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Abstract

We consider two-player partial-observation stochastic games where player 1 has partial observation and
player 2 has perfect observation. The winning condition we study areω-regular conditions specified as parity
objectives. The qualitative analysis problem given a partial-observation stochastic game and a parity objective
asks whether there is a strategy to ensure that the objectiveis satisfied with probability 1 (resp. positive
probability). While the qualitative analysis problems areknown to be undecidable even for very special
cases of parity objectives, they were shown to be decidable in 2EXPTIME under finite-memory strategies.
We improve the complexity and show that the qualitative analysis problems for partial-observation stochastic
parity games under finite-memory strategies are EXPTIME-complete; and also establish optimal (exponential)
memory bounds for finite-memory strategies required for qualitative analysis.

1 Introduction

Partial-observation stochastic games.Partial-observation stochastic games are played between two players
(player 1 and player 2) on a graph with finite state space. The game is played for infinitely many rounds where in
each round either player 1 chooses a move or player 2 chooses amove, and the successor state is determined by
a probabilistic transition function. Player 1 has partial observation where the state space is partitioned according
to observations that she can observe i.e., given the currentstate, the player can only view the observation of the
state (the partition the state belongs to), but not the precise state. Player 2, the adversary to player 1, has perfect
observation and can observe the precise state.

The class ofω-regular objectives.An objective specifies the desired set of behaviors (or paths) for the controller.
In verification and control of stochastic systems an objective is typically anω-regular set of paths. The class of
ω-regular languages extends classical regular languages toinfinite strings, and provides a robust specification
language to express all commonly used specifications [18]. In a parity objective, every state of the game is
mapped to a non-negative integer priority and the goal is to ensure that the minimum priority visited infinitely
often is even. Parity objectives are a canonical way to definesuchω-regular specifications.

Qualitative analysis. Given a partial-observation stochastic game with a parity objective and a start state, the
qualitative analysisasks whether the objective can be ensured with probability 1(almost-sure winning) or positive
probability (positive winning).

Known results and our contribution. The qualitative analysis problems for stochastic games with parity
objectives are undecidable [1]. However, in many practicalapplications the more relevant question is the
existence of finite-memory strategies. The qualitative analysis problems for partial-observation stochastic parity
games were shown to be decidable with 2EXPTIME complexity for finite-memory strategies [16]; and the exact
complexity of the problems were open which we settle in this work. Our contributions are as follows: for
the qualitative analysis problems for partial-observation stochastic parity games under finite-memory strategies



we show that (i) the problems are EXPTIME-complete; and (ii)if there is a finite-memory almost-sure (resp.
positive) winning strategy, then there is a strategy that uses at most exponential memory (matching the exponential
lower bound known for the simpler case of reachability and safety objectives). Thus we establish both optimal
computational and strategy complexity results.

Related works. The undecidability of the qualitative analysis problem forpartial-observation stochastic parity
games with infinite-memory strategies follows from [1]. Forpartially observable Markov decision processes
(POMDPs), which is a special case of partial-observation stochastic games where player 2 does not have any
choices, the qualitative analysis problem for parity objectives with finite-memory strategies was shown to be
EXPTIME-complete [3]. For partial-observation stochastic games the almost-sure winning problem was shown
to be EXPTIME-complete for Büchi objectives (both for finite-memory and infinite-memory strategies) [7, 4].
Finally, for partial-observation stochastic parity gamesthe almost-sure winning problem under finite-memory
strategies was shown to be decidable in 2EXPTIME in [16].

2 Partial-observation Stochastic Parity Games

We consider partial-observation stochastic parity games where player 1 has partial observation and player 2
has perfect observation. We will consider parity objectives, and for almost-sure winning under finite-memory
strategies for player 1 present a polynomial reduction to sure winning in three-player parity games where player 1
has partial observation, player 3 has perfect observation and is helpful towards player 1, and player 2 has perfect
observation and is adversarial to player 1. A similar reduction also works for positive winning. We will then
show how to solve the sure-winning problem for three-playergames using alternating parity tree automata. Thus
the steps are as follows:

1. Reduction of partial-observation stochastic parity games for almost-sure winning with finite-memory
strategies to three-player parity games sure-winning problem (with player 1 partial, other two perfect,
player 1 and player 3 existential, and player 2 adversarial).

2. Solving the sure winning problem for three-player paritygames using alternating parity tree automata.

In this section we present the details of the first step. The second step is given in the following section.

2.1 Basic definitionsWe start with basic definitions related to partial-observation stochastic parity games.

Partial-observation stochastic games.We will consider slightly different notation (though equivalent) to the
classical definitions, but the slightly different notationhelps for more elegant and explicit reduction. We consider
partial-observation stochastic games as a tupleG = (S1, S2, SP , A1, δ, E,O, obs) as follows:S = S1 ∪S2 ∪SP

is the state space partitioned into player-1 states (S1), player-2 states (S2), and probabilistic states (SP ); andA1

is a finite set of actions for player 1. Since player 2 has perfect observation, she will choose edges instead
of actions. The transition function is as follows:δ : S1 × A1 → S2 that given a player-1 state inS1

and an action inA1 gives the next state inS2 (which belongs to player 2); andδ : SP → D(S1) given a
probabilistic state gives the probability distribution over the set of player-1 states. The set of edges is as follows:
E = {(s, t) | s ∈ SP , t ∈ S1, δ(s)(t) > 0} ∪ E′, whereE′ ⊆ S2 × SP . The observation setO and observation
mappingobs are standard, i.e.,obs : S → O. Note that player 1 plays after every three steps (every moveof
player 1 is followed by a move of player 2, then a probabilistic choice). In other words, first player 1 chooses an
action, then player 2 chooses an edge, and then there is a probability distribution over states where player 1 again
chooses and so on.

Three player non-stochastic turn-based games.We consider three-player partial-observation (non-stochastic
turn-based) games as a tupleG = (S1, S2, S3, A1, δ, E,O, obs) as follows:S is the state space partitioned into
player-1 states (S1), player-2 states (S2), and player-3 states (S3); andA1 is a finite set of actions for player 1.
The transition function is as follows:δ : S1×A1 → S2 that given a player-1 state inS1 and an action inA1 gives



the next state (which belongs to player 2). The set of edges isas follows:E ⊆ (S2 ∪ S3) × S. Hence in these
games player 1 chooses an action, and the other players have perfect observation and choose edges. We will only
consider the sub-class where player 1 plays in everyk-steps, for a fixedk. The observation setO and observation
mappingobs are again standard.

Plays and strategies.A play in a partial-observation stochastic game is an infinite sequence of statess0s1s2 . . .
such that the following conditions hold for alli ≥ 0: (i) if si ∈ S1, then there existsai ∈ A1 such that
si+1 = δ(si, ai); and (ii) if si ∈ (S2 ∪ SP ), then(si, si+1) ∈ E. The functionobs is extended to sequences
ρ = s0 . . . sn of states in the natural way, namelyobs(ρ) = obs(s0) . . . obs(sn). A strategy for a player is a
recipe to extend the prefix of a play. Formally, player-1 strategies are functionsσ : S∗ · S1 → A1; and player-2
(and analogously player-3 strategies) are functions:π : S∗ ·S2 → S such that for allw ∈ S∗ ands ∈ S2 we have
(s, π(w · s)) ∈ E. We will consider only observation-based strategies for player 1, i.e., for two play prefixesρ
andρ′ if the corresponding observation sequences match (obs(ρ) = obs(ρ′)), then the strategy must choose the
same action (σ(ρ) = σ(ρ′)); and the other players have all strategies. The notations for three-player games are
similar.

Finite-memory strategies.A player-1 strategy usesfinite-memoryif it can be encoded by a deterministic
transducer〈M,m0, σu, σn〉 whereM is a finite set (the memory of the strategy),m0 ∈ M is the initial memory
value,σu : M × O → M is the memory-update function, andσn : M × O → A1 is the next-move function.
The sizeof the strategy is the number|M| of memory values. If the current observation iso, and the current
memory value ism, then the strategy chooses the next actionσn(m, o), and the memory is updated toσu(m, o).
Formally,〈M,m0, σu, σn〉 defines the strategyσ such thatσ(ρ · q) = σn(σ̂u(m0, obs(ρ)), obs(s)) for all ρ ∈ S∗

ands ∈ S1, whereσ̂u extendsσu to sequences of observations as expected. This definition extends to infinite-
memory strategies by dropping the assumption that the setM is finite.

Parity objectives. An objective for Player 1 in G is a setϕ ⊆ Sω of infinite sequences of states. A
play ρ satisfiesthe objectiveϕ if ρ ∈ ϕ. For a playρ = s0s1 . . . we denote byInf(ρ) the set of states
that occur infinitely often inρ, that is, Inf(ρ) = {s | sj = s for infinitely manyj’s}. For d ∈ N, let
p : S → {0, 1, . . . , d} be apriority function, which maps each state to a nonnegative integer priority. The
parity objectiveParity(p) requires that the minimum priority that occurs infinitely often be even. Formally,
Parity(p) = {ρ | min{p(s) | s ∈ Inf(ρ)} is even}. Parity objectives are a canonical way to expressω-regular
objectives [18].

Almost-sure winning and positive winning. An eventis a measurable set of plays. For a partial-observation
stochastic game, given strategiesσ andπ for the two players, the probabilities of events are uniquely defined [19].
For a parity objectiveParity(p), we denote byPσ,π

s (Parity(p)) the probability thatParity(p) is satisfied by the play
obtained from the starting states when the strategiesσ andπ are used. Thealmost-sure(resp.positive) winning
problem under finite-memory strategies asks, given a partial-observation stochastic game, a parity objective
Parity(p), and a starting states, whether there exists a finite-memory observation-based strategyσ for player 1
such that against all strategiesπ for player 2 we havePσ,π

s (Parity(p)) = 1 (resp. Pσ,π
s (Parity(p)) > 0). The

almost-sure and positive winning problems are also referred to as the qualitative analysis problems for stochastic
games.

Sure winning in three player games.In three player games once the starting states and strategiesσ, π, andτ of
the three players are fixed we obtain a unique play, which we denote asρσ,π,τs . In three player games we consider
the following surewinning problem: given a parity objectiveParity(p), sure winning is ensured if there exists
a finite-memory observation-based strategyσ for player 1, such that in the two-player perfect-observation game
obtained after fixingσ, player 3 can esnure the parity objective against all strategies of player 2. Formally, the
sure winning problem asks whether there exist a finite-memory observation-based strategyσ for player 1 and a
strategyτ for player 3, such that for all strategiesπ for player 2 we haveρσ,π,τs ∈ Parity(p).

REMARK 1. We remark that for the model of partial-observation stochastic games studied in literature the



two players simultaneously choose actions, and a probabilistic transition function determine the probability
distribution of the next state. In our model, the game is turn-based and the probability distribution is chosen only
in probabilistic states. However, it follows from the results of [5] that the models are equivalent: by the results
of [5, Section 3.1] the interaction of the players and probability can be separated without loss of generality;
and [5, Theorem 4] shows that in presence of partial observation, concurrent games can be reduced to turn-
based games in polynomial time.

REMARK 2. In this work we only consider pure strategies. In partial-observation games, randomized strategies
are also relevant as they are more powerful than pure strategies. However, for finite-memory strategies the almost-
sure and positive winning problem for randomized strategies can be reduced in polynomial time to the problem
for finite-memory pure strategies [4, 16]. Hence without loss of generality we only consider pure strategies.

2.2 Reduction of partial-observation stochastic games to three player gamesIn this section we present a
polynomial-time reduction for the almost-sure winning problem in partial-observation stochastic parity games to
the sure winning problem in three player parity games.

Reduction. Let us denote by[d] the set{0, 1, . . . , d}. Given a partial-observation stochastic parity game graph
G = (S1, S2, SP , A1, δ, E,O, obs) with a parity objective defined by priority functionp : S → [d] we construct
a 3-player game graphG = (S1, S2, S3, A1, δ, E,O, obs) together with priority functionp. The construction is
specified as follows.

1. For every nonprobabilistic states ∈ S1 ∪ S2, there is a corresponding states ∈ S such that

• s ∈ S1 if s ∈ S1, elses ∈ S2;

• p(s) = p(s) andobs(s) = obs(s);

• δ(s, a) = t wheret = δ(s, a), for s ∈ S1 anda ∈ A1; and

• (s, t) ∈ E iff (s, t) ∈ E, for s ∈ S2.

2. Every probabilistic states ∈ SP is replaced by the gadget shown in Figure 1 and Figure 2. In thefigure,
square-shaped states are player-2 states (inS2), and circle-shaped (or ellipsoid-shaped) states are player-3
states (inS3). Formally, from the states with priority p(s) and observationobs(s) (i.e., p(s) = p(s) and
obs(s) = obs(s)) the players play the following three-step game inG.

• First, in states player 2 chooses a successor(s̃, 2k), for 2k ∈ {0, 1, . . . , p(s) + 1}.

• For every state(s̃, 2k), we havep((s̃, 2k)) = p(s) and obs((s̃, 2k)) = obs(s). For k ≥ 1,
in state(s̃, 2k) player 3 chooses between two successors: state(ŝ, 2k − 1) with priority 2k − 1
and same observation ass, or state(ŝ, 2k) with priority 2k and same observation ass, (i.e.,
p((ŝ, 2k − 1)) = 2k − 1, p((ŝ, 2k)) = 2k, andobs((ŝ, 2k − 1)) = obs((ŝ, 2k)) = obs(s)). The
state(s̃, 0) has only one successor(ŝ, 0), with p((ŝ, 0)) = 0 andobs((ŝ, 0)) = obs(s).

• Finally, in each state(ŝ, k) the choice is between all statest such that(s, t) ∈ E, and it belongs to
player 3 (i.e., inS3) if k is odd, and to player 2 (i.e., inS2) if k is even. Note that every state in the
gadget has the same observation as the original state.

We denote byG = Tras(G) the 3-player game, where player 1 has partial-observation, and both player 2 and
player 3 have perfect-observation, obtained from a partial-observation stochastic game. Also observe that inG

there are exactly four steps between two player 1 moves.

Observation sequence mapping.Note that since in our partial-observation games first player 1 plays, then
player 2, followed by probabilistic states, repeated ad infinitum, wlog, we can assume that for every observation



s p(s)

. . .

(s̃, 0) p(s) (s̃, 2) p(s) (s̃, 4) p(s) . . . (s̃, p(s)) p(s)

(ŝ, 0) 0 (ŝ, 1) 1 (ŝ, 2) 2 (ŝ, 3) 3 (ŝ, 4) 4 . . . (ŝ, p(s)−1)

p(s)−1

(ŝ, p(s))

p(s)

· ·
E(s)

· ·
E(s)

· ·
E(s)

· ·
E(s)

· ·
E(s)

· ·
E(s)

· ·
E(s)

Figure 1: Reduction gadget whenp(s) is even.

o ∈ O we have either (i)obs−1(o) ⊆ S1; or (ii) obs−1(o) ⊆ S2; or (i) obs−1(o) ⊆ SP . Thus we partition the
observations asO1, O2, andOP . Given an observation sequenceκ = o0o1o2 . . . on in G corresponding to a finite
prefix of a play, we inductively define the sequenceκ = h(κ) in G as follows: (i)h(o0) = o0 if o0 ∈ O1 ∪ O2,
elseo0o0o0; (ii) h(o0o1 . . . on) = h(o0o1 . . . on−1)on if on ∈ O1 ∪ O2, elseh(o0o1 . . . on−1)ononon. Intuitively
the mapping takes care of the two extra step of the gadgets introduced for probabilistic states. The mapping is
a bijection, and hence given an observation sequenceκ of a play prefix inG we consider the inverse play prefix
κ = h

−1
(κ) such thath(κ) = κ.

Strategy mapping.Given an observation-based strategyσ in G we consider a strategyσ = Tras(σ) as follows:
for an observation sequenceκ corresponding to a play prefix inG we haveσ(κ) = σ(h(κ)). The strategy
σ is observation-based (sinceσ is observation-based). The inverse mappingTras

−1 of strategies fromG to G

is analogous. Note that forσ in G we haveTras(Tras−1(σ)) = σ. Let σ be a finite-memory strategy with
memoryM for player 1 in the gameG. The strategyσ can be considered as a memoryless strategy, denoted as
σ∗ = MemLess(σ), in G×M (the synchronous product ofG with M). Given a strategy (pure memoryless)π for
player 2 in the2-player gameG×M, a strategyπ = Tras(π) in the partial-observation stochastic gameG ×M

is defined as follows:

π((s,m)) = (t,m′), if and only if π((s,m)) = (t,m′); for all s ∈ S2.

End component and the key property.Given an MDP, a setU is an end component in the MDP if the sub-graph
induced byU is strongly connected, and for all probabilistic states inU all out-going edges end up inU (i.e.,U is
closed for probabilistic states). The key property about MDPs that will be used in our proofs is a result established
by [8, 9] that given an MDP, for all strategies, with probability 1 the set of states visited inifinitely often is an end
component. The key property will allow us to analyze end components of MDPs and from properties of the end
component conclude properties about all strategies.

The key lemma.We are now ready to present our main lemma that establishes the correctness of the reduction.
Since the proof of the lemma is long we will split the proof into two parts.

LEMMA 2.1. Given a partial-observation stochastic parity gameG with parity objectiveParity(p), let G =
Tras(G) be the3-player game with the modified parity objectiveParity(p) obtained by our reduction. Consider



s p(s)

. . .

(s̃, 0) p(s) (s̃, 2) p(s) (s̃, 4) p(s) . . . (s̃, p(s) + 1) p(s)

(ŝ, 0) 0 (ŝ, 1) 1 (ŝ, 2) 2 (ŝ, 3) 3 (ŝ, 4) 4 . . . (ŝ, p(s)) p(s)

· ·
E(s)

· ·
E(s)

· ·
E(s)

· ·
E(s)

· ·
E(s)

· ·
E(s)

Figure 2: Reduction gadget whenp(s) is odd.

a finite-memory strategyσ with memoryM for player 1 inG. Let us denote byGσ the perfect-observation
two-player game played overG×M by player 2 and player 3 after fixing the strategyσ for player 1. Let

U
σ
1 = {(s,m) ∈ S ×M | player 3 has a sure winning strategy for the objectiveParity(p) from (s,m) in Gσ};

and letU
σ
2 = (S×M)\U

σ
1 be the set of sure winning states for player 2 inGσ. Consider the strategyσ = Tras(σ),

and the setsUσ
1 = {(s,m) ∈ S ×M | (s,m) ∈ U

σ

1}; andUσ
2 = (S ×M) \ Uσ

1 . The following assertions hold.

1. For all (s,m) ∈ Uσ
1 , for all strategiesπ of player 2 we havePσ,π

(s,m)(Parity(p)) = 1.

2. For all (s,m) ∈ Uσ
2 , there exists a strategyπ of player 2 such thatPσ,π

(s,m)(Parity(p)) < 1.

We first present the proof for part 1 and then for part 2.

Proof. [(of Lemma 2.1: part 1).] Consider a finite-memory strategyσ for player 1 with memoryM in the gameG.
Once the strategyσ is fixed we obtain the two-player finite-state perfect-observation gameGσ (between player 3
and the adversary player 2). Recall the sure winning sets

U
σ
1 = {(s,m) ∈ S ×M | player 3 has a sure winning strategy for the objectiveParity(p) from (s,m) in Gσ}

for player 3, andU
σ
2 = (S ×M) \ U

σ
1 for player 2, respectively, inGσ. Let σ = Tras(σ) be the corresponding

strategy inG. We denote byσ∗ = MemLess(σ) and σ∗ the corresponding memoryless strategies ofσ in
G × M and σ in G × M, respectively. We will show that all states inUσ

1 are almost-sure winning, i.e.,
given σ, for all (s,m) ∈ Uσ

1 , for all strategiesπ for player 2 inG we havePσ,π

(s,m)(Parity(p)) = 1 (recall

Uσ
1 = {(s,m) ∈ S ×M | (s,m) ∈ U

σ

1}). We will also consider explicitly the MDP(G×M ↾ Uσ
1 )σ∗ to analyze

strategies of player 2 on the synchronous product, i.e., we consider the player-2 MDP obtained after fixing the
memoryless strategyσ∗ in G×M, and then restrict the MDP to the setUσ

1 .

Two key components.The proof will have two key components. First, we argue that all end components in the
MDP restricted toUσ

1 are winning for player 1 (have min priority even). Second we argue that given the starting



state(s,m) is inUσ
1 , almost-surely the set of states visited inifnitely often is an end component inUσ

1 against all
strategies of player 2. This two key components establish the desired result.

Winning end components.Our first goal is to show that every end componentC in the player-2 MDP
(G×M ↾ Uσ

1 )σ∗ is winning for player 1 for the parity objective, i.e., the minimum priority ofC is even. We argue
that if there is an end componentC in (G×M ↾ Uσ

1 )σ∗ that is winning for player 2 for the parity objective (i.e.,
minimum priority ofC is odd), then against any memoryless player-3 strategyτ in Gσ, player 2 can construct a
cycle in the game(G ×M ↾ U

σ
1 )σ∗ that is winning for player 2 (i.e., minimum priority of the cycle is odd) (note

that given the strategyσ is fixed, we have finite-state perfect-observation parity games, and hence in the enlarged
game we can restrict ourselves to memoryless strategies forplayer 3). This will give a contradiction because
player 3 has a sure winning strategy from the setU

σ

1 in the 2-player parity gameGσ. Towards contradiction, let
C be an end component in(G × M ↾ Uσ

1 )σ∗ that is winning for player 2, and let its minimum odd prioritybe
2r − 1, for somer ∈ N. Then there is a memoryless strategyπ′ for player 2 in the MDP(G ×M ↾ Uσ

1 )σ∗ such
thatC is a bottom scc (or a terminal scc) in the Markov chain graph of(G×M ↾ Uσ

1 )σ∗,π′ . Let τ be a memoryless

for player 3 in(G × M ↾ U
σ
1 )σ∗ . Givenτ for player 3 and strategyπ′ for player 2 inG × M, we construct a

strategyπ for player 2 in the game(G×M ↾ U
σ
1 )σ∗ as follows. For a player-2 state inC, the strategyπ follows

the strategyπ′, i.e., for a state(s,m) ∈ C with s ∈ S2 we haveπ((s,m)) = (t,m′) where(t,m′) = π′((s,m)).
For a probabilistic state inC we define the strategy as follows (i.e., we now consider a state (s,m) ∈ C with
s ∈ SP ):

• if for some successor state((s̃, 2ℓ),m′) of (s,m), the player-3 strategyτ chooses a successor((ŝ, 2ℓ −
1),m′′) ∈ C at the state((s̃, 2ℓ),m′), for ℓ < r, then the strategyπ chooses at state(s,m) the successor
((s̃, 2ℓ),m′); and

• otherwise the strategyπ chooses at state(s,m) the successor((s̃, 2r),m′), and at((ŝ, 2r),m′′) it chooses
a successor shortening the distance (i.e., chooses a successor with smaller breadth-first-search distance) to
a fixed state(s∗,m) of priority 2r − 1 of C (such a state(s∗,m) exists inC sinceC is strongly connected
and has minimum priority2r−1); and for the fixed state of priority2r−1 the strategy chooses a successor
(s,m) such that(s,m) ∈ C.

Consider an arbitrary cycle in the subgraph(G×M ↾ C)σ,π,τ whereC is the set of states in the gadgets of states
in C. There are two cases.

• If there is at least one state((ŝ, 2ℓ − 1),m), with ℓ ≤ r on the cycle, then the minimum priority on the
cycle is odd, as even priorities smaller than2r are not visited by the construction asC does not contain
states of even priorities smaller than2r.

• Otherwise, in all states choices shortening the distance tothe state with priority2r− 1 are taken and hence
the cycle must contatin a priority2r − 1 state and all other priorities on the cycle are≥ 2r − 1, so2r − 1
is the minimum priority on the cycle.

Hence a winning end component for player 2 in the MDP contradicts that player 3 has a sure winning strategy in
Gσ from U

σ
1 . Thus it follows that all end components are winning for player 1 in(G×M ↾ Uσ

1 )σ∗ .

Almost-sure reachability to winning end-components.Finally, we consider the probability of staying inUσ
1 . For

every probabilistic state(s,m) ∈ (SP × M) ∩ Uσ
1 , all of its successors must be inUσ

1 . Otherwise, player 2

in the state(s,m) of the gameGσ can choose the successor(s̃, 0) and then a successor to its winning setU
σ
2 .

This will again contradict the assumption that(s,m) belong to the sure winning statesU
σ

1 for player 3 inGσ.
Similarly, for every state(s,m) ∈ (S2 × M) ∩ Uσ

1 we must have all its successors are inUσ
1 . For all states

(s,m) ∈ (S1 × M) ∩ Uσ
1 , the strategyσ chooses a successor inUσ

1 . Hence for all strategiesπ, for all states



(s,m) ∈ Uσ
1 , the objectiveSafe(Uσ

1 ) is ensured almost-surely (in fact surely), and hence with probability 1
the set of states visited infinitely often is an end componentin Uσ

1 (by key property of MDPs). Since every end
component in(G×M ↾ Uσ

1 )σ∗ has even minimum priority, it follows that the strategyσ is an almost-sure winning
strategy for the parity objectiveParity(p) for player 1 from all states(s,m) ∈ Uσ

1 . This concludes the proof for
first part of the lemma.

We now present the proof for the second part.

Proof. [(of Lemma 2.1:part 2).] Consider a memoryless sure winningstrategyπ for player 2 inGσ from the set
U

σ
2 . Let us consider the strategiesσ = Tras(σ) andπ = Tras(π), and consider the Markov chainGσ,π. Our

proof will show the following two properties to establish the claim: (1) in the MarkovGσ,π all bottom sccs (the
recurrent classes) inUσ

2 have odd minimum priority; and (2) from all states inUσ
2 some recurrent class inUσ

2 is
reached with positive probability. This will establish thedesired result of the lemma.

No winning bottom scc for player 1 inUσ
2 . Assume towards contradiction that there is a bottom sccC contained

in Uσ
2 in the Markov chainGσ,π such that the minimum priority inC is even. FromC we will construct a winning

cycle (minimum priority is even) inU
σ
2 for player 3 in the gameGσ given the strategyπ. This will contradict that

π is a sure winning strategy for player 2 fromU
σ

2 in Gσ. Let the minimum priority ofC be2r for somer ∈ N.
The idea is similar to the construction of part 1. GivenC, and the strategiesσ andπ, we construct a strategyτ
for player 3 inG as follows: For a probabilistic state(s,m) in C:

• if π chooses a state((s̃, 2ℓ− 2),m′), with ℓ ≤ r, thenτ chooses the successor((ŝ, 2ℓ− 2),m′);

• otherwiseℓ > r (i.e.,π chooses a state((s̃, 2ℓ−2),m′) for ℓ > r), thenτ chooses the state((ŝ, 2ℓ−1),m′),
and then a successor to shorten the distance to a fixed state with priority 2r (such a state exists inC); and
for the fixed state of priority2r, the strategyτ chooses a successor inC.

Similar to the proof of part 1, we argue that we obtain a cycle with minimum even priority in the graph
(G × M ↾ U

σ
2 )σ,π,τ . Consider an arbitrary cycle in the subgraph(G × M ↾ C)σ,π,τ whereC is the set of

states in the gadgets of states inC. There are two cases.

• If there is at least one state((ŝ, 2ℓ − 2),m), with ℓ ≤ r on the cycle, then the minimum priority on the
cycle is even, as odd priorities strictly smaller than2r+1 are not visited by the construction asC does not
contain states of odd priorities strictly smaller than2r + 1.

• Otherwise, in all states choices shortening the distance tothe state with priority2r are taken and hence the
cycle must contatin a priority2r state and all other priorities on the cycle are≥ 2r, so2r is the minimum
priority on the cycle.

Thus we obtain cycles winning for player 3, and this contradicts thatπ is a sure winning strategy for player 2
from U

σ

2 . Thus it follows that all recurrent classes inUσ
2 in the Markov chainGσ,π are winning for player 2.

Not almost-sure reachability toUσ
1 . We now argue that givenσ andπ there exists no state inUσ

2 such thatUσ
1 is

reached almost-surely. This would ensure that from all states inUσ
2 some recurrent class inUσ

2 is reached with
positive probability and establish the desired claim sincewe have already shown that all recurrent classes inUσ

2

are winning for player 2. Givenσ andπ, letX ⊆ Uσ
2 be the set of states such the setUσ

1 is reached almost-surely
from X, and assume towards contradiction thatX is non-empty. This implies that from every state inX, in the
Markov chainGσ,π, there is a path to the setUσ

1 , and from all states inX the successors are inX. We construct
a strategyτ in the3-player gameGσ against strategyπ exactly as the strategy constructed for winning bottom
scc, with the following difference: instead of shortening distance the a fixed state of priority2r (as for winning
bottom scc’s), in this case the strategyτ shortens distance toU

σ

1 . Formally, givenX, the strategiesσ andπ, we
construct a strategyτ for player 3 inG as follows: For a probabilistic state(s,m) in X:



• if π chooses a state((s̃, 2ℓ),m′), with ℓ ≥ 1, then τ chooses the state((ŝ, 2ℓ − 1),m′), and then a

successor to shorten the distance to the setU
σ

1 (such a successor exists since from all states inX the set

U
σ
1 is reachable).

Against the strategy of player 3 inGσ either (i)U
σ
1 is reached in finitely many steps, or (ii) else player 2 infinitely

often chooses successor states of the form(s̃, 0) with priority 0 (the minimum even priority), i.e., there is a
cycle with a state(s̃, 0) which has priority 0. If priority 0 is visited infinitely often, then the parity objective is

satisfied. This ensures that inGσ player 3 can ensure either to reachU
σ
1 in finitely many steps from some state

in U
σ

2 againstπ, or the parity objective is satisfied without reachingU
σ

1 . In either case this implies that againstπ

player 3 can ensure to satisfy the parity objective (by reaching U
σ
1 in finitely many steps and then playing a sure

winning strategy fromU
σ
1 , or satisfying the parity objective without reachingU

σ
1 by visiting priority 0 infinitely

often) from some state inU
σ

2 , contradicting thatπ is a sure winning strategy for player 2 fromU
σ

2 . Thus we have
a contradiction, and obtain the desired result.

Lemma 2.1 establishes the desired correctness result as follows: (1) If σ is a finite-memory strategy such that in
Gσ player 3 has a sure winning strategy, then by part 1 of Lemma 2.1 we obtain thatσ = Tras(σ) is almost-sure
winning. (2) Conversely, ifσ is a finite-memory almost-sure winning strategy, then consider a strategyσ such
thatσ = Tras(σ) (i.e.,σ = Tras

−1(σ)). By part 2 of Lemma 2.1, given the finite-memory strategyσ, player 3
must have a sure winning strategy inGσ, otherwise we will have a contradiction thatσ is almost-sure winning.
Thus we have the following theorem.

THEOREM 2.1. (POLYNOMIAL REDUCTION) Given a partial-observation stochastic game graphG with a
parity objectiveParity(p) for player 1, we construct a three-player gameG = Tras(G) with a parity objective
Parity(p), where player 1 has partial-observation and the other two players have perfect-observation, in time
O((n+m) · d), wheren is the number of states of the game,m is the number of transitions, andd the number of
priorities of the priority functionp, such that the following assertion holds: there is a finite-memory almost-sure
winning strategyσ for player 1 inG iff there exists a finite-memory strategyσ for player 1 inG such that in the
gameGσ obtained givenσ, player 3 has a sure winning strategy forParity(p). The game graphTras(G) has
O(n · d) states,O(m · d) transitions, andp has at mostd+ 1 priorities.

REMARK 3. We have presented the details of the polynomial reduction for almost-sure winning, and now we
discuss how a very similar reduction works for positive winning. We explain the key steps, and omit the proof as
it is very similar to our proof for almost-sure winning. For clarity in presentation we use a priority−1 in the
reduction, which is the least odd priority, and visiting thepriority −1 infinitely often ensures loosing for player 1.
Note that all priorities can be increased by 2 to ensure that priorities are nonnegative, but we use the priority−1
as it keeps the changes in the reduction for positive winningminimal as compared to almost-sure winning.

Key steps.First we observe that in the reduction gadgets for almost-sure winning, player 2 would never choose
the leftmost edge to state(s̃, 0) froms in the cycles formed, but only use them for reachability to cycles. Intuitively,
the leftmost edge corresponds to edges which must be choosenonly finitely often and ensures positive reachability
to the desired end components in the stochastic game. For positive winning these edges need to be in control of
player 3, but must be allowed to be taken only finitely often. Thus for positive winning, the gadget is modified as
follows: (i) we omit the leftmost edge from the states; (ii) we add an additional player-3 statês in the beginning,
which has an edge tos and an edge to(ŝ, 0); and (iii) the state(ŝ, 0) is assigned priority−1. Figure 3 presents
a pictorial illustration of the gadget of the reduction for positive winning. Note that in the reduction for positive
winning the finite reachability through the leftmost edge isin control of player-3, but it has the worst odd priority
and must be used only finitely often. This essentially corresponds to reaching winning end components in finitely
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Figure 3: Reduction gadget for positive winning whenp(s) is even.

many steps in the stochastic game. In the game obtained afterthe reduction, the three-player game is surely
winning iff player 1 has a finite-memory positive winning strategy in the partial-observation stochastic game.

In this section we established polynomial reductions of thequalitative analysis problems for partial-
observation stochastic parity games under finite-memory strategies to the sure winning problem in three-player
games (player 1 partial, both the other players perfect, andplayer 1 and 3 existential, player 2 adversarial).
The following section shows that the sure winning problem for three-player games is EXPTIME-complete by
reduction to alternating parity tree automata.

3 Solving Sure Winning for Three-player Parity Games

In this section we will present the solution for sure winningin three-player non-stochastic parity games. We start
with the basic definitions.

3.1 Basic definitionsWe first present a model of partial-observation concurrent3-player games, where player1
has partial observation, and player2 and player3 have perfect observation. Player1 and Player3 have the
same objective and they play against player2. We will also show that three-player turn-based games model(of
Section 2) can be treated as a special case of this model.

Partial-observation three-player concurrent games.Given alphabetsAi of actions for playeri (i = 1, 2, 3),
a partial-observation three-player concurrent game (for brevity, 3-player gamein sequel) is a tupleG =
〈S, s0, δ,O, obs〉 where:

• S is a finite set of states;

• s0 ∈ S is the initial state;



• δ : S × A1 × A2 ×A3 → S is a deterministic transition function that, given a current states, and actions
a1 ∈ A1, a2 ∈ A2, a3 ∈ A3 of the players, gives the successor states′ = δ(s, a1, a2, a3) of s; and

• O is a finite set of observations andobs is the observation mapping (as in Section 2).

Modeling turn-based games.A three-player turn-based game will be a special case of the model three-player
concurrent games. Formally, we consider a three-player turn-based game as a tuple〈S1, S2, S3, A1, δ, E〉 where
δ : S1 ×A1 → S2 is the transition function for player1, andE ⊆ (S2 ∪S3)×S is a set of edges. Since player2
and player3 have perfect observation, we consider thatA2 = S andA3 = S, that is player2 and player3 choose
directly a successor in the game. The transition functionδ for an equivalent concurrent version is as follows
(i) for s ∈ S1, for all a2 ∈ A2 anda3 ∈ A3, we haveδ(s, a1, a2, a3) = δ(s, a1); (ii) for s ∈ S2, for all a1 ∈ A1

anda3 ∈ A3, for a2 = s′ we haveδ(s, a1, a2, a3) = s′ if (s, s′) ∈ E, elseδ(s, a1, a2, a3) = sgood, wheresgood
is a special state in which player2 loses (the objective of player1 and3 is satisfied if player2 chooses an edge
that is not inE); and (iii) for s ∈ S3, for all a1 ∈ A1 anda2 ∈ A2, for a3 = s′ we haveδ(s, a1, a2, a3) = s′

if (s, s′) ∈ E, elseδ(s, a1, a2, a3) = sbad, wheresbad is a special state in which player2 wins (the objective
of player1 and3 is violated if player3 chooses an edge that is not inE). The setO and the mappingobs are
obvious.

Strategies.Define the setΣ of strategiesσ : O+ → A1 of player1 that, given a sequence of past observations,
return an action for player1. Equivalently, we sometimes view a strategy of player1 as a functionσ : S+ → A1

satisfyingσ(ρ) = σ(ρ′) for all ρ, ρ′ ∈ S+ such thatobs(ρ) = obs(ρ′), and say thatσ is observation-based. A
strategy of player2 (resp, player3) is a functionπ : S+ → A2 (resp.,τ : S+ → A3) without any restriction. We
denote byΠ, Γ the set of strategies of player2, 3 respectively.

Sure winning. Given strategiesσ, π, τ of the three players inG, the outcome playfrom s0 is the infinite
sequenceρσ,π,τs0 = s0s1 . . . such that for allj ≥ 0, we havesj+1 = δ(sj , aj , bj , cj) whereaj = σ(s0 . . . sj),
bj = π(s0 . . . sj), andcj = τ(s0 . . . sj). Given a gameG = 〈S, s0, δ,O, obs〉 and a parity objectiveϕ ⊆ Sω, the
sure winning problem asks to decide if∃σ ∈ Σ · ∀π ∈ Π · ∃τ ∈ Γ : ρσ,π,τs0 ∈ ϕ. It will follow from our result that
if the answer to the sure winning problem is yes, then there exists a witness finite-memory strategyσ for player 1.

3.2 Alternating Tree Automata In this section we recall the definitions of alternating treeautomata, and
present the solution of the sure winning problem for three-player games with parity objectives by a reduction
to the emptiness problem of alternating tree automata with parity acceptance conditions.

Trees.We follow some definitions and notation of [11]. Given a finitesequencew = s0 . . . sn ∈ Ω+ over a finite
setΩ, let last(w) = sn be the last element ofw.

A Ω-labeled tree(T, V ) consists of a prefix-closed setT ⊆ N
∗ (i.e., if x · d ∈ T with x ∈ N

∗ andd ∈ N,
thenx ∈ T ), and a mappingV : T → Ω that assigns to each node ofT a letter inΩ. Givenx ∈ N

∗ andd ∈ N

such thatx · d ∈ T , we callx · d thesuccessorin directiond of x. The degreedeg(x) of a nodex ∈ T is the
number of successors ofx in T . The nodeε is theroot of the tree. Aninfinite pathin T is an infinite sequence
π = d1d2 . . . of directionsdi ∈ N such that every finite prefix ofπ is a node inT .

Alternating tree automata. Given a parameterk ∈ N\{0}, we consider input trees of rankk, i.e. trees in which
every node has at mostk successors. We present a definition of alternating tree automata (see e.g. [14, 11]) with
the syntactic restriction that the states are associated toa fixed direction in the input tree. The restriction is for
the sake of simplifying the presentation, and does not reduce the expressiveness of the class of automata (i.e.,
they recognize the regular languages of infinite trees with fixed finite rank). Analternating tree automatonover
alphabetΩ is a tupleA = 〈S, s0, δ, dir〉 where:

• S is a finite set of states;

• s0 ∈ S is the initial state;



• δ : S × Ω → B+(S) is a transition function whereB+(S) is the set of positive Boolean formulas overS,
that is formulas built from elements inS ∪ {true, false} using the Boolean connectives∧ and∨;

• dir : S → {0, . . . , k − 1} associates a fixed direction to each state.

Intuitively, the automaton is executed from the initial state s0 and reads the input tree in a top-down fashion
starting from the rootε. In states, if a ∈ Ω is the letter that labels the current nodex of the input tree, the behavior
of the automaton is given by the formulasϕ = δ(s, a) and the functiondir. Informally, the automaton chooses
a satisfying assignment ofϕ, i.e. a setQ ⊆ S such that the formulaϕ is satisfied when the elements ofQ are
replaced bytrue, and the elements ofS \Q are replaced byfalse. Then, for eachs′ ∈ Q a copy of the automaton
is spawned in states′, and proceeds the nodex · d of the input tree, whered = dir(s′) is the direction associated
to s′. In particular, it requires thatx·d belongs to the input tree. For example, ifδ(s, a) = (s1∧s2)∨(s3∧s4∧s5),
anddir(s1) = dir(s2) = dir(s3) = 0 anddir(s4) = dir(s5) = 1, then the automaton should either spawn two
copies that process the successor ofx in direction0 (i.e., the nodex · 0) and that enter the respective statess1
ands2, or spawn three copies of which one processesx · 0 and enters states3, and the other two processx · 1 and
enter the statess4 ands5 respectively.

In a standard definition of alternating tree automata [14, 11], there is no fixed direction associated to each
state of the automaton. Rather the transition function can specify a direction to proceed along with each state
to enter (the transition relation is then of the formδ : S × Ω → B+(S × {0, . . . , k − 1}). And it is possible
to specify several directions along with the same state, forinstance(s1, 0) ∧ (s1, 1) requires that the automaton
spawn two copies in states1, one that proceeds direction0 in the input tree, and one that proceeds direction
1. Hence our definition can be viewed as a syntactic restriction of the standard definition. However, the two
definitions are equally powerful as alternating tree automata of the standard definition can be encoded in our
definition as follows. For each states, constructk copies(s, 0), (s, 1), . . . , (s, k − 1) of s (i.e., the transition
relation in each copy is the same as ins), and assign directiondir(s, d) = d for each0 ≤ d < k.

Runs. The usual definition of a run ofA over aΩ-labeled input tree(T, V ) is a tree(Tr, r) labeled by elements of
T ×S, where a node ofTr labeled by(x, s) corresponds to a copy of the automaton proceeding the nodex of the
input tree in states. The root ofTr is labeled by(ε, s0). We use a slightly richer definition: a run tree(Tr, r) is
labeled by elements ofS∗×S, where a label(ρ, s) = (s1 . . . sn, s) corresponds to a copy of the automaton that has
visited the sequence of statess0 ·ρ = s0 . . . sn and is now proceeding the nodex = dir(ρ) = dir(s1) . . . dir(sn) in
statesn = s. Forn = 0, we assume thatρ = ε, and thus the automaton is in states0 and proceeds the rootx = ε

of the input tree. Note that in all nodes ofTr except the root, the label(ρ, s) of the node satisfieslast(ρ) = s.
Formally, a run ofA over an input tree(T, V ) is a(S∗ × S)-labeled tree(Tr, r) such thatr(ε) = (ε, s0) and

for all y ∈ Tr, if r(y) = (ρ, s), then the set{s′ | ∃d ∈ N : r(y · d) = (ρ · s′, s′)} is a satisfying assignment for
δ(s, V (dir(ρ))). Hence we require that, given a nodey labeled by(ρ, s), there is a satisfying assignmentQ ⊆ S

for the formulaδ(s, a) wherea = V (dir(ρ)) is the letter labeling the current node of the input tree, andfor all
statess′ ∈ Q there is a (successor) nodey · d in Tr labeled by(ρ · s′, s′).

Given an accepting conditionϕ ⊆ Sω, we say that a run(Tr, r) is acceptingif for all infinite pathsd1d2 . . .
of Tr, the sequences0s1s2 . . . such thatr(di) = (·, si) for all i ≥ 0 is in ϕ. Thelanguageof A is the setLk(A)
of all input trees of rankk over which there exists an accepting run ofA. The emptiness problem for alternating
tree automata is to decide, givenA and parameterk, whetherLk(A) = ∅.

3.3 Solution of the Sure Winning Problem for Three-player Games We now present the solution of the sure
winning problem for three-player games.

THEOREM 3.1. Given a3-player gameG = 〈S, s0, δ,O, obs〉 and a{safety, reachability, parity} objectiveϕ,
the problem of deciding whether

∃σ ∈ Σ · ∀π ∈ Π · ∃τ ∈ Γ : ρσ,π,τs0
∈ ϕ



is EXPTIME-complete.

Proof. The EXPTIME-hardness follows from EXPTIME-hardness of two-player partial-observation games with
reachability objective [17, 7] and safety objective [2].

We prove membership in EXPTIME by a reduction to the emptiness problem for alternating tree automata,
which is solvable in EXPTIME for parity objectives [13, 14, 15]. The reduction is as follows. Given a game
G = 〈S, s0, δ,O, obs〉 over alphabet of actionsAi (i = 1, 2, 3), we construct the alternating tree automaton
A = 〈S′, s′0, δ

′, dir〉 over alphabetΩ and parameterk = |O| where:

• S′ = S, ands′0 = s0;

• Ω = A1;

• δ′ is defined byδ′(s, a1) =
∨

a3∈A3

∧
a2∈A2

δ(s, a1, a2, a3) for all s ∈ S anda1 ∈ Ω;

• dir = obs (strictly speaking, assuming observations inO are numbered0, . . . , k − 1, for eachs ∈ S the
directiondir(s) is the number of the observationobs(s)).

The acceptance conditionϕ of the automaton is same as the objective of the gameG. We prove that
∃σ ∈ Σ · ∀π ∈ Π · ∃τ ∈ Γ : ρσ,π,τs0 ∈ ϕ if and only ifLk(A) 6= ∅.

1. Sure winning implies non-emptiness.First, assume that for someσ ∈ Σ, we have∀π ∈ Π · ∃τ ∈
Γ : ρ

σ,π,τ
s0 ∈ ϕ. Then, by fixingσ in the gameG, we obtain a two-player perfect-information game

with countably-infinite state space, which is determined [12]. Hence there also existsτ ∈ Γ such that
∀π ∈ Π : ρ

σ,π,τ
s0 ∈ ϕ. From σ, we define an input tree(T, V ) whereT = {0, . . . , k − 1}∗ and

V (γ) = σ(obs(s0) · γ) for all γ ∈ O∗ (we view σ as a functionO+ → Ω, remember thatΩ = A1).
From τ , we define a(S∗ × S)-labeled tree(Tr, r) such thatr(ε) = (ε, s0) and for all y ∈ Tr, if
r(y) = (ρ, s), then for a1 = σ(obs(s0 · ρ)) = V (dir(ρ)), for a3 = τ(s0 · ρ), for every s′ in the
setQ = {s′ | ∃a2 ∈ A2 : s′ = δ(s, a1, a2, a3)}, there is a successory · d of y in Tr labeled by
r(y · d) = (ρ · s′, s′). Note thatQ is a satisfying assignment forδ′(s, a1) anda1 = V (dir(ρ)), hence
(Tr, r) is a run ofA over(T, V ). For every infinite pathρ in (Tr, r), consider a strategyπ ∈ Π consistent
with ρ. Thenρ = ρ

σ,π,τ
s0 , henceρ ∈ ϕ and the run(Tr, r) is accepting, showing thatLk(A) 6= ∅.

2. Non-emptiness implies sure winning.Second, assume thatLk(A) 6= ∅. Let (T, V ) ∈ Lk(A) and
(Tr, r) be an accepting run ofA over (T, V ). From (T, V ), define a strategyσ of player 1 such that
σ(s0 ·ρ) = V (dir(ρ)) for all ρ ∈ S∗. Note thatσ is indeed a strategy of player1 sinceσ(ρ) = σ(ρ′) for all
ρ, ρ′ ∈ S+ such thatobs(ρ) = obs(ρ′). From(Tr, r), we know that for all nodesy ∈ Tr with r(y) = (ρ, s),
the setQ = {s′ | ∃d ∈ N : r(y · d) = (ρ · s′, s′)} is a satisfying assignment ofδ′(s, V (dir(ρ))), hence
there existsa3 ∈ A3 such that for alla2 ∈ A2, there is a successor ofy labeled by(ρ · s′, s′) with
s′ = δ(s, a1, a2, a3) anda1 = σ(s0 · ρ). Then defineτ(s0 · ρ) = a3.

Now, for all strategiesπ ∈ Π the outcomeρσ,π,τs0 is a path in(Tr, r) henceρσ,π,τs0 ∈ ϕ. Therefore
∃σ ∈ Σ · ∃τ ∈ Γ · ∀π ∈ Π : ρ

σ,π,τ
s0 ∈ ϕ, and by determinacy [12] it follows that∃σ ∈ Σ · ∀π ∈

Π · ∃τ ∈ Γ : ρσ,π,τs0 ∈ ϕ.

The desired result follows.

The emptiness problem for an alternating tree automatonA with parity condition can be solved by
constructing an equivalent nondeterministic parity tree automatonN (such thatLk(A) = Lk(N )), and then
checking emptiness ofN . By the result of [15, Theorem 1.2] for binary trees, ifA hasn states andd priorities,
thenN hasn′ = 2O(d·n·logn) states ande = O(d · n · log n) priorities. Note that the emptiness problem for



input trees of rankk is equivalent to the emptiness problem for binary trees in analternating automaton with
k · n states. Finally, the emptiness of a nondeterministic parity tree automaton withm transitions ande priorities
is equivalent to solving a two-player parity game [10], which can be done in timemO(e) [20]. Moreover, since
memoryless strategies exist for parity games [10], if the nondeterministic parity tree automaton is nonempty, then
it accepts a regular tree that can be encoded by a transducer of sizem. Sincem is at most quadratic in the size of
the state space, the emptiness problem for alternating treeautomaton with parity condition can be solved in time
2O((d·k·n·log k·n)2), and it is sufficient to consider input trees encoded by transducers of size2O(d·k·n·log k·n).

THEOREM 3.2. Given a3-player gameG = 〈S, s0, δ,O, obs〉 with n states (andk ≤ n observations for
player1) and parity objectiveϕ defined byd priorities, the problem of deciding whether

∃σ ∈ Σ · ∀π ∈ Π · ∃τ ∈ Γ : ρσ,π,τs0
∈ ϕ

can be solved in time2O(d2·n4·log2 n). Moreover, memory of size2O(d·n2·logn) is sufficient for player1.

REMARK 4. Note that we considered the problem of deciding whether

∃σ ∈ Σ · ∀π ∈ Π · ∃τ ∈ Γ : ρσ,π,τs0
∈ ϕ

which is equivalent to
∃σ ∈ Σ · ∃τ ∈ Γ · ∀π ∈ Π : ρσ,π,τs0

∈ ϕ

because once the strategy for player 1 is given we have a perfect-observation game where we can switch the
quantifiers of strategies due to determinacy. Second, by ourreduction to alternating parity tree automata and the
fact that if an alternating parity tree automaton is non-empty, there is a regular witness tree for non-emptiness it
follows that strategies for player 1 can be restricted to finite-memory without loss of generality. This ensures that
we can solve the problem of existence of finite-memory almost-sure strategies in parial-observation stochastic
parity games (by Theorem 2.1 of Section 2 also in EXPTIME), and EXPTIME-completeness of the problem
follows.

THEOREM 3.3. Given a partial-observation stochastic game and a parity objectiveϕ defined byd priorities,
the problem of deciding whether there exists a finite-memoryalmost-sure (resp. positive) winning strategy for
player 1 (i) is EXPTIME complete; (ii) can be decided time2O((d+1)2·(n·d)4·log2(n·d)). Moreover, if there is an
almost-sure (resp. positive) winning strategy, there exists one that uses memory of size2O(d·(n·d)2·log(n·d)).

REMARK 5. As mentioned in Remark 2 the EXPTIME upper bound for qualtitative analysis of partial-
observation stochastic parity games with finite-memory randomized strategies follows from Theorem 3.3. The
EXPTIME lower bound and the exponential lower bound on memory requirement for finite-memory randomized
strategies follows from the results of [7, 6] for reachability and safety objectives (even for POMDPs).
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