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Abstract

We consider two-player partial-observation stochastmgmwhere player 1 has partial observation and
player 2 has perfect observation. The winning condition tudysarew-regular conditions specified as parity
objectives. The qualitative analysis problem given a paabservation stochastic game and a parity objective
asks whether there is a strategy to ensure that the objastisatisfied with probability 1 (resp. positive
probability). While the qualitative analysis problems &reown to be undecidable even for very special
cases of parity objectives, they were shown to be decidabBEXPTIME under finite-memory strategies.
We improve the complexity and show that the qualitative wsialproblems for partial-observation stochastic
parity games under finite-memory strategies are EXPTIMEqaete; and also establish optimal (exponential)
memory bounds for finite-memory strategies required folitatave analysis.

1 Introduction

Partial-observation stochastic games.Partial-observation stochastic games are played betweermlayers
(player 1 and player 2) on a graph with finite state space. aheegs played for infinitely many rounds where in
each round either player 1 chooses a move or player 2 choaosesey and the successor state is determined by
a probabilistic transition function. Player 1 has partiaservation where the state space is partitioned according
to observations that she can observe i.e., given the cwstetd, the player can only view the observation of the
state (the partition the state belongs to), but not the peestiate. Player 2, the adversary to player 1, has perfect
observation and can observe the precise state.

The class otu-regular objectives. An objective specifies the desired set of behaviors (or péaththe controller.

In verification and control of stochastic systems an objeds typically anw-regular set of paths. The class of
w-regular languages extends classical regular languagedinde strings, and provides a robust specification
language to express all commonly used specifications [118]a parity objective, every state of the game is
mapped to a non-negative integer priority and the goal imBuee that the minimum priority visited infinitely
often is even. Parity objectives are a canonical way to dsfichw-regular specifications.

Qualitative analysis. Given a partial-observation stochastic game with a patifecive and a start state, the
qualitative analysissks whether the objective can be ensured with probabi(i#ymost-sure winningor positive
probability (positive winning.

Known results and our contribution. The qualitative analysis problems for stochastic gamekb wérity
objectives are undecidable [1]. However, in many practapblications the more relevant question is the
existence of finite-memory strategies. The qualitativdyaigproblems for partial-observation stochastic parity
games were shown to be decidable with 2EXPTIME complexityfifote-memory strategies [16]; and the exact
complexity of the problems were open which we settle in thigkw Our contributions are as follows: for
the qualitative analysis problems for partial-obsenrattochastic parity games under finite-memory strategies



we show that (i) the problems are EXPTIME-complete; andif(ithere is a finite-memory almost-sure (resp.
positive) winning strategy, then there is a strategy thes @ most exponential memory (matching the exponential
lower bound known for the simpler case of reachability arfdtgeobjectives). Thus we establish both optimal
computational and strategy complexity results.

Related works. The undecidability of the qualitative analysis problem parrtial-observation stochastic parity
games with infinite-memory strategies follows from [1]. Rmartially observable Markov decision processes
(POMDPs), which is a special case of partial-observatioctsistic games where player 2 does not have any
choices, the qualitative analysis problem for parity otijes with finite-memory strategies was shown to be
EXPTIME-complete [3]. For partial-observation stochagjames the almost-sure winning problem was shown
to be EXPTIME-complete for Blichi objectives (both for fatitnemory and infinite-memory strategies) [7, 4].
Finally, for partial-observation stochastic parity gantles almost-sure winning problem under finite-memory
strategies was shown to be decidable in 2EXPTIME in [16].

2 Partial-observation Stochastic Parity Games

We consider partial-observation stochastic parity gamberg player 1 has partial observation and player 2
has perfect observation. We will consider parity objedjvend for almost-sure winning under finite-memory
strategies for player 1 present a polynomial reduction te sinning in three-player parity games where player 1
has partial observation, player 3 has perfect observatidnsahelpful towards player 1, and player 2 has perfect
observation and is adversarial to player 1. A similar reductalso works for positive winning. We will then
show how to solve the sure-winning problem for three-play@nes using alternating parity tree automata. Thus
the steps are as follows:

1. Reduction of partial-observation stochastic parity ganfor almost-sure winning with finite-memory
strategies to three-player parity games sure-winning lprol(with player 1 partial, other two perfect,
player 1 and player 3 existential, and player 2 adversarial)

2. Solving the sure winning problem for three-player pagiynes using alternating parity tree automata.

In this section we present the details of the first step. Thersgstep is given in the following section.

2.1 Basic definitionsWe start with basic definitions related to partial-obsaorastochastic parity games.

Partial-observation stochastic gamesWe will consider slightly different notation (though eqaient) to the
classical definitions, but the slightly different notatioelps for more elegant and explicit reduction. We consider
partial-observation stochastic games as a tapte (51, S2, Sp, 41,0, E, O, obs) as follows: S = S; U S, U Sp

is the state space partitioned into player-1 statg$, player-2 statesY,), and probabilistic states5); and A,

is a finite set of actions for player 1. Since player 2 has pembservation, she will choose edges instead
of actions. The transition function is as follows: : S; x A; — S, that given a player-1 state iff;
and an action in4; gives the next state i, (which belongs to player 2); andl : Sp — D(S;) given a
probabilistic state gives the probability distributioneothe set of player-1 states. The set of edges is as follows:
E ={(s,t) | s € Sp,t € 51,4(s)(t) > 0} U E', whereE’ C Sy x Sp. The observation s&p and observation
mappingobs are standard, i.eqgbs : S — O. Note that player 1 plays after every three steps (every mbve
player 1 is followed by a move of player 2, then a probabdistioice). In other words, first player 1 chooses an
action, then player 2 chooses an edge, and then there is ahilitybdistribution over states where player 1 again
chooses and so on.

Three player non-stochastic turn-based gamesWe consider three-player partial-observation (non-sietib
turn-based) games as a tugle= (51, Sa, Ss3, A1, 6, E, O, obs) as follows: S is the state space partitioned into
player-1 statesy;), player-2 statesY,), and player-3 statesS§); and A, is a finite set of actions for player 1.
The transition function is as follows:: S x A; — S5 that given a player-1 state ), and an action i gives



the next state (which belongs to player 2). The set of edgas fellows: E C (S; U S3) x S. Hence in these
games player 1 chooses an action, and the other players édeetmpbservation and choose edges. We will only
consider the sub-class where player 1 plays in ekesteps, for a fixed. The observation s&? and observation
mappingobs are again standard.

Plays and strategies A playin a partial-observation stochastic game is an infinite sege of statesys;ss. ..
such that the following conditions hold for all > 0: (i) if s; € Si, then there exista; € A; such that
Si+1 = 0(s;,a;); and (i) if s; € (S U Sp), then(s;, s;+1) € E. The functionobs is extended to sequences
p = so...s, Of states in the natural way, namediss(p) = obs(sg)...obs(s,). A strategy for a player is a
recipe to extend the prefix of a play. Formally, player-1tegges are functions : S* - S — A;; and player-2
(and analogously player-3 strategies) are functiansS* - So — S such that for allv € S* ands € S, we have
(s,m(w - s)) € E. We will consider only observation-based strategies fay@t 1, i.e., for two play prefixes
andy’ if the corresponding observation sequences matb$(§) = obs(p’)), then the strategy must choose the
same actiond(p) = o(p’)); and the other players have all strategies. The notationthfee-player games are
similar.

Finite-memory strategies.A player-1 strategy usefinite-memoryif it can be encoded by a deterministic
transducerM, my, o,,, 0,,) WhereM is a finite set (the memory of the strategy)y € M is the initial memory
value,o, : M x O — M is the memory-update function, aagl : M x O — A; is the next-move function.
The sizeof the strategy is the numbék| of memory values. If the current observationoisand the current
memory value isn, then the strategy chooses the next actipfin, o), and the memory is updated 4 (m, o).
Formally, (M, mg, 0y, 0,,) defines the strategy such that(p - q) = 0, (5, (mg, obs(p)), obs(s)) for all p € S*
ands € S, whereg, extendss, to sequences of observations as expected. This definitiem@s to infinite-
memory strategies by dropping the assumption that th®deffinite.

Parity objectives. An objectivefor Player1 in G is a setp C S“ of infinite sequences of states. A
play p satisfiesthe objectivep if p € ¢. For a playp = sgs1... we denote byinf(p) the set of states
that occur infinitely often inp, that is, Inf(p) = {s | s; = sforinfinitely many;'s}. Ford € N, let

p: S — {0,1,...,d} be apriority function which maps each state to a nonnegative integer prioritye Th
parity objective Parity(p) requires that the minimum priority that occurs infinitelytesf be even. Formally,
Parity(p) = {p | min{p(s) | s € Inf(p)} is every. Parity objectives are a canonical way to expresggular
objectives [18].

Almost-sure winning and positive winning. An eventis a measurable set of plays. For a partial-observation
stochastic game, given strategieandr for the two players, the probabilities of events are uniguieifined [19].

For a parity objectivéarity (p), we denote byPs"™ (Parity(p)) the probability thaParity(p) is satisfied by the play
obtained from the starting statavhen the strategies andr are used. Thalmost-surgresp.positivg winning
problem under finite-memory strategies asks, given a pafiservation stochastic game, a parity objective
Parity(p), and a starting state whether there exists a finite-memory observation-basetegtys for player 1
such that against all strategiesfor player 2 we haveP;™ (Parity(p)) = 1 (resp. P5" (Parity(p)) > 0). The
almost-sure and positive winning problems are also referes the qualitative analysis problems for stochastic
games.

Sure winning in three player games.In three player games once the starting stedad strategies, «, andr of
the three players are fixed we obtain a unique play, which wetgeaso; ™" . In three player games we consider
the following surewinning problem: given a parity objectivearity(p), sure winning is ensured if there exists
a finite-memory observation-based strategipr player 1, such that in the two-player perfect-obseoraggame
obtained after fixingr, player 3 can esnure the parity objective against all gieseof player 2. Formally, the
sure winning problem asks whether there exist a finite-mgrobservation-based strategyfor player 1 and a

g,T, T

strategyr for player 3, such that for all strategiesfor player 2 we have, """ € Parity(p).

REMARK 1. We remark that for the model of partial-observation stotitagames studied in literature the



two players simultaneously choose actions, and a prolsiailtransition function determine the probability

distribution of the next state. In our model, the game is4omsed and the probability distribution is chosen only
in probabilistic states. However, it follows from the rdsubf [5] that the models are equivalent: by the results
of [5, Section 3.1] the interaction of the players and proligbcan be separated without loss of generality;

and [5, Theorem 4] shows that in presence of partial obsépmatconcurrent games can be reduced to turn-
based games in polynomial time.

REMARK 2. In this work we only consider pure strategies. In partiakebvation games, randomized strategies
are also relevant as they are more powerful than pure stiagegHowever, for finite-memory strategies the almost-
sure and positive winning problem for randomized strategian be reduced in polynomial time to the problem
for finite-memory pure strategies [4, 16]. Hence withouslo$ generality we only consider pure strategies.

2.2 Reduction of partial-observation stochastic games tditee player gamesin this section we present a
polynomial-time reduction for the almost-sure winninglgean in partial-observation stochastic parity games to
the sure winning problem in three player parity games.

Reduction. Let us denote byd] the set{0, 1, ...,d}. Given a partial-observation stochastic parity game graph
G = (51,592,5p, A1,0, E,O, obs) with a parity objective defined by priority functign: S — [d] we construct

a 3-player game grapf = (S1, 52, S3, A1, 6, E, O, obs) together with priority functiorp. The construction is
specified as follows.

1. For every nonprobabilistic statec S; U S, there is a corresponding states .S such that
e 55 if s€ 5y, elses € Sy;
(3) = p(s) andobs(3) = obs(s);
(3,a) = t wheret = §(s,a), fors € S; anda € A;; and
e (3,1) € Eiff (s,t) € E, fors € Ss.

> 3

2. Every probabilistic state € Sp is replaced by the gadget shown in Figure 1 and Figure 2. Ifigiee,
square-shaped states are player-2 stateSofinand circle-shaped (or ellipsoid-shaped) states areplay
states (inSs). Formally, from the stat& with priority p(s) and observatiombs(s) (i.e.,p(35) = p(s) and
obs(3) = obs(s)) the players play the following three-step gamé&in

e First, in states player 2 chooses a succes$er2k), for 2k € {0,1,...,p(s) + 1}.

e For every statg(s, 2k), we havep((s,2k)) = p(s) and obs((5,2k)) = obs(s). Fork > 1,
in state (s, 2k) player 3 chooses between two successors: $fats: — 1) with priority 2k — 1
and same observation as or state(s,2k) with priority 2k and same observation as (i.e.,
p((5,2k — 1)) = 2k — 1, B((5, 2k)) = 2k, andobs((5,2k — 1)) = obs((3,2k)) = obs(s)). The
state(3, 0) has only one success(, 0), with p((5, 0)) = 0 andobs((5, 0)) = obs(s).

e Finally, in each stat€s, k) the choice is between all statesuch that(s,t) € F, and it belongs to
player 3 (i.e., inS3) if k is odd, and to player 2 (i.e., i) if k is even. Note that every state in the
gadget has the same observation as the original state.

We denote byG' = Tr.s(G) the 3-player game, where player 1 has partial-observation, atidl ayer 2 and
player 3 have perfect-observation, obtained from a pastiskervation stochastic game. Also observe that in
there are exactly four steps between two player 1 moves.

Observation sequence mapping.Note that since in our partial-observation games first pldyelays, then
player 2, followed by probabilistic states, repeated adhitufin, wlog, we can assume that for every observation



Figure 1: Reduction gadget whefs) is even.

o € O we have either (ipbs~!(0) C Sy; or (i) obs™*(0) C Sy; or (i) obs~'(0) C Sp. Thus we partition the
observations a®;, 05, andOp. Given an observation sequence- 0yo10s . . . 0o, in G corresponding to a finite
prefix of a play, we inductively define the sequemce: h(x) in G as follows: (i)h(0g) = og if 0g € O1 U Os,
elseoponoo; (i) k(001 ... 0n) = h(0g01 . .. 0n_1)0n if 0, € O1 U Oy, elseh(ogo; . .. 0,_1)0,0,0,. INtuitively
the mapping takes care of the two extra step of the gadgetslinted for probabilistic states. The mapping is
a bijection, and hence given an observation sequgrafea play prefix inG' we consider the inverse play prefix
k=h (%) such thafi(x) = .

Strategy mapping. Given an observation-based strategin G we consider a strategy = Tr.s(7) as follows:
for an observation sequeneecorresponding to a play prefix i we haveo(k) = &(h(x)). The strategy

o is observation-based (singeis observation-based). The inverse mappiig, ~! of strategies fronG to G

is analogous. Note that far in G we haveTr,s(Tr.s '(0)) = o. Let@ be a finite-memory strategy with
memoryM for player 1 in the gamé&'. The strategyr can be considered as a memoryless strategy, denoted as
* = MemLess(7), in G x M (the synchronous product 6f with M). Given a strategy (pure memorylessjor
player 2 in the2-player game x M, a strategyr = Tr,s(7) in the partial-observation stochastic gatie< M

is defined as follows:

7((s,m)) = (t,m’), if and only if 7((5,m)) = (£,m’); for all s € S,.

End component and the key property.Given an MDP, a sdY is an end component in the MDP if the sub-graph
induced byU is strongly connected, and for all probabilistic stateFiall out-going edges end up in (i.e.,U is
closed for probabilistic states). The key property aboutdEhat will be used in our proofs is a result established
by [8, 9] that given an MDP, for all strategies, with probépill the set of states visited inifinitely often is an end
component. The key property will allow us to analyze end conemts of MDPs and from properties of the end
component conclude properties about all strategies.

The key lemma. We are now ready to present our main lemma that establiskasthectness of the reduction.
Since the proof of the lemma is long we will split the proofoirtivo parts.

LEMMA 2.1. Given a partial-observation stochastic parity garGewith parity objectiveParity(p), let G =
Tr,s(G) be the3-player game with the modified parity objectiRerity(p) obtained by our reduction. Consider



Figure 2: Reduction gadget whefs) is odd.

a finite-memory strategy with memoryM for player 1 inG. Let us denote by’ the perfect-observation
two-player game played ovér x M by player 2 and player 3 after fixing the strategjyor player 1. Let

Uf = {(3,m) € S x M | player 3 has a sure winning strategy for the objecteity(p) from (3, m) in Gz};

and letT’5 = (§xM)\U be the set of sure winning states for player Zin. Consider the strategy = Tr.(7),
and the set&’7 = {(s,m) € S x M | (3,m) € U; }; andUg = (S x M)\ U{. The following assertions hold.

1. Forall (s,m) € UY, for all strategiesr of player 2 we havé?" )(Parity(p)) =1

(s,m

2. Forall (s,m) € UJ, there exists a strategy of player 2 such tha]P’?s’”m)(Parity(p)) <L
We first present the proof for part 1 and then for part 2.

Proof. [(of Lemma 2.1: part 1).] Consider a finite-memory stratedgr player 1 with memory in the games.
Once the strategy is fixed we obtain the two-player finite-state perfect-osaton gameGs (between player 3
and the adversary player 2). Recall the sure winning sets

UT = {(3,m) € S x M | player 3 has a sure winning strategy for the objeckweity () from (3, m) in Gz}

for player 3, and’,; = (S x M) \ U] for player 2, respectively, iG5. Leto = Tr,.(7) be the corresponding
strategy inG. We denote byg* = Memless(a) and o* the corresponding memoryless strategiessah
G x M ando in G x M, respectively. We will show that all states 14 are almost-sure winning, i.e.,
given o, for all (s,m) € U7, for all strategiesr for player 2 inG we have[P’E‘S’fm)(Parity(p)) = 1 (recall

U ={(s,m) e SxM|(5,m) e Uf}). We will also consider explicitly the MDRG x M | UY),~ to analyze
strategies of player 2 on the synchronous product, i.e.,amsider the player-2 MDP obtained after fixing the
memoryless strategy* in G x M, and then restrict the MDP to the géf.

Two key component§ he proof will have two key components. First, we argue tiladrad components in the
MDP restricted tdJ{ are winning for player 1 (have min priority even). Second wgua that given the starting



state(s, m) is in U, almost-surely the set of states visited inifnitely ofteran end component i against all
strategies of player 2. This two key components establishiéisired result.

Winning end components.Our first goal is to show that every end componéntin the player-2 MDP
(GxM [ U7)s~ is winning for player 1 for the parity objective, i.e., themmnum priority ofC is even. We argue
that if there is an end componefitin (G x M | U7 ).~ that is winning for player 2 for the parity objective (i.e.,
minimum priority of C'is odd), then against any memoryless player-3 strateigyG=, player 2 can construct a
cycle in the gaméG x M [Uf{)g* that is winning for player 2 (i.e., minimum priority of theds is odd) (note
that given the stratedy is fixed, we have finite-state perfect-observation paritngs, and hence in the enlarged
game we can restrict ourselves to memoryless strategigdper 3). This will give a contradiction because
player 3 has a sure winning strategy from the@‘étin the 2-player parity gamé&’,. Towards contradiction, let
C be an end component {{¢ x M | UY),~ that is winning for player 2, and let its minimum odd priorite
2r — 1, for somer € N. Then there is a memoryless stratedyfor player 2 in the MDRG x M [ U{),+ such
thatC' is a bottom scc (or a terminal scc) in the Markov chain grapftot M | U7 ), . LetT be a memoryless
for player 3 in(G x M | Uf{)g*. GivenT for player 3 and strategy’ for player 2 inG x M, we construct a
strategy for player 2 in the gaméG x M | U7 )+ as follows. For a player-2 state (i, the strategyr follows
the strategyr’, i.e., for a statés, m) € C with s € S, we haver((s,m)) = (t,m’) where(t,m’) = 7'((s,m)).
For a probabilistic state in' we define the strategy as follows (i.e., we now consider & étain) € C with

s € Sp):

e if for some successor stat€s, 2¢), m’) of (5, m), the player-3 strategy¥ chooses a success(, 2¢ —
1),m”) € C at the statd (s, 2¢),m’), for ¢ < r, then the strategy¥ chooses at stat@, m) the successor
((5,20),m'); and

e otherwise the strategy chooses at stat@, m) the successa((s, 2r), m’), and at((s, 2r), m”) it chooses
a successor shortening the distance (i.e., chooses a soceath smaller breadth-first-search distance) to
a fixed statés*, m) of priority 2 — 1 of C' (such a stat¢s™, m) exists inC sinceC' is strongly connected
and has minimum priorit@r — 1); and for the fixed state of priorit¥r — 1 the strategy chooses a successor
(s,m) such that(s,m) € C.

Consider an arbitrary cycle in the subgrajghx M | C)z 7= whereC' is the set of states in the gadgets of states
in C. There are two cases.

e If there is at least one stat€s, 2¢ — 1), m), with £ < r on the cycle, then the minimum priority on the
cycle is odd, as even priorities smaller tianare not visited by the construction ésdoes not contain
states of even priorities smaller than

e Otherwise, in all states choices shortening the distantieetstate with priority2r — 1 are taken and hence
the cycle must contatin a priorir — 1 state and all other priorities on the cycle &er — 1, so2r — 1
is the minimum priority on the cycle.

Hence a winning end component for player 2 in the MDP conttadhat player 3 has a sure winning strategy in
G5 from U‘f. Thus it follows that all end components are winning for glay in (G x M | U ),+.

Almost-sure reachability to winning end-componeiitimally, we consider the probability of staying iff. For
every probabilistic statés,m) € (Sp x M) N UY, all of its successors must be i77. Otherwise, player 2
in the state(s,m) of the gameGy can choose the succesg6r0) and then a successor to its winning &6t.
This will again contradict the assumption thatm) belong to the sure winning stat?éf for player 3 inG.
Similarly, for every statgs, m) € (Sz x M) N Uy we must have all its successors arelifi. For all states
(s,m) € (S1 x M) N U7, the strategy chooses a successoriff . Hence for all strategies, for all states



(s,m) € U7, the objectiveSafe(UY) is ensured almost-surely (in fact surely), and hence witbability 1
the set of states visited infinitely often is an end compoirent (by key property of MDPs). Since every end
component itG xM [ U7 ).+ has even minimum priority, it follows that the strategys an almost-sure winning
strategy for the parity objectivRarity(p) for player 1 from all statess, m) € U{. This concludes the proof for
first part of the lemma. |

We now present the proof for the second part.

Proof. [(of Lemma 2.1:part 2).] Consider a memoryless sure winsimgtegyr for player 2 inG5 from the set
U;. Let us consider the strategies= Tr,4(g) andm = Tr,s(7), and consider the Markov cha, .. Our
proof will show the following two properties to establisketblaim: (1) in the Marko\G,,  all bottom sccs (the
recurrent classes) itiy have odd minimum priority; and (2) from all statesliff some recurrent class iy is
reached with positive probability. This will establish tiesired result of the lemma.

No winning bottom scc for player 1 iy . Assume towards contradiction that there is a bottom(scontained
in U in the Markov chairG,, . such that the minimum priority i’ is even. FronC we will construct a winning

cycle (minimum priority is even) Wg for player 3 in the gamé&'s given the strateg¥. This will contradict that
7 IS a sure winning strategy for player 2 froli_fg in G5. Let the minimum priority ofC' be 2r for somer € N.

The idea is similar to the construction of part 1. Givénand the strategies and7, we construct a strategy
for player 3 inG as follows: For a probabilistic stafe, m) in C:

e if 7 chooses a statgs, 2¢ — 2),m’), with £ < r, then7T chooses the successd@g, 2¢ — 2),m’);

e otherwisel > r (i.e., 7 chooses a statgs, 2¢—2), m’) for ¢ > r), thenT chooses the stafés, 2¢—1), m’),
and then a successor to shorten the distance to a fixed statpriarrity 2 (such a state exists 1@¥); and
for the fixed state of priorit2r, the strategy chooses a successordh

Similar to the proof of part 1, we argue that we obtain a cycléhwninimum even priority in the graph
(G x M | Uy)sr7 Consider an arbitrary cycle in the subgra@ x M | C); =~ whereC is the set of
states in the gadgets of state<inThere are two cases.

e If there is at least one statés, 2¢ — 2), m), with ¢ < r on the cycle, then the minimum priority on the
cycle is even, as odd priorities strictly smaller tizart- 1 are not visited by the construction @sdoes not
contain states of odd priorities strictly smaller thian+ 1.

e Otherwise, in all states choices shortening the distantieetstate with priority2r are taken and hence the
cycle must contatin a prioritr state and all other priorities on the cycle are&r, so2r is the minimum
priority on the cycle.

Thus we obtain cycles winning for player 3, and this contedthat is a sure winning strategy for player 2
from Us. Thus it follows that all recurrent classesliiy in the Markov chain, » are winning for player 2.

Not almost-sure reachability to7. We now argue that givesm andr there exists no state iy such thatUy is
reached almost-surely. This would ensure that from alestatUs some recurrent class iJ is reached with
positive probability and establish the desired claim siveehave already shown that all recurrent classdssin
are winning for player 2. Givea andr, let X C Ug be the set of states such the E¢tis reached almost-surely
from X, and assume towards contradiction thats non-empty. This implies that from every stateXn in the
Markov chainG, -, there is a path to the sély, and from all states iX' the successors are K. We construct

a strategyr in the 3-player game’; against strategy exactly as the strategy constructed for winning bottom
scc, with the following difference: instead of shortenirigtance the a fixed state of priorigy (as for winning
bottom scc’s), in this case the strategghortens distance ﬂ_j‘f. Formally, givenX, the strategies and7, we
construct a strategy for player 3 inG as follows: For a probabilistic state,m) in X:



e if 7 chooses a statf(s, 2¢),m’), with ¢ > 1, then7 chooses the stat(s,2¢ — 1),m'), and then a
successor to shorten the distance to thee(such a successor exists since from all stateX ithe set
U7 is reachable).

Against the strategy of player 3 @, either (i)Uf is reached in finitely many steps, or (ii) else player 2 indilyit
often chooses successor states of the fsnd) with priority 0 (the minimum even priority), i.e., there is a
cycle with a states, 0) which has priority 0. If priority O is visited infinitely ofte then the parity objective is
satisfied. This ensures that @ player 3 can ensure either to real?ﬁ in finitely many steps from some state
in Ug againstr, or the parity objective is satisfied without reachﬁa In either case this implies that agaifst
player 3 can ensure to satisfy the parity objective (by r'mpﬁf in finitely many steps and then playing a sure
winning strategy frorri_ff, or satisfying the parity objective without reachiﬁg by visiting priority O infinitely
often) from some state iﬁg, contradicting thaf is a sure winning strategy for player 2 frdﬁg . Thus we have

a contradiction, and obtain the desired result. [ |

Lemma 2.1 establishes the desired correctness resultiasgol(1) If 7 is a finite-memory strategy such that in
G35 player 3 has a sure winning strategy, then by part 1 of Lemthav.obtain that = Tr,.(7) is almost-sure
winning. (2) Conversely, it is a finite-memory almost-sure winning strategy, then abgrsa strategy such
thato = Tr.s() (i.e.,@ = Tra,s (o). By part 2 of Lemma 2.1, given the finite-memory strategylayer 3
must have a sure winning strategyGh-, otherwise we will have a contradiction thais almost-sure winning.
Thus we have the following theorem.

THEOREM2.1. (PROLYNOMIAL REDUCTION) Given a partial-observation stochastic game graghwith a
parity objectiveParity(p) for player 1, we construct a three-player gaffe= Tr,(G) with a parity objective
Parity(p), where player 1 has partial-observation and the other twaypls have perfect-observation, in time
O((n+m) - d), wheren is the number of states of the gamejs the number of transitions, antithe number of
priorities of the priority functiorp, such that the following assertion holds: there is a finitermory almost-sure
winning strategy for player 1 inG iff there exists a finite-memory strategyfor player 1 inG such that in the
gameG5 obtained giverw, player 3 has a sure winning strategy fBarity(p). The game grapHT.s(G) has
O(n - d) statesO(m - d) transitions, and has at mostl + 1 priorities.

REMARK 3. We have presented the details of the polynomial reductiomalfoost-sure winning, and now we
discuss how a very similar reduction works for positive wign We explain the key steps, and omit the proof as
it is very similar to our proof for almost-sure winning. Folacity in presentation we use a priority-1 in the
reduction, which is the least odd priority, and visiting frgority —1 infinitely often ensures loosing for player 1.
Note that all priorities can be increased by 2 to ensure thairies are nonnegative, but we use the priority

as it keeps the changes in the reduction for positive winnmimgmal as compared to almost-sure winning.

Key steps.First we observe that in the reduction gadgets for almosg-suinning, player 2 would never choose
the leftmost edge to state, 0) froms in the cycles formed, but only use them for reachability tdes Intuitively,
the leftmost edge corresponds to edges which must be choolseimitely often and ensures positive reachability
to the desired end components in the stochastic game. Fiiveosinning these edges need to be in control of
player 3, but must be allowed to be taken only finitely oftdnusTfor positive winning, the gadget is modified as
follows: (i) we omit the leftmost edge from the statéi) we add an additional player-3 statein the beginning,
which has an edge t®and an edge tds, 0); and (iii) the state(s, 0) is assigned priority—1. Figure 3 presents

a pictorial illustration of the gadget of the reduction foogitive winning. Note that in the reduction for positive
winning the finite reachability through the leftmost edgmisontrol of player-3, but it has the worst odd priority
and must be used only finitely often. This essentially cpaieds to reaching winning end components in finitely
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Figure 3: Reduction gadget for positive winning whenr) is even.

many steps in the stochastic game. In the game obtained thtereduction, the three-player game is surely
winning iff player 1 has a finite-memory positive winningagtgy in the partial-observation stochastic game.

In this section we established polynomial reductions of tjualitative analysis problems for partial-
observation stochastic parity games under finite-memaajesfies to the sure winning problem in three-player
games (player 1 partial, both the other players perfect, @ager 1 and 3 existential, player 2 adversarial).
The following section shows that the sure winning problemtfoee-player games is EXPTIME-complete by
reduction to alternating parity tree automata.

3 Solving Sure Winning for Three-player Parity Games

In this section we will present the solution for sure winninghree-player non-stochastic parity games. We start
with the basic definitions.

3.1 Basic definitionsWe first present a model of partial-observation concurdguiyer games, where playéer
has partial observation, and playzrand player3 have perfect observation. Playerand Player3 have the
same objective and they play against plageiVe will also show that three-player turn-based games m@del
Section 2) can be treated as a special case of this model.

Partial-observation three-player concurrent games.Given alphabetsi; of actions for playet (i = 1,2, 3),
a partial-observation three-player concurrent game (fewity, 3-player gamein sequel) is a tuplez =
(S, 50,9, 0, obs) where:

e Sis afinite set of states;

e sy € S isthe initial state;



e §:5x Al x Ay x A3 — S is a deterministic transition function that, given a cutretates, and actions
a1 € Ay, ay € Ag, ag € Az of the players, gives the successor state (s, a1, a9, as) of s; and

e (O is afinite set of observations ants is the observation mapping (as in Section 2).

Modeling turn-based games.A three-player turn-based game will be a special case of thehthree-player
concurrent games. Formally, we consider a three-playerliased game as a tuglé,, S2, Ss, A1, J, E) where

0 : 51 x Ay — Sy is the transition function for player, andE C (S; U S3) x S is a set of edges. Since player
and playe3 have perfect observation, we consider that= S andA3; = S, that is playe® and playei3 choose
directly a successor in the game. The transition functidar an equivalent concurrent version is as follows
(i) for s € Sy, for all ay € Ay andaz € Az, we haved(s, a1, az,a3) = 6(s,ay); (i) for s € Sy, foralla; € A,
andagz € Aj, for ay = s’ we haved (s, ay,az,a3) = §'if (s,s') € E, elsed(s, a1, a2,a3) = Sgoods Wheresgood

is a special state in which play2roses (the objective of playdrand3 is satisfied if playe® chooses an edge
that is not inE); and (iii) for s € S3, for all a; € A; anday € As, for az = s’ we haved(s, a1, as, a3z) = s’

if (s,8') € E, elsed(s,ar,as,a3) = spad, Wheresp,q is a special state in which playerwins (the objective
of player1 and3 is violated if player3 chooses an edge that is not#). The set© and the mappingbs are
obvious.

Strategies. Define the sek of strategiess : O — A; of player1 that, given a sequence of past observations,
return an action for player. Equivalently, we sometimes view a strategy of playas a functionr : ST — A
satisfyingo(p) = o (') for all p, o’ € ST such thabobs(p) = obs(p’), and say that is observation-basedA
strategy of playe® (resp, playes) is a functionr : ST — A, (resp.,7 : ST — As) without any restriction. We
denote byll, I" the set of strategies of play2r3 respectively.

Sure winning. Given strategies, m, 7 of the three players id7, the outcome playfrom sq is the infinite

sequences;”’ = spsi ... such that for allj > 0, we haves; ;1 = d(s;,a;,b;,c;) wherea; = o(sg...s; ),

bj =m(sp...s5),andc; = 7(sp...s;). Given agame& = (S, s¢, 6, O, obs) and a parity objective C S, the
o,7T,T

sure winning problem asks to decidelf € X -Vr € I1- 37 € I': ps)"" € . It will follow from our result that
if the answer to the sure winning problem is yes, then theist®ea witness finite-memory strategyor player 1.

3.2 Alternating Tree Automata In this section we recall the definitions of alternating teagomata, and
present the solution of the sure winning problem for thrizsrgr games with parity objectives by a reduction
to the emptiness problem of alternating tree automata veitiypacceptance conditions.

Trees. We follow some definitions and notation of [11]. Given a firseguences = s ... s, € Q1 over a finite
set(?, letlast(w) = s, be the last element af.

A Q-labeled tregT, V') consists of a prefix-closed sétC N* (i.e., ifx - d € T with x € N* andd € N,
thenx € T), and a mappind’ : T' — () that assigns to each node’Bfa letter in{). Givenz € N* andd € N
such thatr - d € T, we callz - d the successoin directiond of x. The degreeleg(z) of a nodex € T is the
number of successors ofin 7. The node: is theroot of the tree. Aninfinite pathin 7 is an infinite sequence
m = dids ... Of directionsd; € N such that every finite prefix of is a node inf".

Alternating tree automata. Given a parametet € N\ {0}, we consider input trees of rariki.e. trees in which
every node has at moktsuccessors. We present a definition of alternating treeratto(see e.g. [14, 11]) with
the syntactic restriction that the states are associatadit@d direction in the input tree. The restriction is for
the sake of simplifying the presentation, and does not redioe expressiveness of the class of automata (i.e.,
they recognize the regular languages of infinite trees witdffinite rank). Aralternating tree automatoaover
alphabet is a tupleA = (S, s¢, d, dir) where:

e S is a finite set of states;

e sy € Sisthe initial state;



e 0:5 xQ— BT(S)is atransition function wherB8(.9) is the set of positive Boolean formulas ov&r
that is formulas built from elements $1U {true, false} using the Boolean connectivesandyV;

e dir: S — {0,...,k — 1} associates a fixed direction to each state.

Intuitively, the automaton is executed from the initialtsta, and reads the input tree in a top-down fashion
starting from the root. In states, if a € Q) is the letter that labels the current nodef the input tree, the behavior
of the automaton is given by the formulas= (s, a) and the functiordir. Informally, the automaton chooses
a satisfying assignment of, i.e. a set) C S such that the formula is satisfied when the elements @fare
replaced bytrue, and the elements of \ @ are replaced bfalse. Then, for eachy’ € @ a copy of the automaton
is spawned in stat€, and proceeds the node d of the input tree, wherd = dir(s’) is the direction associated
to s’. In particular, it requires that- d belongs to the input tree. For examplej(i§, a) = (s1As2)V (s3As4AS5),
anddir(s1) = dir(s2) = dir(s3) = 0 anddir(s4) = dir(s5) = 1, then the automaton should either spawn two
copies that process the successor @h directionO (i.e., the noder - 0) and that enter the respective states
ands,, or spawn three copies of which one processe8 and enters state;, and the other two process 1 and
enter the states; andss respectively.

In a standard definition of alternating tree automata [14, thEre is no fixed direction associated to each
state of the automaton. Rather the transition function gecif/ a direction to proceed along with each state
to enter (the transition relation is then of the fodm S x Q@ — B*(S x {0,...,k — 1}). And it is possible
to specify several directions along with the same statein&iance(s,0) A (s1, 1) requires that the automaton
spawn two copies in state, one that proceeds directidnin the input tree, and one that proceeds direction
1. Hence our definition can be viewed as a syntactic restriatiothe standard definition. However, the two
definitions are equally powerful as alternating tree autentd the standard definition can be encoded in our
definition as follows. For each state constructk copies(s,0),(s,1),...,(s,k — 1) of s (i.e., the transition
relation in each copy is the same as)nand assign directiodir(s, d) = d for each0 < d < k.

Runs. The usual definition of a run ofl over aQ2-labeled input tre¢7’, V') is a treg(7}., r) labeled by elements of
T x S, where a node df’. labeled by(z, s) corresponds to a copy of the automaton proceeding the noflthe
input tree in state. The root of7,. is labeled by(¢, sg). We use a slightly richer definition: a run trég,., r) is
labeled by elements ¢ x S, where a labe{p, s) = (s1 ... s, s) corresponds to a copy of the automaton that has
visited the sequence of statesp = s¢ . . . s,, and is now proceeding the node= dir(p) = dir(sy) .. .dir(s,) in
states,, = s. Forn = 0, we assume that = ¢, and thus the automaton is in stateand proceeds the root= ¢
of the input tree. Note that in all nodes’Bf except the root, the labép, s) of the node satisfielast(p) = s.
Formally, a run of4 over an input tre€7", V') is a(S* x S)-labeled tre€T), r) such that-(¢) = (e, s¢) and
forally € T,, if r(y) = (p,s), thenthe sefs’ | Id e N: r(y-d) = (p- ¢, s')} is a satisfying assignment for
0(s,V(dir(p))). Hence we require that, given a nogléabeled by(p, s), there is a satisfying assignmeptC S
for the formulad(s, a) wherea = V(dir(p)) is the letter labeling the current node of the input tree, fandll
statess’ € (@ there is a (successor) nogled in 7, labeled by(p - ¢/, s').
Given an accepting conditiop C S“, we say that a rufZ;., ) is acceptingif for all infinite pathsd;ds . ..
of 7., the sequenceys;ss ... such that(d;) = (-, s;) for all i > 0 is in . Thelanguageof A is the setl;(.A)
of all input trees of rank over which there exists an accepting run4fThe emptiness problem for alternating
tree automata is to decide, givehand parametek, whetherL; (A) = 0.

3.3 Solution of the Sure Winning Problem for Three-player Ganes We now present the solution of the sure
winning problem for three-player games.

THEOREM 3.1. Given a3-player gameG = (S, sg, 0, O, obs) and a{safety, reachability, parity objectivey,
the problem of deciding whether

dJoeX-Voell-drel: pf™" €y

S0



is EXPTIME-complete.

Proof. The EXPTIME-hardness follows from EXPTIME-hardness of falayer partial-observation games with
reachability objective [17, 7] and safety objective [2].

We prove membership in EXPTIME by a reduction to the empsin@sblem for alternating tree automata,
which is solvable in EXPTIME for parity objectives [13, 145]1 The reduction is as follows. Given a game
G = (S, s0,d,0,0bs) over alphabet of actiond; (: = 1,2,3), we construct the alternating tree automaton
A= (5, 5,9, dir) over alphabef2 and parametet = |O| where:

e 5" =S, andsj = so;

o 0 =Ay;

o' is defined by (s, a1) = V4, e 4, Nayea, 9(5,a1,a2,a3) forall s € S anda; € Q;

dir = obs (strictly speaking, assuming observationglrare numbered, ...,k — 1, for eachs € S the
directiondir(s) is the number of the observatiobs(s)).

The acceptance conditiop of the automaton is same as the objective of the gémeWe prove that
JoeX -Vrell-Ir el :py"" € pifand only if Ly (A) # 0.

1. Sure winning implies non-emptines&irst, assume that for some € X, we havevr € Il - 37 €
I : pa™" € . Then, by fixingo in the gameG, we obtain a two-player perfect-information game
with countably-infinite state space, which is determinel].[IHence there also exists € I" such that
Vr e II : pg”" € . Fromo, we define an input treél’, V) whereT = {0,...,k — 1}* and
V(y) = o(obs(sg) - v) for all y € O* (we views as a functionO™ — Q, remember thaf2 = A;).
From 7, we define a(S* x S)-labeled tree(T,,r) such thatr(s) = (e,sp) and for ally € T,, if
r(y) = (p,s), then fora; = o(obs(sg - p)) = V(dir(p)), for a3 = 7(so - p), for every s’ in the
set@ = {¢ . 8 = d(s,a1,az2,a3)}, there is a successar- d of y in T, labeled by
r(y-d) = (p-¢,s). Note thatQ is a satisfying assignment fof(s,a;) anda; = V(dir(p)), hence
(T,,r)is arun of A over (T, V). For every infinite pathy in (7., r), consider a strategy < II consistent
with p. Thenp = p3;™", hencep €  and the runT;., r) is accepting, showing thdt (.A) # 0.

2. Non-emptiness implies sure winningSecond, assume thdt;(A) # 0. Let (T,V) € Li(A) and
(T.,r) be an accepting run ofl over (7, V). From (T,V), define a strategy of player1 such that
a(so-p) = V(dir(p)) forall p € S*. Note thats is indeed a strategy of playérsinceos(p) = o(p’) for all
p, p' € ST such thabbs(p) = obs(p’). From(Tr,r) we know that for all nodesg € T, with r(y) = (p, s),
thesetQ = {s' |3d e N:r(y-d) = (p-¢,s')} is a satisfying assignment 6f(s, V(dll’(p))) hence
there existsas € Az such that for allay € Ag, there is a successor gflabeled by(p - s', ") with
s’ = 4(s,a1,a2,a3) anda; = o(sg - p). Then define(sp - p) = as.

g, T, T g, T, T

Now, for all strategiest € II the outcomep,)""" is a path in(7,,r) henceps)"" € ¢. Therefore
doe¥-Ir el -Vrell: py"" € ¢, and by determinacy [12] it follows thato € ¥ - Vr €
M-3r el :py"" € .

The desired result followd

The emptiness problem for an alternating tree automadomvith parity condition can be solved by
constructing an equivalent nondeterministic parity tramaton\" (such thatL,(A) = Li(N)), and then
checking emptiness of/. By the result of [15, Theorem 1.2] for binary trees Afhasn states and priorities,
then V' hasn/ = 20(d¢logn) states and = O(d - n - logn) priorities. Note that the emptiness problem for



input trees of rank is equivalent to the emptiness problem for binary trees imlgrnating automaton with

k - n states. Finally, the emptiness of a nondeterministic pé&nde automaton withn transitions ana priorities

is equivalent to solving a two-player parity game [10], whizan be done in time:.“(¢) [20]. Moreover, since
memoryless strategies exist for parity games [10], if thedederministic parity tree automaton is nonempty, then
it accepts a regular tree that can be encoded by a transdugize o:. Sincem is at most quadratic in the size of
the state space, the emptiness problem for alternatingitrenaton with parity condition can be solved in time
20((dknlogkn)?) and it is sufficient to consider input trees encoded by thacers of siz@C(@knlogkn),

THEOREM 3.2. Given a3-player gameG = (S, sg,0, O, obs) with n states (andk < n observations for
player 1) and parity objectivep defined byl priorities, the problem of deciding whether
JoeX - Vrnell-Irel: pl™" €p

S0

can be solved in timg@(@*n"log” n) - Moreover, memory of sizz(@*logn) is sufficient for playet.

REMARK 4. Note that we considered the problem of deciding whether
JoeX-Vrell-Ir el : pJ"" € p

which is equivalent to
dJoeX-drel -Vrnell: p?™™ €y

S0
because once the strategy for player 1 is given we have aqgperfiservation game where we can switch the
quantifiers of strategies due to determinacy. Second, bysalurction to alternating parity tree automata and the
fact that if an alternating parity tree automaton is non-dypphere is a regular witness tree for non-emptiness it
follows that strategies for player 1 can be restricted tot&innemory without loss of generality. This ensures that
we can solve the problem of existence of finite-memory alswststrategies in parial-observation stochastic
parity games (by Theorem 2.1 of Section 2 also in EXPTIME), BRPTIME-completeness of the problem
follows.

THEOREM 3.3. Given a partial-observation stochastic game and a paritjeotive o defined byd priorities,
the problem of deciding whether there exists a finite-merabnost-sure (resp. positive) winning strategy for
player 1 (i) is EXPTIME complete; (ii) can be decided tigf¥(d+1)* (n-d)*log*(n-d)) - Moreover, if there is an
almost-sure (resp. positive) winning strategy, theretexisie that uses memory of sp¥d (n-d)? log(n-d))

REMARK 5. As mentioned in Remark 2 the EXPTIME upper bound for qualt@aanalysis of partial-
observation stochastic parity games with finite-memorydamnized strategies follows from Theorem 3.3. The
EXPTIME lower bound and the exponential lower bound on mgmearuirement for finite-memory randomized
strategies follows from the results of [7, 6] for reachatyiland safety objectives (even for POMDPS).
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