40,749 research outputs found

    Infinite games with finite knowledge gaps

    Full text link
    Infinite games where several players seek to coordinate under imperfect information are deemed to be undecidable, unless the information is hierarchically ordered among the players. We identify a class of games for which joint winning strategies can be constructed effectively without restricting the direction of information flow. Instead, our condition requires that the players attain common knowledge about the actual state of the game over and over again along every play. We show that it is decidable whether a given game satisfies the condition, and prove tight complexity bounds for the strategy synthesis problem under ω\omega-regular winning conditions given by parity automata.Comment: 39 pages; 2nd revision; submitted to Information and Computatio

    Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

    Get PDF
    The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynch's probabilistic bisimilarity for probabilistic automata. In this paper, we present a characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condon's simple policy iteration on these games. The correctness of Condon's approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in UP∩coUP\textbf{UP} \cap \textbf{coUP} and \textbf{PPAD}. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. The characterization of the probabilistic bisimilarity distance mentioned above crucially uses a dual presentation of the Hausdorff distance due to M\'emoli. As an additional contribution, in this paper we show that M\'emoli's result can be used also to prove that the bisimilarity distance bounds the difference in the maximal (or minimal) probability of two states to satisfying arbitrary ω\omega-regular properties, expressed, eg., as LTL formulas

    Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs

    Get PDF
    We consider zero-sum games on infinite graphs, with objectives specified as sets of infinite words over some alphabet of colors. A well-studied class of objectives is the one of ?-regular objectives, due to its relation to many natural problems in theoretical computer science. We focus on the strategy complexity question: given an objective, how much memory does each player require to play as well as possible? A classical result is that finite-memory strategies suffice for both players when the objective is ?-regular. We show a reciprocal of that statement: when both players can play optimally with a chromatic finite-memory structure (i.e., whose updates can only observe colors) in all infinite game graphs, then the objective must be ?-regular. This provides a game-theoretic characterization of ?-regular objectives, and this characterization can help in obtaining memory bounds. Moreover, a by-product of our characterization is a new one-to-two-player lift: to show that chromatic finite-memory structures suffice to play optimally in two-player games on infinite graphs, it suffices to show it in the simpler case of one-player games on infinite graphs. We illustrate our results with the family of discounted-sum objectives, for which ?-regularity depends on the value of some parameters

    IST Austria Technical Report

    Get PDF
    We consider two-player partial-observation stochastic games where player 1 has partial observation and player 2 has perfect observation. The winning condition we study are omega-regular conditions specified as parity objectives. The qualitative analysis problem given a partial-observation stochastic game and a parity objective asks whether there is a strategy to ensure that the objective is satisfied with probability 1 (resp. positive probability). While the qualitative analysis problems are known to be undecidable even for very special cases of parity objectives, they were shown to be decidable in 2EXPTIME under finite-memory strategies. We improve the complexity and show that the qualitative analysis problems for partial-observation stochastic parity games under finite-memory strategies are EXPTIME-complete; and also establish optimal (exponential) memory bounds for finite-memory strategies required for qualitative analysis

    Minimizing Expected Cost Under Hard Boolean Constraints, with Applications to Quantitative Synthesis

    Get PDF
    In Boolean synthesis, we are given an LTL specification, and the goal is to construct a transducer that realizes it against an adversarial environment. Often, a specification contains both Boolean requirements that should be satisfied against an adversarial environment, and multi-valued components that refer to the quality of the satisfaction and whose expected cost we would like to minimize with respect to a probabilistic environment. In this work we study, for the first time, mean-payoff games in which the system aims at minimizing the expected cost against a probabilistic environment, while surely satisfying an ω\omega-regular condition against an adversarial environment. We consider the case the ω\omega-regular condition is given as a parity objective or by an LTL formula. We show that in general, optimal strategies need not exist, and moreover, the limit value cannot be approximated by finite-memory strategies. We thus focus on computing the limit-value, and give tight complexity bounds for synthesizing ϵ\epsilon-optimal strategies for both finite-memory and infinite-memory strategies. We show that our game naturally arises in various contexts of synthesis with Boolean and multi-valued objectives. Beyond direct applications, in synthesis with costs and rewards to certain behaviors, it allows us to compute the minimal sensing cost of ω\omega-regular specifications -- a measure of quality in which we look for a transducer that minimizes the expected number of signals that are read from the input

    On the Complexity of Branching Games with Regular Conditions

    Get PDF
    Infinite duration games with regular conditions are one of the crucial tools in the areas of verification and synthesis. In this paper we consider a branching variant of such games - the game contains branching vertices that split the play into two independent sub-games. Thus, a play has the form of~an~infinite tree. The winner of the play is determined by a winning condition specified as a set of infinite trees. Games of this kind were used by Mio to provide a game semantics for the probabilistic mu-calculus. He used winning conditions defined in terms of parity games on trees. In this work we consider a more general class of winning conditions, namely those definable by finite automata on infinite trees. Our games can be seen as a branching-time variant of the stochastic games on graphs. We address the question of determinacy of a branching game and the problem of computing the optimal game value for each of the players. We consider both the stochastic and non-stochastic variants of the games. The questions under consideration are parametrised by the family of strategies we allow: either mixed, behavioural, or pure. We prove that in general, branching games are not determined under mixed strategies. This holds even for topologically simple winning conditions (differences of two open sets) and non-stochastic arenas. Nevertheless, we show that the games become determined under mixed strategies if we restrict the winning conditions to open sets of trees. We prove that the problem of comparing the game value to a rational threshold is undecidable for branching games with regular conditions in all non-trivial stochastic cases. In the non-stochastic cases we provide exact bounds on the complexity of the problem. The only case left open is the 0-player stochastic case, i.e. the problem of computing the measure of a given regular language of infinite trees

    Descriptional Complexity of Formal Systems

    Get PDF
    We investigate certain word-construction games with variable turn orders. In these games, Alice and Bob take turns on choosing consecutive letters of a word of fixed length, with Alice winning if the result lies in a predetermined target language. The turn orders that result in a win for Alice form a binary language that is regular whenever the target language is, and we prove some upper and lower bounds for its state complexity based on that of the target language</p

    How Much Lookahead is Needed to Win Infinite Games?

    Get PDF
    Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent's moves. For ω\omega-regular winning conditions it is known that such games can be solved in doubly-exponential time and that doubly-exponential lookahead is sufficient. We improve upon both results by giving an exponential time algorithm and an exponential upper bound on the necessary lookahead. This is complemented by showing EXPTIME-hardness of the solution problem and tight exponential lower bounds on the lookahead. Both lower bounds already hold for safety conditions. Furthermore, solving delay games with reachability conditions is shown to be PSPACE-complete. This is a corrected version of the paper https://arxiv.org/abs/1412.3701v4 published originally on August 26, 2016

    Prompt Delay

    Get PDF
    Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent's moves. Recently, such games with quantitative winning conditions in weak MSO with the unbounding quantifier were studied, but their properties turned out to be unsatisfactory. In particular, unbounded lookahead is in general necessary. Here, we study delay games with winning conditions given by Prompt-LTL, Linear Temporal Logic equipped with a parameterized eventually operator whose scope is bounded. Our main result shows that solving Prompt-LTL delay games is complete for triply-exponential time. Furthermore, we give tight triply-exponential bounds on the necessary lookahead and on the scope of the parameterized eventually operator. Thus, we identify Prompt-LTL as the first known class of well-behaved quantitative winning conditions for delay games. Finally, we show that applying our techniques to delay games with \omega-regular winning conditions answers open questions in the cases where the winning conditions are given by non-deterministic, universal, or alternating automata
    • …
    corecore