504 research outputs found

    Improvements in optical techniques to investigate the behavior and neuronal network dynamics over long timescales

    Get PDF
    Developments in optical technology have produced an important shift in experimental neuroscience from electrophysiological methods for observation and stimulation to all-optical solutions. One expects this trend to continue as future developments continue to deliver, and improve upon, the original promises of the technology: 1) minimally invasive actuation and recording of neurons, and 2) a drastic increase in targets that can be treated simultaneously. Moreover, as the high costs of the technology are reduced, one may expect its larger-scale adoption in the neuroscience community. In this thesis, I describe the development and implementation of two alloptical solutions for the analysis of behavior, neuronal signaling, and stimulation, which improve on previous state-of-the-art: (1) A minimally-invasive, high signal-to-noise twophoton microscopy setup capable of simultaneous, live-imaging of a large subset of sensory neurons post activation, and (2) a low-cost tracking solution to stimulate and record behavior. I begin this thesis with a review of recent advances in optical neuroscience techniques for the study of neuronal networks with the focus on work done in Caenorhabditis elegans. Then, in chapter 2, I describe my implementation of a two-photon temporal focusing microscopy setup and show significant improvements through the use of a high power/ high pulse repetition rate excitation system, enabling live imaging with high resolution for extended periods of time. I model temperature increase during a physiological imaging scenario for different repetition rates at fixed peak intensities and find range centered around 1 MHz to be optimal. Lastly, I describe the low-cost tracking setup with the ability to stimulate and record behavior over the course of hours. The setup is capable of two-color stimulation of optogenetic proteins over the area of the behavioral arena in combination with volatile chemicals. To showcase the utility of the system, I demonstrate behavioral analysis of integration of contradictory cues. In summary, I present a set of techniques for the interrogation of neural networks from animal behavior to neuronal activity, over timescales of potentially hours and days. These techniques can be used to address a new dimension of scientific questions.Okinawa Institute of Science and Technology Graduate Universit

    From sensory cues to complex behaviour : towards an understanding of the neuronal computations underlying sensorimotor transformation in Caenorhabditis elegans

    Get PDF
    Tese de mestrado, Neurociências, Universidade de Lisboa, Faculdade de Medicina, 2020Sobrevivência em ambientes em rápida mudança requer mecanismos aprimorados que permitam aos organismos responder rapidamente a pistas sensoriais, captadas do meio envolvente, e a adaptarem o seu comportamento de forma adequada. O processamento, por parte do sistema nervoso dos organismos, dos mecanismos subjacentes a integração sensório-motora (a transformação de sinais sensoriais em outputs motores) e um dos processos mais fundamentais e, no entanto, mal compreendidos, em neurociências. Neste estudo, visou-se investigar de que forma o nemátodo Caenorhabditis elegans (C. elegans) efetua a transformação sensório-motora num dos seus principais circuitos neuronais de processamento de informação, fundamental na criação de comportamentos provocados pela perceção de odores. O conectoma de C. elegans foi minuciosamente estudado e mapeado, o que levou a que este nemátodo seja considerado um modelo biológico valioso para o estudo de circuitos neuronais e das suas funções. C. elegans e um organismo facilmente manipulável geneticamente. Transgenes que codificam indicadores de cálcio, como e exemplo GCaMP (genetically encoded calcium indicator), podem ser facilmente expressos em neurónios de interesse. GCaMP e uma variante de GFP (Green Fluorescent Protein) que sofre mudanças conformacionais mediante ligação a iões Ca2+ que fluem para o meio intracelular durante um evento de despolarização. Esta mudança conformacional provoca a emissão de fluorescência verde quando o organismo e iluminado com luz azul num setup de microscopia. A transparência de C. elegans torna indicadores de cálcio muito adequados para medição de atividade neuronal neste organismo. Com o advento de técnicas de microscopia para medição de atividade neuronal em C. elegans, foram desenvolvidos dispositivos microfluídicos que permitem manter o organismo imobilizado e sob condições ambientais controladas. A possibilidade de manter o ambiente exterior do organismo sob condições controladas permite o registo da atividade de neurónios específicos, ou mesmo de todo o sistema nervoso, em resolução single-cell, durante ambientes sensoriais constantes ou variáveis, permitindo a atribuição de padrões de atividade neuronal ao efeito de inputs sensoriais. De forma a quimiotaxar em direção a ambientes atrativos, C. elegans executa biased random walks, que consiste num aumento da duração de períodos de movimento dianteiro e uma diminuição na sequencia de manobras de reorientação. Executa também klinotaxis, o comportamento de oscilação da zona anterior do corpo em direções preferenciais, durante períodos de movimento dianteiro. Os princípios subjacentes as transformações sensório-motoras que influenciam o comportamento do organismo, de forma a causar um aumento ou diminuição da frequência de períodos de reversão, são ainda largamente desconhecidos. O interneurónio AIY e particularmente interessante para estudar estas questões, uma vez que este interneurónio recebe sinapses diretas de múltiplos neurónios sensoriais, e estabelece conexões reciprocas com vários neurónios, tendo estes funções na modulação da estratégia de locomoção. AIY foi previamente considerado como sendo fundamental e suficiente para a modulação de circuitos neuronais que, probabilisticamente, influenciam as principais estratégias comportamentais de C. elegans. Assim, estudar os mecanismos que estão na base da transformação sensório-motora que ocorre em AIY e da maior importância. Desta forma, será possível compreender os mecanismos empregados pelo sistema nervoso deste nemátodo, que codificam a execução de comportamentos fundamentais para a sua sobrevivência e fitness evolutivo: a habilidade de quimiotaxar em direção a ambientes sensoriais vantajosos. Em organismos que se movem livremente, o registo da atividade neuronal de células singulares com a gravação simultânea do comportamento do animal, permitiu estabelecer uma relação entre atividade neuronal e a execução de diferentes estratégias de locomoção, em múltiplos neurónios. Foi ainda observado, em estudos anteriores, que neurónios coativos em organismos imobilizados, estão também ativos durante o mesmo estado comportamental em animais que se movem livremente. Assim, a atividade de neurónios ativos em animais imobilizados pode ser diretamente relacionada com uma estratégia de locomoção. Embora o animal não esteja capaz de efetivar o comportamento codificado, um sinal de comando motor e gerado no sistema nervoso do animal. Desta forma, e possível compreender como e que o sistema nervoso do C. elegans combina estados comportamentais com inputs sensoriais, em animais imobilizados. Neurónios sensoriais em C. elegans possuem terminações nervosas expostas ao meio ambiente envolvente e podem reconhecem uma grande variedade de estímulos sensoriais. Neurónios motores enervam células musculares e são os neurónios ultimamente responsáveis pela geração de comportamentos. Interneurónios são considerados neurónios que carecem de terminações nervosas sensoriais ou juncões neuromusculares, por isso estabelecendo a comunicação entre neurónios sensoriais e motores ao formarem uma extensa rede de interações entre os últimos e outros interneurónios. Neste estudo, foram usadas técnicas de biologia molecular para expressar o indicador de cálcio GCaMP em neurónios de interesse: no interneurónio AIY; num dos seus principais parceiros pré-sinápticos – o neurónio sensorial AWC; e no interneurónio RIM. AWC e um neurónio sensorial envolvido na deteção de múltiplos odores, incluindo odor bacteriano. RIM e um interneurónio pré- motor cujos períodos de elevada atividade estão relacionados com a codificação de manobras de reversão. Foi utilizada microscopia confocal de disco giratório para registar a atividade dos neurónios acima mencionados, através das variações intracelulares de cálcio das células, tanto em animais imobilizados, como em animais livres. Observou-se que a atividade de AIY e aqui reportada como sendo dominada por um sinal codificante de estados de comando motor (locomoção dianteira/manobras de reversão), na ausência de mecanismos de feedback propriocetivo ativos. Apesar dos circuitos neuronais existentes no sistema nervoso de C. elegans, responsáveis pela sinalização do estado motor instantâneo para AIY, não serem dissecados, aqui e observada uma modulação da atividade do neurónio anterior a mudança de estado de comando motor. Esta observação e interpretada como uma indicação de que AIY regula a ocorrência de manobras de reversão. AIY recebe input maioritariamente de neurónios sensoriais, sendo, por isso, conhecido como um interneurónio primário. E, por isso, surpreendente encontrar uma regulação de estados de locomoção do animal numa fase tao precoce de transformação sensoriomotora. Estas descobertas vão de encontro a estudos recentes realizados em organismos com sistemas nervosos mais complexos. De seguida, visou-se compreender como e que o sinal dominante que governa a atividade de AIY e combinado com informação sensorial. Para isso, desenvolveu-se um paradigma de estimulação sensorial usando dispositivos microfluídicos que permitem o fornecimento de odores aos animais. Mediu-se a atividade de AWC e AIY em organismos imobilizados, enquanto se providenciou um estimulo sensorial de odor bacteriano. Devido a limitações técnicas do setup experimental usado para estimular o animal, não foi possível recapitular as respostas estereotipadas que o neurónio sensorial AWC apresenta aquando da estimulação sensorial, como reportado em literatura previa. Adicionalmente, não foram encontradas evidencias suficientes para afirmar que a atividade de AIY sofreu influencia do estimulo. Assim, não foi possível compreender em plenitude de que forma AIY combina informação de estados motores com informação sensorial. No entanto, encontrou-se evidencia para transformação sensório-motora, possivelmente através de outros circuitos neuronais que não o aqui estudado, que influenciou a modulação do comportamento animal. Estudos anteriores mostraram que AIY exibe atividade ao longo do axónio e suas projeções axonais, não existindo relatos de dinâmica de cálcio no núcleo ou corpo celular. Não e claro quão frequentemente neurónios mostram diferentes padrões de dinâmica de cálcio no soma ou neurites e, especificamente, quão frequentemente esta estratégia e usada por interneurónios como forma de integrar informação sensorial e motora no mesmo espaço celular. Não se encontrou evidencia de que esta estratégia e usada por AIY, sugerindo que este neurónio usa outras abordagens para combinar sinais de diferentes origens. Finalmente, a atividade de AWC e AIY for registada em animais livres de movimento, na presença de um gradiente bacteriano, uma fonte de alimento para C. elegans e, por isso, um forte estimulo sensorial. Atividade neuronal em animais restringidos de movimento e animais com a capacidade de se moverem livremente mostra diferenças. Deste modo, visou-se compreender como e que a atividade de AIY varia na presença de inputs sensoriais que só um animal livre de locomoção integra (inputs proprioceptivos). A fraca expressão de GCaMP que foi possível obter em AIY neste estudo limitou a resolução espacial e temporal dos dados obtidos, que revelaram ser insuficiente para os objetivos propostos. De um modo geral, este estudo e relevante para a comunidade por sugerir um interneurónio primário como sendo capaz de modular a ocorrência de estados de comando motor em estádios iniciais de integração sensório-motora. Esta estratégia foi recentemente reportada em sistemas nervosos mais complexos, sugerindo ter relevância funcional para múltiplos organismos do reino animal.Survival in fast changing environments requires fine-tuned mechanisms that allow the organisms to rapidly react to sensory cues and adapt their behaviour to respond accordingly. The brain’s computations underlying sensorimotor integration, the transformation of sensory signals into motor outputs, is one of the most fundamental, yet poorly understood, processes in neuroscience. Here, we aim to investigate how the nematode Caenorhabditis elegans achieves sensorimotor transformation, by studying one of its most fundamental neuronal circuits for information processing and odour evoked behaviours. By expressing genetically encoded calcium indicators in neurons of interest, we performed in vivo calcium imaging in immobilised worms, both in an environment deprived of fluctuating sensory stimulation and while delivering an attractive odour to the animals. We reveal the activity of a primary sensory neuron to be dominated by a signal encoding motor command states of the animal, and suggest that this neuron may take part in modulating motor command state transitions in the worm’s brain. Moreover, here, we aimed to study how an attractive cue for the worm affects the coding of behavioural states, and how a single neuron can multiplex both behavioural and sensory information. Finally, we recorded the activity of the same neurons in freely crawling animals as an attempt to understand how sensorimotor transformation varies from immobilised to unrestrained animals. Altogether, this work bears potential relevance to the C. elegans community by suggesting a primary sensory neuron as being capable of modulating motor commands states at early stages of sensorimotor transformation. This strategy has recently been reported in higher-order organisms as well, suggesting that it has functional relevance for organisms across the animal kingdom

    A Mechanism for Spatial Orientation Based on Sensory Adaptation in Caenorhabditis Elegans

    Get PDF
    During chemotaxis, animals compute spatial information about odor gradients to make navigational choices for finding or avoiding an odor source. The challenge to the neural circuitry is to interpret and respond to odor concentrations that change over time as animals traverse a gradient. In this thesis, I ask how a nervous system regulates spatial navigation by studying the chemotaxis response of Caenorhabditis elegans to diacetyl. A behavioral analysis demonstrated that AWA sensory neurons drive chemotaxis over several orders of magnitude in odor concentration, providing an entry point for dissecting the mechanistic basis of chemotaxis at the level of neural activity. Precise microfluidic stimulation enabled me to dissociate space from time in the olfactory input to characterize how odor sensing relates to behavior. I systematically measured neuronal responses to odor in the diacetyl chemotaxis circuit, aided by a newly developed imaging system with flexible stimulus delivery and elevated throughput. I found reliable sensory responses to the behaviorally relevant range of odor concentrations. I then followed odor-evoked activity to downstream interneurons that integrate sensory input. Adaptation of neuronal responses to odor yielded a highly sensitive response to small increases in odor concentration at the interneuron level, providing a mechanism for efficient gradient sensing during klinokinesis. Adaptation dynamics at the sensory level were stimulus-dependent and cell-autonomously altered in several classes of mutant animals. Behavioral responses to different concentrations of diacetyl resulted from overlapping contributions from multiple sensory neurons. AWA was specifically required for orientation behavior in response to small increases in odor concentration that are encountered in shallow gradients, demonstrating functional specialization amongst sensory neurons for stimulus characteristics. This work sheds light on an algorithm underlying acute behavioral computation and its biological implementation. The experimental results are presented in two parts: Chapter 2 describes the development of a microscope for high-throughput imaging of neuronal activity in Caenorhabditis elegans. I present a characterization of chemosensory responses to odor and its correlation with behavior. This work has been published (Larsch et al., 2013). Chapter 3 describes the functional architecture of the AWA chemosensory circuit and the role of adaptation in maintaining sensitivity over a wide range of stimulus intensities. This work is currently being prepared for publication

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Sensory computation and decision making in C. elegans: a computational approach

    Get PDF
    In Caenorhabditis elegans (C. elegans) and in neuroscience generally, a hierarchical view of nervous systems prevails. Roughly speaking, sensory neurons encode the external environment, interneurons encode internal state and decisions, and motor neurons encode muscle activation. Here, using an integrated approach to model sensory computation and decision making in C. elegans, I show a striking phenomenon. Via the simplest modulation possible, sensitization and desensitization, sensory neurons in C. elegans can also encode the animal’s internal state. In this thesis, I present a modeling framework, and use it to implement two detailed models of sensory adaptation and decision making. In the first model I consider a decision making task, in which worms need to cross a lethal barrier in order to reach an attractant on the other side. My model captures the experimental results, and predicts a minimal set of requirements. This model‘s mechanism is reminiscent of similar top-down attention modulation motifs in mammalian cortex. In the second model, I consider a form of plasticity in which animals alternate their perception of a signal from attractive to repulsive. I show how the model encodes high and low-level behavioral states, balancing attraction and aversion, exploration and exploitation, pushing the ‘decision making’ into the sensory layer. Furthermore, this model predicts that specific sensory neurons may have the capacity to selectively control distinct motor programs. To accomplish these results, the modeling framework was designed to simulate a full sensory motor pathway and an in silico simulation arena, allowing it to reproduce experimental findings from multiple assays. Hopefully, this allows the model to be used by the C. elegans community and to be extended, bringing us closer to the larger aim of understanding distributed computation and the integrated neural control of behavior in a whole animal

    Doctor of Philosophy

    Get PDF
    dissertationBehavior is a complex and poorly understood result of nervous system function. How do molecules, cell, and circuits function in response to sensory input to achieve a behavioral response? This remains a fundamental question in the field of neurobiology. My thesis work addressed this question by undertaking a functional, genetic and electrophysiological analysis of a defined neuronal circuit in the nematode Caenorhabditis elegans. The C. elegans nervous system functions to allow animals to sense and navigate a wide variety of gradients. Worms use thermotactic behavior to maintain a favorable internal temperature, a fundamental component of worm behavior and survival. Chemotactic behavior is used to sense or avoid various stimuli. We describe the role of glutamate receptors in these circuits and provide insight into the molecular control of circuit function and behavior. The thermotaxis circuit is a well-defined circuit that directs worm movement in response to previous temperature experiences. One neuronal pair, RIA, functions as the major integrating and decision-making neuron within the circuit. Specific chemotactic behavior shares common circuitry with the thermotaxis circuit; including RIA. Understanding how RIA functions at the molecular level up to the level of circuit communication is vital to determining how these circuits control behavior. We show the characterization of two classes of glutamate receptors, kainate and AMPA, within RIA and the fundamental differences found at the levels of localization, channel kinetics and behavior during gradient taxis behaviors. Within RIA, the AMPA receptor GLR-1 is expressed at high levels and mediates the majority of glutamate-gated current. Alternatively, kainate receptors; composed of GLR-3 and GLR-6 subunits are expressed exclusively in RIA, show limited expression, and contribute a fraction of the glutamate-gated current. However despite these differences, glr-1 mutants show only subtle thermotaxis and chemotactic defects while glr-3, glr-6 mutants are severely impaired. AMPA and kainate receptors also localize to independent synapses in RIA. We show input from upstream neurons common to both circuits signal primarily through kainate receptors at specific synaptic inputs. We took advantage of this unique opportunity to study a highly conserved family of receptors within a single neuron and the behaviors that they regulate

    The role of food odor in invertebrate foraging

    Get PDF
    Foraging for food is an integral part of animal survival. In small insects and inverte-brates, multisensory information and optimized locomotion strategies are used toeffectively forage in patchy and complex environments. Here, the importance ofolfactory cues for effective invertebrate foraging is discussed in detail. We reviewhow odors are used by foragers to move toward a likely food source and the recentmodels that describe this sensory-driven behavior. We argue that smell serves a sec-ond function by priming an organism for the efficient exploitation of food. Byappraising food odors, invertebrates can establish preferences and better adapt totheir ecological niches, thereby promoting survival. The smell of food pre-preparesthe gastrointestinal system and primes feeding motor programs for more effectiveingestion as well. Optimizing resource utilization affects longevity and reproductionas a result, leading to drastic changes in survival. We propose that models of foragingbehavior should include odor priming, and illustrate this with a simple toy modelbased on the marginal value theorem. Lastly, we discuss the novel techniques andassays in invertebrate research that could investigate the interactions between odorsensing and food intake. Overall, the sense of smell is indispensable for efficient for-aging and influences not only locomotion, but also organismal physiology, whichshould be reflected in behavioral modeling

    Bio-inspired robotic locomotion model: Response towards food gradient changes and temperature variation

    Get PDF
    The nervous system is a complex yet efficient structure - with superior information processing capabilities that surely surpass any man-made high-performance computer. Understanding this technology and utilising it in robotic navigation applications is essential to understand its underlying mechanism. One of the approaches is using a nematode’s biological network model, as having a simple network structure while holding a complex locomotion behaviour. For instance, its ability to navigate via local concentration cue (chemotaxis) and the ability to dynamically respond towards surrounding temperature (thermotaxis). To date, the simulation of currently available models is on static environment conditions and the nematode’s movement decision is based on the deterministic non-linear response towards gradient changes. Commonly, parameters of these models were optimised based on static conditions and require adjustment if simulated within a dynamic environment. Therefore, this work proposed a new nematode’s biological locomotion model where the movement trajectory is determined by the probability of “Run” and “Turn” signals. The model is simulated within a 2D virtual environment with complex concentration gradient and variants of temperature distribution. The analysis result shows the nematode’s movement of the proposed model agreed with the finding from experimental studies. Later, the proposed model in this work will be employed to develop a biological inspired multi-sensory robotic system for navigating within a dynamic and complex environmen
    corecore