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Abstract

In the wind energy industry, it is of great importance to develop models that accurately forecast the power

output of a wind turbine, as such predictions are used for wind farm location assessment or power pricing

and bidding, monitoring, and preventive maintenance. As a first step, and following the guidelines of the

existing literature, we use the supervisory control and data acquisition (SCADA) data to model the wind turbine

power curve (WTPC). We explore various parametric and non-parametric approaches for the modeling of the

WTPC, such as parametric logistic functions, and non-parametric piecewise linear, polynomial, or cubic spline

interpolation functions. We demonstrate that all aforementioned classes of models are rich enough (with respect

to their relative complexity) to accurately model the WTPC, as their mean squared error (MSE) is close to

the MSE lower bound calculated from the historical data. We further enhance the accuracy of our proposed

model, by incorporating additional environmental factors that affect the power output, such as the ambient

temperature, and the wind direction. However, all aforementioned models, when it comes to forecasting, seem

to have an intrinsic limitation, due to their inability to capture the inherent auto-correlation of the data. To

avoid this conundrum, we show that adding a properly scaled ARMA modeling layer increases short-term

prediction performance, while keeping the long-term prediction capability of the model.

Keywords: Wind turbine power curve modeling; parametric and non-parametric modeling techniques; probabilistic

forecasting; SCADA data

1 Introduction

Wind turbine power curves (WTPC) are used for the modeling of the power output of a single wind turbine. Such

models are needed in

i) Wind power pricing and bidding: Electricity is a commodity which is traded similarly to stocks and swaps,

and its pricing incorporates principles from supply and demand.

ii) Wind energy assessment and prediction: Wind resource assessment is the process by which wind farm devel-

opers estimate the future energy production of a wind farm.

iii) Choosing a wind turbine: WTPC models aid the wind farm developers to choose the generators of their

choice, which would provide optimum efficiency and improved performance.

iv) Monitoring a wind turbine and for preventive maintenance: A WTPC model can serve as a very effective

performance monitoring tool, as several failure modes can result in power generation outside the specifica-

tions. As soon as an imminent failure is identified, preventive maintenance (age or condition based) can be

implemented, which will reduce costs and increase the availability of the asset.

v) Warranty formulations: Power curve warranties are often included in contracts, to insure that the wind

turbine performs according to specifications. Furthermore, service providers offer warranty and verification
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testing services of whether a turbine delivers its specified output and reaches the warranted power curve,

while meeting respective grid code requirements.

see, e.g., (Widén et al., 2015; Shi et al., 2011; Lydia et al., 2013) and the references therein. Thus it is pivotal

to construct accurate WTPC models. However, this is a difficult problem, as the output power of a wind turbine

varies significantly with wind speed and every wind turbine has a very unique power performance curve, (Manwell

et al., 2010).

In this paper, we explore the literature on how to create an accurate WTPC model based on a real dataset and

suggest practical and scientific improvements on the model construction. We initially construct a static (in which

the predictor and regressor(s) are considered to be independent identically distributed (i.i.d.) random variables)

model for the WTPC and demonstrate how various parametric and non-parametric approaches are performing

from both a theoretical perspective, and also with regard to the data. In particular, we explore parametric logistic

functions, and the non-parametric piecewise linear interpolation technique, the polynomial interpolation technique,

and the cubic spline interpolation technique. We demonstrate that all aforementioned classes of models, especially

the non-parametric ones, are rich enough to accurately model the WTPC, as their mean squared error (MSE) is

close to a theoretical MSE lower bound. Within each class of models, we select the best model by rewarding MSEs

close to the theoretical bound, while simultaneously penalizing for overly complicated models (i.e., models with

many unknown parameters), using the Bayesian information criterion (BIC), see (Schwarz, 1978). We demonstrate

that such a static model, even after incorporating information on the wind speed and the available environmental

factors, such as wind angle and ambient temperature, does not fully capture all available information. To this end,

we propose in this paper, to enhance the static model with a dynamic layer (in which the predictor and regressor(s)

are considered to be inter-correlated e.g., time series or stochastic processes), based on an autoregressive-moving-

average (ARMA) modeling layer.

Contribution of the paper. In this paper, based on a real dataset, we explore a hybrid approach for the wind

turbine power output modeling consisting of the static model plus the dynamic layer. This approach: i) provides

a very accurate modeling approach; ii) is very useful for accurate short and long-term predictions; (iii) indicates

that, within the cut-in wind speed (3.5 m/s) and the rated output wind speed (15 m/s), the conditional distribution

of the power output is Gaussian. We consider that points i)-ii) mentioned above will contribute directly to the

practice, as the accurate modeling and forecasting capabilities are of utter importance. Furthermore, point iii)

mentioned above will greatly benefit the literature, as it is the first stepping stone towards proving that random

power injections from wind energy in the electric grid can be accurately modeled using a Gaussian framework, see

(Nesti et al., 2016a,b). All in all, in this paper, we provide a new dataset collected from a wind turbine, and use it to

show how to accurately model and forecast power output. The analysis presented in this paper is scientifically and

practically relevant, and contributes substantially from both the modeling and forecasting aspect, while providing

a thorough overview of sound statistical methods. All results presented in the paper are motivated scientifically

(when appropriate and possible) and are supported by real data.

Paper outline. In Section 2, we describe the raw data and provide all information on how the data was cleaned.

In Section 3, we treat the WTPC modeling: First, in Section 3.1, we give an overview of the literature on power

output modeling. Thereafter, in Section 3.2, we present a simple static WTPC modeling approach, which models

the power output as a function of the wind speed, using both parametric and non-parametric approaches; para-

metric logistic models (Section 3.2.3), non-parametric piecewise linear models (Section 3.2.4), polynomial models

(Section 3.2.5), and spline models (Section 3.2.6). In Section 3.3, we compare the various modeling classes and

determine criteria for model selection. In Section 4, we enhance the static model at hand by incorporating addi-

tional factors, such as the wind angle and the ambient temperature. Analyzing the residuals of the enhanced static

model, we are motivated to introduce a dynamic Gaussian layer in our model, cf. Section 5, which produces very

accurate short-term predictions, cf. Section 5.3. We conclude the paper with some remarks in Section 6.
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Figure 1: WTPC of the V80-2.0MW (picture taken from Vestas (2011))

2 Data

The goal of this section is to describe the features of the data used in this study. The data was obtained by the

supervisory control and data acquisition (SCADA) system of a wind turbine operator in the Netherlands. The

data was collected from an off-shore Vestas V80-2.0MW wind turbine, with a rated capacity of 2 MW. Vestas V80-

2.0MW joins the grid connection at a wind speed of 4 m/s, has a rated actual power output of 2 MW (typically

achieved) at a wind speed of 16 m/s, and it is disconnected at a wind speed of 25 m/s. See Figure 1 for a depiction

of the theoretical WTPC.

The data used for the analysis presented in this paper spans across two years and the dataset contains recordings

of the environmental conditions, as well as the physical state, and power output of the turbine.

There are two important features of SCADA datasets, which are not specific to the data of our study but are

common amongst SCADA datasets recorded throughout the wind industry. One of these is the 10 min reported

frequency of the SCADA observations; although the signals of interest are collected at a relatively high frequency,

only processed observations calculated on a 10 min window are recorded in the SCADA databases. These processed

signals contain the average, maximum, minimum and standard deviation of the wind speed, and the power output

amongst other quantities of interest. The second important feature is that the data is strongly quantized due to

the rounding of the reported number. As a result, the observations are recorded up to one decimal digit. Some of

our finding are consequences of these two properties which correspond to the quasi industry standard. Because of

this, we expect that our results are also applicable to similar data coming from other wind turbine operators or

wind turbine service providers.

2.1 Description of the raw dataset

All graphs and figures were produced using two seasonal parts of the available dataset. Throughout the paper, we

refer to the data recorded between June 1, 2013, and August 31, 2013, as the training data, and the corresponding

period of year 2014 as the validation data. Although, we have access to the full two year data set, we choose to

restrict our analysis in a specific season of the year, as this reduces seasonality effects, while still maintaining a

significant amount of data, and it permits a full decoupling between the training and the validation data. It is

important to note that the results presented in the paper can be easily extended to the entire year.

The dataset contains observations of various signals every 10 minutes. Some of the signals contained in the dataset

are the ambient wind speed, say wt, the relative direction of the wind speed with respect to the nacelle, say φt, the

ambient temperature, say Tt, and the power output produced by the turbine, say pt, at time t, t ≥ 0. Besides the

aforementioned continuous valued signals, there are some nominal variables with a discrete support, such as the

variable pertaining to the different operational states of the turbine. Such variables help to identify time periods

during which the turbine is out of use (maintenance, free run, blades turned into low resistance position) or if the
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wind turbine is in a state different from normal operational condition.

In the first part of the paper, we suppress the subscript t as we deal with static models, while in the second part

of the paper we deal with dynamic models, and we, therefore, reinstate the subscript t notation.

2.2 Cleaning the data

The quality of the available SCADA data is extremely good, nevertheless it requires some pre-processing before

creating the forecasting models. We list below the cleaning rules implemented in this study, according to which we

disregard observations:

1. Missing entries (NAs): there are a few timestamps that are completely missing from the 10 minute sampling

sequence.

2. Incomplete entries (IN): if one or more signal values are missing from a data record, then the full record

corresponding to this time stamp is discarded.

3. Not normal operation (NNO): based on the value of the state variables we can disregard states that do not

correspond to normal operational conditions, e.g. free rotation of the wind turbine without connection to the

grid, derated operation, etc.

4. Outliers: Firstly, all observations of wind power corresponding to the same wind speed are grouped together

and the corresponding box plot is generated. Then, for every given wind speed value, all points with power

generation outside the whiskers of the box plot (i.e., all observations falling outside the interval (Q1 −
3IQR, Q3 + 3IQR)) are discarded.

Table 1 contains the summary report of the data cleaning procedure. It shows that approximately 5% of the

original data is discarded, still leaving a trove of data to be used for estimation purposes. The scatter plot of the

power output, p, against the wind speed, w, is shown in Figure 2. In this figure, we have color-characterized the

training data by depicting in red the raw data, and in blue the cleaned dataset used for the analysis.

3 Power curve modeling and its limitations

When it comes to pricing wind power, assessing the possible location for a wind turbine installation or to forecasting

short-term (expected) power generation for supply purposes, the main tool proposed in the literature is the WTPC.

Such a curve is used to describe the relationship between the steady wind speed and the produced power output of

the turbine. The shape of the WTPC for the type of wind turbines of interest to this study is depicted in Figure

1, while the fitted curve based on the cleaned data is depicted in Figure 3.

The WTPC, in ideal (laboratory) conditions, is given by the manufacturer, cf. (Vestas, 2011), but such curves can

change over time due to environmental changes or due to component wear. This makes it paramount to estimate

the power curve for each turbine individually, so these tailor-made WTPCs may be used for power generation

forecasting, decision under uncertainty, and monitoring.

There is a rich literature on WTPC estimation, see, e..g., (Li et al., 2001; Lydia et al., 2014, 2013; Sohoni et al.,

Table 1: Summary report of the data cleaning

Year 2013 2014

Total number of observations 13248 13248

Number of NAs, IN, & NNO observations 255 445

Number of outliers 144 165

Number of remaining observations after cleaning 12849 12638

Proportion of remaining data after cleaning 97 % 95.4 %
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Figure 2: The power output, p, against the wind speed, w, in the raw (red) and the cleaned (blue) dataset from

2013
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Figure 3: The power output p against wind speed w for the 2013 cleaned dataset together with an estimated WTPC

2016) and the references therein. The majority of this work is focused on obtaining the best parametric or

non-parametric model for the power curve of a turbine based on the available data. To this purpose, different

approaches are compared using various criteria. Our goal, in this paper, is to show that, following the guidelines

of the literature, obtaining a parametric or non-parametric estimate of the WTPC is of limited value. Although

Figure 3 indicates an “appropriate” fitted model to the power output using the wind speed, there are apparent

remaining residuals that are not explained by the fitted power curve. Investigating the statistical properties of

the residuals reveals features that should be taken into account in the modeling. This is due, as we show in the

sequel, to the fact that it might be needed to use additional covariates (besides the wind speed) to explain the

power output, and also due to the fact that the homoscedasticity assumption is not valid, i.e. the variance of

the residuals is not constant and the residuals are highly correlated. For these reasons, we strongly believe that,

contrary to the existing literature, the focus should not lie on the estimation of the WTPC, but should shift to

obtaining models that can be easily extended to various covariates, and that can capture the heteroscedastic nature

of the data. Such models should not only be ranked according to the regular modeling power, but also according

to their computational complexity and their numerical robustness.

3.1 Relevant literature overview

Due to the importance of the WTPC in various application areas, a significant body of literature and a proliferation

of methods are available. These approaches can be, without loss of generality, classified into static and dynamic.

Furthermore, the approaches can be distinguished as direct, in which the power output is modeled out of first

principles, and indirect, in which the power output is modeled using as input the wind speed and potentially other

factors (environmental or wind turbine specific). But the latter distinction might be blurry in some papers, so we
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only use this classification when it is absolutely clear. In the next paragraphs, we overview the relevant literature

and conclude with an overview of papers dealing with model comparisons and reviews.

IEC power curve. The International Standard IEC 61400-12-1 presents the standard methodology used in

practice for measuring the power performance characteristics of a single wind turbine. This methodology is also

applicable for testing the performance of the wind turbines and can be used for the comparison (in terms of

performance) of different turbine models or settings (IEC 61400-12-1, 2005). The IEC measured power curve is

determined by applying the “method of bins”, for the normalized pairs of the wind speed and the power output.

The IEC power curve does not account for the hidden factors that may impact the power output (such as, the site

condition, environmental factors, and specific wind turbine effects), so its blind application to other turbines/sites

is not accurate. Furthermore, the IEC model does not take into account the wear and tear of the turbine. Thus,

necessitating the creation of more accurate and generic models for the power output.

Static models. The prevailing paradigm in weather forecasting is to issue deterministic forecasts based on

numerical weather prediction models, as noted in (Sloughter et al., 2010). Uncertainty can then be assessed

through ensemble forecasts, where multiple estimates of the current state of the atmosphere are used to generate

a collection of deterministic predictions. Ensemble forecasts are often uncalibrated, however, this can be overcame

(as pointed in the paper) with the use of Bayesian model averaging (BMA). This statistical approach represents

the predictive density function as a weighted average of density functions centered on the individual bias-corrected

forecasts, where the weights reflect the forecasts relative contributions to predictive skill over a training period.

Sloughter et al. (2010) extend BMA to provide probabilistic forecasts for wind speed, taking into account the

skewness of the predictive distributions and the discreteness of the observations.

Shokrzadeh et al. (2014) investigate the modeling abilities of polynomial and spline models and develop a penalized

spline model to address the issues of choosing the number and location of knots (model complexity). Thapar et al.

(2011) strengthen the conclusions of Shokrzadeh et al. (2014), as the authors show that the decision depends on the

type of turbine and the available data: if the data has a smooth WTPC, it is oftentimes optimal to use parametric

models, which maintain/capture the shape of the WTPC, while for turbines and data that do not produce a smooth

WTPC shape, the optimal model is based on spline interpolation obtained according to the method of least squares.

In (Li et al., 2001), the authors compare regression and artificial neural network models used in the estimation of

wind turbine power curves. Both models include information on the wind speed and direction for the prediction

of wind power. They conclude that the regression model is function dependent, and that the neural network

model obtains its power curve estimation through learning. The neural network model is found to possess better

performance than the regression model for turbine power curve estimation under complicated influence factors.

Also, Antonino and Messineo (2011) investigate a neural network approach (generalized mapping regressor) as a

potential method for learning the relationship between the wind speed and the generated power in a whole wind

farm.

Lee et al. (2015) propose an additive multivariate kernel method that includes in addition to the wind speed,

several other environmental factors, such as wind direction, air density, humidity, turbulence intensity, and wind

shears. This model provides, conditional on a given environmental condition, both the point estimation and density

estimation of the power output.

Dynamic models. Harvey and Koopman (1993) develop a parsimonious method based on time-varying splines

for the forecasting of electricity demand, whilst simultaneously including other factors, such as the temperature

response, again using splines. Their approach seems to accurately model the changing electricity load pattern

within a week. When using this approach for the modeling of the power output, unfortunately the results are no

longer so promising. This may be due to the lack of similar patterns in the power output.

Shi et al. (2011) develop an autoregressive integrated moving average (ARIMA) forecasting model based on the

historical wind power generation and then predict the future power generation. They also compare the results of the

direct model with the indirect model in which they first obtain a wind speed forecasting model, make the prediction

of future wind speed, and then convert wind speed forecast to wind power forecast based on the power curve of a

wind turbine. The authors comment that no seasonality is found for both wind speed and wind power generation,
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indicating that the simplified ARIMA models turn out to be sufficient. The comparison between the direct and

indirect models shows that the former produce significantly more accurate forecasts (in terms of both mean absolute

error and root mean square error) compared to the indirect models. The main reason is that the indirect model

only considers the averaged deterministic relationship between wind speed and power generation, while in reality

the relationship is stochastic in nature. This variability leads to the lower accuracy in predicting wind power

generation using the indirect approach. In a sequel paper, Shi et al. (2012) investigate the advantages of applying a

hybrid forecasting of time series data as an alternative to the conventional single forecasting modeling approaches

such as autoregressive integrated moving average (ARIMA), artificial neural network (ANN), and support vector

machine (SVM). Hybrid forecasting typically consists of an ARIMA prediction model for the linear component of

a time series and a nonlinear prediction model for the nonlinear component. The authors conclude that the hybrid

methodology does not always outperform the individual forecasting models based on ARIMA, ANN, or SVM.

Gneiting et al. (2006) introduce the regime-switching space-time (RST) method to obtain accurate and calibrated,

fully probabilistic short-term forecasts of wind energy. The RST approach relies on two key ideas, the identification

of distinct forecast regimes, and the use of geographically dispersed meteorological observations as off-site predictors.

They show that the RST method outperforms the autoregressive (AR) time series models for wind speed and wind

power forecasts. Hering and Genton (2010) generalize and improve upon the model of Gneiting et al. (2006) by

treating the wind direction as a circular variable and including it in the model. The authors compare the generalized

model with the more common approach of modeling wind speeds and directions in the Cartesian space and use a

skewed Student-t distribution for the errors. The quality of the forecasting from all of these models can be more

realistically assessed with a loss measure that depends upon the power curve relating wind speed to power output.

This proposed loss measure yields more insight into the true value of each model’s predictions.

In (Cho et al., 2013), the authors propose a hybrid approach for the modeling and the short-term forecasting

of electricity loads, consisting of two building blocks: i) modeling the overall trend and seasonality by fitting a

generalized additive model to the weekly averages of the load, and ii) modeling the dependence structure across

consecutive daily loads via curve linear regression. For the latter, a new methodology is proposed for linear

regression with both curve response and curve regressors.

Bhaumik et al. (2017) model the total power output of a wind park using Markov chains (MC) and Hidden Markov

models (HMM). They conclude that the MC models are unable to capture accurately the power output, while HMM

seem to perform well; HMM especially capture the tail distribution of the total power output and can be used as

input when trying to increase the reliability of a park. Such a direct modeling approach, although successful in

its modeling purpose, requires a very large number of states (observed and hidden), which results in an enormous

number of parameters to be estimated.

In (Gottschall and Peinke, 2008), the authors introduce a dynamical approach for the determination of power curves

for wind turbines, which relies on estimating a fixed point by extracting the actual deterministic dynamics of the

wind turbine. The main idea, in (Gottschall and Peinke, 2008), is to separate the dynamics of a wind turbine’s

power output into a deterministic and an independent stochastic part, corresponding to the actual behavior of the

wind turbine and the external influences, such as the turbulence of the wind, respectively. Stochastic influences are

handled as noise and are governed by a Markovian process summarizing all the otherwise unseizable microscopic

interactions.

Jeon and Taylor (2012) model wind power in terms of wind speed and wind direction using a bivariate vector

autoregressive moving average-generalized autoregressive conditional heteroscedastic (VARMA-GARCH) model,

with a Student-t distribution, in the Cartesian space of wind speed and direction. Taking into account the stochastic

nature of the relationship of wind power to wind speed (described by the power curve), and to wind direction, the

authors propose the use of conditional kernel density (CKD) estimation, which enables a non-parametric modeling

of the conditional density of wind power. Using Monte Carlo simulation of the VARMA-GARCH model and CKD

estimation, density forecasts of wind speed and direction are converted to wind power density forecasts.

Overview papers. Lydia et al. (2013) present an overview on the need for modeling of wind turbine power curves

and the different methodologies employed for such modeling. They also review the parametric and non-parametric

modeling techniques and critically evaluate them. In another study, a comparison between polynomial, exponential,

cubic, and approximate cubic power curves revealed that the polynomial models are the worse option, while the
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other models are more appropriate as they reveal a high R2, see (Carrillo et al., 2013). Sohoni et al. (2016) review

the available models and characterizes them according to the purpose of the modeling, the availability of data, and

the desired accuracy. They also indicate the most influencing factors of the WTPC: i) Wind conditions at the site;

ii) Air density; iii) Extrapolation of wind speed; iv) Turbine condition.

Motivation. The literature dealing with the topic of WTPC modeling techniques is extensive and covers many

fields. Following the directions proposed in the literature, we first investigate several classes of models (both para-

metric and non-parametric), so as to identify the class that best models the WTPC. More concretely, we show that

although there are differences between the performance of these model classes, most of these model classes con-

tain models that are good approximations of the WTPC. Furthermore, the best approximations from the different

model classes define almost the same wind speed - power generation relationship, just in a different functional form.

Similarly to the findings of Thapar et al. (2011), non-parametric smooth curve fitting and interpolation techniques

perform better compared to parametric approaches. This comes as no surprise since the parametric models, derived

from physics first principles, describe a highly idealized situation and thus result in a high modeling error. We

show that very good WTPC approximations can be obtained relatively easily from most non-parametric model

classes. This is also suggested by the findings in Rauh et al. (2007), where a fairly simple model is proposed for

estimating the power curve and it is shown to perform well.

The above mentioned direction follows the literature narrative, but it is paramount to mention that the main body

of literature on WTPC disregards the heteroscedastic structure of the residuals and does not take into account

the high autocorrelation of the observations. This seems to be a side-effect of the simplistic mapping considered

between wind speed and power generation that most of the above mentioned papers seem to propose. As, it has

been pointed out in the literature (Hering and Genton, 2010; Lee et al., 2015; Thapar et al., 2011) there exist other

factors, besides wind speed, that greatly influence the power generation of a turbine, and research should focus

more on modeling the residuals not explained by the WTPC and on capturing the autocorrelation.

3.2 Power curve modeling classes

In this section, we present and compare various model classes proposed in the literature. Firstly, we introduce

some notation in Section 3.2.1 that allows us to describe in a uniform manner the models belonging to different

model classes. Thereafter, we describe how to calculate the estimates for each model class. For all model classes,

we assume that the value of the power curve is constant below 3.5 m/s taking the estimated power output value at

3.5 m/s. Similarly, in the wind speed range between 15 m/s and 25 m/s, the power output curve is constant taking

the estimated power output value at 15 m/s. Above the cut-out speed 25 m/s, the power output is set to zero as

the turbine should not operate. Thus, this part of the curve is not estimated, as in addition the cleaned dataset

does not contain any observations in this range. These limitations need to be incorporated into the estimation

procedure of the specific models, the details of which are presented in Section 3.2.2.

We consider both parametric and non-parametric models and compare the various model classes using the mean

squared error (MSE) value, while within a class (for the non-parametric models) we select a model taking into

account the complexity associated with it; non-parametric model classes (e.g. polynomial or spline models) have a

nested structure, where the nesting levels correspond to complexity levels within the class (e.g. degree of polynomial

or knot points of splines). The selection procedure of a model within a class is presented in Section 3.2.7.

3.2.1 modeling and least squares estimation

A power curve is a functional relation between the wind speed, w, and the power generation, p. We define this

functional relation as

p =Mθ(w), (1)

where Mθ(·) is a function belonging to the model class parametrized by a vector of parameters θ ∈ Rnθ , with nθ
the dimension of the parameter vector depending on the model class M. In the next sections, we consider various

parametric and non-parametric model classes: logistic models Gθ(·) in Section 3.2.3, piecewise linear models Lθ(·)
in Section 3.2.4, polynomial models Pθ(·) in Section 3.2.5, and spline models Sθ(·) in Section 3.2.6.
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Given a dataset containing a series of wind speed and power output pairs, (wk, pk)1≤k≤N with N the total number

of observations, we define the least squares estimate within a model class as

θ̂ = arg min
θ

1

N

N∑
k=1

(pk −Mθ(wk))2. (2)

In order to shorten notation, the power output given by the least-squares estimated model at a given time is going

to be denoted as p̂ =Mθ̂(w), where the model class M is always going to be clear from the context.

One important conclusion of the paper is that WTPC modeling has significant limitations. In order to show this,

we introduce some elementary facts about least squares estimates related to quantized data (as the SCADA data

is quantized to one decimal digit, as described in Section 2).

Proposition 3.1 (Lower bound for MSE). Irrespective of the model structure that is used to fit a model to the

training data, if the training data is quantized in the regressor then there is a minimal attainable MSE and that

can be calculated based on the data.

Let the samples be (xk, yk)1≤k≤N and consider a model y =Mθ(x), with least squares estimate

θ̂ = arg min
θ

1

N

N∑
k=1

(yk −Mθ(xk))2.

Let X be the set of all appearing values of x, i.e. X =
⋃N
k=1{xk}, then the minimal attainable MSE value can be

calculated as

min
θ

1

N

N∑
k=1

(yk −Mθ(xk))2 ≥ 1

N

∑
x∈X

N∑
k=1

1{xk=x} (yk − ȳx)
2
, (3)

with

ȳx =

∑N
k=1 1{xk=x}yk∑N
k=1 1{xk=x}

, (4)

and 1{·} an indicator function taking value 1, if the event in the brackets is satisfied, and 0, otherwise.

Proof. The MSE can be written as

1

N

N∑
k=1

(yk −Mθ(xk))2 =
1

N

∑
x∈X

N∑
k=1

1{xk=x} (yk −Mθ(x))
2
.

The right hand side of the above equation can be bounded by calculating lower bounds to each group of summands

involving the same regressor value x. Given x, let zx =Mθ(x), then the corresponding group of summands can be

written as

Sx :=
1

N

N∑
k=1

1{xk=x} (yk − zx)
2
.

The derivative of Sx with respect to zx is

∂

∂zx
Sx = − 2

N

N∑
k=1

1{xk=x}(yk − zx) = 2
zx
N

N∑
k=1

1{xk=x} −
2

N

N∑
k=1

1{xk=x}yk.

Solving the optimality condition ∂
∂zx

Sx = 0 for zx reveals that the minimum is obtained at (4). Thus, the lower

bound is attained if ∀x ∈ X :Mθ(x) = ȳx.

The lower bound given in (3) is always true, but it is not necessarily a tight bound. If every regressor’s value, x,

appears only once in the data, then this bound would be 0, which is trivial for a sum of squares. The bound will

give a nonzero value in the case of observations with |X | < N , where |X | denotes the cardinality of the set X . In

our case, when considering X = {3.5, 3.6, . . . , 14.9, 15}, with |X | = 116 and N = 12849, the bound is non-zero.
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3.2.2 Constrained model

In order to keep the notation and the calculations simple, without loss of generality, we estimate the corresponding

parameters and choose the best WTPC model (within a class), only for wind speeds in the range [3.5, 15]. To

this end, we consider a slightly modified model: For a model Mθ determined by the parameter vector θ, from the

model class M, we define the constrained model Mθ as

Mθ(w) =Mθ (3.5 · 1{w < 3.5}
+ w · 1{3.5 ≤ w < 15}
+15 · 1{15 ≤ w < 25})
−Mθ (0) · 1{25 ≤ w}.

(5)

The argument of Mθ is constructed such that for wind values smaller than 3.5 the model Mθ will result in the

same power output values as Mθ(3.5), for values w ∈ [3.5, 15) the model Mθ results in the same power output as

Mθ, for values w ∈ [15, 25) the modelMθ results in the same power output asMθ(15), and for wind values above

25 the predicted power output is zero. Considering the constrained model, we can estimate the parameters of the

model as usual after a slight transformation of the training data: for all observations with w < 3.5 the value of w

is changed to 3.5, for all observations with w ∈ [15, 25) the value of w is changed to 15, and all observations with

w ≥ 25 are ignored. Then, this transformed dataset is used for the parameter estimation.

3.2.3 Logistic models

Logistic models have been widely used in growth curve analysis and their shape resembles that of a WTPC under

the cut-out speed. For this reason, they were recently applied to model WTPCs, see (Kusiak et al., 2009; Lydia

et al., 2013). Lydia et al. (2014) present an overview of parametric and non-parametric models for the modeling

of the WTPC, and state that the 5-parameter logistic (5-PL) function is superior in comparison to the other

models under consideration. However, as we show in the sequel, this statement should be viewed with skepticism

and perhaps should be interpreted as the result of a comparison only within models with the same number of

parameters (parametric models) or same level of complexity (non-parametric models).

In this section, we apply a different formulation of the logistic model used in (Lydia et al., 2014), so as to improve

fitness. The 5-PL model used in (Lydia et al., 2013) is given as follows

p = θ5 +
θ1 − θ5(

1 +
(
w
θ2

)θ3)θ4 . (6)

In this model, parameters θ1 and θ5 are the asymptotic minimum and maximum, respectively, parameter θ2 is the

inflection point, parameter θ3 is the slope and θ4 governs the non-symmetrical part of the curve. However, this

type of 5-PL does not describe the asymmetry as a function of the curvature, see (Ricketts and Head, 1999). As an

alternative, Stukel (1988) proposed a technique which can handle the curvature in the extreme regions. We apply

this technique with a slight modification to fit a logistic model to the WTPC. The general form of the model is

p = Gθ(w) = θ1 +
θ4 − θ1

1 + exp
[
−
{
θ2 (w − θ3) + θ` (w − θ3)

2
1

[3.5,θ3)
(w) + θu (w − θ3)

2
1

[θ3,15]
(w)
}] , (7)

with 1A(w) denoting the indicator function taking value 1 when w ∈ A, for some set A, and zero otherwise. We

substitute the term (w − θ3)
2
1

[3.5,θ3)
(w) in (7) with (w − θ3)

4
1

[3.5,θ3)
(w), so as to capture more accurately the

curvature in the left tail of the WTPC, cf. Figure 3. For this reason, we refer to this model as the modified Stukel

model (mStukel).

In Table 2, we present the MSE and BIC for the 5-PL model and the mStukel model. As it is evident from the

results presented in Table 2, the mStukel model drastically improves the fitness of the WTCP. The parameter

estimates, θ̂(g), of the mStuckel model with the corresponding standard errors are given in Table 3.
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Table 2: MSE and BIC for the fitted models on the training and validation datasets

Training dataset Validation dataset

Models MSE BIC MSE

5-PL 1554.2700 131000 1650.7300

mStukel 884.4321 123710 1020.3800

Table 3: Parameter estimates (StandardError) for the mStukel logistic model on the training dataset

Parameter Training set

θ̂1 -30.8580(1.3187)

θ̂2 0.5845(0.0010)

θ̂3 9.6481(0.0032)

θ̂4 2010.46(1.2119)

θ̂u 0.1602(0.0019)

θ̂` -0.0010(0.00004)

3.2.4 Piecewise linear model class

Piecewise linear models are not particularly appealing for practical use for many reasons, but they are very useful

as benchmarks. We include piecewise linear models so they can serve as a benchmark non-parametric model class

and because, as it is shown in the sequel, cf. Proposition 3.2, this class can achieve the bound of the MSE.

Let the piecewise linear function be defined as follows

p = Lθ(`)(w) = θ +

m−1∑
k=0

1{sk ≤ w}(w − sk)θk. (8)

The parameter vector θ(`) consists of the (height) parameter θ and the segment slope parameters θk, k =

0, 1, . . . ,m − 1. The splitting points s0, . . . , sm−1 should be defined beforehand. Throughout the paper, we use

equidistant splitting points on the interval [3.5, 15] and we estimate the parameters of the constrained model L̄θ(`)

defined in Section 3.2.2.

The piecewise linear model can achieve the bound of the MSE on the training data. This is due to the quantized

nature of the values of the data to one decimal digit. Thus, using 116 splitting points for the piecewise linear

model, we can cover the entire range of wind values in [3.5, 15]. In this case, the least-squares estimate of the power

output is given as the average of the power values of samples given the value of the wind speed, thus attaining the

lower bound of the MSE on the training data.

Proposition 3.2 (Piecewise linear model attaining the lower bound of the MSE). For a scalar dataset with one

dimensional regressors with |X | = m+1 a piecewise linear model of order m with split points X attains the minimal

MSE bound given in Proposition 3.1.

Proof. For |X | = 1 the only parameter to be estimated is θ, which should be chosen as ȳ, cf. Proposition 3.1.

The rest of the proof is based on induction on the cardinality of the set X , denoted by |X |. Let
(
x(i)
)
0≤i≤m be the

ordered values of X , such that x(0) < x(1) < · · · < x(m) and lets assume that the parameters θ, θ0, . . . , θm−2 are

chosen such that the linear model with these parameters attains the minimal MSE on the restricted dataset having

regressors X\{x(m)}. To prove the statement, we need to show that θm−1 can be chosen such that Lθ(x(m)) = ȳx(m) .

From the definition of the piecewise linear function

Lθ(`)(x(m)) = θ +

m−2∑
k=0

(x(m) − x(k))θk + (x(m) − x(m−1))θm−1.

Solving this equation for θm−1, we get that

θm−1 =
ȳx(m) − θ −

∑m−2
k=0 (x(m) − x(k))θk

x(m) − x(m−1) ,

11
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Figure 4: The sum of the parameter variances for the piecewise linear model assuming Gaussian residuals

which concludes the proof.

It can be stated in general that once a model structure has enough degrees of freedom to assign the estimates

Mθ(w) independently to every wind value w ∈ X , then the lower bound for the MSE value can be attained.

Piecewise linear model classes, with a fixed number of splitting points equidistantly chosen in an interval, are not

properly nested, if m = 1, 2, . . .. Proper nesting is achieved, if m = 20, 21, 22, . . ., or if some other exponential series

is chosen. The parameters θ̂
(`)
m of a model belonging to the fixed choice of m can be estimated for different values

of m, but then the problem reduces to optimally choosing m, which is a model selection problem.

The other reason, why it is instructive to examine the properties of the piecewise linear model structure, is that,

assuming Gaussian residuals, the combined variance of the estimated parameters can be calculated analytically.

This is visualized in Figure 4 as the trace of the estimated covariance matrix of the parameters is shown against

the complexity of the model class m. This shows the generic features of model selection problems.

For very small values of m the modeling error is big, so the estimated variance of those few estimated parameters

is going to be big (combination of modeling error and variance from noise), so the sum is going to be a sum of

few but large in absolute value entries. Values of m that correspond to a model class that can properly model

the data will result in a sum that contains more summand terms, but with smaller in absolute value entries. The

variance of the parameters in this case is expected to be small for two reasons: i) the modeling error is reduced

or eliminated; ii) a small number of parameters needs to be estimated from the data. For higher values of m the

number of summands will increase and so will the corresponding absolute values of the entries. This is because the

modeling error was already minimized and a higher number of parameters needs to be estimated from the data,

which increases their variance. This heuristic results in a relatively convex shape of the MSE as a function of the

complexity parameter (a.k.a. the model order) m. The goal of model selection is to define how an optimal model

order m̂ should be chosen. This question arises in the case of all non-parametric model classes and our approach

is based on the BIC, see Section 3.2.7.

As it can be seen in Figure 4, the trace of the estimated covariance matrix of the parameters is convex shaped, as

it decreases in the beginning and then it increases rapidly when the model order is increased. If this is compared to

the decrease of the MSE shown in Figure 5a, we see that going above a given complexity level just adds unnecessary

uncertainty to the estimation without improving the modeling precision. This trade-off should be balanced by the

model selection algorithm. Using model selection based on the BIC, see Section 3.2.7, the optimal number of linear

segments turns out to be m = 13. The parameters of the estimated model are given in Table 4. The MSE of this

model on the training data is 815.5127, while on the validation set it is 974.6084.

3.2.5 Polynomial model class

A univariate polynomial model of degree m of the power function is given as

p = Pθ(w) =

m∑
i=0

θiw
i. (9)
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Table 4: Estimated parameters of a piecewise linear model with m = 13 segments

tk = 3.5 + k 15−3.5
13 , k = 0, . . . , 12

Parameter Training set Parameter Training set

θ̂ -8.3398 θ̂0 0.8929

θ̂1 95.4169 θ̂2 17.8948

θ̂3 42.1545 θ̂4 58.0053

θ̂5 38.8957 θ̂6 60.8006

θ̂7 47.2667 θ̂8 6.8485

θ̂9 -68.7682 θ̂10 -207.2188

θ̂11 -94.4818 θ̂12 4.8853

The formulation given in (9) should be adapted to take into account the constrained model P defined in Sec-

tion 3.2.2. However, even after the transformation to the constrained model, and the reduction of the wind range

to practically [3.5, 15], we have to note that estimating the parameters θi, i = 0, . . . ,m, of the polynomial model

is a numerically difficult problem. This is due to the fact that, e.g., for a polynomial model of degree m = 14, the

coefficient matrix of the parameters includes entries corresponding to values 1, 15, 152, . . . , 1514. Inverting such a

matrix is numerically unstable due its high condition number, cf. (Belsley et al., 2005).

To overcome the numerical stability issues, one of the simplest techniques is to rescale the argument w of the

polynomial, so higher powers of the argument will still remain numerically tractable. With this change, we redefine

the polynomial model as

Pθ(p)(w) = p̄+ dp

m∑
i=0

θi

(
w − w̄
dw

)i
, (10)

where the polynomial parameter vector θ(p) contains the coefficients of the polynomial P as well as the scaling

parameters w̄, p̄, dw, dp. w̄ and p̄ denote the sample averages of the wind speed (w), and the sample average of

the power output (p), respectively, while dw and dp denote the sample standard deviation of the wind speed (w),

and of the power output (p), respectively. The model order parameter for polynomial models is the degree of the

polynomial, m.

Polynomial models are not performing well according to the literature. This is the result of a combination of

factors: Firstly, they are not capable of capturing the flat plateau on the left and the right tail of WTPC. Once this

obvious drawback is compensated by considering the constrained model, polynomial models drastically increase

their fitness. Secondly, there are various numerical difficulties associated with the estimation of the parameters of

polynomial models. Unfortunately, this issue constitutes a significant drawback especially at higher model orders,

as we show in Section 3.3.

Estimating (in the least squares sense) the coefficients of a polynomial with degree m = 14 results in the parameters

presented in Table 5. The choice of degree m = 14 is explained in Section 3.2.7. The MSE of this model on the

training data is 812.2287, while on the validation set it is 969.8870.

Note, that the polynomial coefficients in Table 5 are reported with 15 decimal digits, as we take into account

the support of the wind values [3.5, 15] and the maximum degree of the polynomial model. This illustrates that

the estimation of the polynomial coefficients is numerically sensitive, which is not the case for the other discussed

non-parametric model classes.

3.2.6 Spline model class

Splines provide a universal family for approximating smooth functions. A spline is defined by a series of knot

points and by polynomials representing its value between the knot points in a continuous way (Schumaker, 2007).

Formally a cubic B-spline is given by a triplet of parameters θ(s) = (m,k,α), where m ∈ N+ is the number of basis

functions used, k ∈ Rm+4 is a vector of knot points in nondecreasing order, α ∈ Rm is the vector of coefficients for
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Table 5: Estimated parameters of a polynomial model with degree m = 14

Parameter Training set Parameter Training set
ˆ̄p 1012.7 ˆ̄w 7.241154953692900

d̂p 601.0210490157367 d̂w 3.092009009051451

θ̂0 −1.083983804472287 θ̂8 0.913785265115761

θ̂1 1.027493542215327 θ̂9 0.158488326138962

θ̂2 0.437620131289974 θ̂10 −0.462562253267288

θ̂3 −0.258311524269187 θ̂11 0.100868720012586

θ̂4 0.152839963020718 θ̂12 0.068782606353010

θ̂5 0.837258874326937 θ̂13 −0.034900832592028

θ̂6 −0.693269004241413 θ̂14 0.004495461408312

θ̂7 −0.791866808461089

the basis functions Bi,k,3 defined by the Cox-de Boor recursion (De Boor, 1978)

Bi,k,0(x) = 1[ki,ki+1)(x), i = 1, . . . ,m+ 3,

Bi,k,d(x) =
x− ki

ki+d − ki
Bi,k,d−1 +

ki+d+1 − x
ki+d+1 − ki+1

Bi+1,k,d−1, i = 1, . . . ,m+ 3− d, d = 1, . . . , 3.
(11)

A cubic B-spline model for the WTPC is given as

p = Sθ(s)(w) =

m∑
i=1

αiBi,k,3(w). (12)

The complexity of cubic spline models is defined by the number of basis functions m. If the knot points k

are fixed then the parameters α can be estimated analytically in the least-squares sense, but this cannot be done

simultaneously with the location of the knots (Kang et al., 2015). We use a simple suboptimal procedure to find the

estimates, which performs the estimation in two rounds. In the first round the knot points are equidistantly chosen

in the [3.5, 15] interval and the parameters α are estimated. In the second round, new knot points are calculated,

based on the data and the first round estimates, using the MATLAB R© routine newknt, which reallocates the knot

points to allow a better estimation of α. Then α is estimated for the second time.

The estimated parameters θ̂(s) of a cubic spline using m = 17 B-splines are

α̂ = [− 8.0336698 − 7.2559215 − 23.865741

78.529492 156.55003 272.98557

452.80144 690.69908 1022.923 1400.7208

1721.1444 1921.2212 1998.4378 1992.549

2005.308 1997.8069 2000.3969]

(13)

with knot points

k̂ = [3.5 3.5 3.5 3.5 4.4247 5.2668 5.9855

6.7569 7.6994 8.6481 9.7265

10.8994 11.6831 12.3575 12.9990

13.6470 14.323515 15 15 15].

(14)

An interesting feature of the resulting k̂ is that its first four entries and last four entries coincide. As it can be

deduced from Equation (11), the multiplicity of the knot points shows how smooth is the function at the specific

knot point. The two endpoints (due to their high multiplicity) indicate that the higher order derivatives are zero
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at the endpoints of the support [3.5, 15], so the estimated WTPC is flat at the left and right tails of the support.

This is expected and desired, since the support was chosen so that the WTPC outside this support is constant (left

and right tail of the WTPC).

B-splines are zero outside the range defined by the knot points, so a proper power function estimate is obtained by

transforming S to the constrained model S defined in Section 3.2.2. The MSE of the model S with the parameters

given above on the training data is 811.9171, while on the validation set, it is 969.5854.

We note that Shokrzadeh et al. (2014) developed a much more evolved procedure for the selection of the number of

the knot points, as well as for the selection of the location of the knot points, but such a complicated model choice

does not improve more than 1% the modeling fit, which is insignificant if compared to the improvements achieved

by incorporating the wind direction and the ambient temperature, and by the addition of the dynamic layer.

3.2.7 Model selection based on BIC

In the case of non-parametric models, the model class consists of subclasses indexed by the complexity parameter

m (a.k.a. model order), i.e., piecewise linear models with an increasing number of segments, polynomial models

with an increasing degree, or spline models with an increasing number of basis functions. The appropriate model

order should be selected in a way that adheres to the principle of parsimony: Goodness-of-fit must be balanced

against model complexity in order to avoid overfitting–that is, to avoid building models that in addition to explain

the data, they also explain the independent random noise in the data at hand, and, as a result, fail in out-of-sample

predictions.

There are several approaches for selecting a model, among others the AIC (Akaike, 1974) or the BIC (Schwarz,

1978). Although AIC can be asymptotically optimal under certain conditions, BIC penalizes the model complexity

stronger. Therefore we use the BIC for the selection of the models reported in the previous sections. The BIC is

defined as

BIC(θ̂m) = ln(N)nθ̂ − 2 ln(L̂),

where N is the number of data samples used to estimate θ̂m, nθ̂ is the number of estimated parameters and L̂ is

the estimated likelihood of the observations assuming the model with estimated parameters θ̂m.

Assuming a Gaussian noise model pk =Mθ̃(wk) + εk, k = 1, . . . , N , where εk
i.d.d.∼ N (0, σ2), we get that the BIC

can be written as

BIC(θ̃) = ln(N)nθ̃ +N ln(2πσ2) +

N∑
i=1

ε2i

σ2
.

If the parameters θ̂m of a model from the subclass with complexity m are estimated using the training data, then

the MSE on the training data, say MSEm, is an asymptotically unbiased estimator for the unknown variance σ2.

Thus, evaluating the BIC on the training data yields that

BIC(θ̂m) ≈ ln(N)nθ̂m +N ln(MSEm) +N ln(2π) + 1.

Models with different complexity are compared using the BIC(θ̂m) and the model complexity is estimated as

m̂ = arg min
m

BIC(θ̂m),

resulting in the final estimate

θ̂ = θ̂m̂.

Using this procedure, we obtain that for the piecewise linear models, the optimal number of segments is 13, for

the cubic spline models the optimal number of basis functions is 17, while for the polynomial models the optimal

degree is 14.

3.3 Comparison of models from different classes

Figures 5a and 5b depict the behavior of the MSE as a function of the complexity for the different model structures

on the training and the validation datasets, respectively. The goal of this section is to summarize the remarks
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that can be made based on these figures. Since, the mStukel logistic model has a fixed numbers of parameters

(fixed complexity), its MSE is depicted in Figures 5a and 5b as a constant, taking values 875.81 and 995.12, on the

training and validation sets, respectively.
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(a) The MSE on the training set
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(b) The MSE on the validation set

Figure 5: The MSE of different model types on the training set a and on the validation set b as a function of model

complexity

The logistic model class, due to its parametric nature, only contains models that have a specific shape similar to

what is expected from the WTPC. This is the reason why it performs superiorly, if compared to other models

with matching complexity (m = 6). The maximum likelihood estimates of the parameters of the 5-PL model can

be found in a numerically reliable way, as the estimation problem is a convex optimization problem, under the

assumption that the residuals pk − Gθ(wk) are Gaussian random variables. The main advantage of parametric

models is that they have a pre-defined shape that matches the data, and they can describe the model with a much

smaller number of parameters. As a result they can be used in case the data sparsely covers the support. However,

in our case, due to the large amount of data covering densely the full support of the wind values, such advantage

does not become apparent.

As stated in Proposition 3.1, we can calculate the MSE lower bound based on the data. Regardless of the model

class, the MSE converges to that limit, as the complexity parameter tends to infinity, m→∞. Moreover, for some

of the model classes we investigate, convergence will occur with finite complexity. E.g., piecewise linear models

converge at m = 116, cf. Section 3.2.4. Similar complexity values can be calculated for the other model classes.

It is important to note that the MSE converges rapidly to the lower bound for small values of m, while for large

values of m, convergence seems to slow down significantly. As it can be seen in Figure 5a, this happens in the

range m ∈ [10, 15], depending on the model class.

As expected, when considering a very complicated model, then the validation error has the tendency to increase in

comparison to the optimal complexity model. The solid line in Figure 5b depicts the validation error of the model

that attains the lower limit of the estimation error. As it is visible in the figure, this overfitting error is really small

in comparison to the validation error of model orders around the optimal order (the validation error of the most

overfitted model is 955.9658 that is approximately 1% worse than the validation errors of the different models).

This shows that the data is fully covering the support [3.5, 15] of the wind speed for the constrained model, and

that, in our case, overfitting issues are of minor importance, as such overfitting does not impact significantly the

validation error.

The model orders selected by the BIC, cf. Section 3.2.7, are all under m = 20, so they result in relatively simple

models. They require more parameters than the logistic model, but the comparison based on the BIC indicates

that the extra flexibility of these models is needed. This is not unexpected, given the provided improvement in

16



Table 6: The relative difference between models of different classes

Parameter Training set Validation set

∆θ̂(g),θ̂(s) 0.0884 0.0715

∆θ̂(`),θ̂(s) 0.0059 0.0048

∆θ̂(p),θ̂(s) 0.0005 0.0004

terms of the modeling error.

Here we can underline one of the main messages of the paper: non-parametric models seem to be more suitable

for the WTPC modeling than parametric models. This is mainly due to the relatively simple shape of the WTPC

and the large amount of available data that can be used for the estimation of models with high complexity.

Based on the above remark, that non-parametric models provide a better fit for the WTPC, we now turn our

attention to the natural question on how to choose between the various classes of non-parametric models. This

question is treated in the sequel in more detail.

In what follows, the goal is to show that in theory it should not matter which non-parametric model class we

choose to estimate the WTPC, however practical considerations can still result in arguments against particular

model classes. The main objective, when considering a model class, should be the numerical robustness of the

estimation procedure that can provide the corresponding estimates.

The polynomial model structure is evaluated only up to degree m = 15, cf. Figures 5a and 5b. This is because

estimating higher order polynomials is numerically infeasible, as we already mentioned in Section 3.2.5. When

it comes to estimation of splines with fixed knot points k, the estimates of the coefficients α can be obtained

in a numerically reliable way. Similarly for piecewise linear models, given the split points (tk), the estimation

is numerically reliable. Due to the simple shape of the WTPC, the allocation of these points is not particularly

important. What could be gained by the optimal choice of these points is on the one hand negligible, as it can be

seen from Figure 5a, and on the other hand it can be mitigated by adding extra parameters.

In order to illustrate that the choice of the model class is almost irrelevant, we define a measure of comparison for

models from different model classes, say Mθi(·), i = 1, 2, as follows

∆θ1,θ2 =
E(Mθ1(W )−Mθ2(W ))2

min {E(P −Mθ1(W ))2,E(P −Mθ2(W ))2} , (15)

with W and P denoting the random wind speed and the random power output, respectively. ∆θ1,θ2 measures

what is the expected difference between predictions made by the two models θ1 and θ2 relative to the modeling

error of the better of the two. This quantity is evaluated empirically both on the training and on the validation

data using the models estimated earlier and the obtained values are reported in Table 6. The difference between

the logistic and the selected spline model ∆θ̂(g),θ̂(s) is approximately 10%, the difference between the piecewise

linear and spline models ∆θ̂(`),θ̂(s) is under 1%, and ∆θ̂(p),θ̂(s) gets even smaller when it comes to the polynomial

and spline models. This indicates that optimizing the model selection with regard to the class is not expected to

provide significant improvements.

In the next sections, we address two points of concern: i) we discuss how to improve the WTPC model by

incorporating more environmental variables, such as the relative wind angle and the ambient temperature, and ii)

we explore if the residuals of the model are Gaussian and investigate how to incorporate the natural autocorrelation

of the data into the model by specifying that the power output variable depends linearly on its own previous values

and on a stochastic term. In Section 4, we discuss the results of incorporating more environmental variables into the

power estimation, while in Section 5, we explore the possibility of estimating the power output based on previous

measurements in time.
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Table 7: The MSE values of models given in (17) with different modeling complexity

cφ parameter cT parameter MSE on training set MSE on validation set

cφ = 0 cT = 0 811.9171 969.5854

ĉφ = 0.4279 cT = 0 810.1959 943.8046

cφ = 0 ĉT = −0.0047 690.5758 798.9763

ĉφ = 1.0115 ĉT = −0.0050 681.6206 753.7712

4 Including more physical parameters

From a physical perspective the power output can be model as

p =
1

2
ρπR2Cp(λ, β)w3, (16)

with p the power captured by the rotor of a wind turbine, ρ the air density, R the radius of the rotor determining its

swept area, Cp the power coefficient which is a function of the blade-pitch angle β and the tip-speed ratio λ, and w

the wind speed, see (Lee et al., 2015, Eq. (2)). Thus, although wind speed is the most relevant factor determining the

power output, it is evident from (16) that other environmental or turbine specific factors impact the power output.

One way to improve the modeling and forecasting capabilities of the WTPC model is to incorporate additional

relevant parameters according to the physical first principle arguments. In accordance to our available data, we

illustrate the additional benefits of incorporating two additional environmental parameters: the relative incidence

angle of the wind with respect to the rotor plane, say φ, and the ambient temperature recorded on the exterior of

the wind turbine nacelle, say T . Since, there is no significant difference between the various non-parametric WTPC

model classes, from this point onward, we restrict our analysis to the spline model given in Section 3.2.6.

The new signals are incorporated into (12) as follows

p = Fθ(f)(w, φ, T ) = Sθ(s)(w · | cos(φ)|cφ)
(
1 + cT

(
T − T̄

))
, (17)

with φ and T the relative incidence angle and the ambient temperature, T̄ the average temperature obtained by

the training data, and cφ ≥ 0 and cT are parameters to be estimated from the data.

The inclusion of these factors can be argued based on heuristic arguments as follows: As a rough approximation, it

can be stated that power generation is only achieved by the perpendicular component of the wind speed to the rotor

plane of the turbine. This perpendicular component is mathematically represented by w · cos(φ). The introduction

of the absolute value of the cos term ensures that the direction of the wind is not changed. Furthermore, the

inclusion of the cφ ≥ 0 parameter in the | cos(φ)|cφ term makes sure that the wind is not amplified (i.e., the

wind speed cannot get a multiplier greater than one). Regarding the inclusion of the temperature factor, this is

motivated by the inherent physical relation of the temperature and the air density, as well as the prominent role

of air density in the physical expression of the power output, cf. (16). Without assuming any specific functional

form for this dependence, the parameter cT can be thought of as the partial derivative of this relationship around

the average temperature T̄ .

Using the B-spline WTPC model θ̂(s) with complexity m = 17, with estimated parameters k̂ and α̂ given in

Section 3.2.6, we can estimate the value of cφ and cT in the least squares sense. In Table 7, we provide the MSE

values of the model (17), where the parameters are estimated or fixed to zero in different combinations. Fixing

either cφ or cT is equivalent to omitting the corresponding modeling aspect. This allows us to see the impact of

the different environmental parameters on the power generation. The first line contains the baseline, the MSE

value of the WTPC model with only the wind factor. The other lines contain the MSE values corresponding to

WTPC models generalized to include only the incidence angle; only the relative temperature; or both the angle

and the temperature. In the remainder of the paper, θ̂(f) denotes the combination of the B-spline WTPC model

θ̂(s) generalized to include the two environmental factors, with estimates ĉφ = 1.0115 and ĉT = −0.0050.

From Table 7, it is evident that the inclusion of the incidence angle does not improve significantly the model.

This is evident by the difference between the MSE values of the two models captured in the first and second line,
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respectively, of the table, or similarly in the third and fourth line. This difference is smaller than one percent.

This is not because the incidence angle is not relevant for power generation, but because the automatism in the

turbine keeps the nacelle facing the most beneficial direction with regard to the power output. Figure 6 depicts the

empirical density function of the incidence angle φ and it shows that the incidence angle is tightly concentrated

around 0 degrees, which indicates that the wind is almost always nearly perpendicular to the rotor plane. Contrary,

the inclusion of the temperature, with estimated parameter cT , adds more than 15% in the modeling precision.

Figure 7 depicts the values of the ambient temperature for the training set (red) and the validation set (blue).

Moreover, the negative sign of ĉT matches the physical insight that increasing the temperature leads to a decrease

of the air density at constant pressure.
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All in all, the impact of the temperature is much larger than that of the incidence angle because the turbine

mechanisms cannot influence the temperature, as they can the incidence angle. According to (16), besides the

wind speed and the air density (in the form of temperature in our case, due to temperature data availability)

there seem to be no other important environmental factors, that may affect the power generation significantly and

that can be predicted well. In the next section we investigate the residuals of the model with the environmental

factors and model the power output by adding a time series layer that allows for a significant short-term forecasting

improvement.

5 Predicting power output using time series

The effect of the modeling error can be compensated, to some extent, by modeling the residual power output with

a stochastic process that has a time scale, which is much slower than that of the wind turbine mechanics. This

is based on the intuition that the power output reacts quickly to environmental changes (time scale of minutes),

but the environment changes in a slower rate (if there is strong wind, that will last for a few hours with a high

probability).

In order to model the power output more accurately, we need to understand the statistical properties of the

residuals, which are obtained as follows

r = p−Fθ̂(f)(w, φ, T ) = p− p̂, (18)

where p̂ is a brief notation for Fθ̂(f)(w, φ, T ).

The variance of the conditional distribution of the residual, conditioned on wind speed, is shown in Figure 8. It

is apparent from the figure, that the variance of the residuals is relatively small below the cut-in speed and above

the rated speed, but this is not the case between these values. Thus, the WTPC model (even enhanced with the

environmental factors) does not explain fully the power output leaving only the inherent randomness (captured by
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the residuals). Therefore, we need to further enhance the WTPC model. To this end, we concentrate in the range

of wind values for which the variance of the residuals seems to be large.
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Figure 8: The standard deviation of the residuals p− p̂ with respect to the wind speed

Let σ2
w denote the conditional variance of the residuals r restricted to observations with wind values equal to w

σ2
w =

1
N∑
k=1

1{wk=w}

N∑
k=1

1{wk=w}
(
pk −Fθ̂(f)(wk, φk, Tk)

)2

and σw =
√
σ2
w. The rescaled residual signal r′ is defined as

r′ =
r

σw
.
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Figure 9: The conditional densities of the rescaled residuals

Figure 9a depicts the conditional distribution of the rescaled residual samples in the full wind speed range, while

Figure 9b concentrates on the range [3.5, 15]. There are some remarkable features that should be emphasized.

The rescaled residuals have distinctive patterns outside the range defined by the cut-in speed and rated speed. As

it is visible on Figure 8, the variance of the residual is very small in this range. The distinctive lines in the density

profile correspond to quantized values scaled up by the division with the almost zero variance.

The rescaled residuals have very similar conditional densities for different wind speed values between the cut-in

speed and the rated speed, i.e. in the range [3.5, 15] the conditional distribution of the residuals given the wind
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speed is (approximately) independent of the wind speed. Thus, the wind speed is (approximately) independent

from the rescaled residuals. This indicates that the WTPC captures most of the wind dependence in this range

except for the variance.
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Figure 10: The marginal density and the autocorrelation of the rescaled residuals r′t

As it can be seen in Figure 10a, the empirical density of the rescaled residuals inside the restricted wind speed

interval resembles a Gaussian density. Combining this result with the fact that the residual is independent of the

wind speed between the cut-in speed and the rated speed, we can reasonably assume that the rescaled residuals

can be modeled using a Gaussian stochastic process. Motivated by this result, in Section 5.1, we model the

rescaled residuals r′ using an autoregressive moving-average (ARMA) model. This model can capture the inherent

autocorrelation observed in the data, cf. Figure 10b.

5.1 Dynamic modeling

In all previous sections, for reasons of simplicity and for the clarity of the exposition, we suppressed the time index

from the notation. This was also in accordance with the static models we investigated for modeling the WTPC.

In this section, we further improve on the previous static models by incorporating a dynamic aspect satisfying

also the Gaussian behavior of the rescaled residuals. This will additionally permit us to increase the short-term

forecasting potential of our model. To this purpose, we reinstate the subscript t (indicating the time dependence)

to all variables and consider for modeling purposes an ARMA(q1, q2) model, with q1 autoregressive terms (with

coefficients ai, i = 1, . . . , q1) and q2 moving-average terms (with coefficients ci, i = 1, . . . , q2), i.e.,

r′t = 1 + εt +

q1∑
i=1

air
′
t−i +

q2∑
i=1

ciεt−i. (19)

Taking into account the above model for the rescaled residuals, we develop, in the sequel, the forecasting model

for the power output, for t ≥ τ ,

pt = Fθ(f)(wt, φt, Tt) + σwtr
′
t, (20)

where the estimated parameters for the model Fθ(f)(wt, φt, Tt), the conditional standard deviation σw, and the

parameters of the ARMA model are estimated based on historical data (e.g. same season in previous year), while

the estimated values of the driving noise εt depend on observations preceding t, but close to it in time, so this

cannot be constructed based on historical data only.

We should note that the rescaled residuals seem to have a Gaussian density only inside the interval [3.5, 15] of the

wind speed values. Outside of this range of values, the variance of the residuals is constant and seemingly very
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of the rescaled residuals

small. Thus, similarly to Section 3.2.2, we define the constrained model with regard to the rescaled residuals as

follows

pt =Fθ(f)(wt, φt, Tt)

+ 1{g` ≤ wt ≤ gu}σwtr′t
+ (1− 1{g` ≤ wt ≤ gu})et,

(21)

with 3.5 ≤ g` < gu ≤ 15. The values g` and gu will be determined, so as to ensure that within the interval [g`, gu]

the conditional distribution of the rescaled residuals is Gaussian. Furthermore, et is a Gaussian noise source,

such that for every finite set of indexes {t1, . . . , tN} the corresponding components are independent and identically

normally distributed. Moreover, et is independent from the driving noise behind the rescaled residual signal, εt.

It needs to be mentioned that the noise εt cannot be obtained from the data using the model given in (21). To

overcome this issue, we assume that the noise εt and the rescaled residual process starts at zero at the beginning

of the measurement time line, i.e. εt and r′t are zero, for t < 0, and assume that it stays “frozen” while the wind

is outside the interval [g`, gu]. For the latter, we equivalently glue together consecutive periods of time for which

the wind is within the desired range [g`, gu].

The parameters of the constrained model described in Equation (21) are: i) the parameters of the Fθ(f)(wt, φt, Tt)

model; ii) the parameters of the wind speed dependent residual rescaling factors σw; iii) the parameters of the

ARMA(q1, q2) model, say θARMA: {a1, . . . , aq1} and {c1, . . . , cq2}. So the full parameter vector θ of the model

consists of θ(f), σw, {a1, . . . , aq1} and {c1, . . . , cq2}.
As it is visible in Figure 9a, the conditional distribution of the rescaled residuals conditioned on the wind speed

is not Gaussian on the full wind speed support. In order to determine the lower and upper limits of the Gaussian

range, g` and gu, we performed the Anderson-Darling test to find the p-values for the conditional distributions

that show how likely it is that the rescaled residuals are samples from a standard normal distribution. Figure 11

shows the p-values of the test, along with the wind speed value boundaries that we used for later calculations. In

particular, with relatively high confidence we cannot reject the hypothesis that the samples come from a standard

normal distribution for g` = 5.4 and gu = 13.6, while outside these bounds the hypothesis can be rejected with

extremely high confidence (p ≈ 0).

Having decided on the values g` and gu, we describe below the procedure for estimating the parameters θ of the

model described in Equation (21). First, we estimate the parameters of the WTPC Fθ(f)(wt, φt, Tt) model, next

we estimate the parameters σw of the rescaled residuals, last we estimate the parameters of the ARMA model.

This is indicated by the data, as the distribution of the rescaled residuals r′t is symmetric around zero and it is

independent of the wind wt. All in all, this procedure is mathematically described as

θ̂ = arg
θ

(
min
θARMA

min
σw

min
θ(f)

1

N

N∑
k=1

(pk − p̂k)2

)
, (22)
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where the prediction p̂k is obtained in accordance to Equation (21) and N is the total number of observations. Note

that as N →∞, θ̂ converges to the least square estimate obtained by optimizing for every parameter simultaneously,

instead of the proposed sequential optimization. This follows from the fact that the residuals pk −Fθ(f)(wt, φt, Tt)

are symmetric around zero.

The estimated parameters θ̂ are calculated as follows: For the B-spline model, θ(f) is given in Section 4. The

environmental coefficients cφ and cT are given in Section 4. For the rescaled residuals, σw is estimated in a non-

parametric way for every appearing wind value in the dataset and the exact values can be found in Figure 8. For

the parameters of the ARMA model, we refer to Table 8. For the calculation of the parameters, we use the System

Identification Toolbox (Ljung, 2010) of Matlab.

Table 8: ARMA model parameters belonging to different orders

Model order model parameters

q1 = 0, q2 = 5 c1 = 0.4188 c2 = 0.2941 c3 = 0.2379 c4 = 0.1738 c5 = 0.1085

q1 = 5, q2 = 0 a1 = 0.4125 a2 = 0.1271 a3 = 0.0824 a4 = 0.0375 a5 = 0.0248

q1 = 5, q2 = 5
a1 = 1.3982 a2 = −0.3649 a3 = −0.1556 a4 = 0.3187 a5 = −0.2043

c1 = −0.9894 c2 = 0.0847 c3 = 0.1463 c4 = −0.2927 c5 = 0.0901

5.2 Comparison of model’s forecasting capabilities

This section describes the forecasting capabilities of the models outlined above. In particular, we use the simple

B-spline WTPC model, cf. Equation (12), as a baseline to underline the improvement offered by utilizing the

additional environmental regressors, cf. Equation (17), as well as modeling the variance and the correlations

remaining in the residuals of the model, cf. Equation (21). The corresponding parameters for the models under

consideration are presented in Sections 3.2.6, 5.1, and 4, respectively. We depict the MSE of the three models in

Figure 12 as a function of the forecasting horizon. For the calculation of the MSE as a function of the forecasting

horizon, we need to note that although the sampling frequency of the data is every δ = 10 minutes, the forecasting

horizon can receive any positive continuous value. Keeping this in mind, we define the MSE, given the forecasting

horizon h, as follows

MSEh =
1

N − dh/δe
N∑

k=dh/δe

(
pk − p̂k|k−dh/δe

)2
, (23)

where for the prediction of the k-th value, p̂k|k−dh/δe, it is required to provide as an input the wind speed values

w1, w2, . . . , wk, the temperature values T1, T2, . . . , Tk, the angle values φ1, φ2, . . . , φk, and the power output values

p1, . . . , pk−dh/δe, i.e., we predict from the k−dh/δe power output values the future, given perfect future information

of the explanatory values.

As shown in Figure 12, the two static WTPC models, cf. Equations (12) and (17), given the wind speed, angle

and temperature, have a constant MSE regardless of the forecasting horizon. Contrary, the dynamic ARMA(q1, q2)

models permit a significant reduction of the MSE, especially for short-term forecasting in the range of 1 to 50, 1 to

102, or 1 to 103 minutes, depending on the values of the (q1, q2) parameters. Naturally, as the prediction horizon

increases the added benefit of knowing the power output values from the past is getting less and less valuable.

Furthermore, the least effective is the moving-average MA(q2) model structure, since it utilizes information only

from the past q2 samples. So if the prediction horizon reaches this limit, no past information is used. As the

unconditional expectation of the zero mean Gaussian process is zero, the expectation of the rescaled residuals

will also be zero. This can be seen in Figure 12, in which the MSE value of the MA(5) model becomes equal

to that of the corresponding static WTPC model for prediction horizons h > 5 · δ = 50 minutes. While, for the

same value of the forecasting horizon, the ARMA(5, 5) model has a reduced MSE value by 17% compared to the

corresponding static WTPC model. In contrast to the short-term forecasting characteristics, the advantages of the

dynamic models versus the static models disappear in the long-term. Thus, the dynamic WTPC model with the

ARMA layer can be used for both short-term and long-term forecasting, as for short horizons it outperforms the

static WTPC, while for longer horizons has the same performance as the static counterpart model. This result is
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Figure 12: The MSE of the different models with respect to the prediction horizon h evaluated on the validation

set

evident in light of Figure 12 as the various MSE values of the dynamic models converge to the MSE value of the

corresponding static WTPC model.

We need to note that since the autocorrelation of the rescaled residuals (calculated using the enhanced WTPC

model), cf. Figure 10b, is significant for a long period of time (more than 400 minutes), estimating higher order

ARMA models would reduce the MSE value in comparison to the corresponding static model but this effect will

vanish for time horizons longer than the autocorrelation length of the rescaled residuals.

Comparing Figures 12a and 12b, we note that enhancing the static model with the wind direction and the ambient

temperature has two effects: the MSE drops significantly, but the added benefit of the dynamic layer vanishes faster

(103 minutes instead of 104). This is due to the fact that the estimated ARMA model in the case of the simple

WTPC was additionally trying to capture the autocorrelation structure of the temperature, which is persistent

for lengthy lags. While, in the enhanced model, the temperature is provided as a regressor and therefore the

ARMA model only needs to capture the remaining residual, whose autocorrelation vanishes for lower lag lengths

in comparison to the temperature.

5.3 Forecasting confidence

In this section, we are interested in investigating the performance of the dynamic model in terms of its forecasting

ability. To this purpose, we visualize a power output trajectory in Figure 13a and depict the difference between the

prediction and the actual measurements in Figure 13b. In both figures, we define time 0 to be the starting point

of the forecasting horizon and we assume that the wind speed, temperature and relative angle values are known

also during the forecasting period, while the power output values are known only till time 0. For the creation of

the figures, we consider both the static and the dynamic WTPC model and plot their predictions together with

the corresponding prediction intervals. The prediction interval of the static WTPC model has a constant width,

while the dynamic model has a varying width depending on the value of the wind speed. The 95% confidence band

for predicted power production trajectory p̂k|0 was calculated based on the ARMA model and the wind dependent

scaling factor.

For the static model, the fixed width interval is a result of calculating the variance of the residuals using the static

WTPC model with the p− p̂ = p−Fθ̂(f)(w, φ, T ), cf. (17), as two times the standard deviation of the residuals can

be used as an approximation for the 95% confidence region of the prediction. This calculation on our data results

in a standard deviation for the residuals equal to 12.4925. However, for this to hold it should be the case that

the residuals are normally distributed and independent of the wind speed, but as we have already shown this is

not the case. Note that the variance of the residuals for the static model is calculated using observations covering

the support of the wind speed values [0, 25], thus simultaneously taking into account the part for which the static
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model is very accurate, [0, g`) ∪ (gu, 25], and the part in which it is highly inaccurate, [g`, gu]. As a result, the

estimate for the variance of the residuals is overly conservative in [0, g`)∪ (gu, 25], while it seems to underestimate

the variance in [g`, gu]. This is clearly visible in Figure 13b as during the first half of the forecasting horizon the

wind speed was in [0, g`) ∪ (gu, 25], while in the second half it is [g`, gu].
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Figure 13: Forecasting capabilities of the static (WTPC) model and the dynamic model with the ARMA layer

For the dynamic model, cf. (21), the variance of the power estimate p̂k|k−dh/δe can be calculated by considering

the unknown random variables of (ε`)k−dh/δe<`≤k, which drive the rescaled residual stochastic process r′k|k−dh/δe,
see (19). We know that the variance of r′k|k−dh/δe is monotonically increasing with the prediction distance dh/δe
and it has a bounded limit, since the ARMA model is stable (every solution z ∈ C of the 1 −∑q1

i=1 aiz
−1 = 0

characteristic equation has absolute value less than 1). If we assume that εt is an i.i.d. Gaussian signal, then the

variance of the power predictions can be calculated from the ARMA model and the wind dependent rescaling σwt .

The fact that the dynamic model results in a confidence band with varying width is initially surprising as the width

might even shrink in size over time. The explanation for this result is that the proposed dynamic model contains

a wind speed dependent scaling. This scaling factor has very small uncertainty when the wind speed is outside

the interval [g`, gu], i.e., for wind speed values outside the interval [g`, gu], the variance is smaller in comparison to

the corresponding value calculated over the full support. As it can be seen in Figure 13a, the wind value region,

in which the width of the confidence band shrinks corresponds to wind speed values above the wind value gu (the

wind speed is not depicted directly but this can be inferred from the power curve and the shown measured power).

In this region of wind values, predictions are more accurate and the confidence band becomes narrower than the

corresponding confidence band of the static WTPC model. While, for wind values inside the interval [g`, gu], it can

be seen that the confidence band of the dynamic model gets wider and may even contain the confidence interval of

the static WTPC model. The increased width of the confidence band is due to the combined effect of predicting

values further into the future as well as the changes in the wind speed, that also effect the rescaling factor.

The confidence band of the static WTPC model contains 100% of the samples. To illustrate how imprecise the

uncertainty estimate belonging to the WTPC model is, we can calculate the maximal confidence level for which

the empirical confidence is not 100%. The 41.0701% confidence region contains 99.9920% percent of the validation

data, which shows a significant underestimation of uncertainty. The 95% confidence band corresponding to the

dynamic model contains 96.0990% of the samples in the validation time line. This shows that the uncertainty of the

predictions can be evaluated quite reliably using the dynamic model, as the empirical confidence level is relatively

close to the theoretical one.
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6 Concluding remarks

The paper focuses on the short- and long-term power output forecast of a wind turbine based on past measurements

of the wind speed, power output and other environmental factors, as well as perfect knowledge of the future wind

speed, angle, and ambient temperature. We showed that the parametrization of the WTPC is not a key factor in

improving prediction performance. The reason behind this is that for any model with a sufficiently rich structure(in

the case of non-parametric models that implies sufficiently high complexity) we can achieve MSE values close to

the lower bound, as long as we have sufficient data to estimate all the unknown parameters at hand. This is not

a problem in case power production data, making it more important to consider models that have a rich enough

structure and the unknown parameters can still be estimated with high numerical accuracy, e.g. the polynomial

based models suffer from numerical instability issues. Given the available data we have at our disposal, our

conclusion is that the B-spline model with a sufficiently high number of knots provides a good modeling choice,

as it can capture every detail of a WTPC and it can be estimated in a numerically stable way. Of course, if the

data were sparse but the wind speed still covered the range of [3.5 m/s, 15 m/s], a better option would be a logistic

model as such models maintain the shape of the WTPC.

The error between the actual power generation values and those predicted by the WTPC have special characteristics

that open up possibilities for better modeling. Below the cut-in speed and above the rated speed of the turbine

the predictions are quite accurate. However, in the middle range of the wind speed this is no longer true. We

have shown that, on the dataset at hand, a proper rescaling of these residuals can transform the residual signal

into a Gaussian signal. modeling this Gaussian rescaled residual as a stochastic time series allowed us to improve

significantly the predictions. The proposed model structure was able to improve up to 40% in predicting the power

output of the wind turbine on short-term predictions. While the long-term prediction capabilities of the model are

identical to that of the WTPC.
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