− fzR(sin(θ)−mx sin(θ)+my cos(θ)

yl andzl are the maximum longitudinal and transversal lengths measured from the cross section

centroid. Considering the cross section symmetry, these lengths could encompass positive or

negative quantities based on the loading profile.k is the empirical formula for stress correction

factors for curved flexures and can be obtained from [39]:

k = 1+0.5
In

bc2

{
1

R− c
+

1
R

}
(4.13)

where:

b = maximum breadth of section

c = distance from centroidal axis to the inner fiber

In applications that the loading is not known or fully determined but the deformation of the flexure

free end is specified, the recent stress equations can be expressed inthe displacement domain using

the following transformation between compliance and stiffness matrices:

gw = gK .gs; gK = gC−1 (4.14)

wheregs is the deformation of the flexure free end in the global coordinate system.

4.5 Numerical Example and Model Validation

The SF depicted in Fig. 4.1 is considered as a case study. The geometric parameters employed in

the simulation arero = 60mm,ri = 50mm,θ = π/3 andα = π/180. The hinge is made of Acrylic

Plastic with Young’s modulusE = 3000MPa and Poisson’s ratioν = 0.33. The aforementioned

theoretical procedure is adopted to estimate the SF compliance matrix. Results are then validated

through FEA performed with the commercial software COMSOL (Fig. 4.3). Table 4.2 compares

the results obtained via numerical model and FEA. The comparison shows a close agreement

between the two methods.

In order to evaluate the flexure performance, we have compared the aforementioned SF with a

rectangular cross section CCBF having identical centroidal axes and subtended angles. In addition,

the two flexures are suitably dimensioned in order to present the same compliant behavior with

respect to moment-induced rotations. The resulting CCBF width and thicknessarew = 9.98mm

andt = 0.963mm. By applying the method described in Section 3.3, the CCBF compliance matrix
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Figure 4.3: FEA of the SF

has been computed and numerical data are shown in Table 4.3. As we can see, the compliance

factors become identical for the two flexures with the exception ofCx, fx , Cx, fy andCy, fx , which

represent undesired (secondary) compliances in all those application requiring a spherical motion.

Naturally, unavoidable secondary compliances should be minimized in order todecrease parasitic

motions as much as possible. A quantitative comparison between SF and CCBF can then be

achieved by defining two compliance ratios as follows:

rx,x =
CSF

x, fx

CCCBF
x, fx

; rx,y =
CSF

x, fy

CCCBF
x, fy

=
CSF

y, fx

CCCBF
y, fx

(4.15)

where each SF compliance factor (referred to with SF superscript) is divided by the corresponding

CCBF compliance factor (referred to with CCBF superscript). In order tounderstand the behavior

of SFs and CCBFs in terms of parasitic motions, we have assessed the influence of the geometric

parameters on these two factors. This goal is achieved by evaluating the compliance ratiosrx,x

Table 4.2: Compliance factors for the SF and comparison between analyticaland FEA results

Compliance factors Cx, fx Cx, fy =Cy, fx Cx,mz =Cθz, fx Cy, fy Cy,mz =Cθz, fy Cz, fz

Analytic 4.0146e-5 -8.6900e-5 -0.0023 2.1584e-4 0.0064 0.0232

FEA 4.0149e-5 -8.6947e-5 -0.0023 2.1594e-4 0.0064 0.0232

Percentage error 7.5e-3 0.054 0 0.046 0 0

Compliance factors Cθx,mx Cz,mx =Cθx, fz Cx,my =Cθy, fz Cθy,my Cθx,my =Cθy,mx Cθz,mz

Analytic 8.0448 0.4147 -0.5158 18.4932 -9.0486 0.2413

FEA 8.0466 0.4148 -0.5159 18.4966 -9.0492 0.2413

Percentage error 0.022 0.024 0.019 0.018 6.6e-3 0
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Table 4.3: Compliance factors for the similar CCBF

Compliance elements Cx, fx Cx, fy =Cy, fx Cx,mz =Cθz, fx Cy, fy Cy,mz =Cθz, fy Cz, fz

Value 4.0144e-5 -8.6901e-5 -0.0023 2.1584e-4 0.0064 0.0232

Compliance elements Cθx,mx Cz,mx =Cθx, fz Cx,my =Cθy, fz Cθy,my Cθx,my =Cθy,mx Cθz,mz

Value 8.0448 0.4147 -0.5158 18.4932 -9.0486 0.2413

andrx,y for varying values ofR andθ . Fig. 4.4 and Fig. 4.5 respectively represent the values

(1− rx,x)×100 and(1− rx,y)×100 as function ofR andθ . From these two graphs,rx,y is always

negative whereasrx, fx is always positive, meaning that it is impossible to assess which flexure

presents the best selectively compliant behavior without considering a specific loading condition.

It is also worth mentioning that by increasing the length of the flexures, the ratios rx,x andrx,y are

tending to 1, which imply a similar deformation behavior for relatively large length-to-thickness

ratios. For what concerns the overall Von Mises stress on each flexure when loaded with a (prin-

cipal) bending momentmy on the free end, the following stress ratio has been defined:

rσ =
σSF

max

σCCBF
max

(4.16)

We have obtained this ratio for varying values ofR andθ . In particular, the ratiorσ assumes a

constant value equaling 0.918 at varyingR whereas the influence ofθ is shown in Fig. 4.6. As we

can see, SF outperforms CCBF, being characterized by a lower stress level for equal load (meaning

that the SF outperforms CCBF in terms of maximum achievable rotation).
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Chapter 5

Compliance-Based Evaluation of a

Fully Compliant Spherical Chain with

Two Degrees of Freedom

This chapter introduces and investigates a fully compliant spherical chain that is
obtained by the in-series connection of two identical primitive spherical flexures
with coincident center of spherical motion. The compliance matrix of the proposed
chain is obtained via an analytical procedure and validated via finite element analy-
sis. Comparison with an equivalent fully compliant chain employing straight beam
flexures is also provided to highlight the added benefits when using primitivespher-
ical flexures.

5.1 Introduction

Spherical mechanisms are an important class of spatial mechanisms that find vast applications in

pointing/orientation systems and mechanical transmissions [40]. These mechanisms are charac-

terized by having all points of their links moving on concentric spherical surfaces; the center of

these spheres being denoted as center of spherical motion. In its simplest form, a spherical chain

features the in-series connection of two or more revolute pairs with axes intersecting in the said

center of spherical motion.

Some studies have been proposed to investigate compliant mechanisms involvingspatial motions

as well as fully compliant spherical mechanisms.Smith [41] proposed compliantuniversal joints

fabricated from circular leaf springs, which also provided axial translation for self-alignment ap-



50
Compliance-Based Evaluation of a Fully Compliant Spherical Chain with Two Degrees of

Freedom

x
0

z
0

d

y
0

O
o

O
p

y
p

z
p

SF#1

SF#2

Figure 5.1: SF-based compliant chain

x
0

z
0d

y
0

O
o

O
1

O
2y

1

z
1

z
2

y
2

Figure 5.2: SBF-based compliant chain

plications. However, the proposed joints are affected by significant stress concentrations that limit

their ranges of motion. Moon et al. [42] developed a compliant revolute hinge based on torsion

beams of cross or segmented-cross type, and employed two of them, connected in series with

orthogonal axes, to conceive a fully compliant universal joint. Later on, the ensemble of two

universal joints of this kind has been proposed by Machekposhti et al.[43] to obtain a compliant

constant velocity Double-Hooke’s universal joint. Different authors[44, 45] employed two in-

series connected flexure notch hinges with orthogonal axes to conceive a fully compliant universal

joint. Jacobsen et al. [46] employed three in-series connected lamina emergent torsional joints

with axes intersecting in a single point to make spherical chains with three degrees of freedom

(for compliant joints or mechanisms, the number of degrees of freedom is intended as the number

of independent prevalent directions of motion). These spherical chains were then used to build a

3-RRR spherical parallel mechanism (R being a revelote joint). Callegari et al. [47] addressed the

analysis and design of a 3-CRU spherical parallel mechanism with flexurehinges (C and U being

cylindrical and universal joints respectively).

All the aforementioned studies are based on the use and proper combinationof primitive flex-

ures that are specifically conceived for prevalent planar motions only.In previous chapter, the

dedicated studies to design of flexure hinges for spatial applications wereaddressed and SFs were

specifically designed and evaluated for prevalent spherical motions in spherical compliant mech-

anisms. In this chapter, a fully compliant spherical chain that is made by the in-series connection

of two identical primitive SFs with coinciding centers of spherical motion (Fig. 5.1). In particular,

the stiffness analysis of the proposed fully compliant spherical chain is addressed. Simulation

results are compared to those of a similar chain (Fig. 5.2) employing SBFs. Overall, the stiffness

analysis highlights that the use of two primitive SFs makes it possible to conceive fully compliant

spherical chains with two independent prevalent directions of rotation and with reduced parasitic

translational motions. The relevant contribution of this chapter is submitted to [48].
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5.2 Closed-Form Compliance Equations for a Serial 2-SF Spherical

Chain

Concerning the frame dependency, as explained in [17], compliance matrices at different reference

frames (e.g. from the frameSp to a generic frameS0 (Fig. 5.1)) can be related resorting to the 6x6

adjoint matix pT0:

pT0 =

[
pR0 0

pr̃0 ·
pR0

pR0

]
=




0RT
p 0

(
0r̃ p ·

0Rp
)T 0RT

p


 (5.1)

where pR0 denotes the rotation matrix of frameS0 with respect to frameSp (i.e. the columns

of pR0 are the unit vectors of frameS0 expressed in the coordinate frameSp), and0r̃ p denotes

the skew symmetric matrix of the position vectorpr0, which locates the origin of frameS0 with

respect to frameSp.

Specifically, once the compliance matrixpC at frameSp is known, the compliance matrix related

to the frameS0 can be simply calculated as:

0C = 0T−T
p · pC · 0T−1

p = pTT
0 · pC · pT0 (5.2)

whereT denotes the transpose of a matrix. As reported in [49], the 6x6 adjoint matrix is also

useful for characterizing a collection ofn in-series connected compliant flexures. In this case, the

overall system compliance can be simply obtained by summing up the compliance matrices of

each flexure, once all matrices are related to a common reference frameS0. Therefore, resorting

to Eq. 5.2, the following relation holds:

0C =
n

∑
g

0T−T
g · gC · 0T−1

g =
n

∑
g

gTT
0 · gC · gT0 (5.3)

In the following, the procedure is outlined for the fully compliant spherical chain depicted in Fig.

5.1. The chain is composed by the in-series connection of two SFs (hereafter referred to as SF#1

and SF#2) that are both identical to the SF represented in Chapter 4 (Fig. 4.1) with centroidal axes

lying on the same circumference. The compliance matrix of each SF can then berecalled from

Section 4.2. Let us denote1C and2C as the compliance matrix of each SF as referred to the hinge

free end. The center of the spherical motion (i.e. pointO0 in Fig. 5.1) is then taken as the origin

of S0, the frame axes being oriented such thaty0 axis passes through the centroid of the SF#1 mid

cross section, whereasz0 axis is orthogonal to the symmetry plane containing the centroidal axes

(similar toz axis in Fig. 4.2).

As a further step, the adjoint matrices1T0 and2T0, respectively relating1C and2C to S0, should

be computed. Recalling Eq. 5.1, the rotation matrices,1R0 and2R0, and the translation vectors,
1r0 and2r0, composing1T0 and2T0 are defined as follows:

1R0 =




cos(θ/2) −sin(θ/2) 0

sin(θ/2) cos(θ/2) 0

0 0 1


 (5.4)
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Table 5.1: Compliance elements of the mechanism

Cx, fx =−
R(−2(AR2+In)(cos2(δ )sin(θ)+θ))

2EAIn
Cx, fy =Cy, fx =−

R(sin(2δ )sin(θ)(AR2+In))
2EAIn

Cy, fy =
R(2(AR2+In)(θ−cos2(δ )sin(θ)))

2EAIn
Cx,mz =Cθz, fx =−

R2(−4cos2( δ
2)sin( θ

2))
EIn

Cy,mz =Cθz, fz =−
R2(2sin(δ )sin( θ

2 ))
EIn

Cz,mx =Cθx, fz =
R2(−4cos2( δ

2)sin( θ
2 ))

GJ

Cθx,mx =−
R(−2GJ(θ−cos2(δ )sin(θ))−2EIm(cos2(δ )sin(θ)+θ))

2EGJIm
Cz, fz = 2 R3θ

GJ

Cθx,my =Cθy,mx = Rsin(δ )cos(δ )sin(θ)
(

1
EIm

− 1
GJ

)
Cz,my =Cθy, fz =

R2(2sin(δ )sin( θ
2))

GJ

Cθy,my =
R(2GJ(cos2(δ )sin(θ)+θ)+2EIm(θ−cos2(δ )sin(θ)))

2EGJIm
Cθz,mz = 2 Rθ

EIn

2R0 =




cos(θ/2+δ ) −sin(θ/2+δ ) 0

sin(θ/2+δ ) cos(θ/2+δ ) 0

0 0 1


 (5.5)

1r0 =
2r0 =

[
0, −R, 0

]T
(5.6)

whereR andθ represent the radius and subtended angle of SF#1 and SF#2 centroidal axes, whereas

δ is the angle between they0 axis and an axis connecting pointO0 and the centroid of the SF#2

mid cross section. The overall chain compliance matrix can then be computed resorting to Eq.

5.3, wheren = 2. In particular, the matrix0C can be expressed as follows:

0C =




Cx, fx Cx, fy 0 0 0 Cx,mz

Cy, fx Cy, fy 0 0 0 Cy,mz

0 0 Cz, fz Cz,mx Cz,my 0

0 0 Cθx, fz Cθx,mx Cθx,my 0

0 0 Cθy, fz Cθy,mx Cθy,my 0

Cθz, fx Cθz, fy 0 0 0 Cθz,mz




(5.7)

Matrix 0C relates the wrench0w acting onS0 to the corresponding generalized displacement0s,

(namely0s= 0C · 0w). The analytical expression of the matrix entries are reported in Table 5.1 as

a function of the geometric parameters and the employed material. The cross section properties

(A, Im, In, andJ) can be recalled from Section 4.3 as a function of the hinge geometric parameters.

5.3 Numerical Example and Model Validation

A fully-compliant spherical chain featuring two identical in-series SFs is considered as a case

study. The SF geometric parameters and the material employed for the simulationsare identical to
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Figure 5.3: Influence of varyingδ on principal compliances

the corresponding data used in Section 4.5. For a generic angleδ , the aforementioned theoretical

procedure is adopted to estimate the overall compliance matrix. The dependency of the principal

compliance elements,Cθx,mx andCθy,my , on the angleδ is shown in Fig. 5.3, which highlights that

Cθx,mx =Cθy,my whenδ = 90◦.

Results concerning this particular geometry (namelyδ = 90◦) are then validated through FEA per-

formed with the commercial software COMSOL. FEA simulations are executed byindividually

loading the chain along the axesx0, y0 andz0. The compliance elements are simply computed as

the ratios between each load component and the corresponding deformations. Table 5.2 compares

the results obtained via analytical model and FEA. The comparison shows a close agreement be-

Table 5.2: Compliance elements of the 2-SF spherical chain and comparison between analytical

and FEA results

Compliance elements Cx, fx Cx, fy =Cy, fx Cx,mz =Cθz, fx Cy, fy Cy,mz =Cθz, fy Cz, fz

Analytic 7.3603e-4 -5.9730e-20 0.0127 7.3603e-4 -0.0127 0.0039

FEA 7.3631e-4 -5.9000e-20 0.0127 7.3635e-4 -0.0127 0.0038

Percentage error 0.038 1.22 0 0.038 0 2.56

Compliance elements Cθx,mx Cz,mx =Cθx, fz Cz,my =Cθy, fz Cθy,my Cθx,my =Cθy,mx Cθz,mz

Analytic 26.5379 -0.0334 0.0334 26.5379 -4.9013e-15 0.4827

FEA 26.5455 -0.0334 0.0334 26.5455 -4.9000e-15 0.4842

Percentage error 0.028 0 0 0.028 0.026 0.31
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Table 5.3: Compliance elements of the 2-SBF spherical chain

Compliance elements Cx, fx Cx, fy =Cy, fx Cx,mz =Cθz, fx Cy, fy Cy,mz =Cθz, fy Cz, fz

Value 8.0311e-4 -4.0926e-20 0.0133 8.0311e-4 -0.0133 0.0183

Compliance elements Cθx,mx Cz,mx =Cθx, fz Cx,my =Cθy, fz Cθy,my Cθx,my =Cθy,mx Cθz,mz

Value 26.5379 -0.0350 0.0350 26.5379 -1.5472e-15 0.4827

tween the two methods.

As a further step, an SF-based chain has been compared with a similar chainfeaturing SBF flexures

and equal values of the principal compliance elements. Definingw and l as the SBF width and

length, the latter design constraint is achieved whenever both SBFs and SFs are characterized

by equal width (i.e.w = ro − ri), and same centroidal axes length (i.e.l = Rθ ). By applying

the method described in Section 5.2, the compliance matrix of the SBF-based chain has been

computed and numerical data are shown in Table 5.3. The pictures of the two considered design

solutions are reported in Figs. 5.4 and 5.5 which also show the chain deformed shapes (contour

plot of the total displacement) when a generic torque lying inx0− y0 plane is applied to the end-

link.

The quantitative comparison between the two design solutions is then performed by defining three

compliance ratios as follows:

r1 =
|CSF

x, fx
|

|CSBF
x, fx

|
; r2 =

|CSF
x,mz

|

|CSBF
x,mz

|
=

|CSF
θz, fx

|

|CSBF
θz, fx

|
=

|CSF
z,mx

|

|CSBF
z,mx

|
=

|CSF
θx, fz

|

|CSBF
θx, fz

|
; r3 =

|CSF
z, fz

|

|CSBF
z, fz

|
; (5.8)

where each compliance element concerning the SF-based chain (referred to with SF superscript)

is divided by the corresponding compliance element concerning the SBF-based chain (referred to

with SBF superscript). In particular, the variablesr1, r2, andr3 represent ratios between unde-

sired (secondary) compliances in all those applications requiring a spherical motion. Therefore,

compliance ratios whose value is less than unity simply indicates that the SF-based chain out-

O
0

Figure 5.4: Finite element model of the 2-SF

chain.

O
0

Figure 5.5: Finite element model of the 2-SBF

chain.
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Figure 5.6: Influence of varyingθ on compliance ratios

performs the SBF-based chain in terms of parasitic motions. As an example, for a given radius

R= 55.2mm, the values ofr1, r2 andr3 as a function ofθ are reported in Fig. 5.6. For a given angle

θ = π/3, the compliance ratios are constant (independent ofR), namelyr1 = 0.9191,r2 = 0.9549

andr3 = 0.2115. In conclusion, for what concerns this particular case study, numerical simulations

confirm the benefits when using the primitive SF as compared to the traditional SBF.
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Chapter 6

Design and Analysis of a Fully

Compliant Passive Spherical Joint

Using Spherical Flexure Hinges

In this chapter, a new type of passive compliant spherical joint is represented. The
joint is made by the in-parallel connection of two fully compliant spherical chains.
Each chain is composed of three identical spherical flexures connectedin-series
with mutually orthogonal axes. The closed-form compliance equations for the
spherical joint are derived via the previously described analytical method. The
compliant spherical chain is also evaluated comparing with the equivalent compli-
ant chain employing straight beam flexures.

6.1 Introduction

In previous chapter, relevant studies dedicated to compliant mechanisms involving spherical mo-

tions as well as compliant spherical mechanisms were reviewed and a fully compliant spherical

chain with two degrees of freedom was introduced and evaluated. In this chapter, a compliant

passive spherical joint is represented. Few studies have been dedicated to analysing and design-

ing compliant passive spherical joints. Lobontiu and Paine [33] providedanalytical solution for

designing circular cross-section corner-filleted flexures (Fig. 6.1(a)) for three-dimensional com-

pliant mechanisms. These flexures have been used as a compliant substitutefor spherical pairs

in the literature. However, they suffer from anisotropic deforming behavior unlike identical ball

joints, and difficult machining and manufacturing process. Daihong et al. [50] have proposed a
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(a) Circular cross-section corner-filleted flexures (b) Spherical joint proposed by Daihong et al. [50]

(c) Spherical joint proposed by Hesselbach et al. [44] (d) Spherical joint presented in this study

Figure 6.1: Compliant spherical joints

cubic compliant spherical joint (Fig. 6.1(b)) to use in their 6-DOF compliant manipulator. They

have used three circular flexures as revolute pairs with intersecting compliant axes. Hesselbach

et al. [44] have applied three set of elliptical flexures in their composed compliant spherical joint

(Fig. 6.1(c)). The spherical joint introduced in this chapter, is proposed using six identical SFs

composing the in-parallel connection of two 3-SF compliant spherical chains (Fig. 6.1(d)). This

joint demonstrates a fully isotropic and decoupled deformation behavior to applied loads.

6.2 Closed-Form Compliance Equations for the Spherical Joint

The compliant spherical pair proposed in this chapter is composed of two 3-SF compliant spherical

chains and can provide 3 rotational degrees of freedom between the input shaft (fixed) and the

output shaft as depicted in Fig. 6.2(a). Let us denote as Chain#1 (Fig. 6.2(b)) and Chain#2 (Fig.
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Figure 6.2: Compliant spherical joint composed of two spherical chains

6.2(c)), the upper and lower spherical chains respectively. Each chain is made by the in-series

connection of three SFs (namely SF#1,2,3 for Chain#1 and SF#4,5,6 for Chain#2) as shown in

Fig. 6.2. All of the SFs are identical to the SF represented in Chapter 4 (Fig.4.1). The flexures

in each chain are located such that their centriodal axes are lying in three mutually orthogonal

planes. This imposes the joint to have an isotropic configuration. The frameS0 is adopted at the

center of the spherical motion (O0) such thaty0, x0 andz0 axes pass through the geometric center

of SF#1,4, SF#2,5 and SF#3,6 respectively. Resorting to Eq. 5.3, the overall compliance matrix

for Chain#1 and Chain#2 can be obtained as follows:

0CChain#1=
3

∑
g=1

0T−T
g · gC · 0T−1

g =
3

∑
g=1

gTT
0 · gC · gT0 (6.1)

0CChain#2=
6

∑
g=4

0T−T
g · gC · 0T−1

g =
6

∑
g=4

gTT
0 · iC · gT0 (6.2)
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wheregC,g = 1...6 is the compliance matrix of the SFs as obtained in Section 4.2 about their

global coordinate frames. The adjoint matrixgT0 relatinggC to S0 can be determined using the

proper rotation matrix (gR0) and the translation vector (gr0), recalling Eq. 5.1. In particular,gR0

andgr0 for the SFs are defined as follows:

1R0 =




cos(θ/2) −sin(θ/2) 0

sin(θ/2) cos(θ/2) 0

0 0 1


 ; 2R0 =




0 −cos(θ/2) −sin(θ/2)

0 sin(θ/2) cos(θ/2)

1 0 0


 ; (6.3)

3R0 =



−sin(θ/2) 0 cos(θ/2)

cos(θ/2) 0 sin(θ/2)

0 1 0


 ; 4R0 =



−cos(θ/2) sin(θ/2) 0

−sin(θ/2) −cos(θ/2) 0

0 0 1


 ;

5R0 =




0 cos(θ/2) sin(θ/2)

0 −sin(θ/2) −cos(θ/2)

1 0 0


 ; 6R0 =




sin(θ/2) 0 −cos(θ/2)

−cos(θ/2) 0 −sin(θ/2)

0 1 0




1r0 =
2r0 =

3r0 =
4r0 =

5r0 =
6r0 =

[
0, −R, 0

]T
(6.4)

whereR andθ represent the radius and subtended angle of the SFs centroidal axes.By replacing

Eqs. 6.3 and 6.4 to Eqs. 6.1 and 6.2 and recallinggC from Table 4.1, the compliance matrices for

the two spherical chains can be determined as follows:

0CChain#1=




Cx, fx 0 0 0 Cx,my Cx,mz

0 Cy, fy 0 Cy,mx 0 Cy,mz

0 0 Cz, fz Cz,mx Cz,my 0

0 Cθx, fy Cθx, fz Cθx,mx 0 0

Cθy, fx 0 Cθy, fz 0 Cθy,my 0

Cθz, fx Cθz, fy 0 0 0 Cθz,mz




Chain#1

(6.5)

0CChain#2=




Cx, fx 0 0 0 Cx,my Cx,mz

0 Cy, fy 0 Cy,mx 0 Cy,mz

0 0 Cz, fz Cz,mx Cz,my 0

0 Cθx, fy Cθx, fz Cθx,mx 0 0

Cθy, fx 0 Cθy, fz 0 Cθy,my 0

Cθz, fx Cθz, fy 0 0 0 Cθz,mz




Chain#2

(6.6)
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Table 6.1: Compliance factors for the two spherical chains

{Cx, fx =Cy, fy =Cz, fz}Chain#1= {Cx, fx =Cy, fy =Cz, fz}Chain#2=
Rθ (InGJ+GJR2A+R2EAIn)

EAInGJ

{Cx,my =Cy,mz =Cz,mx =Cθx, fz =Cθy, fx =Cθz, fy}Chain#1=

−{Cx,my =Cy,mz =Cz,mx =Cθx, fz =Cθy, fx =Cθz, fy}Chain#2=−2 R2 sin(θ/2)
GJ

{Cθx,mx =Cθy,my =Cθz,mz}Chain#1= {Cθx,mx =Cθy,my =Cθz,mz}Chain#2=
Rθ (InEIm+InGJ+GJIm)

GJEImIn

{Cx,mz =Cy,mx =Cz,my =Cθx, fy =Cθy, fz =Cθz, fx}Chain#1=

−{Cx,mz =Cy,mx =Cz,my =Cθx, fy =Cθy, fz =Cθz, fx}Chain#2= 2 R2 sin(θ/2)
EIn

The analytical expressions for the matrix entries are reported in Table 6.1.The cross section

properties (A, Im, In, andJ) can be recalled from Section 4.3 as a function of the hinge geometric

parameters.

A similar procedure can be adopted to obtain the overall compliance matrix of thespherical joint,

considering the fact that for parallel combinations, stiffness matrices of the chains should be

summed up in the same reference frame:

0K =
2

∑
i=1

0Ti ·
iK · 0TT

i = 0CChain#1
−1

+ 0CChain#2
−1

(6.7)

The compliance matrix of the joint(0C), will be then obtained by inverting it’s stiffness matrix:

0C = 0K
−1

(6.8)

Matrix 0C relates the wrench0w acting onS0 to the corresponding generalized displacement0sas

follows:

0s= 0C · 0w (6.9)

0s=
[
u0 v0 w0 α0 φ0 ψ0

]T

0w =
[

fx0 fy0 fz0 mx0 my0 mz0

]T

6.3 Numerical Example and Model Validation

The spherical joint depicted in Fig. 6.2 is considered for the case study. The joint is composed of

two serial chains with six identical SFs. The SF geometric parameters and the material employed

for the simulations are identical to the corresponding data used in Section 4.5.The analytical

method described earlier and FEA are both used to evaluate the compliance matrices of Chain#1
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Table 6.2: Compliance elements for Chain#1 and comparison between analytical and FEA results

Compliance elements Cx, fx =Cy, fy =Cz, fz Cx,my =Cy,mz =Cz,mx =Cθx, fz =Cθy, fx =Cθz, fy

Analytic 0.0027 -0.0334

FEA 0.0027 -0.0335

Percentage error 0 0.3

Compliance elements Cθx,mx =Cθy,my =Cθz,mz Cx,mz =Cy,mx =Cz,my =Cθx, fy =Cθy, fz =Cθz, fx

Analytic 26.7793 0.0127

FEA 26.7921 0.0129

Percentage error 4.77 1.55

Table 6.3: Compliance elements for Chain#2 and comparison between analytical and FEA results

Compliance elements Cx, fx =Cy, fy =Cz, fz Cx,my =Cy,mz =Cz,mx =Cθx, fz =Cθy, fx =Cθz, fy

Analytic 0.0027 0.0334

FEA 0.0027 0.0335

Percentage error 0 0.3

Compliance elements Cθx,mx =Cθy,my =Cθz,mz Cx,mz =Cy,mx =Cz,my =Cθx, fy =Cθy, fz =Cθz, fx

Analytic 26.7793 -0.0127

FEA 26.7921 -0.0129

Percentage error 4.77 1.55

and Chain#2. Table 6.2 and Table 5.3 compares the results obtained via analytical model and

FEA for Chain#1 and Chain#2 respectively. One can notice the close agreement between the two

methods from the comparison and the percentage error provided.

Following Eqs. 6.7 and 6.8, the overall compliance matrix for the joint and the relation between

deformations and the loads acting atS0 can be determined as follows:




u0

v0

w0

α0

φ0

ψ0




=




0.0013 7.9333e−6 7.9333e−6 0 0 0
7.9333e−6 0.0013 7.9333e−6 0 0 0
7.9333e−6 7.9333e−6 0.0013 0 0 0

0 0 0 13.1498 0.0797 0.0797
0 0 0 0.0797 13.1498 0.0797
0 0 0 0.0797 0.0797 13.1498



·




fx0

fy0

fz0

mx0

my0

mz0




(6.10)

As we can see from Eq. 6.10, the compliance matrix of the joint represents a fully isotopic be-
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havior to applied loads and moments which is an ideal characteristic for spherical joints specially

in compliant mechanisms and micro-manipulators. Furthermore, it comprises a unique property

for this purpose specially encompassing decoupled deformation behaviorto applied forces and

moments. This indicates that if the joint is loaded purely with moments, the deformationprofile

of the joint will only comprise rotations exempt from undesired displacements.

In order to better understand the characteristics and competencies of SFsover commonly used

flexures e.g. SBFs, the SF-based Chain#1 (SF-Chain) has been compared with a similar chain

featuring SBFs (SBF-Chain). The SBF-Chain is composed of three identical SBFs such that the

middle cross section centriod of the SBFs are located in a distance equal toR from the center of the

spherical motion (O0). Assuming the same conditions and following the same procedure depicted

in section 6.2, the compliance matrix for the SBF-Chain is obtained as Eq. 6.5 with the following

compliance elements:

Cx, fx =Cy, fy =Cz, fz =
l
(
w2+12R2

)

Etw3 +
l3

Etw3 +
l
(
l2Gw2+ l2Gt2+12R2Et2

)

Ewt3G(w2+ t2)
(6.11)

Cx,my =Cy,mz =Cz,mx =Cθx, fz =Cθy, fx =Cθz, fy =−12
Rl

Gwt (w2+ t2)

Cθx,mx =Cθy,my =Cθz,mz = 12
l

Gwt (w2+ t2)
+12

l
Ewt3 +12

l
Etw3

Cx,mz =Cy,mx =Cz,my =Cθx, fy =Cθy, fz =Cθz, fx = 12
Rl

Etw3

One can realize that there are 4 independent compliance elements and the structure of the matrix is

similar to the SF-Chain. In order to compare these two chains, the SBF is characterized consider-

ing equal compliance factors for the two chains. This results in a system of 4nonlinear equations.

Since there are 3 unknowns for characterizing the SBF, the nonlinear system is solved assuming

equal rotation-induced compliance factors and minimizing the 4th equation that involves pure dis-

placements, to minimize the overall parasitic motions. Considering Eqs. 6.5 and 6.11, this system

of equations can be simplified as:




C(SF−Chain)
x,my −C(SBF−Chain)

x,my = 0

C(SF−Chain)
θx,mx

−C(SBF−Chain)
θx,mx

= 0 =⇒ Minimize

{
C(SF−Chain)

x, fx
−C(SBF−Chain)

x, fx

}

C(SF−Chain)
x,mz −C(SBF−Chain)

x,mz = 0

This set of nonlinear equations is solved using numerical methods and the SBF is characterized

asl = 39.8mm, w = 9.3mm andt = 0.87mm. The compliance matrix entries for the SBF-Chain

are defined as depicted in Table 6.4. By comparing the compliance elements represented for the

two chains as reported in Table 6.2 and Table 6.4, one can notice that all the compliance elements
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Table 6.4: Compliance elements for the SBF-Chain

Compliance elements Cx, fx =Cy, fy =Cz, fz Cx,my =Cy,mz =Cz,mx =Cθx, fz =Cθy, fx =Cθz, fy

Value 0.0060 -0.0334

Compliance elements Cθx,mx =Cθy,my =Cθz,mz Cx,mz =Cy,mx =Cz,my =Cθx, fy =Cθy, fz =Cθz, fx

Value 26.7793 0.0127

for the both chains are equal except the three for translational terms which are also representative

of parasitic motions. This term is equal to 0.0027 for the SF-Chain and 0.006 for the SBF-Chain.

This clarifies the outperforming behavior of SFs in comparison with SBFs in terms of parasitic

motions. The numerical values of the compliance matrix entries for the SF-Chainand SBF-Chain

are depicted in Fig. 6.3 and Fig. 6.4 respectively. As described in Section 3.4, this 3D bar graph

representation allows a qualitative comparison of the spherical chains in terms of compliance fac-

tors.

As a further step, the SF and SBF have been compared in terms of maximum stress levels. Consid-

ering the von Mises criterion as explained in Section 4.4, the two flexures have been evaluated by

the maximum von Mises stress when loaded with a unit (principal) bending momentmy on the free

end. In particular, the SBF assumes a constant value equaling 8.48e8Pa along its length where

the stress distribution for the SF along its centroidal axis, is depicted in Fig. 6.5. The maximum

stress for the SF occurs at its free end and is equal to 6.25e8Pa. As we can see, the SF furthermore

outperforms SBF in terms of maximum achievable rotation, being characterizedby a lower stress

level for equal load.
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Figure 6.3: 3D bar representation for the SF-Chain compliance matrix
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Figure 6.4: 3D bar representation for the SBF-Chain compliance matrix
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Figure 6.5: Maximum von Mises stress for the SF along its axis



Chapter 7

Conclusion

Flexure-based compliant mechanisms have become increasingly popular in different research ar-

eas, considering their advantages compared to traditional rigid-body mechanisms. These compli-

ant mechanisms gain some or all of their mobility due to the elastic deformation of theirflexible

members known as flexure hinges. Flexure hinges are characterized bylight weight, no need for

lubrication, no backlash, no friction losses and an easy manufacturing process. In this thesis, new

types of flexure hinges with curved centroidal axes were introduced and studied for both planar

and spatial applications. First, circularly curved-beam flexures were characterized and particularly

designed for planar applications, such as articulated robotic fingers. The closed-form compliance

equations for this type of flexures were fully derived as a function of their geometric parameters

and the employed material. These flexures were further compared to commonlyused straight

beam flexures considering the potential applications in the optimal design of compliant robotic

fingers. It was shown that circularly curved-beam flexures are better alternatives for achieving

maximum rotation demands in planar applications. Spherical flexure hinges were then introduced

and specifically designed for spatial applications involving spherical motions such as compliant

spherical mechanisms. These mechanisms are characterized by having allpoints of their links

moving on concentric spherical surfaces, the center of these spheresbeing denoted as center of

spherical motion. Spherical flexures were also characterized and theirclosed-form compliance

equations were derived. Proposing a feasible framework for comparing these flexures with cir-

cularly curved-beam flexures, for what concerns their capability in providing spherical motions,

proved that spherical flexures should be preferred over circularlycurved-beam flexures when opti-

mizing compliant spherical mechanisms. Spherical flexures were then usedin compliant spherical

chains and further evaluated comparing them with equivalent chains employing straight beam flex-

ures. The comparison further highlighted the superior characteristics ofspherical flexures. Finally

a new passive compliant spherical joint was designed using spherical flexures. The overall com-

pliance matrix of the joint demonstrated an exclusive deforming behavior with respect to applied

loads.
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