

This is a self-archived – parallel-published version of an original article. This version may differ from

the original in pagination and typographic details. When using please cite the original.

AUTHORS Pierre Marcus, Ilkka Törmä

TITLE Descriptional Complexity of Winning Sets of Regular Languages

YEAR 2020

DOI 10.1007/978-3-030-62536-8_11

VERSION Final draft

CITATION Marcus P., Törmä I. (2020) Descriptional Complexity of Winning Sets of Regular

 Languages. In: Jirásková G., Pighizzini G. (eds) Descriptional Complexity of Formal

 Systems. DCFS 2020. Lecture Notes in Computer Science, vol 12442. Springer, Cham.

 https://doi.org/10.1007/978-3-030-62536-8_11

Descriptional Complexity of Winning Sets of
Regular Languages

Pierre Marcus1 and Ilkka Törmä2[0000−0001−5541−8517]?

1 M2 informatique fondamentale, École Normale Supérieure de Lyon, Lyon, France,
pierre.marcus@ens-lyon.fr

2 Department of Mathematics and Statistics, University of Turku, Turku, Finland,
iatorm@utu.fi (corresponding author)

Abstract. We investigate certain word-construction games with vari-
able turn orders. In these games, Alice and Bob take turns on choosing
consecutive letters of a word of fixed length, with Alice winning if the
result lies in a predetermined target language. The turn orders that re-
sult in a win for Alice form a binary language that is regular whenever
the target language is, and we prove some upper and lower bounds for
its state complexity based on that of the target language.

Keywords: State complexity · Regular languages · Winning sets

1 Introduction

Let us define a word-construction game of two players, Alice and Bob, as follows.
Choose a set of binary words L ⊆ {0, 1}∗ called the target set, a length n ≥ 0 and
a word w ∈ {A,B}n called the turn order, where A stands for Alice and B for
Bob. The players construct a word v ∈ {0, 1}n so that, for each i = 0, 1, . . . , n−1
in this order, the player specified by wi chooses the symbol vi. If v ∈ L, then Alice
wins the game, and otherwise Bob wins. The existence of a winning strategy for
Alice depends on both the target set and the turn order. We fix the target set
L and define its winning set W (L) as the set of those words over {A,B} that
result in Alice having a winning strategy.

Winning sets were defined under this name in [9] in the context of symbolic
dynamics, but they have been studied before that under the name of order-
shattering sets in [1, 4]. The winning set has several interesting properties: it is
downward closed in the index-wise partial order induced by A < B (as changing
B to A always makes the game easier for Alice) and it preserves the number of
words of each length. This latter property was used in [8] to study the growth
rates of substitutive subshifts.

If the language L is regular, then so is W (L), as it can be recognized by
an alternating finite automaton (AFA) [9], which only recognizes regular lan-
guages [3]. Thus we can view W as an operation on the class of binary regular
languages, and in this article we study its state complexity in the general case

? Author supported by Academy of Finland grant 295095.

2 Pierre Marcus and Ilkka Törmä

and in several subclasses. In our construction the AFA has the same state set
as the original DFA, so our setting resembles parity games, where two players
construct a path in a finite automaton [10]. The main difference is that in a
parity game, the player who chooses the next move is the owner of the current
state, whereas here it is determined by the turn order word.

In the general case, the size of the minimal DFA for W (L) can be doubly
exponential in that of L. We derive a lower, but still superexponential, upper
bound for bounded regular languages (languages that satisfy L ⊆ w∗1w∗2 · · ·w∗k for
some words wi). We also study certain bounded permutation invariant languages,
where membership is defined only by the number of occurrences of each symbol.
In particular, we explicitly determine the winning sets of the languages Lk =
(0∗1)k0∗ of words with exactly k occurrences of 1.

In this article we only consider the binary alphabet, but we note that the
definition of the winning set can be extended to languages L ⊆ Σ∗ over an
arbitrary finite alphabet Σ in a way that preserves the properties of downward
closedness and |L| = |W (L)|. The turn order word is replaced by a word w ∈
{1, . . . , |Σ|}∗. On turn i, Alice chooses a subset of size wi of Σ, and Bob chooses
the letter vi from this set.

2 Definitions

We present the standard definitions and notations used in this article. For a set
Σ, we denote by Σ∗ the set of finite words over it, and the length of a word
w ∈ Σn is |w| = n. The notation |w|a means the number of occurrences of
symbol a ∈ Σ in w. The empty word is denoted by λ. For a language L ⊆ Σ∗

and w ∈ Σ∗, denote w−1L = {v ∈ Σ∗ | wv ∈ L}. We say L is (word-)bounded
if L ⊆ w∗1 · · ·w∗k for some words w1, . . . , wk ∈ Σ∗. Bounded languages have been
studied from the state complexity point of view in [5].

A finite state automaton is a tuple A = (Q,Σ, q0, δ, F) where Q is a finite
state set, Σ a finite alphabet, q0 ∈ Q the initial state, δ is the transition function
and F ⊆ Q is the set of final states. The language accepted from state q ∈ Q is
denoted Lq(A) ⊆ Σ∗, and the language of A is L(A) = Lq0(A). The type of δ
and the definition of L(A) depend on which kind of automaton A is.

– If A is a deterministic finite automaton, or DFA, then δ : Q×Σ → Q gives
the next state from the current state and an input symbol. We extend it to
Q × Σ∗ by δ(q, λ) = q and δ(q, sw) = δ(δ(q, s), w) for q ∈ Q, s ∈ Σ and
w ∈ Σ∗. The language is defined by Lq(A) = {w ∈ Σ∗ | δ(q, w) ∈ F}.

– If A is a nondeterministic finite automaton, or NFA, then δ : Q × Σ → 2Q

gives the set of possible next states. We extend it to Q×Σ∗ by δ(q, λ) = {q}
and δ(q, sw) =

⋃
p∈δ(q,s) δ(p, w) for q ∈ Q, s ∈ Σ and w ∈ Σ∗. The language

is defined by Lq(A) = {w ∈ Σ∗ | δ(q, w) ∩ F 6= ∅}.
– If A is an alternating finite automaton, or AFA, then δ : Q×Σ → 22

Q

. We
extend δ to Q × Σ∗ by δ(q, λ) = {S ⊆ Q | q ∈ S} and δ(q, sw) = {S ⊆
Q | {p ∈ Q | S ∈ δ(q, w)} ∈ δ(q, s)} for q ∈ Q, s ∈ Σ and w ∈ Σ∗. The
language is defined by Lq(A) = {w ∈ Σ∗ | F ∈ δ(q, w)}.

Descriptional Complexity of Winning Sets of Regular Languages 3

All three types of finite automata recognize exactly the regular languages. An
AFA can be converted into an equivalent NFA, and an NFA into a DFA, by the
standard subset constructions. A standard reference for DFAs and NFAs is [6].

Two states p, q ∈ Q of A are equivalent, denoted p ∼ q, if Lp(A) = Lq(A).
Every regular language L ⊆ Σ∗ is accepted by a unique DFA with the minimal
number of states, which are all nonequivalent, and every other DFA that accepts
L has an equivalent pair of states. Two words v, w ∈ Σ∗ are congruent by L,
denoted v ≡L w, if for all u1, u2 ∈ Σ∗ we have u1vu2 ∈ L iff u1wu2 ∈ L. They are
right-equivalent, denoted v ∼L w, if for all u ∈ Σ∗ we have vu ∈ L iff wu ∈ L.
The set of equivalence classes Σ∗/≡L is the syntactic monoid of L, and if L is
regular, then it is finite. In that case the equivalence classes of ∼L can be taken
as the states of the minimal DFA of L.

Let P : 2Σ
∗ → 2Σ

∗
be a (possibly partially defined) operation on languages.

The (regular) state complexity of P is f : N → N, where f(n) is the maximal
number of states in a minimal automaton of P(L(A)) for an n-state DFA A.

We say that a function f : N → R grows doubly exponentially if there exist
a, b, c, d > 1 with ab

n ≤ f(n) ≤ cd
n

for large enough n, and superexponentially
if for all a > 1, f(n) > an holds for large enough n.

3 Winning Sets

In this section we define winning sets of binary languages, present the construc-
tion of the winning set of a regular language, and prove some general lemmas.
We defined the winning set informally at the beginning of Section 1. Now we
give a more formal definition which does not explicitly mention games.

Definition 1 (Winning Set). Let n ∈ N and T ⊆ {0, 1}n be arbitrary. The
winning set of T , denoted W (T) ⊆ {A,B}n, is defined inductively as follows. If
n = 0, then T is either the empty set or {λ}, and W (T) = T . If n ≥ 1, then
W (T) = {Aw | w ∈W (0−1T) ∪W (1−1T)} ∪ {Bw | w ∈W (0−1T) ∩W (1−1T)}.

For a language L ⊆ {0, 1}∗, we define W (L) =
⋃
n∈NW (L ∩ {0, 1}n).

For Alice to win on a turn order of the form Aw, she has to choose either 0
or 1 as the first letter v0 of the constructed word v, and then follow a winning
strategy on the target set v−10 T and turn order w. On a word Bw, Alice must
have a winning strategy on v−10 T and w no matter how Bob chooses v0.

A language L over a linearly ordered alphabet Σ is downward closed if v ∈ L,
w ∈ Σ|v| and wi ≤ vi for each i = 0, . . . , |v| − 1 always implies w ∈ L.

Proposition 1 (Propositions 3.8 and 5.4 in [9]). The winning set W (L)
of any L ⊆ {0, 1}∗ is downward closed (with the ordering A < B) and satisfies
|W (L) ∩ {A,B}n| = |L ∩ {0, 1}n| for all n. If L is regular, then so is W (L).

From a DFA A, we can easily construct an alternating automaton for W (A).

Definition 2 (Winning Set Automaton). Let A = (Q, {0, 1}, q0, δ, F) be a
binary DFA. Define a “canonical” AFA for W (L(A)) as (Q, {A,B}, q0, δ′, F)

4 Pierre Marcus and Ilkka Törmä

where δ′(q, A) = {S ⊂ Q | δ(q, 0) ∈ S or δ(q, 1) ∈ S} and δ′(q,B) = {S ⊂
Q | δ(q, 0) ∈ S and δ(q, 1) ∈ S}. This AFA clearly recognizes W (L(A)). We
transform it into the equivalent NFA (2Q, {A,B}, {q0}, δ′′, 2F), where

δ′′(S,A) = {{δ(q, f(q)) | q ∈ S} | f : S → {0, 1}}
δ′′(S,B) = {{δ(q, b) | q ∈ S, b ∈ {0, 1}}}.

We usually work on the determinization of this NFA, which we denote by W (A) =

(22
Q

, {A,B}, {{q0}}, δW , FW). Here FW = {G ∈ 22
Q | ∃S ∈ G : S ⊆ F} and

δW (G, c) =
⋃
S∈G δ

′′(S, c) for G ⊂ 2Q and c ∈ {A,B}.

Intuitively, as Alice and Bob construct a word, they also play a game on the
states of A by choosing transitions. A state G of W (A) is called a game state,
and it represents a situation where Alice can force the game to be in one of the
sets S ∈ G, and Bob can choose the actual state q ∈ S. From the definition
of the AFA it follows that exchanging the labels 0 and 1 on the two outgoing
transitions of any one state of A does not affect δ′. In other words, the winning
set of a DFA’s language is independent of the labels of its transitions.

For example, take L = 0∗1(0∗10∗1)0∗, the language of words with an odd
number of 1-symbols. Its winning set is W (L) = (A + B)∗A, as the last player
has full control of the parity of occurrences of 1s. Figure 1 shows the minimal
DFA for L and the NFA derived from it that recognizes W (L). One can check
that the language recognized by this NFA is indeed (A+B)∗A. Note how reading
A lets each state of a set evolve independently by 0 or 1, while B makes both
choices for all states simultaneously and results in one large set.

a b {a} {a, b} {b}1

0 0

A

A A
A,B

B B

A A

Fig. 1: A DFA for L = 0∗1(0∗10∗1)0∗, and the derived NFA for W (L).

The following properties follow easily from the definition of W (A).

Lemma 1. Let A be a binary DFA, W (A) the winning set DFA from Defini-
tion 2, and δW the iterated transition function for W (A). Let G and H be game
states of W (A), R,S, T, V ⊆ 2Q sets of states, and w a word over {A,B}.

(a) Sets in game states evolve independently: δW (G∪H, w) = δW (G, w)∪δW (H, w).
(b) States in sets evolve almost independently: If S,R ⊆ Q are disjoint, then

δW ({S ∪R}, w) = {T ∪ V | T ∈ δW ({S}, w), V ∈ δW ({R}, w)}.

Descriptional Complexity of Winning Sets of Regular Languages 5

(c) Supersets can be removed from game states (since δW is monotone in its first
argument by (a) and (b)): If S,R ∈ G and S (R, then G ∼ G \ {R}.

(d) Sets containing nonaccepting sink states can be removed from game states:
If S ∈ G and some q ∈ S has no path to a final state, then G ∼ G \ {S}.

(e) Accepting sink states can be removed from sets: If S ∈ G and there is a sink
state q ∈ S ∩ F , then G ∼ (G \ {S}) ∪ {S \ {q}}.

The next lemma helps prove equivalences of game states and words. The first
part follows from monotonicity of δW , the second from Lemma 1(a).

Lemma 2. Recall the assumptions of Lemma 1.

(a) Suppose that for each S ∈ G there is R ∈ H with R ⊆ S, and reciprocally.
Then G ∼ H.

(b) Let v, w ∈ {A,B}∗. If for all q ∈ Q, the game states δW ({{q}}, v) and
δW ({{q}}, w) are either both accepting or both rejecting, then v ≡W (L(A)) w.

Recall the Dedekind numbers D(n), which count the number of antichains
of subsets of {1, . . . , n} with respect to set inclusion. Their growth is doubly
exponential: aa

n

< D(n) < bb
n

holds for large enough n if a < 2 < b. This
follows from

(
n
dn/2e

)
≤ log2D(n) ≤ (1 + O(log n/n))

(
n
dn/2e

)
[7] and the well

known asymptotic formula
(

n
dn/2e

)
= Θ(2n/

√
n).

Proposition 2. Let A an n-state DFA. The number of states in the minimal
DFA for W (L(A)) is at most the Dedekind number D(n).

Proof. Every game state is equivalent to an antichain by Lemma 1(c), so the
number of nonequivalent game states is at most D(n). ut

We have computed the exact state complexity of the winning set operation
for DFAs with at most 5 states; the 6-state case is no longer feasible with our
program and computational resources. The sequence begins with 1, 4, 16, 62, 517.

4 Doubly Exponential Lower Bound

In this section we construct a family of automata for which the number of states
in the minimal winning set automaton is doubly exponential. The idea is to reach
any desired antichain of subsets of a special subset of states, and then to make
sure these game states are nonequivalent. To do this we split the automaton into
several components. First we present a “subset factory gadget” that allows to
reach any set of the form {S} where S is a subset of a specific length-n path
in the automaton. This gadget will be used several times to accumulate subsets
in the game state. Then we present a “testing gadget” that lets us distinguish
between game states by whether they contain a (subset of a) given set or not.

Recall that the transition labels of a binary DFA are irrelevant to the winning
set of its language. In this section we define automata by describing their graphs,
and a node with two outgoing transitions can have them arbitrary labeled by 0
and 1. Incoming and outgoing transitions in the figures indicate how the gadgets
connect to the rest of the automaton.

6 Pierre Marcus and Ilkka Törmä

Lemma 3 (Subset factory gadget). Let GenSubsetn be the graph in Fig-
ure 2. For i ∈ {1, . . . , n}, denote oi = e2n+i−1 (the n rightmost states labeled by
e). For S ⊆ {1, . . . , n}, let wgen

S be the concatenation w1w2 . . . wn where wi = BA
if i ∈ S, and wi = AB if i /∈ S. Then δW ({{b1}}, wgen

S)) ∼ {{oi | i ∈ S}} for
each binary DFA that contains GenSubsetn as a subgraph.

The idea is that at step i, reading B adds ci to each subset of the game state,
and then reading A avoids the sink si. On the other hand reading A creates two
versions of each subset of the game state, one that continues on the upper row,
and one that falls into the sink si when B is read, and can then be ignored.

b1 d1 bn−1 dn−1

c1s1 sn−1 cn−1 sn

bn

cn

e3n−2e3n−5 e3n−4 e3n−3e3e2e1

· · ·

· · ·

bn+1

Fig. 2: GenSubsetn, the subset factory gadget.

Lemma 4 (Game state factory gadget). Let GenStaten be the graph in
Figure 3 and A any DFA over {0, 1} that contains it. For all G = {S1, . . . , S`}
where each Si ⊆ {r1, . . . , rn}, let wgen

G ∈ {A,B}`(3n+1) be the concatenation of
Awgen

Si
An for i ∈ {0, . . . , `}. Then δW ({{a1}}, wgen

G) ∼ G ∪ {{a1}} ∪ G′ for some
game state G′ that does not contain a subset of the states of GenStaten.

a1

a2

a3a4

a5

a6

· · ·
a3n

a3n+1

GenSubsetn r1

r2

r3
r4

r5

r6

· · ·r3n

r3n+1

Fig. 3: GenStaten, the game state factory gadget.

Descriptional Complexity of Winning Sets of Regular Languages 7

The idea is to successively add new sets Si to the game state, while previously
made subsets will wait by rotating in the r-cycle. A singleton set rotates in the
a-cycle so that reading A from the state a1 creates a new singleton set in the
subset factory gadget. The word wgen

Si
transforms it into a set of the correct

form, and then reading An both moves this new subset to the r-cycle with the
previously created sets and rotates the singleton set back to ai.

Lemma 5 (Testing gadget). Let Testingn be the graph in Figure 4.

(a) For P ⊆ {1, . . . , n}, define wtest
P ∈ {A,B}n by wtest

P [i] = A iff n− i+ 1 ∈ P .
Then for each I ⊆ {1, . . . , n}, the game state δW ({{qi | i ∈ I}}, wtest

P) is
accepting iff I ⊆ P .

(b) Let V be the set of nodes of the graph Testingn. Then for all G ∈ 22
V

and
w ∈ {A,B}≥2n, the game state δW (G, w) is not accepting.

q1 q2 · · · qn

r

qn+1 qn+2 · · · q2n r′

Fig. 4: Testingn, the testing gadget.

The idea is that reading A or B moves the game state toward r′, except when
the set contains the state qn and B is read, causing it to fall into the sink r.

Theorem 1. For each n > 0 there exists a DFA An over {0, 1} with 15n + 3
states such that the minimal DFA for W (L(An)) has a least D(n) states.

Together with Proposition 2, this implies that the state complexity of W
restricted to regular languages grows doubly exponentially.

Proof (sketch). Let An be the DFA obtained by combining Testingn with the
outgoing arrow of GenStaten and assigning a1 as the initial state. For an an-
tichain G on the powerset of {r1, . . . , rn}, let XG = δW ({{a1}}, wgen

G). Lemma 4
gives XG ∼ {{a1}} ∪ G ∪ G′ where each set in G′ contains a state of Testingn.

We show that distinct antichains G result in nonequivalent states. Let P ⊆
{1, . . . , n} and consider X ′G = δW (XG, AB

2nA2n+1wtest
P). We claim that X ′G is

accepting iff some element of G is a subset of {ri | i ∈ P}. By Lemma 1(a) we
may analyze the components of XG separately.

8 Pierre Marcus and Ilkka Törmä

– We have δW ({{a1}}, A) = {{a2}, {b1}}. The part {b1} is destroyed by the
sink state s1 when we read Bs, and the part {a2} rotates in the a-cycle
without encountering accepting states.

– Each set of G′ contains a state of Testingn, which will reach one of the
nonaccepting sinks r or r′.

– The game state δW (G, AB2nA2n+1) consists of the sets {qi | ri ∈ S} for
S ∈ G, as well as sets that contain at least one element of {r2, . . . , rn+1}.
The latter will rotate in the r-cycle. By Lemma 5, the former sets produce
an accepting game state in X ′G iff some S ∈ G is a subset of {ri | i ∈ P}.

We have found D(n) nonequivalent states in W (A). ut

5 Case of the Bounded Regular Languages

In this section we prove an upper bound on the complexity of the winning set of
a bounded regular language. Our motivation comes from the fact that bounded
regular languages correspond to so-called zero entropy sofic shifts in symbolic
dynamics, which are defined by the number of words of given length that occur
in them, and the fact that the winning set operation preserves this number. Our
proof technique is based on tracing the evolution of individual states of a DFA A
in the winning set automaton W (A) when reading several A-symbols in a row.

Definition 3 (Histories of Game States). Let A = (Q, {0, 1}, q0, δ, F) be

a DFA. Let G ∈ 22
Q

be a game state of W (A), and for each i ≥ 0, let Gi ∼
δW (G, Ai) be the game state with all supersets removed as per Lemma 1(c). A
history function for G is a function h that associates to each i > 0 and each set
S ∈ Gi a parent set h(i, S) ∈ Gi−1, and to each state q ∈ S a set of parent
states h(i, S, q) ⊆ h(i, S) such that

– {q} ∈ δW ({h(i, S, q)}, A) for all q ∈ S, and
– h(i, S) is the disjoint union of h(i, S, q) for q ∈ S.

Note that this implies S ∈ δW ({h(i, S)}, A) for each i.
The history of a set S ∈ Gi from i under h is the sequence S0, S1, . . . , Si = S

with Sj−1 = h(j, Sj) for all 0 < j ≤ i. A history of a state q ∈ S in S under h
is a sequence q0, . . . , qi = q with qj−1 ∈ h(j, Sj , qj) for all 0 < j ≤ i.

Every game state has at least one history function: each S ∈ Gi has at least
one set R ∈ Gi−1 with S ∈ δW ({R}, A), so we can choose R = h(i, S), and
similarly for the h(i, S, q). It can have several different history functions, and
each of them defines a history for each set S. A state of S can have several
histories under a single history function.

For the rest of this section, we fix an n-state DFAA = (Q, {0, 1}, q0, δ, F) that
recognizes a bounded binary language and has disjoint cycles. Let the lengths of
the cycles be k1, . . . , kp, and let ` be the number of states not part of any cycle.

We define a preorder ≤ on the state set Q by reachability: p ≤ q holds if and
only if there is a path from p to q in A. For two history functions h, h′ of a game

Descriptional Complexity of Winning Sets of Regular Languages 9

state G, we write h ≤ h′ if for each i > 0, each S ∈ Gi and each q ∈ S, there
exists a function f : h(i, S, q) → h′(i, S, q) with p ≤ f(p) for all p ∈ h(i, S, q).
This defines a preorder on the set of history functions of G. We write h < h′ if
h ≤ h′ and h′ 6≤ h. A history function h is minimal if there exists no history
function h′ with h′ < h. Intuitively, a minimal history function is one where
the histories of states stay in the early cycles of A as long as possible. Since
the choices of h(i, S) and h(i, S, q) can be made independently, minimal history
functions always exist.

Lemma 6. Let G ∈ 22
Q

be any game state of W (A). Then there exist k ≤
lcm(k1, . . . , kp) + 2n + maxx6=y lcm(kx, ky) and m ≤ lcm(k1, . . . , kp) such that
δW (G, Ak) ∼ δW (G, Ak+m).

The idea of the proof is that under a minimal history function, no state
q ∈ S ∈ G can spend too long in a cycle it did not start in: the maximal number
of steps is comparable to the lcm of the lengths of successive cycles.

Theorem 2. Let A be an n-state binary DFA whose language is bounded. Then
there is a partition `+k1+ · · ·+kp = n such that the minimal DFA for W (L(A))

has at most
∑`+p+1
m=0 (p ·maxx6=y lcm(kx, ky) + 2`+ 2lcm(k1, . . . , kp))

m states.

Proof. Denote the minimal DFA for W (L(A)) by B. We may assume that A
is minimal, and then it has disjoint cycles, as otherwise the number of length-
n words in L(A) would grow exponentially while in a bounded language this
growth is at most polynomial. Let k1, . . . , kp be the lengths of the cycles and `
the number of remaining states, and denote P = p ·maxx 6=y lcm(kx, ky) + 2` +
2lcm(k1, . . . , kp). Then any w ∈ L(W (A)) has |w|B ≤ ` + p, as otherwise Bob
can win by choosing to leave a cycle whenever possible.

Consider a word w = At0BAt1B · · ·BAtm with 0 ≤ m ≤ ` + p. If ti ≥ P
for some i, then Lemma 6 implies δW (G, Ati) ∼ δW (G, At) for the game state
G = δW ({{q0}}, At0B · · ·Ati−1B) and some t < ti. Thus the number of distinct
states of B reachable by such words is at most Pm+1. The claim follows. ut

The upper bound we obtain (the maximum of the expression taken over all
partitions of n) is at least nn. We do not know whether the actual complexity is
superexponential for bounded languages. If we combine the gadgets GenSubsetn
and Testingn, the resulting DFA recognizes a language whose winning set re-
quires at least 2n states, so for finite (and thus bounded) regular languages the
state complexity of the winning set is at least exponential.

6 Chain-Like Automata

In this section we investigate a family of binary automata consisting of a chain
of states with a self-loop on each state. More formally, define a 1-bounded chain
DFA as A = (Q, {0, 1}, q0, δ, F) where Q = {0, 1, . . . , n − 1}, q0 = 0, δ(i, 0) = i
and δ(i, 1) = i + 1 for all i ∈ Q except δ(n − 1, 1) = n − 1, and n − 1 /∈ F . See

10 Pierre Marcus and Ilkka Törmä

Figure 5 for an example. It is easy to see that these automata recognize exactly
the regular languages L such that w ∈ L depends only on |w|1, and |w|1 is also
bounded. Of course, the labels of the transitions have no effect on the winning
set W (L(A)) so the results of this section apply to every DFA with the structure
of a 1-bounded chain DFA.

0 1 2 3 · · · n− 2 n− 1
1 1 1 1 1 1

0 0 0 0 0 0, 1

Fig. 5: A 1-bounded chain DFA. Any states except n− 1 can be final.

Lemma 7. Let A be an n-state 1-bounded chain DFA. Let ≡ stand for ≡W (L(A)).

(a) For every state q ∈ Q and every S ∈ δW ({{q}}, AB), there exists R ∈
δW ({{q}}, BA) with R ⊆ S.

(b) For all k ∈ N, BkAkBk+1 ≡ Bk+1AkBk.
(c) For all k ∈ N, Ak+1BkAk ≡ AkBkAk+1.
(d) An−1 ≡ An and Bn−1 ≡ Bn.

The intuition for (a) is that the turn order BA is better for Alice than AB,
since she can undo any damage Bob just caused. The other items are proved by
concretely analyzing the evolution of game states, which A intuitively “moves
around with precise control” and B “thickens”. Lemma 2 simplifies the analysis.

Theorem 3. Let A be a 1-bounded chain DFA with n states. The number of

states in the minimal DFA of W (L(A)) is O(n1/5e4π
√

n
3).

Proof. Since A does not accept any word with n or more 1-symbols, W (L(A))
contains no word with n or more B-symbols. Lemma 7(b) and (c) allow us to
rewrite every word ofW (L(A)) in the form An1Bn2An3Bn4 · · ·An2r−1Bn2r where
the sequence n1, . . . , n2r is first nondecreasing and then nonincreasing, and n2 +
n4+· · ·+n2r < n. With Lemma 7(d) we can also guarantee n1, n3, . . . , n2r−1 < n,
so that

∑
i ni < 4n. In [2], Auluck showed that the number Q(m) of partitions

m = n1+. . . nr of an integer m that are first nondecreasing and then nonincreas-

ing is Θ(m−4/5e2π
√
m/3). Of course, v ≡ w implies v ∼ w. Thus the number of

non-right-equivalent words for W (L(A)), and the number of states in its mini-

mal DFA, is at most 1 +
∑4n−1
m=0 Q(m) = O(n1/5e4π

√
n
3). ut

7 Case Study: Exact Number of 1-Symbols

In the previous section we bounded the complexity of the winning set of certain
bounded permutation invariant languages. Here we study a particular case, the

Descriptional Complexity of Winning Sets of Regular Languages 11

language of words with exactly n ones, or L = (0∗1)n0∗. We not only compute
the number of states in the minimal automaton (which is cubic in n), but also
describe the winning set. Throughout the section A is the minimal automaton
for L, described in Figure 6. For S ⊆ Q, we denote S = {min(S),min(S) +
1, . . . ,max(S)}, and for any game state G of W (A), denote G = {S | S ∈ G}.

0 1 . . . n− 1 n n + 1

Fig. 6: The minimal DFA for L = (0∗1)n0∗.

Lemma 8. Each game state G of W (A) is equivalent to G.

The idea is that the left and right ends of sets in G evolve independently of
their other elements, and their positions determine whether G is final.

Lemma 9. Let T be the set of integer triples (i, `,N) with 0 ≤ i ≤ n, 1 ≤ ` ≤
n− i+ 1 and 1 ≤ N ≤ n− i− `+ 2. For (i, `,N) ∈ T , let

G(i, `,N) := {{i, . . . , i+`−1}, {i+1, . . . , i+`}, . . . , {i+N−1, . . . , i+`+N−2}}.

(a) Each reachable game state of W (A) is equivalent to some G(i, `,N) for
(i, `,N) ∈ T , or to ∅.

(b) The game states G(i, `,N) for (i, `,N) ∈ T are nonequivalent.
(c) Every G(i, `,N) for (i, `,N) ∈ T is equivalent to some reachable game state.

The game state G(i, `,N) is an interval of intervals, where i is the leftmost
position of the first interval, ` is their common length, and N is their number.
The first item is proved by induction, and the others by exhibiting a word over
{A,B} that produces or separates given game states. Then the minimal DFA
for W (L) has |T |+ 1 states, and counting them yields the following.

Proposition 3. The minimal DFA for W (L) has n3

6 + n2 + 11n
6 + 2 states.

Proposition 4. W (L) is exactly the set of words w ∈ {A,B}∗ such that |w|A ≥
n, |w|B ≤ n, and every suffix v of w satisfies |v|A ≥ |v|B.

Proof (sketch). Every w ∈ W (L) satisfies |w|A ≥ n since Bob can play only 0s,
and |w|B ≤ 1 since he can play only 1s. Only game states of the form G(i, 1, N)
can be accepting. Since reading A decreases the parameter ` by one, and B
increases ` by one, words of W (L) must have after each B an associated A
somewhere in the word. This is equivalent to the suffix condition. Conversely, on
words of the given form Alice can win by associating to each wi = B some wj = A
that occurs after it, choosing vj 6= vi for the constructed word v ∈ {0, 1}∗, and
choosing the remaining symbols so that |v|1 = n. ut

12 Pierre Marcus and Ilkka Törmä

8 A Context-Free Language

In this section we prove that the winning set operator does not in general pre-
serve context-free languages by studying the winning set of the Dyck language
D ⊆ {0, 1}∗ of balanced parentheses. In our formalism, 0 stands for an opening
parenthesis and 1 for a closing parenthesis.

Proposition 5. The winning set of the Dyck language is not context-free.

Proof (sketch). Take L = W (D) ∩ (AA)∗(BB)∗(AA)∗, which is context-free if
W (D) is. We claim that L = {A2iB2jA2k | i ≥ j, k ≥ 2j}. First, if Bob closes
2j parentheses, Alice must open at least 2j parentheses beforehand, so i ≥ j is
necessary. If Bob opens 2j parentheses instead, when Alice plays a second time,
she has to close 4j parentheses, hence k ≥ 2j. Thus the right hand side contains
L. Conversely, Alice can win on A2iB2jA2k by leaving exactly 2j parentheses
open before Bob’s turns and then closing all open parentheses, so L contains the
right hand side. It’s a standard exercise to prove that L is not context-free. ut

References

1. Anstee, R., Rónyai, L., Sali, A.: Shattering News. Graphs and Combinatorics 18(1),
59–73 (2002). https://doi.org/10.1007/s003730200003

2. Auluck, F.: On some new types of partitions associated with general-
ized Ferrers graphs. In: Mathematical Proceedings of the Cambridge Philo-
sophical Society. vol. 47, pp. 679–686. Cambridge University Press (1951).
https://doi.org/10.1017/S0305004100027134

3. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM
28(1), 114–133 (1981). https://doi.org/10.1145/322234.322243

4. Friedl, K., Rónyai, L.: Order shattering and Wilson’s theorem. Discrete Mathe-
matics 270(1), 127–136 (2003). https://doi.org/10.1016/S0012-365X(02)00869-5

5. Herrmann, A., Kutrib, M., Malcher, A., Wendlandt, M.: Descriptional Complexity
of Bounded Regular Languages. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.)
Descriptional Complexity of Formal Systems. pp. 138–152. Springer International
Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-41114-9 11

6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., USA (2006)

7. Kleitman, D., Markowsky, G.: On Dedekind’s Problem: The Number of Isotone
Boolean Functions. II. Transactions of the American Mathematical Society 213,
373–390 (1975). https://doi.org/10.2307/1998052

8. Peltomäki, J., Salo, V.: On winning shifts of marked uniform substitu-
tions. RAIRO-Theoretical Informatics and Applications 53(1-2), 51–66 (2019).
https://doi.org/10.1051/ita/2018007

9. Salo, V., Törmä, I.: Playing with Subshifts. Fundamenta Informaticae 132(1),
131–152 (2014). https://doi.org/10.3233/FI-2014-1037

10. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200(1), 135–183 (1998).
https://doi.org/10.1016/S0304-3975(98)00009-7

