99,588 research outputs found

    The complexity and geometry of numerically solving polynomial systems

    Full text link
    These pages contain a short overview on the state of the art of efficient numerical analysis methods that solve systems of multivariate polynomial equations. We focus on the work of Steve Smale who initiated this research framework, and on the collaboration between Stephen Smale and Michael Shub, which set the foundations of this approach to polynomial system--solving, culminating in the more recent advances of Carlos Beltran, Luis Miguel Pardo, Peter Buergisser and Felipe Cucker

    A Numerical Algorithm for Zero Counting. I: Complexity and Accuracy

    Get PDF
    We describe an algorithm to count the number of distinct real zeros of a polynomial (square) system f. The algorithm performs O(n D kappa(f)) iterations where n is the number of polynomials (as well as the dimension of the ambient space), D is a bound on the polynomials' degree, and kappa(f) is a condition number for the system. Each iteration uses an exponential number of operations. The algorithm uses finite-precision arithmetic and a polynomial bound for the precision required to ensure the returned output is correct is exhibited. This bound is a major feature of our algorithm since it is in contrast with the exponential precision required by the existing (symbolic) algorithms for counting real zeros. The algorithm parallelizes well in the sense that each iteration can be computed in parallel polynomial time with an exponential number of processors.Comment: We made minor but necessary improvements in the presentatio

    Turbo Packet Combining for Broadband Space-Time BICM Hybrid-ARQ Systems with Co-Channel Interference

    Full text link
    In this paper, efficient turbo packet combining for single carrier (SC) broadband multiple-input--multiple-output (MIMO) hybrid--automatic repeat request (ARQ) transmission with unknown co-channel interference (CCI) is studied. We propose a new frequency domain soft minimum mean square error (MMSE)-based signal level combining technique where received signals and channel frequency responses (CFR)s corresponding to all retransmissions are used to decode the data packet. We provide a recursive implementation algorithm for the introduced scheme, and show that both its computational complexity and memory requirements are quite insensitive to the ARQ delay, i.e., maximum number of ARQ rounds. Furthermore, we analyze the asymptotic performance, and show that under a sum-rank condition on the CCI MIMO ARQ channel, the proposed packet combining scheme is not interference-limited. Simulation results are provided to demonstrate the gains offered by the proposed technique.Comment: 12 pages, 7 figures, and 2 table

    Short and long-term wind turbine power output prediction

    Get PDF
    In the wind energy industry, it is of great importance to develop models that accurately forecast the power output of a wind turbine, as such predictions are used for wind farm location assessment or power pricing and bidding, monitoring, and preventive maintenance. As a first step, and following the guidelines of the existing literature, we use the supervisory control and data acquisition (SCADA) data to model the wind turbine power curve (WTPC). We explore various parametric and non-parametric approaches for the modeling of the WTPC, such as parametric logistic functions, and non-parametric piecewise linear, polynomial, or cubic spline interpolation functions. We demonstrate that all aforementioned classes of models are rich enough (with respect to their relative complexity) to accurately model the WTPC, as their mean squared error (MSE) is close to the MSE lower bound calculated from the historical data. We further enhance the accuracy of our proposed model, by incorporating additional environmental factors that affect the power output, such as the ambient temperature, and the wind direction. However, all aforementioned models, when it comes to forecasting, seem to have an intrinsic limitation, due to their inability to capture the inherent auto-correlation of the data. To avoid this conundrum, we show that adding a properly scaled ARMA modeling layer increases short-term prediction performance, while keeping the long-term prediction capability of the model

    Tangent Graeffe Iteration

    Full text link
    Graeffe iteration was the choice algorithm for solving univariate polynomials in the XIX-th and early XX-th century. In this paper, a new variation of Graeffe iteration is given, suitable to IEEE floating-point arithmetics of modern digital computers. We prove that under a certain generic assumption the proposed algorithm converges. We also estimate the error after N iterations and the running cost. The main ideas from which this algorithm is built are: classical Graeffe iteration and Newton Diagrams, changes of scale (renormalization), and replacement of a difference technique by a differentiation one. The algorithm was implemented successfully and a number of numerical experiments are displayed
    • …
    corecore