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a b s t r a c t

We describe an algorithm to count the number of distinct real
zeros of a polynomial (square) system f . The algorithm performs
O(log(nDκ(f ))) iterations (grid refinements) where n is the number
of polynomials (as well as the dimension of the ambient space),
D is a bound on the polynomials’ degree, and κ(f ) is a condition
number for the system. Each iteration uses an exponential number
of operations. The algorithm uses finite-precision arithmetic and a
major feature of our results is a bound for the precision required to
ensure that the returned output is correct which is polynomial in n
and D and logarithmic in κ(f ). The algorithm parallelizes well in the
sense that each iteration can be computed in parallel polynomial
time in n, logD and log(κ(f)).

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In recent years considerable attention has been paid to the complexity of counting problems
over the reals. The counting complexity class #PR was introduced [20] and completeness results for
#PR were established [3] for natural geometric problems notably, for the computation of the Euler
characteristic of semialgebraic sets. As one could expect, the “basic” #PR-complete problem consists
of counting the real zeros of a system of polynomial equations.
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Algorithms for counting real zeros have existed since long. One such algorithm follows from
the work of Tarski [25] on quantifier elimination for the theory of the reals. Its complexity is
hyperexponential. Algorithms with improved complexity (doubly exponential) were devised in the
70s by Collins [5] and Wütrich [27]. A breakthrough was reached a decade later with the introduction
of the critical point method by Grigoriev and Vorobjov [13,12] which uses exponential time.
Algorithms counting connected components (and hence, in the zero-dimensional case, solutions)
based on this method can be found in [14,16], and in the straight-line program model of computation
in [1]. These algorithms parallelize well in the sense that one can devise versions of them working
in parallel polynomial time when an exponential number of processors is available. The #PR-
completeness of the problem strongly indicates that this is the best we can hope for.

All the algorithms mentioned above are “symbolic algorithms”. They have been devised on the
premise that no perturbation or round-off error is present. Were this not the case, it is not difficult
to see that errors would accumulate quite badly. Roughly speaking, these algorithms construct
some object of exponential size on which some basic computation (e.g. linear algebra) is eventually
performed. A question is posed, can one devise “numerical algorithms” (maybe iterative, which need
not terminate for ill-posed inputs) with a better behavior viz. the accumulation of round-off errors?
For the problem of deciding the existence of (or computing) a zero of a polynomial system such
algorithms were given in [8,6,18]. The goal of this article is to describe and analyze a numerical
algorithm for zero counting. We will do so by developing appropriate versions of the tools used in
[8,6].

Let d1, . . . , dn ∈ N and d = (d1, . . . , dn). We will denote by Hd the space of polynomial systems
f = (f1, . . . , fn) with fi ∈ R[X0, . . . , Xn] homogeneous of degree di.

Zero rays of polynomial systems f ∈ Hd are associated to pairs of zeros (−ζ, ζ) of the restriction f|Sn
of f to the n-dimensional unit sphere Sn ⊂ Rn+1. Thus, it will be convenient to consider a system f ∈ Hd
as a (central symmetric, analytic) mapping of Sn into Rn. If we denote by Z(f ) = {ζ ∈ Sn : f (ζ) = 0} the
zero set of f in Sn then the number #R(f ) of zero rays of the system f is half the cardinality of Z(f ).

In this paper we describe a finite-precision algorithm computing #R(f ), given f ∈ Hd. To analyze its
complexity and accuracy, besides the number n of polynomials, we will rely on two more additional
parameters. One is D = maxi≤n di. The other is a condition measure κ(f ) for the system f . We will
describe this measure in detail in Section 2 below. We will also let S = max Si where Si is the number of
non-zero coefficients of fi. Note that S is bounded by a simple expression in terms of n and D, namely,
S =

(
n+D
D

)
. Yet, we will express dependency on S since this may be relevant for the case of sparse

systems of polynomials. Our main result is the following.

Theorem 1.1. There exists an iterative algorithm which, with input f ∈ Hd,

(1) Returns #R(f ).
(2) Performs O(log(nDκ(f ))) iterations and has a total cost (number of arithmetic operations) of

O

log(nDκ(f ))(n+ 1)2

(
2(n+ 1)D2κ(f )2

α∗

)2n
 ,

where α∗ ≈ 0.0384629388 . . . is a universal constant.
(3) Can be well parallelized in the sense that it admits a parallel version running in time

O(n2 ln(nDκ(f ))(ln(nDκ(f ))2
+ ln(α∗)

2))

with a number of processors exponential in this quantity.
(4) Can be implemented with finite precision (both versions, sequential and parallel). The running time

remains the same (with α∗ replaced by α• ≈ 0.028268 . . .) and the returned value is #R(f ) as long
as the machine precision (i.e. the round-off unit) u satisfies

u ≤
1

O
(
D2n5/2κ(f )3(log S+ n3/2D2κ(f )2)

) .
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(5) It can be modified to return, in addition and for each real zero ζ ∈ Sn of f , an approximate zero x of f
in the sense that the Newton iteration, starting at x, converges to ζ quadratically fast.

Remark 1.2. (i) A system f for which arbitrarily small perturbations may change the value #R(f )
is considered ill-posed in our context since for arbitrarily small machine precisions finite-precision
algorithms may return an incorrect value. Consequently, the condition number κ(f ) is infinite in these
cases (and only then). This happens when f has multiple real zeros and, in particular, when f has
infinitely many real zeros. In these cases the algorithm of Theorem 1.1 may not halt.

(ii) Numerical algorithms compute functions ϕ on real data. Error analysis for algorithms
computing (vectors of) real numbers – i.e. for which the image of ϕ has non-empty interior – are
usually expressed in terms of bounds for the relative error of the computed quantities. That is, for
data d, bounds in

‖ϕ(d)− fl(ϕ(d))‖

‖ϕ(d)‖

where fl(ϕ(d)) is the vector actually computed with finite precision. This relative error varies
continuously with d and depends on the condition of d and on the precision u. Such a form of analysis,
however, becomes meaningless when computing quantities taking a finite number of values. Indeed,
if Ra denotes the set of input data d for which ϕ(d) = a the following happens. When d is in the interior
of Ra we have that the relative error above is 0 for sufficiently small u. In contrast, when d is on the
boundary of Ra, that error may remain constant for all u > 0. Because of this, error analysis for this kind
of discrete-valued problems has a different form, as in Theorem 1.1. One bounds how small u needs to
be to guarantee a correct answer. Such a bound, needless to say, also depends on the condition of the
data d. Examples of this type of analysis can be found in [4,6–8]. In each of these references a condition
number for the problem at hand occurs in the error analysis. We note that the one in [6] is essentially
our κ(f ).

The rest of the paper is organized as follows. In Section 2 we describe the basic objects we will deal
with as well as fixing the notation. In Sections 3 and 4 we prove the two technical results our algorithm
relies on. In Section 5 we describe the algorithm under the assumption of infinite precision and we
prove parts (1), (2), and (3) of Theorem 1.1. The geometric ideas making the algorithm work are best
seen in this context. Section 6 then describes the necessary modifications to make the algorithm work
as well under finite precision. These modifications are simple and can be summarized by saying that
we relax a bit the inequalities tested in the algorithms to make room for the finite-precision errors to
fit in.

2. Preliminaries

Denote by Hd the subspace of R[X0, . . . , Xn] of homogeneous polynomials of degree d. Then,
Hd = Hd1 × · · · ×Hdn .

If g ∈ Hd we write

g(X) =
∑
J

gJX
J

where J = (J0, . . . , Jn) is assumed to range over all multi-indices such that |J| =
∑n

k=0 Jk = d,
XJ
= X

J0
0 XJ1

1 · · · X
Jn
n and gJ ∈ R. Multinomial coefficients are defined by:(

d

J

)
=

d!

J0!J1! · · · Jn!
.

The space Hd is endowed with the inner product

〈g, h〉 =
∑
|J|=d

gJhJ(
d
J

)
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which gives rise to the norm ‖g‖ =
√
〈g, g〉. These norms, for d1, . . . , dn, induce a norm in Hd by taking

for f = (f1, . . . , fn) ∈ Hd:

‖f‖ = ‖(f1, . . . , fn)‖ = max
1≤i≤n
‖fi‖.

Let O(n+ 1) be the orthogonal group. The inner product above is known to be O(n+ 1)-invariant: for
all Q ∈ O(n+ 1) and all g, h ∈ Hd,

〈g ◦ Q, h ◦ Q〉 = 〈g, h〉.

(This is a direct consequence of [26, III-7] or [2, Theorem 1 p. 218], by considering O(n + 1) as the
subgroup of U(n+1)). The associated norm ‖f‖ on Hd is therefore also O(n+1)-invariant. We will use
this norm on Hd all along this paper. For x = (x1, . . . , xn) ∈ Rn we recall that ‖x‖2 = (x2

1 + · · · + x2
n)

1/2

and ‖x‖∞ = max{|x1|, . . . , |xn|}. We will often denote ‖x‖2 simply by ‖x‖.
For f ∈ Hd and x ∈ Sn define

µnorm(f , x) = ‖f‖
√
n

∥∥∥∥∥∥∥∥∥∥
Df(x)−1

|TxSn


√
d1 √

d2
. . . √

dn


∥∥∥∥∥∥∥∥∥∥

(1)

where Df(x)|TxSn is the restriction to the tangent space of x at Sn of the derivative of f at x and the norm
is the spectral norm, i.e. the operator norm with respect to ‖ ‖2. We now define the condition number
κ(f ) of f ∈ Hd:

κ(f ) = max
x∈Sn

min
{
µnorm(f , x),

‖f‖

‖f (x)‖∞

}
.

Remark 2.1. The quantity κ(f ) is closely related to other condition numbers for similar problems.
A version of the quantity µnorm(f , ζ) was introduced in [21–23] (see also [2, Chapter 12]) for a

complex polynomial system f and a zero ζ of f in the complex unit sphere SnC ⊂ C
n+1. The normalized

condition number of such a system f was then defined to be

µnorm(f ) := max
ζ∈SnC|f (ζ)=0

µnorm(f , ζ). (2)

Actually, the version ofµnorm(f , ζ) introduced in [21–23] differs from (1) in the fact that ‖f‖ is defined
as (

∑
‖fi‖2)1/2 (and there is no

√
n factor). It is bounded above by the expression in (1).

Over the reals, the right-hand side in (2) may not be well defined since the zero set of f may
be empty. In [8] real systems were considered (as in the present paper) and an algorithm deciding
feasibility of f (i.e. whether f has a real zero) was proposed. Its complexity was analyzed in terms of a
condition number which, using our notation and modulo minor details, is defined as follows

min
ζ∈Sn|f (ζ)=0

µnorm(f , ζ) if f is feasible

max
ζ∈Sn

‖f‖

‖f (ζ)‖∞
if f is infeasible.

Note the use of min (instead of max) in the first line above. This is due to the fact that the time needed
for the algorithm in [8] to detect the existence of a zero depends on the best conditioned zero of f . The
existence of other, poorly conditioned (or even singular), zeros of f is irrelevant.

Shortly after, the algorithm in [8] was extended to an algorithm which would, in addition and if f
is feasible, return a zero of f [6]. The complexity of this extension was studied in terms of a condition
number (denoted by %(f ) in [6]) which, essentially, coincides with our κ(f ).

Proposition 2.2. For all f ∈ Hd, κ(f ) ≥ 1.
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Proof. Let x ∈ Sn. Because of orthogonal invariance, we may assume without loss of generality that
x = e0 := (1, 0, . . . , 0).

It is then immediate that ‖f (x)‖∞ ≤ ‖f‖. This shows that the second expression in the definition of
κ is at least 1.

For the first expression, i.e. µnorm(f , x), define g = (g1, . . . , gn) ∈ Hd by gi(X) = fi(X) − fi(e0)X
di
0 .

Then g(e0) = 0 and [2, Corollary 3 p. 234], µnorm(g, e0) ≥ 1 (this is shown for the version of µnorm
with the 2-norm for ‖f‖, which is bounded above by the expression (1)). Since Df(e0) = Dg(e0) and
‖g‖ ≤ ‖f‖, we can conclude µnorm(f , e0) ≥ µnorm(g, e0) ≥ 1. �

3. The exclusion lemma

In this article, d( , ) denotes the Riemannian (angular) distance in Sn (which satisfies 0 ≤
d(x, y) ≤ π,∀x, y ∈ Sn) and for x ∈ Sn, r > 0, we set B(x, r) := {y ∈ Sn : d(y, x) < r} and B(x, r) :=
{y ∈ Sn : d(y, x) ≤ r}.

The following result can be used to support an exclusion test.

Lemma 3.1. Let f ∈ Hd and let x, y ∈ Sn such that d(x, y) ≤
√

2. Then,

‖f (x)− f (y)‖∞ ≤ ‖f‖
√
Dd(x, y).

In particular, if f (x) 6= 0, there is no zero of f in B(x, min{‖f (x)‖∞(‖f‖
√
D),
√

2}).

Proof. An immediate consequence of the definition of the O(n + 1)-invariant inner product is that
Hd endowed with this inner product is a reproducing kernel Hilbert space [9, Prop. 2.21]. This implies
that, for all g ∈ Hd and x ∈ Rn+1,

g(x) = 〈g(X), (xTX)deg g
〉. (3)

Because of orthogonal invariance, we can assume that x = e0 and y = e0 cos θ + e1 sin θ, where
θ = d(x, y). Eq. (3) implies that

fi(x)− fi(y) = 〈fi(X), (xTX)di 〉 − 〈fi(X), (yTX)di 〉 = 〈fi(X), (xTX)di − (yTX)di 〉

= 〈fi(X), Xdi
0 − (X0 cos θ+ X1 sin θ)di 〉.

Hence, according to Cauchy–Schwarz–Bunyakowsky:

|fi(x)− fi(y)| ≤ ‖fi‖‖X
di
0 − (X0 cos θ+ X1 sin θ)di‖.

Since

Xdi
0 − (X0 cos θ+ X1 sin θ)di = Xdi

0 (1− (cos θ)di)+
di∑

k=1

(
di

k

)
(cos θ)di−k(sin θ)kXdi−k

0 Xk
1,

we have:

‖Xdi
0 − (X0 cos θ+ X1 sin θ)di‖2

= (1− (cos θ)di)2
+

di∑
k=1

(
di

k

)
(cos θ)2(di−k)(sin θ)2k

= (1− (cos θ)di)2
+ 1− (cos θ)2di

= 2(1− (cos θ)di)

≤ 2

1−
(

1−
θ2

2

)di
 (4)

≤ 2
(

1−
(

1− di
θ2

2

))
(5)

≤ diθ
2,
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where the inequality in line (4) is obtained from the Taylor expansion of cos θ around 0, and the
inequality in line (5) is due to the fact that (1− a)d ≥ 1− da for a ≤ 1.

We conclude that

|fi(x)− fi(y)| ≤ ‖fi‖θ
√
di

and hence

‖f (x)− f (y)‖∞ ≤ ‖f‖θ
√

max
i

di.

For the second assertion, we have

‖f (y)‖∞ ≥ ‖f (x)‖∞ − ‖f (x)− f (y)‖∞

≥ ‖f (x)‖∞ − ‖f‖
√
Dd(x, y) since d(x, y) ≤

√
2

> ‖f (x)‖∞ − ‖f‖
√
D‖f (x)‖∞/(‖f‖

√
D) = 0. �

4. The proximity theorem

4.1. Newton and Smale

The Newton iteration on the sphere Sn is defined by

Nf : Sn → Sn

x 7→ Nf (x) = exp
x

(
−Df(x)−1

|TxSn
f (x)

)
where expx is the exponential map at x,

exp
x

h = cos(‖h‖)x+
sin(‖h‖)

‖h‖
h.

Furthermore, the standard invariants of α-theory, introduced by Smale in [24], can be defined as:

β(f , x) =
∥∥∥Df(x)−1

|TxSn
f (x)

∥∥∥ ,

γ(f , x) = sup
k≥2

∥∥∥∥∥Df(x)
−1
svertTxSn

Dkf (x)|(TxSn)k

k!

∥∥∥∥∥
1/(k−1)

,

α(f , x) = β(f , x)γ(f , x).

Remark 4.1. (i) It is easy to see that β(f , x) = d(x,Nf (x)).
(ii) We will not use Newton’s method in our algorithm. We are instead interested in its alpha theory

which guarantees existence of zeros near points x with α(f , x) small enough.
(iii) The Newton iteration presented above is not the iteration known as ‘projective Newton’. There

is an alpha theory for that method, available in [19].

Here we use slight modifications of the quantities α,β and γ, more adapted to our purposes. We
set

β(f , x) := µnorm(f , x)
‖f (x)‖∞
‖f‖

γ(f , x) :=
D3/2

2
µnorm(f , x)

α(f , x) := β(f , x)γ(f , x).

The definition of γ is motivated by the estimate of γ [2, Theorem 2 p. 267].

γ(f , x) ≤ γ(f , x).
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which yields the lower bound

κ(f ) ≥ max
ζ|f (ξ)=0

2D−3/2γ(f , ζ). (6)

We also observe that γ(f , x) ≥ D3/2

2 since µnorm(f , x) ≥ 1 and that β(f , x) ≤ β(f , x) since

β(f , x) =
∥∥∥Df(x)−1

|TxSn
f (x)

∥∥∥ ≤ √n‖f (x)‖∞
∥∥∥Df(x)−1

|TxSn

∥∥∥ ≤ µnorm(f , x)
‖f (x)‖∞
‖f‖

= β(f , x).

Therefore α(f , x) ≤ α(f , x).

4.2. Proximity and unicity from data at a point

Definition 4.2. We say that x ∈ Sn is an approximate zero for f if and only if the Newton sequence
{xk}k∈N, where x0 := x and xk+1 := Nf (xk), is defined for all k and moreover

d(xk, xk+1) ≤

(1
2

)2k
−1

d(x0, x1).

The limit point ζ = limk→∞ xk is a fixed point for the Newton iteration and a zero of f . It is called the
associated zero to x.

In what follows we denote σ :=
∑

k≥0 2−2k
+1
= 1.632843018 . . . and we set

Bf (x) := {y ∈ Sn | d(x, y) ≤ σβ(f , x)}.

The main technical tool in our algorithm is provided by the following result.

Theorem 4.3. There exists an universal constant α∗ := 0.0384629388 . . . such that for all x ∈ Sn, if
α(f , x) < α∗, then:

(i) x is an approximate zero of f .
(ii) If ζ denotes its associated zero then ζ ∈ Bf (x).
(iii) Furthermore, for each point z in Bf (x) the Newton sequence starting at z converges to ζ.

4.3. Background material

Theorem 4.3 is a consequence of the following two results, which are restatements of results
proved in [10]. While [10] deals with the Newton iteration on arbitrary complete real analytic
Riemannian manifolds, here we reword them in terms of the Newton iteration on the unit sphere
Sn (Example 1 in [10]). The γ-Theorem for mappings [10, Theorem 1.3] becomes the following.

Theorem 4.4. Let f : Sn → Rn be analytic. Suppose that f (ζ) = 0 and Df(ζ) is an isomorphism. Let

R(f , ζ) := min
{
π,

3−
√

7
2γ(f , ζ)

}
.

If d(x, ζ) ≤ R(f , ζ), then the Newton sequence xk = Nk
f (x) is defined for all k ≥ 0 and d(xk, ζ) ≤(

1
2

)2k
−1

d(x, ζ). In particular, {xk} converges to ζ.

Now let α0 := 0.130716944 . . . denote the smallest positive root of the polynomial ψ(u)2
− 2u,

and

s0 :=
1

σ + (1−σα0)2

ψ(σα0)

(
1+ σ

1−σα0

) = 0.103621842 . . .

We state the α-Theorem for mappings [10, Theorem 1.4] for the sphere Sn.
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Theorem 4.5. Let f : Sn → Rn be analytic. Let x ∈ Sn be such that β(f , x) ≤ s0π and α(f , x) ≤ α0. Then
the Newton sequence xk = Nk

f (x) is defined for all k ≥ 0 and converges to a zero ζ of f . Moreover,

d(xk, xk+1) ≤

(1
2

)2k
−1

β(f , x)

and

d(xk, ζ) ≤ σβ(f , x).

Finally we introduce ψ(u) := 1− 4u+ 2u2, which is positive and decreasing for 0 < u < 1−
√

2
2 , and

state [10, Lemma 4.3]:

Lemma 4.6. Let x, y ∈ Sn with d(x, y) < π. Suppose that Df(x) is non-singular and

ν := d(x, y)γ(f , x) < 1−
√

2
2

.

Then

γ(f , y) ≤
γ(f , x)

(1− ν)ψ(ν)
.

4.4. Proof of Theorem 4.3

Set ν∗ := 0.0628039411 . . . for the only real root of the polynomial

Ψ(u) := (3−
√

7)(1− u)ψ(u)− 4u,

and α∗ := ν∗
σ
= 0.0384629388 . . .. Note that α∗ ≤ min{α0, s0π}.

Since γ(f , x) ≥ D3/2

2 , the hypothesis of Theorem 4.5 holds from α(f , x) ≤ α(f , x) < α∗ ≤ α0 and
β(f , x) ≤ β(f , x) ≤ 2α(f ,x)

D3/2 < 2α∗
D3/2 < s0π.

Using Remark 4.1(i) it follows that x is an approximate zero of f , and that the associated zero ζ
satisfies:

d(x, ζ) ≤ σβ(f , x) ≤ σβ(f , x).

This already proves Parts (i) and (ii) of Theorem 4.3.
We show (iii). Since d(x, ζ) ≤ σβ(f , x) < σs0π < π,

ν = d(x, ζ)γ(f , x) ≤ σβ(f , x)γ(f , x) ≤ σα(f , x) ≤ σα∗ = ν∗ < 1−
√

2
2

,

and we can apply Lemma 4.6. Therefore

4σβ(f , x)γ(f , ζ) ≤ 4σβ(f , x)γ(f , x)
1

(1− ν)ψ(ν)
≤ 4ν∗

1
(1− ν∗)ψ(ν∗)

= 3−
√

7,

because (1− u)ψ(u) decreases for 0 < u < 1−
√

2
2 , and ν∗ is a zero of (3−

√
7)(1− u)ψ(u)− 4u. This

shows, since 2σβ(f , x) ≤ π, that

2σβ(f , x) ≤ R(f , ζ) = min
{
π,

3−
√

7
2γ(f , ζ)

}
.

We conclude applying Theorem 4.4 to z ∈ Bf (x), since

d(z, ζ) ≤ d(z, x)+ d(x, ζ) ≤ 2σβ(f , x) ≤ R(f , ζ).

It follows that the Newton sequence {zk}k∈N starting at z converges to ζ.

Remark 4.7. The hypothesis on the radius of injectivity in [10] was recently found to be redundant.
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5. Infinite precision

5.1. Grids and graphs

Our algorithm works on a grid on Sn. We easily construct one by projecting onto Sn a grid on the cube
Cn
= {y | ‖y‖∞ = 1}. We make use of the (easy to compute) bijections φ : Cn

→ Sn and φ−1
: Sn → Cn

given by φ(y) = y
‖y‖

and φ−1(x) = x
‖x‖∞

.
Given η := 2−k for some k ≥ 1, we consider the uniform grid Uη of mesh η on Cn. This is the set of

points in Cn whose coordinates are of the form i2−k for i ∈ {−2k,−2k
+ 1, . . . , 2k

}, with at least one
coordinate equal to 1 or−1. We denote by Gη its image by φ in Sn. Note that, for y1, y2 ∈ Cn,

d(φ(y1),φ(y2)) ≤
π

2
‖y1 − y2‖2 ≤

π

2
√
n+ 1‖y1 − y2‖∞. (7)

Given η as above we associate to it a graph Gη as follows. We set A(f ) := {x ∈ Sn | α(f , x) < α∗}.
The vertices of the graph are the points in Gη ∩ A(f ). Two vertices x, y ∈ Gη are joined by an edge if
and only if Bf (x) ∩ Bf (y) 6= ∅.

Note that as a simple consequence of Theorem 4.3 we obtain the following lemma.

Lemma 5.1. (i) For each x ∈ A(f ) there exists ζx ∈ Z(f ) such that ζx ∈ Bf (x). Moreover for each point z
in Bf (x), the Newton sequence starting at z converges to ζx.

(ii) Let x, y ∈ A(f ). Then ζx = ζy ⇐⇒ Bf (x) ∩ Bf (y) 6= ∅. �

We define Z(Gη) :=
⋃

x∈Gη Bf (x) ⊂ Sn where x ∈ Gη has to be understood as x running over all the
vertices of Gη. Similarly, for a connected component U of Gη, we define

Z(U) :=
⋃
x∈U

Bf (x).

Lemma 5.2. (i) For each component U of Gη, there is a unique zero ζU ∈ Z(f ) such that ζU ∈ Z(U).
Moreover, ζU ∈ ∩x∈U Bf (x).

(ii) If U and V are different components of Gη, then ζU 6= ζV .

Proof. (i) Let x ∈ U. Since x ∈ A(f ), by Lemma 5.1 (i) there exists a zero ζx of f in Bf (x) ⊆ Z(U). This
shows the existence. For the second assertion and the uniqueness, assume that there exist ζ and ξ
zeros of f in Z(U). Let x, y ∈ U be such that ζ ∈ Bf (x), and ξ ∈ Bf (y). Since U is connected, there exist
x0 = x, x1, . . . , xk−1, xk := y in A(f ) such that (xi, xi+1) is an edge of Gη for i = 0, . . . , k − 1, that is,
Bf (xi) ∩ Bf (xi+1) 6= ∅. If ζi and ζi+1 are the associated zeros of xi and xi+1 in Z(f ) respectively, then by
Lemma 5.1(ii) we have ζi = ζi+1, and thus ζ = ξ ∈ Bf (x) ∩ Bf (y).

(ii) Assume ζU = ζV ∈ Bf (x)∩ Bf (y) ⊂ Z(U)∩ Z(V), then x and y are joined by an edge and belong to
the same connected component. �

5.2. The infinite-precision algorithm

Count_Roots_1(f )

let η := 2
√

2
π
√
n+1

(1) let U1, . . . ,Ur be the connected components of Gη
if

(i) for 1 ≤ i < j ≤ r
for all xi ∈ Ui and all xj ∈ Uj, d(xi, xj) > πη

√
n+ 1

and
(ii) for all x ∈ Gη \ A(f ), ‖f (x)‖∞ > π

2 η
√

(n+ 1)D‖f‖
then HALT and return r/2
else η := η/2

go to (1)
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5.3. Proof of Theorem 1.1(1–3)

Proof of Part (1) This proof requires some arguments of convexity. We can naturally define spherical
convex hulls for sets of points in Hn, an open half-sphere in Sn. If x1, . . . , xq ∈ Hn we define

SCH(x1, . . . , xq) := Cone(x1, . . . , xq) ∩ Sn

where Cone(x1, . . . , xq) is the smallest convex cone with vertex at the origin and containing the points
x1, . . . , xq. Alternatively, we have,

SCH(x1, . . . , xq) =

{
λ1x1 + · · · + λqxq
‖λ1x1 + · · · + λqxq‖

| λ1, . . . ,λq ≥ 0,
∑
λi = 1

}
.

We will use the following fact.

Lemma 5.3. Let x1, . . . , xq ∈ Hn
⊂ Rn+1. If

⋂q
i=1 B(xi, ri) 6= ∅, then SCH(x1, . . . , xq) ⊂

⋃q
i=1 B(xi, ri).

Proof. Let x ∈ SCH(x1, . . . , xq) and y ∈
⋂q

i=1 B(xi, ri). We will prove that x ∈ B(xi, ri) for some i.
If x = y, this is obvious.
If x 6= y, let H be the half-space

H :=
{
z ∈ Rn+1

: 〈z, y− x〉 < 0
}
.

Since ‖x‖ = ‖y‖ = 1, we have 〈x + y, y − x〉 = 0, and we note that in this case, x + y determines
the mid-line between x and y. Moreover, since x 6= y, we have x ∈ H since 〈x, y− x〉 = 〈x, y〉 − ‖x‖2 <
‖x‖ ‖y‖ − ‖x‖2

= 0. Therefore the half-space H is the set of points z in Rn+1 such that the Euclidean
distance ‖z− x‖ < ‖z− y‖.

On the other hand, H must contain at least one point of the set
{
x1, . . . , xq

}
since if this were not

the case, the convex set Cone(CH(x1, . . . , xq)) would be contained in {z : 〈z, y− x〉 ≥ 0}, contradicting
x ∈ SCH(x1, . . . , xq). Let, therefore, xi ∈ H. It follows that

‖x− xi‖ < ‖y− xi‖

which implies

d(x, xi) < d(y, xi) ≤ ri. �

We can now proceed. Assume the algorithm halts, we want to show that if r equals the number of
connected components of Gη, then #R(f ) = #Z(f )/2 = r/2. We already know by Lemma 5.2 that each
connected component U of Gη determines uniquely a zero ζU ∈ Z(f ). Thus it is enough to prove that
Z(f ) ⊂ Z(Gη).

Assume that there is a zero ζ of f in Sn such that ζ is not in Z(Gη). Let B∞(φ−1(ζ),η) := {y ∈ Uη |

‖y − φ−1(ζ)‖∞ ≤ η} = {y1, . . . , yq}, the set of all neighbors of φ−1(ζ) in Uη, and let xi = φ(yi),
i = 1, . . . , q. Clearly, φ−1(ζ) is in the cone spanned by {y1, . . . , yq} and hence ζ ∈ SCH(x1, . . . , xq).

We claim that there exists j ≤ q such that xj 6∈ A(f ). Indeed, assume this is not the case. We consider
two cases.

(a) All the xi belong to the same connected component U of Gη. By Lemma 5.2 there exists a unique
zero ζU ∈ Sn of f in Z(U) and ζU ∈ ∩i Bf (xi). We may apply Lemma 5.3 to deduce that

SCH(x1, . . . , xq) ⊆
⋃

Bf (xi).

It follows that, for some i ∈ {1, . . . , q}, ζ ∈ Bf (xi) ⊆ Z(U), contradicting that ζ 6∈ Z(Gη).
(b) There exist ` 6= s and 1 ≤ i < j ≤ r such that x` ∈ Ui and xs ∈ Uj. Since condition (i) in the

algorithm is satisfied, d(x`, xs) > πη
√
n+ 1. But, by (7),

d(x`, xs) ≤
π

2
√
n+ 1‖y` − ys‖∞ ≤

π

2
√
n+ 1

(
‖y` − φ

−1(ζ)‖∞ + ‖φ
−1(ζ)− ys‖∞

)
≤ πη

√
n+ 1,

a contradiction.
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We have thus proved the claim. Let then 1 ≤ j ≤ q be such that xj 6∈ A(f ). Since condition (ii) in the
algorithm is satisfied ‖f (xj)‖∞ > π

2 η
√

(n+ 1)D‖f‖. It follows from the inequality d(xj, ζ) ≤
π
2

√
n+ 1η

and Lemma 3.1 that ‖f (ζ)‖∞ > 0, a contradiction.
Proof of Part (2) We need a few lemmas.

Lemma 5.4. If ζ1 6= ζ2 ∈ Z(f ) then

d(ζ1, ζ2) ≥
2(3−

√
7)D−3/2

κ(f )
.

Proof. For i = 1, 2, using (6) and Proposition 2.2,

R(f , ζi) = min
{
π,

3−
√

7
2γ(f , ζi)

}
≥ min

{
π,

(3−
√

7)D−3/2

κ(f )

}
=

(3−
√

7)D−3/2

κ(f )
.

Now suppose that d(ζ1, ζ2) < R(f , ζ1) + R(f , ζ2) and choose x ∈ Sn such that d(x, ζ1) < R(f , ζ1) and
d(x, ζ2) < R(f , ζ2). Then Theorem 4.4 implies that ζ1 = ζ2, a contradiction. �

Lemma 5.5. Let x1, x2 ∈ Gη with associated zeros ζ1 6= ζ2. If η ≤ 2(3−
√

7)D−3/2

3πκ(f )
√
n+1 then d(x1, x2) > πη

√
n+ 1.

Proof. Assume d(x1, x2) ≤ πη
√
n+ 1. Since x2 6∈ Bf (x1), d(x1, x2) > σβ(f , x1). Consequently,

d(x1, ζ1) ≤ σβ(f , x1) < d(x1, x2) ≤ πη
√
n+ 1

and, similarly, d(x2, ζ2) < πη
√
n+ 1. But then,

d(ζ1, ζ2) ≤ d(ζ1, x1)+ d(x1, x2)+ d(x2, ζ2) < 3πη
√
n+ 1 ≤

2(3−
√

7)D−3/2

κ(f )

contradicting Lemma 5.4. �

Lemma 5.6. Let x ∈ Sn such that x 6∈ A(f ). If η ≤ α∗
(n+1)D2κ(f )2 then ‖f (x)‖∞ > π

2 η
√

(n+ 1)D‖f‖.

Proof. Since x 6∈ A(f ) we have α(f , x) ≥ α∗. We divide the proof into two cases.

Case I. min
{
µnorm(f , x), ‖f‖

‖f (x)‖∞

}
=

‖f‖
‖f (x)‖∞

.

In this case

η ≤
α∗

(n+ 1)D2κ(f )2
≤

α∗‖f (x)‖2
∞

(n+ 1)D2
‖f‖2

which implies, since η ≤ 1
2 < 4D

π2α∗
,

‖f (x)‖∞ ≥

√
η
√
n+ 1D‖f‖
√
α∗

>
π

2
η
√

(n+ 1)D‖f‖.

Case II. min
{
µnorm(f , x), ‖f‖

‖f (x)‖∞

}
= µnorm(f , x).

In this case

η ≤
α∗

(n+ 1)D2κ(f )2
≤

α∗

(n+ 1)D2µnorm(f , x)2

which implies α∗ ≥ η(n+ 1)D2µnorm(f , x)2. Also,

α∗ ≤ α(f , x) =
1
2
β(f , x)µnorm(f , x)D3/2

≤
1

2‖f‖
µnorm(f , x)2D3/2

‖f (x)‖∞.

Putting both inequalities together we obtain

η(n+ 1)D2µnorm(f , x)2
≤

1
2‖f‖

µnorm(f , x)2D3/2
‖f (x)‖∞
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or yet,

‖f (x)‖∞ ≥ 2η(n+ 1)D1/2
‖f‖ >

π

2
η
√

(n+ 1)D‖f‖. �

We can now conclude the proof of Part (2). Assume η ≤ α∗
(n+1)D2κ(f )2 . Then the hypotheses of

Lemmas 5.5 and 5.6 hold. The first of these lemmas ensures that condition (i) in the algorithm
is satisfied. The second, that condition (ii) is satisfied. Therefore, the algorithm halts as soon as

α∗
2(n+1)D2κ(f )2 < η ≤ α∗

(n+1)D2κ(f )2 . This gives a bound of O(ln(nDκ(f ))) for the number of iterations.
Since the number of grid points considered at this iteration (η = α∗

(n+1)D2κ(f )2 ) is at most 2(n +

1)
(

2(n+1)D2κ(f )2

α∗

)n
, the bound for the total complexity follows.

Proof of Parts (3) and (5). We have already seen that the number of iterations is bounded by
O(ln(nDκ(f ))). At each of these iterations, we need to perform a number of computations on the
(at most) 2(n + 1)

(
2(n+1)D2κ(f )2

α∗

)n
grid points to decide whether they are in A(f ). These can be done

independently. Then, we need to compute the number of connected components of Gη. This can be
done (see, e.g. [15]) in parallel time O(ln(|Vη|))2 where |Vη| denotes the number of vertices of Gη and
therefore, in parallel time at most O(n2(ln(nDκ(f ))2

+ ln(α∗)
2)). Since this is the dominant step in the

computation at a given iteration, it follows that the total parallel time consumed by the algorithm is
at most O(n2 ln(nDκ(f ))(ln(nDκ(f ))2

+ ln(α∗)
2)). This shows part (3). For part (5), just note that, for

i = 1, . . . , r, any vertex xi of Ui is an approximate zero of the only zero of f in Z(Ui). �

6. Finite precision

6.1. Making room to allow errors

Our finite-precision algorithm will be a variation of Algorithm Count_Roots_1. But since finite-
precision computations will be affected by errors, we need to make room in the infinite-precision
algorithm to allow them. For this aim, we state the corresponding version of Theorem 4.3.

Theorem 6.1. There exists a universal constantα• = 0.028268 . . . such that, for all x ∈ Sn, if α(f , x) < α•,
then:

(i) x is an approximate zero of f .
(ii) If ζ denotes its associated zero then ζ ∈ Bf (x).
(iii) Furthermore, for each point z, s.t. d(x, z) ≤ 2σβ(f , x) the Newton sequence starting at z converges

to ζ.

Proof. Parts (i) and (ii) follow from Theorem 4.3 and the fact that α• < α∗. Part (iii) is proved by
taking ν• = 0.046158 . . . to be the only real root of the polynomial Ψ(u) := (3−

√
7)(1−u)ψ(u)−6u,

and α• = ν•
σ
= 0.028268. Then, one proves as in Theorem 4.3 that 3σβ(f , x) ≤ R(f , ζ) from which it

follows that, for all z, s.t. d(x, z) ≤ 2σβ(f , x),

d(z, ζ) ≤ d(z, x)+ d(x, ζ) ≤ 3σβ(f , x) ≤ R(f , ζ)

and hence, that the Newton sequence {zk}k∈N starting at z converges to ζ. �

The proofs of Lemmas 5.5 and 5.6 yield, mutatis mutandis, the following results.

Lemma 6.2. Let x1, x2 ∈ Gη with associated zeros ξ1 and ξ2, ξ1 6= ξ2. If η ≤ (3−
√

7)D−3/2

3πκ(f )
√
n+1 then d(x1, x2) >

2πη
√
n+ 1. �

Lemma 6.3. Let x ∈ Sn such that α(f , x) > α•
3 . If η ≤ α•

4D2(n+1)κ(f )2 then ‖f (x)‖∞ > πη
√

(n+ 1)D‖f‖. �
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6.2. Basic facts

We recall the basics of a floating-point arithmetic which idealizes the usual IEEE standard
arithmetic. This system is defined by a set F ⊂ R containing 0 (the floating-point numbers), a
transformation r : R → F (the rounding map), and a constant u ∈ R (the round-off unit) satisfying
0 < u < 1. The properties we require for such a system are the following:
(i) For any x ∈ F, r(x) = x. In particular, r(0) = 0.

(ii) For any x ∈ R, r(x) = x(1+ δ) with |δ| ≤ u.

We also define on F arithmetic operations following the classical scheme

x̃◦y = r(x ◦ y)

for any x, y ∈ F and ◦ ∈ {+,−,×, /}, so that

◦̃ : F× F→ F.

The following is an immediate consequence of property (ii) above.

Proposition 6.4. For any x, y ∈ F we have

x̃◦y = (x ◦ y)(1+ δ), |δ| ≤ u. �

When combining many operations in floating-point arithmetic, quantities such as
∏n

i=1(1 + δi)ρi
naturally appear. Our round-off analysis uses the notations and ideas in Chapter 3 of [17], from where
we quote the following results:

Proposition 6.5. If |δi| ≤ u, ρi ∈ {−1, 1}, and nu < 1, then
n∏

i=1
(1+ δi)ρi = 1+ θn,

where

|θn| ≤ γn =
nu

1− nu
. �

Proposition 6.6. For any positive integer k such that ku < 1, let θk, θj be any quantities satisfying

|θk| ≤ γk =
ku

1− ku
|θj| ≤ γj =

ju

1− ju
.

The following relations hold.
(1) (1+ θk)(1+ θj) = 1+ θk+j for some |θk+j| ≤ γk+j.
(2)

1+ θk
1+ θj

=

{
1+ θk+j if j ≤ k,
1+ θk+2j if j > k

for some |θk+j| ≤ γk+j or some |θk+2j| ≤ γk+2j.
(3) If ku, ju ≤ 1/2, then γkγj ≤ γmin{k,j}.
(4) iγk ≤ γik.
(5) γk + u ≤ γk+1.
(6) γk + γj + γkγj ≤ γk+j. �

From now on, whenever we write an expression containing θk we mean that the same expression
is true for some θk, with |θk| ≤ γk.

When computing an arithmetic expression q with a round-off algorithm, errors will accumulate
and we will obtain another quantity which we will denote by fl(q). We write Error(q) = |q−fl(q)|.

An example of round-off analysis which will be useful in what follows is given in the next
proposition, the proof of which can be found in Section 3.1 of [17].
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Proposition 6.7. There is a round-off algorithm which, with input x, y ∈ Rn, computes the dot product of
x and y. The computed value fl(〈x, y〉) satisfies

fl(〈x, y〉) = 〈x, y〉 + θdlog2 ne+1〈|x|, |y|〉,

where |x| = (|x1|, . . . , |xn|). In particular, if x = y, the algorithm computes fl(‖x‖2) satisfying

fl(‖x‖2) = ‖x‖2(1+ θdlog2 ne+1). �

We will also have to deal with square roots and arccosines. The following result will help us to do
so.

Lemma 6.8. (i) Let θ ∈ R such that |θ| ≤ 1/2. Then,
√

1− θ = 1− θ′ with |θ′| ≤ |θ|.
(ii) Let 0 < a ≤ 1 and ε ∈ R such that 0 < a + ε < 1. Then, arccos(a + ε) = arccos(a) + υ 1√

1−(a+ε)2

with |υ| ≤ |ε|.

Proof. Assume θ > 0 (if θ < 0 it is done similarly). By the intermediate value theorem we have that
1−
√

1− θ = θ(
√
ξ)′ with ξ ∈ (1− θ, 1). But(√

ξ

)′
=

1
2
√
ξ
≤

1
√

2
,

the last expression is since ξ ≥ 1/2. This proves (i).
Part (ii) is shown similarly. Again, assume for simplicity that ε > 0. Then, for some ξ ∈ (a, a+ ε),

arccos(a+ ε)− arccos(a) = ε arccos′(ξ) = ε
1√

1− ξ2
=

υ√
1− (a+ ε)2

. �

We assume that, besides the four basic arithmetic operations, we are allowed to compute square
roots and arccosines with finite precision. That is, if op denotes any of these two operators, we compute
õp such that

õp(x) = op(x)(1+ δ), |δ| ≤ u.

From Lemma 6.8(i) it follows that, for all a > 0,

˜√
a(1+ θk) =

√
a(1+ θk+1).

Remark 6.9. Our choice of the precision u in Theorem 1.1(4) guarantees that ku < 1/2 holds
whenever we encounter θk in what follows, and consequently, |θk| ≤ γk ≤ 2ku. This implies that
in all the following we have γg = O(ug) for all the expressions g we will encounter.

According to the previous remark we will introduce a further notation that will considerably
simplify our exposition. For all expression g, we will write

[[g]] := O(ug).

This notation will avoid the burden arising with the consideration of multiplicative constants.

6.3. The finite-precision algorithm

Our finite-precision algorithm is a variation of Algorithm Count_Roots_1 in Section 5.3. Given
x ∈ Sn we define below fl(A′(f )) and fl(B

′

f (x)), which are convenient floating versions of the sets
A′(f ) =

{
x ∈ Sn | α(f , x) < 1

2α•
}

and B
′

f (y) = {z ∈ Sn | d(x, y) ≤ 3
2σβ(f , x)} respectively.



596 F. Cucker et al. / Journal of Complexity 24 (2008) 582–605

Given f ∈ Hd and x ∈ Sn, we let M ∈ Rn×n be a matrix representing

1
√
d1

1
√
d2

. . .
1
√
dn


Df(x)|TxSn

and we set σmin(M) = ‖M−1
‖
−1. Therefore

µnorm(f , x) = ‖f‖
√
n‖M−1

‖ = ‖f‖
√
nσmin(M)−1,

β(f , x) = µnorm(f , x)
‖f (x)‖∞
‖f‖

=
√
nσmin(M)−1

‖f (x)‖∞,

α(f , x) = β(f , x)µnorm(f , x)
D3/2

2
= ‖f‖nσmin(M)−2

‖f (x)‖∞
D3/2

2
.

This implies that

y ∈ B
′

f (x) ⇐⇒ d(x, y) ≤
3
2
σβ(f , x) ⇐⇒ σmin(M)d(x, y) ≤

3
2
σ
√
n‖f (x)‖∞,

x ∈ A′(f ) ⇐⇒ α(f , x) <
α•

2
⇐⇒ ‖f‖n‖f (x)‖∞D3/2 < α•σmin(M)2.

These statements are equivalent under infinite precision, but the expressions at the right-hand side
are more convenient to handle when working with finite precision. This motivates our definitions of

fl(B
′

f (x)) :=
{
y ∈ Sn | fl(σmin(M)d(x, y)) ≤ fl

(3
2
σ
√
n‖f (x)‖∞

)}
fl(A′(f )) :=

{
x ∈ Sn | fl(‖f‖n‖f (x)‖∞D3/2) < fl(α•σmin(M)2)

}
.

We also define accordingly the graph fl(G′η) whose vertices are the points inGη∩fl(A′(f )), and with
two vertices x, y joined by an edge if and only if fl(B

′

f (x)) ∩ fl(B
′

f (x)) 6= ∅. Its connected components
are denoted by fl(U).

Our algorithm is the following:

Count_Roots_2(f )

let η := 2
√

2
π
√
n+1

(1) let fl(U1), . . . , fl(Ur) be the connected components of fl(Ḡη)
if

(i) for 1 ≤ i < j ≤ r
for all xi ∈ fl(Ui) and all xj ∈ fl(Uj), fl(d(xi, xj)) > fl( 3

2πη
√
n+ 1)

and
(ii) for all x ∈ Gη \ fl(A′(f )), fl(‖f(x)‖∞) > fl(

√
2

2 πη
√

(n+ 1)D‖f‖)
then HALT and return r/2
else η := η/2

go to (1)

In the rest of the section we will see that, when the precision u satisfies u ≤
1

O(D2n5/2κ(f )3(log S+n3/2D2κ(f )2))
, this algorithm is correct and halts as soon as η ≤ α•

4D2(n+1)κ(f )2 .

6.4. Bounding errors for elementary computations

The goal of this subsection is to exhibit bounds for the accumulated error in the main computations
of Count_Roots_2. We will rely on the basic notations and results described in Section 6.2.
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To simplify notation, and without loss of generality, in all the following we assume that ‖f‖ = 1. We
denote by S(Hd) the sphere of such systems. Also, we do not discuss in what follows the accumulated
error in the computation of φ : Cn

→ Sn. This is a minor detail which can be taken care of using
Lemma 6.8(i).

Proposition 6.10. Given f ∈ S(Hd) and x ∈ Sn, we can compute ‖f (x)‖∞ with finite precision u such that

Error(‖f (x)‖∞) = [[D+ log S]]

where S is a bound on the number of coefficients of each fi.

Proof. Let f = (f1, . . . , fn). For i ≤ n write fi =
∑

cJXJ and let S be the number of coefficients of fi. To
compute f (x) one computes each monomial cJxJ with fl(cJxJ) = cJxJ(1+ θD). Then, one computes fi(x)
to get

fl(fi(x)) = fl
(∑

fl(cJx
J)
)

= fl
(∑

cJx
J(1+ θ(J)D )

)
=
∑

cJx
J(1+ θ(J)D )+ θlog S

∑
|cJx

J
|(1+ θ(J)D )

= fi(x)+
∑

cJx
Jθ

(J)
D + θlog S

∑
|cJx

J
|(1+ θ(J)D )

where in the third line we reasoned as in the proof of Proposition 6.7. Therefore

Error(‖f (x)‖∞) ≤
∣∣∣∑ cJx

Jθ
(J)
D + θlog S

∑
|cJx

J
|(1+ θ(J)D )

∣∣∣
≤
∑
|cJ|‖x

J
‖(γD + γlog S + γDγlog S)

≤ γD+log S

where we used that for any x ∈ Sn, |
∑
|cJ|xJ| ≤ ‖

∑
|cJ|xJ‖ = ‖fi‖ ≤ ‖f‖ = 1 and Proposition 6.6 (6).

The conclusion follows from Remark 6.9. �

Proposition 6.11. Given f ∈ S(Hd) and x ∈ Sn, let M ∈ Rn×n be a matrix representing

1
√
d1

1
√
d2

. . .
1
√
dn


Df(x)|TxSn

in some orthonormal basis of TxSn. Then ‖M‖ ≤
√
n. In addition, we can compute such a matrix M with

finite precision u such that

‖Error(M)‖F = [[n(log S+ D+ log n)]].

Proof. Step 1: Let y = x−en+1
‖x−en+1‖

. The Householder symmetry

Hy = In+1 − 2yyt

swaps vectors en+1 and x, and fixes y⊥. The first n columns of Hy are therefore an orthonormal basis
of TxSn, while the last column is x. Let H ∈ R(n+1)×n denote the submatrix obtained from the first n
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columns of Hy. With that notation, we set

M =



1
√
d1

1
√
d2

. . .
1
√
dn


Df(x)H.

Step 2: We claim that Pi,x : Hdi → Rn, fi 7→ 1
√
di
Dfi(x)|TxSn is an orthogonal projection, in the sense that

for any fixed x, the map (Pi,x)| ker(Pi,x)⊥ is an isometry.
We use an orthogonal invariance argument. The special orthogonal group SO(n + 1) acts on Hdi

and on Rn+1 isometrically as follows: to a given Q ∈ SO(n+1), we associate respectively the following
isometries:

x 7→ Qx, fi 7→ fi ◦ Q
t.

We set y = Qx and gi = fi ◦ Q t . Differentiating the equality gi(Qx) = fi(x), we obtain:

Dgi(y)Q = Dfi(x).

When x is fixed, we can set Q conveniently so that y = en+1. Therefore

Dgi(en+1)Q|TxSn = Dfi(x)|TxSn .

Since Q(TxSn) = Ten+1S
n we obtain

Dgi(en+1)|Ten+1 Sn = Dfi(x)|TxSn .

This means that Pi,en+1(fi ◦ Q
t) = Pi,x(fi). Thus, in order to prove our claim, it is enough to show that

Pi,en+1 is an orthogonal projection.
Since for g =

∑
J gJX

J , ∂g
∂Xj

(en+1) = g(ej+(d−1)en+1) and since Ten+1S
n
= 〈e1, . . . , en〉, we have that for

any gi ∈ Hdi ,

Pi,en+1(gi) =
1
√
di

(
gi(e1+(di−1)en+1), . . . , gi(en+(di−1)en+1)

)
.

Hence, for any gi ∈ ker(Pi,en+1)
⊥, i.e. such that giJ = 0 for all J 6= ej + (di − 1)en+1, 1 ≤ j ≤ n, we have

‖gi‖
2
=
∑
J

g2
iJ(
di
J

) = ‖Pi,en+1(gi)‖
2
2.

We conclude that Pi,x is an orthogonal projection.
Step 3: From the previous step, for any fi ∈ Hdi , using the orthogonal decomposition fi = f ◦i + f⊥i with
f ◦i ∈ ker Pi,x and f⊥i ∈ ker P⊥i,x, we have

‖Pi,x(fi)‖
2
2 = ‖Pi,x(f

⊥

i )‖2
2 = ‖f

⊥

i ‖
2
≤ ‖fi‖

2.

It is now immediate from Step 1 and from the definition of ‖f‖ = maxi ‖fi‖ that the Frobenius norm
‖M‖F of the matrix M satisfies

‖M‖2
F =

n∑
i=1
‖Pi,x(fi)‖

2
2 ≤

n∑
i=1
‖fi‖

2
≤ n‖f‖2

= n

and hence its spectral norm ‖M‖ satisfies ‖M‖ ≤ ‖M‖F ≤
√
n. This bound is independent of the choice

of the basis for the space TxSn.
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Step 4: We next present the algorithm to compute M, given f and x. This is a non-optimal algorithm,
and can be significantly improved if more is known on the structure of the polynomial system f .

We can compute each entry mij of the matrix M as the scalar product of 1
√
di
Dfi(x) and the jth column

Hj := (hkj)1≤k≤n+1 of H.
Proceeding as in the proof of Proposition 6.10, we can compute 1

√
di

∂fi
∂Xk

(x) with

Error

(
1
√
di

∂fi
∂Xk

(x)

)
= [[D+ log S]].

On the other hand, the vector y = x−en+1
‖x−en+1‖

can be computed using 2n + 4 operations, and clearly
Error(yj) = [[log(n)]] for all j. Hence, for all coefficients hkj of H,

Error(hkj) = [[log(n)]].

Applying Proposition 6.7 we conclude

Error(mij) = [[D+ log S+ log n]]

∥∥∥∥ 1
√
di

Dfi(x)

∥∥∥∥ , ‖Hj‖

= [[D+ log S+ log n]].

The second equality holds because ‖Hj‖ = 1 since H is unitary, and because, as in the proof of Step 2,∥∥∥∥ 1
√
di

Dfi(x)

∥∥∥∥2

=

∥∥∥∥ 1
√
di

Dgi(en+1)

∥∥∥∥2

=
1
di
‖(gi(e1+(di−1)en+1), . . . , gi(dien+1))‖

2
≤ ‖gi‖

2
≤ 1.

This implies

‖Error(M)‖F ≤ [[n(D+ log S+ log n)]]. �

Lemma 6.12. Let x ∈ Sn and M be as in Proposition 6.11. We can compute σmin(M) = ‖M−1
‖
−1 satisfying

Error(σmin(M)) = [[n(log S+ D+ n3/2)]].

Proof. Let E′ = M − fl(M). By Proposition 6.11,

‖E′‖ ≤ ‖E′‖F ≤ [[n(log S+ D+ log n)]].

Let M = fl(M). We compute σmin(M) = ‖M−1
‖
−1 using a backward stable algorithm (e.g. QR

factorization). Then the computed fl(σmin(M)) is the exact σmin(M + E′′) for a matrix E′′ with

‖E′′‖ ≤ cn2u‖M‖

for some universal constant c (see, e.g. [11,17]). Thus,

fl(σmin(M)) = fl(σmin(M)) = σmin(M + E′′) = σmin(M + E′ + E′′).

Write E = E′ + E′′. Then, using ‖M‖ ≤
√
n,

‖E‖ ≤ ‖E′‖ + ‖E′′‖ ≤ ‖E′‖ + cn2u‖M‖ ≤ ‖E′‖ + cn2u(‖M‖ + ‖E′‖)

= [[n(log S+ D+ log n)]] + cn2u(
√
n+ [[n(log S+ D+ log n)]])

= [[n(log S+ D+ log n)]] + cn2u(
√
n+ c′un(log S+ D+ n3/2))

= [[n(log S+ D+ n3/2)]]

since the hypothesis on u implies c′un(log S+ D+ n3/2) is bounded by a constant term.
Therefore, fl(σmin(M)) = σmin(M + E) which implies by [11, Corollary 8.3.2]:

Error(σmin(M)) ≤ ‖E‖ < [[n(log S+ D+ n3/2)]]. �
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Proposition 6.13. Let f ∈ S(Hd). Assume u ≤ K
κ(f )2n2D log S

for a small enough constant and let x ∈ Sn.
Then:

(i) If x 6∈ fl(A′(f )) then α(f , x) ≥ 1
3α•.

(ii) If x ∈ fl(A′(f )) then α(f , x) < α•.

Proof. From Proposition 6.10

fl(n‖f (x)‖∞D3/2) = (‖f (x)‖∞ + [[D+ log S]])(nD3/2)(1+ θ4)

≤ nD3/2
‖f (x)‖∞ + [[nD3/2(D+ log S)]].

Also, from Lemma 6.12, using that σmin(M) ≤
√
n,

fl(α•σmin(M)2) = α•
(
σmin(M)+ [[n(log S+ D+ n3/2)]]

)2
(1+ θ2)

≥ α•σmin(M)2
− 2α•σmin(M)[[n(log S+ D+ n3/2)]]

≥ α•σmin(M)2
− [[n3/2(log S+ D+ n3/2)]].

Therefore,

n‖f (x)‖∞D3/2
+ [[nD3/2(D+ log S)]] ≥ fl(n‖f (x)‖∞D3/2) ≥ fl(α•σ

2
min)

≥ α•σ
2
min − [[n

3/2(log S+ D+ n3/2)]]

or yet,

n‖f (x)‖∞D3/2
− α•σ

2
min ≥ −([[nD3/2(D+ log S)]] + [[n3/2(log S+ D+ n3/2)]])

≥ −[[n3D5/2 log S]].

Case I. min
{
µnorm(f , x), 1

‖f (x)‖∞

}
=

1
‖f (x)‖∞

.

In this case κ(f ) ≥ 1
‖f (x)‖∞

and, therefore, using the hypothesis on u and the inequality κ(f ) ≥ 1,

[[n3D5/2 log S]] = uO(n3D5/2 log S) ≤ K
O(n3D5/2 log S)

κ(f )n2D log S

≤ KO(1)n‖f (x)‖∞D3/2
≤

n‖f (x)‖∞D3/2

2

the last obtained by choosing K small enough. Hence, n‖f (x)‖∞D3/2
−α•σ

2
min ≥ −

(
n‖f (x)‖∞D3/2

2

)
, which

implies 3
2n‖f (x)‖∞D

3/2
≥ α•σmin(M)2, i.e. α(f , x) ≥ α•

3 .

Case II. min
{
µnorm(f , x), 1

‖f (x)‖∞

}
= µnorm(f , x).

In this case κ(f ) ≥ µnorm(f , x) =
√
n

σmin(M)
. By the hypothesis on u,

[[n3D5/2 log S]] = uO(n3D5/2 log S) ≤ K
O(n3D5/2 log S)

κ(f )2n2D log S

≤ KO(1)σmin(M)2D3/2
≤
α•σmin(M)2

3

the last obtained by choosing K small enough. This implies n‖f (x)‖∞D3/2
− α•σmin(M)2

≥ −
α•σmin(M)2

3
or, equivalently, α(f , x) ≥ α•

3 .
This shows part (i). For part (ii), one shows as above that

n‖f (x)‖∞D3/2
− α•σ

2
min ≤ [[n

3D5/2 log S]].

Then, one proceeds by considering the two cases min
{
µnorm(f , x), 1

‖f (x)‖∞

}
=

1
‖f (x)‖∞

and

min
{
µnorm(f , x), 1

‖f (x)‖∞

}
= µnorm(f , x) as well. �
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Lemma 6.14. Let y1, y2 ∈ Uη and let xi = φ(yi), i = 1, 2. Then d(x1, x2) ≥
η

2
√
n+1 .

Proof. The distance d(x1, x2) is minimized at y1 = (1, . . . , 1, 1) and y2 = (1, . . . , 1, 1 − η). Let
N = n+ 1. Then

cos(d(x1, x2))
2
=
〈y1, y2〉

2

‖y1‖
2‖y2‖

2

=
(N − η)2

N(N − 2η+ η2)

= 1−
(N − 1)η2

N2 − 2Nη+ Nη2

≤ 1− η2 N − 1
N2 .

Hence

d(x1, x2) ≥ arccos

√1− η2 N − 1
N2

 = arcsin
(
η

N

√
N − 1

)
≥

η

2
√
N

. �

Lemma 6.15. Let u < Kη2

n log n
for a small enough constant K. For x1, x2 ∈ Gη we can compute d(x1, x2) such

that

Error(d(x1, x2)) ≤

[[√
n log n

η

]]
.

Proof. Let yi = φ−1(xi), i = 1, 2, and a = cos(d(x1, x2)), i.e.

a =
〈y1, y2〉

‖y1‖‖y2‖
.

We have, using Proposition 6.7,

fl(〈y1, y2〉) = 〈y1, y2〉 + θlog n‖y1‖‖y2‖

and fl(‖y1‖‖y2‖) = ‖y1‖‖y2‖(1+ θlog n). Using now Propositions 6.4–6.6, it follows that fl(a) = a+ ε
with ε = [[log n]].

By choosing K sufficiently small, ε ≤ η2n
12(n+1)2 . Also, from the proof of Lemma 6.14,

a = cos(d(x1, x2)) ≤

√
1−

η2n

(n+ 1)2

and hence, using that
√
z+ y ≤

√
z+ 3y whenever 0 < z, y ≤ 1, we obtain

a+ ε ≤

√
1−

η2n

(n+ 1)2 +
η2n

12(n+ 1)2 ≤

√
1−

3η2n

4(n+ 1)2 ≤

√
1−

η2

3(n+ 1)
.

Using Lemma 6.8(ii) it follows that,

arccos(a+ ε) = arccos(a)+ ε
∣∣∣∣∣ 1√

1− (a+ ε)2

∣∣∣∣∣
= arccos(a)+ [[log n]]

∣∣∣∣∣
√

3(n+ 1)

η

∣∣∣∣∣ .
Therefore,

Error(d(x1, x2)) ≤

[[√
n log n

η

]]
. �
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Lemma 6.16. Let f ∈ S(Hd). Assume that η ≥ α•
8D2(n+1)κ(f )2 and u ≤ K

D2n5/2κ(f )3(log S+n3/2D2κ(f )2)
with K small

enough, and let x, y ∈ Gη. Then:

(i) If y ∈ fl(B
′

f (x)) then d(x, y) ≤ 2σβ(f , x).
(ii) If y 6∈ fl(B

′

f (x)) then d(x, y) > σβ(f , x).

Proof. By Lemmas 6.12 and 6.15 (and using σmin(M) ≤
√
n and the bound d(x, y) ≤ π

2 η
√
n+ 1 which

follows from (7)),

Error(σmin(M)d(x, y)) = O (d(x, y)Error(σmin(M))+ σmin(M)Error(d(x, y)))

= η
π

2
√
n+ 1[[n(log S+ D+ n3/2)]] +

√
n

[[√
n log n

η

]]

= η[[n3/2(log S+ D+ n3/2)]] +

[[
n log n

η

]]
≤ [[n3/2 log S+ n3D2κ(f )2

]]

the last due to the bounds on η. Also, using Proposition 6.10,

Error
(3

2
σ
√
n‖f (x)‖∞

)
≤ [[
√
n(D+ log S)]].

Therefore, for part (i),

σmin(M)d(x, y)−
3
2
σ
√
n‖f (x)‖∞ ≤ fl(σmin(M)d(x, y))− fl

(3
2
σ
√
n‖f (x)‖∞

)
+ [[n3/2 log S+ n3D2κ(f )2

]] + [[
√
n(D+ log S)]]

≤ [[n3/2 log S+ n3D2κ(f )2
]] + [[

√
n(D+ log S)]]

= [[n3/2 log S+ n3D2κ(f )2
]].

Case I. min
{
µnorm(f , x), 1

‖f (x)‖∞

}
=

1
‖f (x)‖∞

.

In this case κ(f ) ≥ 1
‖f (x)‖∞

and, therefore, by the hypothesis on u,

[[n3/2 log S+ n3D2κ(f )2
]] = O(n3/2 log S+ n3D2κ(f )2)

K

κ(f )n(log S+ n3/2D2κ(f )2)

≤
σ
√
n

2κ(f )
≤
σ
√
n‖f (x)‖∞

2

the last line obtained by taking K small enough. This implies that σmin(M)d(x, y) ≤ 2σ
√
n‖f (x)‖∞, i.e.

d(x, y) ≤ 2σβ(f , x).

Case II. min
{
µnorm(f , x), 1

‖f (x)‖∞

}
= µnorm(f , x).

In this case κ(f ) ≥ µnorm(f , x) =
√
n

σmin(M)
. By the hypothesis on u

[[n3/2 log S+ n3D2κ(f )2
]] = O(n3/2 log S+ n3D2κ(f )2)

K

D2n5/2κ(f )3(log S+ n3/2D2κ(f )2)

≤

√
nα•

48D2(n+ 1)3/2κ(f )3

≤

√
nη

8
√
n+ 1κ(f )

≤

√
nd(x, y)

4κ(f )
≤
σmin(M)d(x, y)

4

by taking K small enough and Lemma 6.14. This implies that 3
4σmin(M)d(x, y) ≤ 3

2σ
√
n‖f (x)‖∞, i.e.

d(x, y) ≤ 2σβ(f , x).
This shows part (i). Part (ii) is shown in a similar way. �



F. Cucker et al. / Journal of Complexity 24 (2008) 582–605 603

Lemma 6.17. Let u ≤ Kη2

log n
with K small enough and x1, x2 ∈ Gη.

(i) If fl(d(x1, x2)) ≤ fl( 3
2πη
√
n+ 1) then d(x1, x2) ≤ 2πη

√
n+ 1.

(ii) If fl(d(x1, x2)) > fl( 3
2πη
√
n+ 1) then d(x1, x2) > πη

√
n+ 1.

Proof. By Lemma 6.15 and the hypothesis on u, we obtain

Error(d(x1, x2)) =

[[√
n log n

η

]]
≤ O

(√
n log n

η

)
Kη2

log n
≤
π

2
η
√
n+ 1,

the last obtained by taking K small enough. Also, Error( 3
2πη
√
n+ 1) ≤ 3

2πη
√
n+ 1 γ3. The

statement easily follows from these two bounds. �

Lemma 6.18. Let u ≤ Kη
√
nD

D+log S+η
√
nD with K small enough, f ∈ S(Hd) and x ∈ Sn.

(i) If fl(‖f (x)‖∞) ≤ fl(
√

2
2 πη

√
(n+ 1)D) then ‖f (x)‖∞ ≤ πη

√
(n+ 1)D.

(ii) If fl(‖f (x)‖∞) > fl(
√

2
2 πη

√
(n+ 1)D) then ‖f (x)‖∞ > π

2 η
√

(n+ 1)D.

Proof. For part (i), from Proposition 6.10,

‖f (x)‖∞ ≤ fl(‖f (x)‖∞)+ [[D+ log S]].

Also,
√

2
2
πη
√

(n+ 1)D ≥ fl

(√
2

2
πη
√

(n+ 1)D
)
− [[η

√
(n+ 1)D]].

Therefore,

‖f (x)‖∞ −

√
2

2
πη
√

(n+ 1)D ≤ fl(‖f (x)‖∞)− fl

(√
2

2
πη
√

(n+ 1)D
)

+ [[D+ log S+ η
√

(n+ 1)D]]

≤ [[D+ log S+ η
√

(n+ 1)D]]

= O

(
D+ log S+ η

√
(n+ 1)D

)
Kη
√
nD

D+ log S+ η
√
nD

≤

(
1−
√

2
2

)
η
√

(n+ 1)D,

the last obtained by taking K sufficiently small. It follows that ‖f (x)‖∞ ≤ πη
√

(n+ 1)D and hence, part
(i) of the statement.

Part (ii) is proved similarly. �

6.5. Proof of Theorem 1.1 (4): Correctness

We will show that, if u ≤ 1
O(D2n5/2κ(f )3(log S+n3/2D2κ(f )2))

, and the algorithm halts with η ≥ α•
8D2(n+1)κ(f )2 ,

then the value r/2 returned by the algorithm is #R(f ). This is a consequence of the following floating
versions of Lemmas 5.1 and 5.2.

Lemma 6.19. Let f ∈ S(Hd), η ≥ α•
8D2(n+1)κ(f )2 and u ≤ 1

O(D2n5/2κ(f )3(log S+n3/2D2κ(f )2))
.

(i) For each x ∈ fl(A′(f )) there exists ζx ∈ Z(f ) such that ζx ∈ Bf (x). Moreover for each point
z ∈ fl(B

′

f (x)), the Newton sequence starting at z converges to ζx.
(ii) Let x, y ∈ fl(A′(f )). Then ζx = ζy ⇐⇒ fl(B

′

f (x)) ∩ fl(B
′

f (y)) 6= ∅.
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Proof. (i) Applying Proposition 6.13(ii), x ∈ fl(A′(f )) implies that α(f , x) < α•. Therefore, by
Theorem 6.1, there exists ζx ∈ Z(f ) such that ζx ∈ Bf (x). Moreover, if z ∈ fl(B

′

f (x)), by Lemma 6.16(i),
d(x, z) ≤ 2σβ(f , x) and the Newton sequence starting at z converges to ζx.

(ii) If ζx = ζy, then Bf (x) ∩ Bf (y) 6= ∅ which implies by Lemma 6.16(ii) that there exists z ∈

fl(B
′

f (x)) ∩ fl(B
′

f (y)). �

This immediately implies, using that Bf (x) ⊂ fl(B
′

f (x)) by Lemma 6.16(ii), the following
corresponding floating version of Lemma 5.2.

Lemma 6.20. Let f ∈ S(Hd), η ≥ α•
8D2(n+1)κ(f )2 and u ≤ 1

O(D2n5/2κ(f )3(log S+n3/2D2κ(f )2))
.

(i) For each component fl(U) of fl(G′η), there is a unique zero ζU ∈ Z(f ) such that ζU ∈ Z(fl(U)).
Moreover ζU ∈ ∩x∈fl(U) Bf (x).

(ii) If fl(U) and fl(V) are different components of fl(G′η), then ζU 6= ζV . �

In order to show the correctness of Count_Roots_2, we only need to prove that Z(f ) ⊂ Z(fl(G′η)).
This easily follows adapting the proof of Part (1) in Section 5.3 to this situation, making use of
Lemma 6.20 and the facts that Condition (i), fl(d(xi, xj)) > fl( 3

2πη
√
n+ 1), implies that d(xi, xj) >

πη
√
n+ 1 (Lemma 6.17(ii)) and Condition (ii), fl(‖f (x)‖∞) > fl(

√
2

2 πη
√

(n+ 1)D), implies that
‖f (x)‖∞ >

π
2 η
√

(n+ 1)D (Lemma 6.18(ii)).

6.6. Proof of Theorem 1.1 (4): Complexity

We want to show that if η ≤ α•
4D2(n+1)κ(f )2 then Count_Roots_2 (f ) halts. Note that this means

that
α•

8D2(n+ 1)κ(f )2
< η ≤

α•

4D2(n+ 1)κ(f )2

and hence, by Section 6.5, that it correctly returns #R(f ).
Because of the hypothesis on η, the hypotheses of Lemmas 6.2 and 6.3 are satisfied.
Let fl(U) 6= fl(V) be different components of fl(G′η), and therefore, by Lemma 6.20, ζU 6= ζV , and

for all x ∈ fl(U), y ∈ fl(V), by Lemma 6.2, d(x, y) > 2πη
√
n+ 1 holds. This implies, by Lemma 6.17(i),

that Condition (i) in Count_Roots_2 is satisfied.
Consider now x 6∈ fl(A′(f )). By Proposition 6.13(i), α(f , x) ≥ α•

3 . This implies, by Lemma 6.3,
that ‖f (x)‖∞ > πη

√
(n+ 1)D, which in turn, by Lemma 6.18(i), ensures that Condition (ii) in

Count_Roots_2 is satisfied. Hence, the algorithm halts.
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