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Summary

Summary

C. elegans is a tiny nematode worm with a largely invariant nervous system, con-

sisting of exactly 302 neurons with known connectivity and functions. Recently, various

experimental techniques, such as targeted cell killing and genetic mutations, are imple-

mented to explore the behavioral roles of these neurons. This tiny worm provides us

with the first possibility of understanding the complex behaviors of an organism from

the genetic level up to the system level. The main objective of this thesis is to reveal

the mechanisms underlying the chemotaxis behaviors of C. elegans based on its nervous

system. In this thesis, several complex chemotaxis behaviors of C. elegans are explored,

which include food attraction, toxin avoidance, and varying locomotion speed. The re-

search strategy for this thesis is using both artificial and biological neural networks to

model the chemotaxis behavior and undulatory locomotion of C. elegans. At the first

step, C. elegans is considered as a point mass, and the chemotaxis behaviors for food

attraction and toxin avoidance are explored based on the artificial neural networks. Then

the biological wire diagrams are provided to investigate these chemotaxis behaviors. At

the second step, the body segment is added, and the undulatory locomotion behaviors of

C. elegans are investigated by using both artificial and biological neural networks. The

novelty and the uniqueness of the proposed behavioral models are characterized by six

attributes. First, all the biological behavioral models are constructed by extracting the

neural wire diagram from sensory neurons to motor neurons, where sensory neurons are

specific for chemotaxis behaviors. Second, the turning and the speed regulation mecha-

nisms are investigated. Thus, these behavioral models can mimic the slight turn and Ω

turn, as well as reduce the speed when approaching the food and leaving far from the
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Summary

toxin. Third, chemotaxis behaviors are characterized by a set of switching logic functions

that decide the orientation and speed. All models are implemented by using dynamic

neural networks (DNN). The real time recurrent learning (RTRL) algorithm and the

differential evolution (ED) are adopted to train these DNNs. Fourth, the 3D undulatory

locomotion behaviors of C. elegans are explored based on the artificial undulatory model.

Fifth, the undulatory locomotion behaviors of C. elegans are further investigated based

on the biological neural wire diagram and muscle structure. Both the artificial and bi-

ological undulatory locomotion models can perform the chemotaxis behaviors of finding

food and avoiding toxin simultaneously. At last, the testing results of these behavioral

models are analyzed by comparing with the experiment results, which are used to verify

the validity and effectiveness of these models. Furthermore, a worm-like robot has been

constructed to perform the undulatory locomotion based on the theoretical results. The

research in the thesis provides a new way to investigate and model the essence of chemo-

taxis and locomotion of low level animals. These chemotaxis and locomotion models

could serve as the prototypes for other footless animals and facilitate the biomimetic

motion in robotics.
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Chapter 1

Introduction

Recent developments in the fields of biology and engineering have led to a renewed

interest in neuroscience, which is a way to understand the apparent miracles of life in

nature world. Nowadays the development of neural network (NN) technology provides

a powerful tool for us to study and approximate the nervous system of animal. In

the engineering field, the neural basis of behavior is one of the most interesting topics.

However, there is a problem to choose the proper animal as research object. The ideal

organism should own the sensory and motor components, as well as a simple nervous

system, which are relatively easy to study since they interface directly with the outside

world: sensory stimulus as input and motor behavior as output via the nervous system.

In higher animals like mammals, the input and output are coupled with a extraordinarily

complex system, the brain. For this reason, it is convenient to find the simple organism,

whose nervous system is much simpler. One such animal, that could almost be considered

as a biological robot, is the subject of this thesis. Its name is Caenorhabditis elegans,

short for C. elegans.
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Figure 1.1: Image of C. elegans [1]

Figure 1.2: Life circle of C. elegans [1]

1.1 C. elegans

Known as a soil-dwelling nematode, C. elegans, as shown in Fig. 1.1, has been used as

a model organism for several decades. This tiny transparent nematode is the object of a

great many scientific researchers and the works based on C. elegans have received Nobel

Prize three times [4, 5, 6, 7, 8, 9, 10, 11]. It is selected as a model organism because it has

fully understood genetics [12, 13], and completely known anatomical connectivity within
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its nervous system [14]. Furthermore, with its short life circle and rapid production, it

is convenient for us to do the biological experiment in the lab. As shown in Fig. 1.2, C.

elegans only takes 70 hours from egg to grow up as adult, and it is relatively easy for us

to record the evolving of every cell. The nervous system of C. elegans consists of only

302 neurons connected with approximately 6000 synaptic connections and gap junctions.

With this tiny nervous system, C. elegans can exhibit several characterized behaviors,

including chemotaxis, thermotaxis, mechanosensation, osmotic avoidance, dauer forma-

tion (a kind of hibernation), male mating, and egg laying. Among these behaviors, the

chemotaxis behavior is widely investigated from scientific aspects.

Chemotaxis behavior is one of the fundamental surviving skills for C. elegans. For

chemotaxis, C. elegans orients towards a maximal concentration of chemical attractant,

such a number of water-soluble chemicals, including amons, cations, and small organic

molecules [15, 16, 17]. Additionally, C. elegans also exhibits avoidance behavior in re-

sponse to noxious stimuli. In the thesis, we use the single word “food” to denote all the

attractants, and the word “toxin” to denote all the repellent stimuli.

Figure 1.3: Ω turn of C. elegans

By receiving the outside stimuli, C. elegans moves as a long series of undulatory

movements, called a run, and it is interrupted approximately twice a minute by sharps

turn and reversals [18, 19, 20]. Sharp turn is called Omega turn because it shapes as the

3



Chapter 1. Introduction

Greek alphabet Ω, as shown in Fig. 1.3. For Ω turn, C. elegans’ head curls back, touching

or crossing the tail, and it continues to move forward with a sharp direction changing. For

reversal, C. elegans moves backward for several seconds and then moves forward again

following by a slight turn, Ω turn, or going straight. With these behaviors, C. elegans can

navigate itself towards the food source and preferred temperature area, as well as leave

far away from the unpleasant place. These behaviors can be attributed to two strategies:

klinokinesis and klinotaxis [21]. For klinokinesis, C. elegans changes its turning frequency

according to the magnitude of outer stimulus; for klinotaxis, C. elegans moves forward

with identical stimulus from both left and right sides. Furthermore, C. elegans has

two distinct circuits for locomotion, one for forward and the other for backward [22].

The circuit for forward locomotion achieves the dominant role, and it results in the

frequency of backward locomotion far less than that of forward locomotion. Moreover,

the activation of the sensory neurons for repellent can active the backward circuit [23]

that yields more reversals or Ω turns. For orientation, the mechanism called biased

random walk achieves the fundamental role for navigation [19]. In large time-scale, the

biased random walk can be considered as the forward moving accompanied with the

turning towards the preferred direction [24].

1.2 Neural Networks

Biologically, a neuron contains three main components: dendrites, a cell body (soma),

and the axon. The dendrites receive signals from other neurons, and the cell body

integrates the signal and redistributes it outward to the axon. The axon distributes the

signal from the cell body to different neurons, muscles and glands.

According to the neural activities, there are two types of neurons: spiking (or action
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potentials) neuron and graded (or localized potentials) neuron. For the spiking neuron,

the cell body integrates synaptic inputs and activates until a threshold is reached. The

spiking neuron is ideal for transmitting a maximum amount of information over long

distances and most neurons in the mammalian nervous system are spiking neurons [25].

By contrast, for the graded neuron, the synaptic input within the center of the neuron’s

range yields a quasi-linear response. If stimulated by a large excitatory synaptic input,

the graded neuron saturates. This type neuron is ideal for integrating highly sensitive

input to be transmitted over a short distance. The graded neurons exist in some smaller

organisms, such as Ascaris [26] and C. elegans [27].

After the neuron is activated, the signal is transmitted to other neurons through the

synapses. The synapses are the junctions between neurons, and there are two general

types of synapses: gap junctions (or electrical synapse) and chemical synapse. A gap

junction behaves like a passive wire, readily passing current in two directions. By con-

trast, the chemical synapse releases the chemical transmitter from the presynaptic axon

terminals to the receptors of the postsynaptic dendrites. The differences between gap

junction and chemical synapse are listed in Table. 1.1.

Table 1.1: The differences between gap junction and chemical synapse

Gap Junction Chemical Synapse

1
Two directions, where signal can be

transmitted either way.

Transmitters are released from the
pre-synaptic axon to the post synaptic
dendrite neuron, namely, one direction.

2 Usually excites downstream neuron.
Can both excite and inhibit downstream

neural activity.

3 Transmission of current is roughly linear.
Transmission is usually amplified due to

the non-linear effects of the neuron
transmitters.

In engineering field, neural network technology is adopted to simulate the nervous

system of animal. Most of the neural network structures used presently are static (feed-
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forward) neural networks [28]. These neural networks that have a number of neurons

respond instantaneously to the inputs. However, the neuron in this kind neural network

is not dynamic and performs a simple summation operation. It also does not take into

account the time delays that affect the dynamics of the system. Unlike a static neural

network, a dynamic neural network (DNN) uses extensive feedback between the neurons.

This feedback implies that the network has local memory characteristics. The node e-

quations in dynamic neural networks are described by differential or difference equations.

Thus, DNN is suitable for system modeling, identification, control and filtering owing to

its dynamical nature. In this thesis, DNN is adopted to model the nervous system of C.

elegans.

1.3 Current Models

To date, there are limited publications concerning the modeling of chemotaxis be-

haviors of C. elegans. There are four main research groups involving the research on

chemotaxis behavior and locomotion of C. elegans, who have published several papers

within recent twenty years. Among them, two different methods are adopted: one from

the engineering aspect, and the other from the biology aspect. In this section, we provide

the literature review about these models.

Niebur and Erdös

The first group that played a leading role in exploring the locomotion of C. elegans

is Ernst Niebur and Paul Erdös. In [29], a locomotion model is provided based on the

nervous system of C. elegans. The excitation wave is spread passively by the neurons

that simulate the membrane properties of biological neurons to propagate the wave for

locomotion. The simulation in their work is to address the assumption that the sinusoid
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wave of C. elegans is produced by the propagated exciting neurons along its body. In

[30], a two dimensional mechanical model of C. elegans is carried out. In that model,

the head contains an oscillatory generator to guide the body to perform the undulatory

locomotion. At last, in [31], the authors extend their previous work and provide the first

integrated undulatory locomotion model of C. elegans. In the model, there is a CPG

in the head to generate the sinusoid wave and control the turning during locomotion.

However, the drawback of this work is that these models do not provide any details of

biological grounding.

Cohen et al.

The group of Cohen et al. began the research on locomotion of C. elegans around the

year of 2003. In [32], the fist true neural locomotion model of C. elegans is presented,

in which the motor neuron stretch receptors are used to mediate the sensory feedback

to generate and coordinate oscillations. However, the oscillation frequency of this model

is unrealistically high and far from the biologically plausible range. In [33], the authors

present the first integrated neuro-mechanical model for forward locomotion of C. elegans.

This integrated model produces oscillation with a more realistic frequency and waveform

than the model in [32]. In [34, 35, 36], they verify that the behaviors of swimming and

crawling of C. elegans belong to a single gait. In [37], they construct a forward locomotion

model of C. elegans that includes a neuromuscular control system. Integrated with the

outside environment, the model relies on the sensory feedback mechanism to generate

undulations. This model can reproduce the entire transition from swimming to crawling,

as well as the locomotion in complex environments. The transition from swimming

to scrawling is achieved with no modulatory mechanism, except via the proprioceptive

response to the physical environment. Furthermore, based on their theoretical results, in
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[38] the first prototype of worm-like robot using electroactive polymer is presented and

a digital image processing technique is developed. Recently, in [39], a novel robot of C.

elegans based on the neural control mechanism is constructed by Boyle et al. This robot

is capable of effective serpentine locomotion and exhibits sensorless path finding based

purely on the proprioceptive feedback of body shape. Their testing results show that the

robot can find its path successfully in the complicated testing environment.

Suzuki et al.

The locomotion models constructed by this group involve a high level neural control

and the generating of the actual locomotion wave. The range of the behaviors of these

locomotion models is much broader than that of other groups’ models. These behaviors

include forward locomotion, backward locomotion, resting, and Ω turn. They explored

the head turning [40], direction control [41, 42], and touch response for forward or back-

ward movement [43]. The strength of their work includes both physical body and local

neural control. The model in their work contains 13 rigid links with 12 joints and the

angle of each joint is determined independently from the local neuromuscular activity.

However, the neural control is similarly simplified that makes these models unlikely to

provide new insight into the worm’s locomotion system biologically.

Lockery et al.

Lockery et al. initiated their research on C. elegans from 1990s from both engineering

and biology aspects and obtained many achievements. From engineering aspect, they first

used the artificial neural networks to simulate the chemotaxis behavior of C. elegans [3],

and then constructed a robot to implement the chemotaxis behavior [2]. Later, a lineal

model and several computation rules for chemotaxis behavior of C. elegans are provided
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in [44, 45]. In [46, 47] the excitatory, inhibitory and self-connections are found, and

in [48, 49] different functional classes and motifs are identified by the clustered neural

dynamics methods. From the biology aspect, the electrical properties of the sensory

neuron ASER are investigated in [50]. Later, the step-response analysis of neuron ASE

is provided in [51], and the different functions of ASEL and ASER are investigated in

[52, 53]. In [54], the authors find that ADF serves as the on-cells and ASH serves as the

off-cells. Furthermore, they also explore the turning behaviors of C. elegans. In [19, 55],

the authors have verified the fundamental role of pirouettes and the effects of turning

bias for C. elegans to approach the attractant. Their recent research work [56, 57, 21]

unveils three strategies for the locomotion of C. elegans: klinotaxis, klinokinesis, and the

functional asymmetry of sensory neurons.

Others

Except for the models of the four groups, there are some individual work related to

the modeling of C. elegans. In [58], a detailed and biologically accurate model is pro-

vided. This model focusses exclusively on the neural circuit for head oscillation without

including a physical component. In [59], the decision tree method is adopted to simulate

the gradient navigation strategy of C. elegans. In [60], the author uses a formal particle

system to model the worm and its environment, including attractants and repellents.

Unfortunately, without including any form of motor nervous system, this model suffers

from the lack of biological grounding. The work in [61] uses the biological experiment

results to construct an artificial network model to show how a sinusoid wave can be prop-

agated through the body. In [62], a 3D locomotion model of C. elegans is constructed

and displayed mainly in the game engine. However, this model lacks the precise mathe-

matical description. Furthermore, two robots in [63] and [64] are constructed to mimic
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the undulatory behavior of C. elegans. Both robots are constructed based on the Shape

Memory Alloy.

To the best of our knowledge, all the models concerning the chemotaxis behavior and

locomotion of C. elegans are discussed. In our research, we focus on the investigation

of chemotaxis behavior and locomotion of C. elegans from engineering aspect, and also

incorporate the biological results to verify the effectiveness and realness of our models.

1.4 Contribution

In the previous subsections, we have reviewed all the existing models of the nematode

C. elegans. Comparing with these models, the contributions and novelties of this work

contain seven aspects that are listed below.

• From artificial to biological approach: For the artificial approach, artificial

neural networks are adopted to model the nervous system of C. elegans without

following its anatomical structure, which is the first step. For the next step, the

biological approach, biological wire diagrams that are strictly based on the nervous

system of C. elegans are adopted to explore the chemotaxis behaviors.

• Modeling the chemotaxis behaviors of C. elegans: There are two kinds

of chemotaxis behaviors are investigated in the thesis, food attraction and tox-

in avoidance. First, these two behaviors are explored individually, and then the

integrated behavioral models are provided to perform the two behaviors simulta-

neously. The chemotaxis behaviors of C. elegans can be represented as a set of

nonlinear functions, which are constructed based on the logic of chemotaxis behav-

iors. The well trained models can be put into different environments to perform

their desired tasks without retraining. These nonlinear functions called switching
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logic functions provide a new way to model the animal’s behaviors.

• Speed regulation mechanism: The speed regulation mechanism is incorporated

into the chemotaxis behavioral models so that the navigation is completed with

both orientation control and speed control. For food attraction (toxin avoidance),

the models will reduce its speed to zero spontaneously when it arrives at (leaves

far from) the food (toxin) source.

• Undulatory locomotion behavior modeling: At the beginning, C. elegans is

considered as a point to perform the chemotaxis behaviors. Next, the undulato-

ry locomotion is investigated in 3D by artificial approach. After that, through

the biological approach the undulatory locomotion behavior is explored based on

the biological neural wire diagram and muscle structure. Both artificial and bio-

logical undulatory locomotion behavioral models can well perform the chemotaxis

behaviors of finding food and avoiding toxin.

• Test and comparative analysis: These locomotion models are tested in different

scenarios and the quantitative analyses are provided by comparing with other work.

All the simulation scenarios are constructed based on the biological experiments

without being stochastically generated, which aim to keep the biological reality.

• Justification and prediction for biological issues: The work in the thesis

justifies three biological issues. First, the biased turning mechanism is sufficient

to accomplish the chemotaxis behaviors of C. elegans. Second, the chemotaxis

behaviors is achieved by computing the input concentration gradient. Third, the

proprioceptive mechanism plays the critical role for propagating the undulatory

wave throughout the body. Furthermore, three predictions are made in the thesis.

First, there should be a group of neurons that function as the differentiator for the
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decision making during chemotaxis. Second, there should be a pattern generator in

the head to produce the undulatory wave and the muscles use the proprioceptive

mechanism to propagate the wave. Third, some sensory neurons such as ASEL

may achieve the redundancy function.

• A worm-like robot: A worm-like robot has been constructed to perform the

undulatory locomotion based on the theoretical results. The worm-like robot can

well perform the undulatory behaviors such as forward and backward movements,

left-side turning and right-side turning, as well as the C-shape movement.

It should be noted that this work is based on many existing biological results, e-

specially for those chapters involving the biological approach. This is because as the

multiple-disciplinary study, we need follow the methods and rules from both engineering

and biology disciplines. All the existing work cited in the thesis is to justify the claims

and hypotheses, which could preserve the biological reality of the work.

1.5 Synopsis of The Thesis

The thesis is organized as follows. In Chapter 2, two artificial chemotaxis behavioral

models, one for dual-sensory model and the other for single-sensory model, are construct-

ed to perform the chemotaxis behaviors of finding food and avoiding toxin. In Chapter 3,

we extracted the biological neural wire diagram to construct the biological models and

make them perform the chemotaxis behaviors. In Chapter 4, based on the work of Chap-

ter 3, the speed regulation mechanism is incorporated. Six biological behavioral models

in this chapter not only could approach the food source (avoid the toxin source), but also

reduce its speed when getting close to the food source (far away from the toxin source)

in different circumstances. Quantitative analysis of these behavioral models is carried
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out and we also compare our data with the experimental data to verify the effectiveness

and authenticity of our models. Chapter 5 provides a 3D undulatory locomotion model

based on artificial DNN. This model can perform the chemotaxis behaviors of finding

food and avoiding toxin based on the 3D undulatory movement. In Chapter 6, instead

of the artificial DNN, we investigate the undulatory locomotion behavior of C. elegans

directly on its biological neural wire diagram and muscle structure. Finally, a worm-like

robot has been constructed to perform the undulatory behavior based on the theoretical

results. Chapter 7 concludes the thesis and provides the future work.

It is understood that our work is restricted into the engineering aspects such as

mechanic engineering, electrical engineering, and computer engineering. Some models,

which focus on the lower level research such as gene mutations, are outside the scope of

the current work.
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Chapter 2

Modeling the Chemotaxis

Behaviors of C. elegans Based on

the Artificial Dynamic Neural

Networks

2.1 Introduction

The synaptic connections and morphology of C. elegans have been explored clearly

[14]. Among the 302 neurons, C. elegans has at least 12 classes of chemosensory neurons,

and each class has a pair of neurons that is physically symmetrical but functionally

different from one another [53]. For the locomotion, C. elegans can move forward or

backward for the chemotaxis, thermotaxis and touch response.

Among the previous work, the sinusoidal movement of C. elegans was studied, which

involved the head turning [40], direction control [41, 42], and touch response [43]. These

papers developed both kinematical and dynamical models of C. elegans that could perfor-

m two dimensional movements. Furthermore, several models were constructed to perform

the chemotaxis behaviors of C. elegans. In [45], a linear network was used to simulate
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the behaviors of food attraction. In [47], the excitatory, inhibitory, and self connections

were found. By using the clustered neural dynamics method, different function classes

of neurons were identified in [48].

This chapter initiates the research on the chemotaxis behavior of C. elegans based

on the artificial approach. In our work, we adopt DNN to model the nervous system of

C. elegans that performs chemotaxis tasks. There are a large number of literatures to

prove that DNN performs well in areas such as prediction, information processing and

feature extraction, and it also lies in its close relation to biological neural networks in

terms of its structure similarity and dynamical characteristics such as memory [28, 65, 66,

67]. By choosing nonlinear activation functions, time constants, and various weights for

input neurons, hidden neurons and output neurons, DNN can approximate any mapping

relationship, such as the biological mapping from sensory inputs to motor outputs. It

is pointed out that the convergence of DNN does not totally depend its initial input

conditions, which is advantageous in application such as decision making [68, 69, 70, 71].

Supervised learning can be used to direct the system to a desired response [72].

Following the methods in [3, 45, 47], the wire diagram of C. elegans is modeled as a

DNN in our work. The sensory neurons are the input neurons and the motor neurons

are the output neurons. With the sensory neurons, C. elegans directs itself towards the

region of higher food concentrations and away from the region of higher toxin concen-

trations. However, it is a biologically issue whether C. elegans can detect the gradient

of concentrations. We first investigate the chemotaxis behaviors of C. elegans based on

the assumption that the pair of sensory neurons can distinguish the concentration dif-

ference between left and right sides . Next, as said in [45], the size of C. elegans is very

small (1 mm in length) and the left and right sensory neurons are too near to detect the
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difference of concentration, so we combine the left and right sensory neurons to be one

sensory neuron. In this case, the gradient of concentration is the decisive information

for C. elegans to navigate. The temporal gradient of concentration is achieved because

DNN has inherent memory components [72]. This chapter is organized as follows. Sec-

tions 2.2 describes the kinematics, distributions of food and toxin concentrations, DNN,

and the training method. Section 2.3 focuses on the dual-sensory model of C. elegans

that produces finding food and avoiding toxin behaviors, while Section 2.4 explores the

single-sensory model of C. elegans. Section 2.5 concludes this chapter.

2.2 Mathematical Model and Training Method

2.2.1 Kinematic Model

A complete kinematic model of C. elegans requires a description of its position at

instantaneous time t. As shown in Fig. 2.1, a typical C. elegans will have a sinusoidal

movement and it is assumed that only the head receives the input of external concen-

trations. With this assumption, C. elegans is modeled as a point source in the x-y plane

and its position is updated as follows [2]:

x(t+ 1) = x(t) + V T cos θ(t) (2.1)

y(t+ 1) = y(t) + V T sin θ(t) (2.2)

where x(t) and y(t) are the position values at time t, V is a constant speed per second.

θ(t) is the head angle at time t, and T is the sampling interval. In this chapter, T is 1

second.

For simplicity, in the work of this chapter we focus on the head movement. The head
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Figure 2.1: C. elegans’ movement in the x-y plane. The head of C. elegans is modeled
as a point source in the x-y plane with velocity vector V at head angle θ measured from
the x-axis [2].

angle is related to the motor neuron voltages as follows

θ(t+ 1) = θ(t) + γ(Vright(t)− Vleft(t))T (2.3)

where θ(t) is the angle at time t, and γ is a positive constant that decides the turning

rate [3]. Vright and Vleft stand for the outputs of right and left motor neurons VB and

DB, respectively.

2.2.2 Attractant and Repellent Concentration

The concentration distribution for food or toxin is assumed in Gaussian distribution

[45]:

C(x, y) = Cmaxexp(−
x2 + y2

S
), (2.4)

where Cmax is the peak value of attractant or repellent and S is the variance of the

distribution. The unit of the concentration C is millimolar concentration (mmol/L, short

for mM). One example of concentration distribution is shown graphically in Fig. 2.2.
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Figure 2.2: The potential field of concentration distributed in a square area with the
range [−0.2, 0.2] meters, where Cmax = 2 mM and S = 0.01.

2.2.3 DNN Model

Each neuron in this work is denoted as a dynamic neuron with self-feedback [56].

The state of the ith neuron can be represented as the voltage Vi. In this work, we adopt

a discrete DNN:

Vi(t+ 1) = αiVi(t) + βi · tanh(

N∑

j=1,i 6=j

wij(Vj(t)− V j)) + bi + δiui(t), (2.5)

where the exogenous input ui(t) is the instantaneous chemical concentration sensed by

sensory neurons. The constant V j is the center of the conductance of the jth neuron [45],

which means at this voltage there is no transmitter released from the jth neuron. wij

represents the strength of synaptic connection from neuron j to i. bi is a constant bias

introduced here to adjust the resting potential value [73]. When neuron i is the sensor

neuron, δi = 1, otherwise δi = 0. The parameters to be determined through training are
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αi, βi, wij , V i, bi, for i, j = 1, · · · , N .

2.2.4 Training Method

When the structure of a neural network is fixed, parametric learning or training is

the decisive factor on the success of a given task. In this work, we adopt the continuous

training, in which the parameters are updated at each time step. For DNN, two training

algorithms are widely used, back-propagation through time (BPTT) [74], and real-time

recurrent learning (RTRL) [75]. The BPTT updates weights layer by layer using the

gradient method. However, the biological neural circuitry of C. elegans does not show

a layered structure. Thus, RTRL is more suitable as the learning mechanism, which

does not require any layered structure. During the training, the learnable parameters

are updated after every time step according to the defined output targets.

The RTRL first defines an error function

E(t) =
1

2

N∑

i=1

[di(t)− Vi(t)]
2, (2.6)

where di(t) is a desired output. Define

ei = di(t)− Vi(t). (2.7)

The updating law is

W (t+ 1) = W (t) + ∆W (t), (2.8)

∆W (t) = −η
∂E(t)

∂W (t)
= η

N∑

i=1

[di(t)− Vi(t)]
∂Vi(t)

∂W (t)

= η
N∑

i=1

ei(t)
∂Vi(t)

∂W (t)
, (2.9)
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where η is a learning rate, and W (t) denotes one of the parameters wij, V i, αi, βi, and

bi. The computations of the gradient information, ∂Vi(t)
∂W (t) , are listed below.

• Updating wkl:

wkl(t+ 1) = wkl(t) + ∆wkl(t). (2.10)

In the equation,

∆wkl(t) = −η
∂E(t)

∂wkl

= η

N∑

i=1

((di(t)− Vi(t))
∂Vi(t)

∂wkl

) (2.11)

= η

N∑

i=1

(ei(t)
∂Vi(t)

∂wkl

).

According to the equation (2.5), ∂Vi(t)
∂wkl

is:

when k = i,

∂Vi(t+ 1)

∂wkl

= αi
∂Vi(t)

∂wkl

+ βi sech
2(

N∑

j=1,i 6=j

wij(Vj(t)− Vj))

∗(
N∑

j=1,i 6=j

wij
∂Vj(t)

∂wkl

+ (Vl(t)− V l)). (2.12)

When k 6= i,

∂Vi(t+ 1)

∂wkl

= αi
∂Vi(t)

∂wkl

+ βi sech
2(

N∑

j=1,i 6=j

wij(Vj(t)− Vj))

∗(

N∑

j=1,i 6=j

wij
∂Vj(t)

∂wkl

). (2.13)

• Updating V k:

V k(t+ 1) = V k(t) + ∆V k(t) = V k(t) + η

N∑

i=1

ei(t)
∂Vi(t)

∂V k

(2.14)
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∂Vi(t+ 1)

∂V k

= αi
∂Vi(t)

∂V k

+ βi sech
2(

N∑

j=1,i 6=j

wij(Vj(t)− Vj))

∗(

N∑

j=1,i 6=j

wij
∂Vj(t)

∂V k

−wik). (2.15)

• Updating αk:

αk(t+ 1) = αk(t) + ∆αk(t) = αk(t) + η
N∑

i=1

ei(t)
∂Vi(t)

∂αk

. (2.16)

When k = i,

∂Vi(t+ 1)

∂αk

= Vi(t) + αi
∂Vi(t)

∂αk

+ βi sech
2 ∗ (

N∑

j=1,i 6=j

wij(Vj(t)− Vj))

∗(
N∑

j=1,i 6=j

wij
∂Vj(t)

∂αk

). (2.17)

When k 6= i,

∂Vi(t+ 1)

∂αk

= αi
∂Vi(t)

∂αk

+ βi sech
2(

N∑

j=1,i 6=j

wij(Vj(t)− Vj))

∗(
N∑

j=1,i 6=j

wij
∂Vj(t)

∂αk

). (2.18)

• Updating βk:

βk(t+ 1) = βk(t) + ∆β(t) = βk(t) + η

N∑

i=1,j 6=i

ei(t)
∂Vi(t)

∂βk
(2.19)

When k = i,

∂Vi(t+ 1)

∂βk
= αi

∂Vi(t)

∂βk
+ tanh(

N∑

j=1,i 6=j

wij(Vj(t)− Vj)) +

βi sech
2(

N∑

j=1,i 6=j

wij(Vj(t)− Vj)) ∗ (

N∑

j=1,i 6=j

wij
∂Vj(t)

∂βk
). (2.20)

21



Chapter 2. Modeling the Chemotaxis Behaviors of C. elegans Based on the Artificial
Dynamic Neural Networks

When k 6= i,

∂Vi(t+ 1)

∂βk
= αi

∂Vi(t)

∂βk
+ βi sech

2(

N∑

j=1,i 6=j

wij(Vj(t)− Vj))

∗(

N7∑

j=1,i 6=j

wij
∂Vj(t)

∂βk
). (2.21)

• Updating bk:

bk(t+ 1) = bk(t) + ∆bk(t) = bk(t) + η
N∑

i=1

ei(t)
∂Vi(t)

∂bk
. (2.22)

When k = i,

∂Vi(t+ 1)

∂bk
= αi

∂Vi(t)

∂bk
+ βi sech

2(

N∑

j=1,i 6=j

wij(Vj(t)− Vj))

∗(
N∑

j=1,i 6=j

wij
∂Vj(t)

∂bk
) + 1. (2.23)

When k 6= i,

∂Vi(t+ 1)

∂bk
= αi

∂Vi(t)

∂bk
+ βi sech

2(

N∑

j=1,i 6=j

wij(Vj(t)− Vj))

∗(

N∑

j=1,i 6=j

wij
∂Vj(t)

∂bk
). (2.24)

All DNN models in Chapters 2, 3, and 4 are trained by RTRL to learn their specific

switching logic functions. Training iteration for individual models varies from 8, 000 to

50, 000 epochs. All neural connection weights are set with initial values randomly between

−0.5 and 0.5. Learning rates are set to 0.002 for wij and 0.01 for other parameters. The

lower learning rates ensure the convergence of training. Furthermore, there are three

points should be noted for training.
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First, the range of initial weights plays the important role for convergence. It is

mentioned that the initial weights should not be too large [76, 77, 78]. Large initial

weights are in the extreme regions of the sigmoid functions, hence difficult to adjust

or update. This is because the gradient value of the sigmoid function is rather low

at extreme regions due to the flatness of the sigmoid function [79]. In our work, the

initial weights are range from [−2, 2]. When the initial range is between [−5, 5], neuronal

active functions of the sigmoid function type, such as tanh(x) = (ex − e−x)/(ex + e−x),

becomes either +1 or −1 when x is nearby +5 or −5, namely, deeply saturated. The

deep saturation makes the training difficult because the output of neuron would not vary

while the inputs vary.

Second, to avoid the local minimum a randomly restart mechanism is adopted. As

mentioned in [80], random restarts with a local gradient algorithm may be more effective

than a global algorithm at obtaining a low value of the objective function. During the

training, if the sum of squared error (SSE) is a constant for a long period, or the SSE is

larger than a value, the training procedure will be restarted by randomly re-initializing

the weights. We set that if the value of SSE is bigger than 0.01 and not changing for

400 epochs, or if the SSE is greater than 4 (except for the initialization), the training

procedure will restart.

Third, the wire diagrams are trained with inputs ranging from 0 to 2. If a wider

range of concentration inputs is given, we can introduce a scaling factor into the sensory

neurons and normalize the inputs within the range [0, 2], and the same test results can

be obtained without re-training.
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Figure 2.3: Topological structure for a dual-sensory model. V1 and V2 are the right and
left sensory neurons, and V6 and V7 are the right and left motor neurons, respectively.

2.3 Dual-sensory Behavioral Model

2.3.1 DNN for Dual-sensor Model

To explore the capability of DNN, a DNN of 7 neurons is formed as shown in Fig.2.3.

This DNN has an interconnected and self-connected structure. The network architecture

consists of two sensory neurons V1 (right) and V2 (left), which mimic the biological sensory

neurons ASEL and ASER as inputs, respectively. The sensory neurons receive chemo-

taxis signals from left and right sides, which are concentrations Cright(t) and Cleft(t),

respectively.

Two motor neurons, V6 for right side and V7 for left side, are outputs of DNN. V3,

V4, V5 are three hidden neurons. Here the assumption is that C. elegans can distinguish

the concentration difference between left and right sides.

The objective of this section is to investigate whether such a simple dual-sensor DNN

can perform food-attractant or toxin-repellent behaviors.
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2.3.2 Learning Tasks

In our work, the chemotaxis behaviors of C. elegans are modeled as a set of nonlinear

functions, called switching logic functions (SLFs). The target of the training is to let the

DNN learn the SLFs for food attraction and for toxin avoidance. SLFs are constructed

based on the logic of chemotaxis behaviors and the way to construct them is not unique.

Different SLFs can be designed as long as the logic is correct.

Figure 2.4: SLFs for food attractant. The x-axis depicts the food concentration difference
between the left-side and right-side sensors, which are located 2× 10−5m apart spatially
[3]. The y-axis shows the voltage of the output neurons. V6 stands for the right motor
neuron and V7 stands for the left motor neuron, both with the range from −1 to 1 V.

For food attractant, the SLFs consist of two hyperbolic tangent functions, as shown

in Fig. 2.4,

V6 = tanh(∆Cf ), (2.25)

V7 = − tanh(∆Cf ), (2.26)

where ∆Cf = Cf,left −Cf,right is food concentration difference between the left-side and

right-side sensors.
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Figure 2.5: The movement of dual-sensory model during food attraction. When ∆C =
Cf,left−Cf,right > 0, the food locates on the left side. From SLFs, motor neuron outputs
satisfy V6 > V7 (Vright > Vleft), namely, the right-side speed is faster than the left-side
speed, so C. elegans turns left. Similarly when Cf,left−Cf,right < 0, so Vleft > Vright and
C. elegans turns right. If ∆Cf = 0, the direction cannot be determined and information
of ∆C(t− 1) = 0 will be required.

The rationale of SLFs for food attraction with dual sensors can be explained from

Fig. 2.5. When ∆Cf = Cf,left − Cf,right > 0, implying that the food locates on the left

side, then according to SLFs, V6 > V7 (Vright > Vleft). As a result, C. elegans turns left.

Similarly when Cf,left(t) − Cf,right(t) < 0, implying that the food locates on the right

side, V7 > V6, thus the C. elegans turns right. If ∆Cf = 0 at time t, the direction cannot

be determined. Instead, the Cf (t) should be compared with Cf (t− 1) to decide whether

the direction is correct or not. This special case is considered in the single-sensory neuron

model.

For toxin avoidance, as shown in Fig. 2.6, SLFs are opposite to that for food attrac-

tion,

V6 = − tanh(∆Ctx), (2.27)

V7 = tanh(∆Ctx), (2.28)

where ∆Ctx = Ctx,left − Ctx,right is toxin concentration difference between the left-side

and right-side sensors of C. elegans.
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Figure 2.6: SLFs for toxin avoidance. The x-axis depicts the toxin concentration dif-
ference between the left-side and right-side sensors, which are located 2 × 10−5m apart
spatially. The y-axis describes the motor neurons’ outputs. V6 is the right motor neuron
and V7 is the left motor neuron. Their values are between −1 and 1.

Ctx,left <Ctx,right

V7

 Ctx=0
 Ctx<0

V7

 Ctx=0

C >C

V6 V6

Ctx,left>Ctx,right

 Ctx>0

Figure 2.7: The movement of dual-sensory model during toxin avoidance. When ∆C =
Ctx,left − Ctx,right > 0, the toxin locates on the left side. From the switching logic,
V7 > V6 or Vleft > Vrgiht, namely, the left-side speed is faster than the right-side speed,
so C. elegans turns right. Similarly when Ctx,left−Ctx,right < 0, V6 > V7 or Vleft < Vright

and C. elegans turns left.

Fig. 2.7 shows the movement of C. elegans during toxin avoidance. SLFs describe

the mapping from sensory input, ∆C, to motor-neuron outputs, V6 and V7, which are

opposite to SLFs for food attraction. Thus the orientation of the toxin avoidance is

opposite to that for food attraction, namely, C. elegans moves towards food but away

from toxin.
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Figure 2.8: SLFs for the multi-tasks. The input signals are Cf,left, Cf,right, Ctx,left,
Ctx,right. When ∆Cf,tx > 0 (∆Cf > ∆Ctx), tanh(∆Cf,tx) > 0 makes V6 > V7, resulting
the worm turn left. It is vice versa for ∆Cf,tx < 0.

For the integrated behavior, SLFs are constructed below

V6 = tanh(∆Cf,tx), (2.29)

V7 = − tanh(∆Cf,tx), (2.30)

∆Cf,tx = ∆Cf −∆Ctx = (Cf,left − Cf,right)− (Ctx,left − Ctx,right),

where Cf,left, Cf,right, Ctx,left and Ctx,right denote the left-side food concentration, right-

side food concentration, left-side toxin concentration, and right-side toxin concentration,

respectively.

From Fig. 2.8, the switch surface is decided by two input signals, ∆Cf = Cf,left −

Cf,right and ∆Ctx = Ctx,left − Ctx,right. When ∆Cf,tx = ∆Cf − ∆Ctx = 0, it means

that Cf,left = Cf,right and Ctx,left = Ctx,right, which is considered as the worm in correct

direction. Thus tanh(∆Cf,tx) = 0 and V6 = V7, and the worm goes straightly. When

∆Cf,tx > 0 (∆Cf > ∆Ctx), it indicates three cases. (1) The food source is located at
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the left side and the toxin source is located at the right side. Thus C. elegans should

turn left to approach food. (2) both food source and toxin source are located at the left

side. ∆Cf > 0, ∆Ctx > 0, and ∆Cf > ∆Ctx, which means C. elegans should turn left

to approach food. (3) both food source and toxin source are located at the right side.

∆Cf < 0, ∆Ctx < 0, and ∆Cf > ∆Ctx, which means C. elegans should turn left to avoid

the toxin. In these three cases, tanh(∆Cf,tx) > 0 makes V6 > V7, resulting the worm

turn left. The situation is vice versa for ∆Cf,tx < 0.

2.3.3 Testing Results

In this section, simulation experiments are conducted to investigate the performance

of the dual-sensory DNN model under three different cases: 1) a single food source, 2)

four toxin sources, 3) a food source and a toxin source. The speed of C. elegans is 0.22

mm/s [45], and the distance between the left-side and right-side sensors is 0.2 mm, and

body length is 1 mm. The RTRL training method described in Section 2.2.4 is used

to train the DNN. Without being mentioned, the head angle of the C. elegans in all

simulations are initialized randomly with different values.

Food attraction

First we test the behavior of C. elegans near a single food source. The food locates

at point (0, 0). C. elegans starts at (0.1,−0.1). The movement path in Fig.2.9 indicates

the success in the mission of finding food. At the end, the worm finds the food located

at point (0, 0) and moves around.

Toxin avoidance

Next we test the behavior of the C. elegans near four toxin sources that are located at

points (−0.2, 0), (−0.1,−0.15), (0, 0.2), and (0.1,−0.1), respectively. C. elegans starts at
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Figure 2.9: The behavior of dual-sensory model of C. elegans near a food source. The
point of highest food concentration is point (0, 0). C. elegans starts at (0.1,−0.1) and
finally finds the food source at (0, 0).

Figure 2.10: The behavior of dual-sensory model of C. elegans near four toxin sources.
Four toxin resources are located at points of (−0.2, 0), (−0.1,−0.15), (0, 0.2), and
(0.1,−0.1), respectively. The worm starts at three different positions (−0.11,−0.1),
(0.07,−0.1), (−0.03, 0.15) with head angle 135◦, 180◦, 180◦, respectively. The worm
avoids the toxin repellents and moves towards a safe position away from toxin.
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three different positions (−0.11,−0.1), (0.07,−0.1), (−0.03, 0.15) with head angle 135◦,

18◦, and 180◦, respectively. The results in Fig.2.10 illustrate that C. elegans can avoid

toxin by maintaining a maximum distance away from it.

Integrated Behavior

Figure 2.11: The behavior of dual-sensory model of C. elegans in between food attrac-
tant and toxin repellent. The food and toxin are put at points (−0.1, 0) and (0.1, 0),
respectively. C. elegans starts at (0.08, 0.05) with head angle 90 ◦ and finally arrives at
the food source placed at (−0.1, 0.0).

Finally, we test the behavior of C. elegans in the presence of both food and toxin

sources. In order to let C. elegans distinguish the food and toxin, we set the concentration

values of food to be positive and toxin to be negative. As such, it is adequate to use

only the SLFs described in Fig.2.8. The food and toxin sources are put at (−0.1, 0) and

(0.1, 0), respectively. C. elegans starts at (0.08, 0.05) with head angle 90◦. The results

shown in Fig.2.11 indicates that a dual-sensory C. elegans can navigate itself to avoid

toxin and move towards the food source directly.
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2.4 Single-sensory Behavioral Model

2.4.1 DNN for Single-sensory Model

Figure 2.12: Topological structure for a single-sensory model. The network architecture
consists of one sensory neuron V1, which mimics the biological sensory neuron ASE.
The memory neuron is V2, which plays a similar role as the biological neuron AIY. Two
motor neurons V6 for right and V7 for left are outputs of DNN. V3, V4, V5 are three
hidden neurons.

Biologically, it is assumed that the distance between left-side and right-side sensory

neurons is too small for C. elegans to detect the spatial difference in concentration [3].

As a consequence, the left-side and right-side sensory neurons work as a single sensor.

In this section we will investigate whether the DNN model with a single-sensory neuron

can still perform the chemotaxis behaviors. DNN with a single sensory neuron is shown

in Fig. 2.12. For the chemotaxis, C. elegans memorizes the previous concentration,

C(t − 1), and then computes the change of concentration with present concentration,

∆C(t) = C(t) − C(t − 1). In order to let C. elegans memorize the concentration of

C(t − 1), a neuron should function as a memory. According to [81], biological neuron

AIY possesses a memory function. In the DNN, neuron V2 is added to mimic the memory
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neuron AYI, which records the concentration of C(t− 1). For the single-sensory model,

we assume that

1. C. elegans compares present and past concentrations to perform chemotaxis [19, 55].

2. The output of the sensory neuron is the value of the attractant or repellant concen-

tration at a single point in space [25].

3. The voltage potential for the motor neuron is in the close interval of [-1.0V +1.0V].

4. The simulation and computation is performed at the network level instead of cellular

level [25].

2.4.2 Learning Tasks

The DNN model is trained to learn SLFs for food attraction as shown in Fig. 2.13,

and toxin avoidance as shown in Fig. 2.14. The concentration difference ∆C(t) = C(t)−

C(t − 1) only tells whether the forward direction is correct or not. It remains unclear

whether food or toxin is on the left or right side. For instance, when finding food,

∆Cf (t) > 0 means that C. elegans is heading the correct direction. When ∆Cf (t) < 0,

C. elegans is heading a wrong direction and it can turn either left or right. The new

direction, either left or right, can be randomly selected. Biologically, C. elegans prefers

turning towards its ventral side [18, 82], which is the right side for our models. In this

work we assume the worm chooses turning right as the preference, hence the value of

left-side motor neuron output is always greater than that of the right-side motor neuron.

We design the SLFs for food attraction as

V6(t) = 0.5 tanh(∆Cf,tp(t))− 0.5, (2.31)

V7(t) = −0.5 tanh(∆Cf,tp(t)) + 0.5. (2.32)
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Figure 2.13: SLFs for the single-sensory model for food attraction. The x-axis depicts the
food concentration difference between two consecutive time instances, ∆C(t) = C(t) −
C(t − 1). The y-axis shows the output of the motor neurons according to the ∆C(t).
V6 is the right side motor neuron and V7 is the left side motor neuron, and their values
change between −1 and 1.

Figure 2.14: SLFs for the single-sensory model for toxin avoidance. The x-axis depicts
the toxin concentration difference between two consecutive time instances, ∆C(t) =
C(t) − C(t − 1). The y-axis presents the output of the motor neurons according to
∆C(t). V6 is the right side motor neuron and V7 is the left side motor neuron, and their
values change between −1 and 1.

SLFs for toxin avoidance are opposite to those for food attraction,

V6(t) = 0.5 tanh(−∆Ctx,tp(t))− 0.5, (2.33)

V7(t) = −0.5 tanh(−∆Ctx,tp(t)) + 0.5. (2.34)
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Figure 2.15: Movement demonstration for food attraction. If Cf (t) > Cf (t − 1), C.
elegans is in the correct direction, so Vleft(V7) = Vright(V6) and it goes straightly. When
Cf (t) ≤ Cf (t − 1) (wrong direction), the output of Vright is smaller than the output of
Vleft, which makes C. elegans turn right.
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Figure 2.16: Movement demonstration for toxin avoidance. If Ctx(t) < Ctx(t − 1), C.
elegans is in the correct direction, so Vleft(V7) = Vright(V6) and it goes straightly. If
Ctx(t) ≥ Ctx(t − 1) (wrong direction), the output of Vright is smaller than Vleft, which
makes C. elegans turn right.

For food attraction, as shown in Fig. 2.15, C. elegans computes the change in food

concentration between present and past concentrations, ∆Cf,tp(t) = Cf (t) − Cf (t − 1).

When Cf (t)−Cf (t−1) is positive, C. elegans knows that it is heading towards a region of

higher food concentration and it generates motor neuron voltages at the same potential

level. When Cf (t)−Cf (t− 1) is negative, this means that C. elegans is heading towards

a region of lower food concentration and some action should be taken to turn back. As

is assumed, when C. elegans detects the wrong direction, the only action to be adopted

is turning right, and V6(t) < V7(t).
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For toxin avoidance, as shown in Fig. 2.16, when ∆Ctx,tp(t) = Ctx(t)− Ctx(t− 1) is

positively large, C. elegans is heading the wrong way as the toxin concentration increases.

Then the left-side speed is larger than the right-side speed, namely V7(t) > V6(t), C.

elegans turns right to escape. When Ctx(t)−Ctx(t− 1) is negative, C. elegans is heading

the right direction. In this circumstance, the values of V6(t) and V7(t) are similar, and

C. elegans moves either straightly or turn right slightly.

Figure 2.17: The logic switch surface for the integrated behavior. When ∆Cf,tp(t) =
Cf (t)−Cf (t− 1) = 1 and ∆Ctx,tp(t) = Ctx(t)−Ctx(t− 1) = −1, it is the most favorable
direction, V6(t) = V7(t) and C. elegans moves straightforward. When ∆Cf,tp(t) = −1
and ∆Ctx,tp(t) = 1, it is the most unfavorable direction, the difference between V6(t) and
V7(t) is maximum and C. elegans turns right as sharp as possible. When ∆Cf,tp(t) and
∆Ctx,tp(t) have similar values, the information is unclear to C. elegans due to the mixture
of food and toxin, and the worms turns right in a gentle way for further exploration.

For the integrated behavior, SLFs for single-sensory model are constructed below and

plotted in Fig. 2.17.
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V6(t) = 0.5 tanh(∆Cftx,tp(t))− 0.5, (2.35)

V7(t) = −0.5 tanh(∆Cftx,tp(t)) + 0.5, (2.36)

∆Cftx,tp(t) = ∆Cf,tp(t)−∆Ctx,tp(t), (2.37)

where

∆Cf,tp(t) = Cf (t)− Cf (t− 1)(t),

∆Ctx,tp(t) = Ctx(t)− Ctx(t− 1)(t).

As shown in Fig. 2.17, the movement is determined jointly by the food and toxin

concentrations. When ∆Cf,tp(t) = Cf (t) − Cf (t − 1) = 1 and ∆Ctx,tp(t) = Ctx(t) −

Ctx(t − 1) = −1, it is the most favorable direction, V6(t) = V7(t) and C. elegans moves

straightforward. When ∆Cf,tp(t) = −1 and ∆Ctx,tp(t) = 1, it is the most unfavorable

direction, the difference between V6(t) and V7(t) is maximum and C. elegans turns right

as sharp as possible. When ∆Cf,tp(t) and ∆Ctx,tp(t) have similar values, the information

is unclear to C. elegans due to the mixture of food and toxin, and the worms turns right

in a gentle way for further exploration.

2.4.3 Testing Results

Simulation experiments are conducted to observe the performance of the single-

sensory model under three different chemotaxis environments: 1) single food source,

2) four toxin sources, 3) one food source and one toxin source.
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Figure 2.18: Food attraction behavior for single-sensory model. A food source is located
at point (0, 0). C. elegans starts at (−0.1,−0.1) with head angle 135◦.

Food Attraction

To test the single-sensory model for food attraction, a food source is located at the

origin (0, 0). The result can be seen in Fig. 2.18. C. elegans starts at (−0.1,−0.1) with

head angle 135◦ and finally it finds the food source at (0, 0) through a series of right

turns.

Toxin Repellent

To test the single-sensory for toxin avoidance, four toxin resources are located at

points (−0.2, 0), (−0.1,−0.15), (0, 0.2), and (0.1,−0.1), respectively. Fig. 2.19 shows

three tests in which C. elegans starts from three different positions (−0.12,−0.13),

(−0.03, 0.18), and (0.08,−0.1), with head angle 180◦. C. elegans successfully avoids

toxin through a series of right turns.

Comparing with the movement of dual-sensory model shown in Fig.2.10, it is more
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Figure 2.19: Single-sensory model for toxin avoidance. Four toxin resources are located
at points (−0.2, 0), (−0.1,−0.15), (0, 0.2), and (0.1,−0.1). C. elegans starts at three
different positions (−0.12,−0.13), (−0.03, 0.18), (0.08,−0.1) with head angle 180 ◦, and
it successfully avoids the toxin sources.

difficult for the single-sensory model to make the correct movement, because the gradient

information of the toxin concentration can only be captured after two steps of motion.

Integrated Behavior

In this test, we set the concentration of food to be positive and toxin to be negative.

SLFs are shown as Fig. 2.17 and the test result is shown in Fig. 2.20. A food source is

put at point (−0.1, 0) and a toxin source is put at (0.1, 0). C. elegans starts at the toxin

area (0.03, 0), with head angle 270◦. During the movement, C. elegans avoids the toxin

and moves towards the food source. Finally it finds the food source and circles around

the food source.
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Figure 2.20: Single-sensory model for integrated behavior. A food source and a toxin
source are put at points (−0.1, 0) and (0.1, 0), respectively. C. elegans starts at the toxin
area (0.03, 0) with head angle 270◦. It moves towards food, and ends at food source.

2.5 Conclusion

In this chapter, we have modeled the chemotaxis behaviors of C. elegans based on the

artificial neural network. The chemotaxis behaviors of C. elegans involve finding food

and avoiding toxin. DNN is chosen to model the nervous system and the chemotaxis

behaviors are modeled as SLFs that decide the locomotion direction. Both dual-sensory

model and single-sensory model are investigated in this chapter. The dual-sensory model

is based on the assumption that C. elegans can distinguish the concentration difference

between the left-side and right-side sensors, whereas the single-sensory model is based on

the assumption that C. elegans cannot distinguish the concentration difference between

the left-side and right-side sensors. From the testing results, both the dual-sensory

model and the single-sensory model can successfully find the food source and avoid the

toxin source. The dual-sensory model produces much smoother motion patterns than
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the single-sensor DNN model does. With only 7 neurons, the DNN models can learn to

generate complex chemotaxis behaviors.

In next chapter, the chemotaxis behaviors such as finding food and avoiding toxin

will be investigated based on the biological wire diagrams.
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Chapter 3

Modeling the Chemotaxis

Behaviors of C. elegans Based on

the Biological Wire Diagram with

Invariant Speed

In Chapter 2, we have investigated the chemotaxis behavior of C. elegans based on

the artificial DNN. However, since the full neuronal connections of the nervous system

are known, in the chapter we explore the chemotaxis behavior of C. elegans directly on its

biological wire diagram. The stimuli to sensory neurons are modeled as inputs, and the

motor neuron voltages acting on muscles are modeled as outputs. The biological models

for the chemotaxis behavior of C. elegans are extracted from the original biological wire

diagram [83]. In this chapter, six biological models are provided, namely, the dual-

sensory models and the single-sensory models for food, toxin, and integrated behavior,

respectively. With the sensory neurons, C. elegans can directs itself towards the region

of high food concentrations and away from the region of high toxin concentrations.

42



Chapter 3. Modeling the Chemotaxis Behaviors of C. elegans Based on the Biological
Wire Diagram with Invariant Speed

AIY

AIB

AIA

PVP

PVC

AVB

AVA

AIZ

DVA

ADF

ASEL

DB VB

RIF

AVD

ASER

 

Figure 3.1: The wire diagram of dual-sensory behavioral model for food attraction.
Neuron ASEL and ASER are the left and right sensory neurons for food, respectively.
The outputs are neurons DB and VB for left and right sides, and the rest are hidden
neurons.

3.1 Dual-sensory Behavioral Model

3.1.1 Wire Diagrams

Wire Diagram for Food Attraction

According to anatomy, the wire diagram of dual-sensory behavioral model for food

attraction is shown in Fig. 3.1. This wire diagram is extracted based on the data provided

by [83]. We fix the sensory neurons ASEL and ASER as input neurons for food attraction

[15], two motor neurons DB and VB as the left and right output neurons, respectively.

Other interneurons are added by two rules: (1) with the shortest paths from ASE(L/R)
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to DB or VB [84]; (2) with the strongest synaptic connections from ASE(L/R) to DB or

VB [1]. The chemical synapse from one neuron to another is modeled as a unidirectional

connection, and the gap junction between two neurons is modeled as a bidirectional con-

nection with two weights. If both synapse and gap junction exist between two neurons,

we still model the wire as a bidirectional connection with two weights. Whether the

weights are positive (active) or negative (inhibitory) is determined by the training.

Wire Diagram for Toxin Avoidance

 

Figure 3.2: The wire diagram of dual-sensory behavioral model for toxin avoidance. The
neuron ASHL and ASHR are the left and right toxin sensory neurons respectively. DB
and VB are the left and right motor neurons. Others are hidden neurons.
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For toxin avoidance behavior, the input neurons are ASHL and ASHR, which are

responsible for nose touch, hyperosmolarity, and volatile repellent chemicals. The output

neurons are DB for left-side and VB for right-side. Other interneurons are extracted

following the same way as wire diagram for food attraction. The wire diagram for toxin

avoidance is shown in Fig. 3.2. We obtain the wire diagram with the same interneurons

compared to those for food attraction as shown in Fig. 3.1. However, the neuronal

connections for food attraction and toxin avoidance wire diagrams are different. For

example, ASH(L/R) for toxin avoidance have the direct connections to command neurons

AVD and AVA, but ASE(L/R) for food attraction do not have.

As shown in Fig. 3.1 and Fig. 3.2, there are twelve interneurons in each model. By

comparing to other research works [40, 18], it is interesting that we share the same

eight interneurons: AIA, AIB, AIY, AIZ, DVA, AVA, AVB, and PVC. Biologically,

these eight interneurons play the critical role for the locomotion behaviors. Half of all

synaptic outputs from the amphid neurons are directed to the interneurons AIA, AIB,

AIY, and AIZ [18]. Furthermore, AIY functions as a memory neuron that records the

previous concentration information [81]. AVD, AVB, AVA, and PVC are four critical

command neurons for movement [85]. It should be noted that the neuron AVD in our

work represents both AVD and AVE. The reason that we combine AVD and AVE together

is because AVE has the same postsynaptic partners as AVD [86], and it is in accordance

with the locomotion circuit of C. elegans in [85], which deals with AVD and AVE as one

neuron. Four additional neurons are involved in our model that function as interneurons:

ADF, PVP, RIF, DVA. Biologically, ADF contributes to a residual chemotactic response

after ASE is killed [1], and DVA is an interneuron that serves as the stretch sensitive

neuron which is significant for undulatory movement [61].
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The model as shown in Fig. 3.1 and Fig. 3.2 are simplified biological wire diagrams

with sixteen neurons. Each neuron in this model possesses an active function as Eq. (2.5),

so the whole wire diagram is a DNN. DNN has the ability to approximate arbitrary non-

linear functions. If DNN can map the input-output relations of the chemotaxis behaviors,

then DNN can perform the chemotaxis behaviors after training.

3.1.2 Learning Tasks

The RTRL training method described in Section 2.2.4 is used. The DNN learns the

same SLFs for food attraction as shown in Fig. 2.4, and for toxin avoidance as shown in

Fig. 2.6, in which V6 is Vright and V7 is Vleft.

Analogous to Fig. 2.5, Cleft−Cright > 0 implies that the food locates on the left side,

so Vright > Vleft and the right-side speed is more than the left-side speed. Thus, elegans

turns left. Similarly when when Cleft − Cright < 0, Vright > Vleft, and C. elegans turns

right.

Analogous to Fig. 2.7, when the left-side sensor detects more toxin concentration than

the right-side sensor, Cleft − Cright > 0, implying that the toxin locates at the left side.

In order to avoid the toxin, Vleft > Vright or the left-side speed is more than right-side

speed, and C. elegans turns right. Similarly when Cleft − Cright < 0, Vright < Vleft, C.

elegans turns left.

3.1.3 Testing Results

Simulation experiments are conducted to observe the performance of the dual-sensory

behavioral model under two different chemotaxis environments in the presence of 1) single

food attractant, 2) four toxin repellents.

First we test C. elegans behaviors near a single food attractant. The food locates at
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Figure 3.3: The chemotaxis behavior of C. elegans produced by the dual-sensory behav-
ioral model for food attractant. One food source locates at the point (0, 0). C. elegans
starts at (−0.1, 0.1) with the head angle 180◦ and ends at the food source (0, 0).

Figure 3.4: The chemotaxis behavior of C. elegans produced by the dual-sensory behav-
ioral model nearby four toxin repellents. Four toxin resources locate at (-0.2,0), (-0.1,-
0.15), (0,0.2), and (0.1,-0.1), respectively. The worm starts at three different positions
(-0.11,-0.1), (0.08,-0.1), (-0.02,0.17) with head angles 135◦, 180◦, and 180◦, respectively.
The worm avoids the toxin repellents and moves towards a safe position away from toxin.
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point (0, 0). The worm starts at (−0.1, 0.1). The movement path in Fig. 3.3 indicates

the success in the mission of food seeking. At the end, the worm finds the food located

at point (0, 0) and moves around it.

Next we test the chemotaxis behavior of C. elegans near four toxin repellents that

are located at points (−0.2, 0), (−0.1,−0.15), (0, 0.2), and (0.1,−0.1), respectively. C.

elegans starts at three different positions with different head angles 135◦, 180◦, and

180◦, respectively. The results in Fig. 3.4 illustrate that C. elegans can avoid toxin by

maintaining a maximum distance away from it, and always reach the same place with

the minimum concentration.

3.2 Single-sensory Behavioral Model

As discussed in Section 2.4, single-sensory mode is another navigation strategy for

C. elegans during locomotion. When the concentration difference between left-side and

right-side sensors is too small for C. elegans to detect, the left and right sides sensors

work as a single sensor [55]. It is necessary to investigate whether the DNN model with

single sensory neuron can still perform chemotaxis behaviors. In the chemotaxis, C.

elegans changes its strategy from space to time, in which a memory neuron is needed to

memorize the previous concentration C(t−1). With this memory neuron, C. elegans can

compute the temporal change of concentration, ∆Ctp(t) = C(t)−C(t−1), for navigation.

In this section, the behaviors of single-sensory models for food attraction and toxin

avoidance are explored. Our objective is to investigate whether C. elegans with one

sensory neuron can direct itself towards the region of high food concentration or away

from the region of high toxin concentration, respectively.
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DB VB

 

Figure 3.5: The wire diagram for food attraction. Neuron ASE is the sensory neuron
for food. Neuron AIY functions as the memory neuron recording the previous food
concentration information Cf (t − 1). The outputs are neurons DB and VB for left and
right sides, and the rest are hidden neurons.

3.2.1 Wire Diagrams

The biological neural model is shown in Fig. 3.5, which is almost the same as the

dual-sensory model Fig. 3.1 except that two sensory neurons ASEL and ASER are

merged into a single ASE. Similarly in toxin avoidance, ASHL and ASHR as shown

in Fig. 3.2 are merged into a single-sensory neuron ASH, as shown in Fig. 3.6. Accord-

ing to reference[81], neuron AIY functions as a memory neuron to record the previous

concentration information C(t− 1) (Cf for food and Ctx for toxin). In the chemotaxis,

C. elegans computes the change in food concentration between the present and past con-
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DB VB

 

Figure 3.6: The wire diagram for toxin avoidance. The neuron ASH is the toxin sensory
neuron. The neuron AIY functions as a memory neuron to record the previous toxin
concentration Ctx(t − 1). DB and VB are the left and right motor neurons. Others are
hidden neurons.

centrations, C(t)− C(t− 1). The outputs of the biological models are neurons DB and

VB, and the rest are hidden neurons.

3.2.2 Learning Tasks

As discussed in Section 2.4, for single-sensory models, C. elegans uses the temporal

concentration difference ∆Ctp(t) = C(t)−C(t−1) for navigation. However, with ∆Ctp(t),

C. elegans only knows the forward direction is correct or not. For instance, for food

attraction, when ∆Cf,tp(t) > 0, C. elegans is heading the correct direction. When
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∆Cf,tp(t) ≤ 0, C. elegans is heading a wrong direction and it should turn. The new

direction, either left or right, can be randomly selected. In this work we assume the

worm chooses right turning as its preference. Hence the left-side motor neuron output is

always higher than or equal to the right motor neuron.

The RTRL training method described in Section 2.2.4 is applied to train the single-

sensory biological models. The biological models are trained to learn the SLFs illustrated

in Fig. 2.13 for food attraction, and Fig. 2.14 for toxin avoidance.

3.2.3 Testing Results

Food Attraction

The training data for the single-sensory behavioral model for food attraction involve

two terms, Cf (t) and Cf (t− 1), which range from 0 to 2 with interval 0.1. To train this

model, it needs two neurons to receive the input training data, Cf (t) and Cf (t−1). ASE

functions as the attractant sensory neuron [85] to receive the input Cf (t). As claimed by

[81], AIY has the memory ability. Based on this result, AIY is assigned by us to serve as

the memory neuron to receive the input Cf (t− 1). However, as shown in Fig. 3.5, AIA,

AIZ, and AIB share the similar connections and these neurons may serve as the memory

neurons. To the best of our knowledge, there are not any references to mention their

memory ability. Thus AIA, AIZ, and AIB only function as interneurons in our models.

Target data for the two output neurons, Vleft for DB and Vright for VB, are calculated

according to Eqs. (2.31) and (2.32), respectively.

The simulation scenario is the same as Section 2.4.3 for the single-sensory behavioral

model for food attraction. The result for food attraction is shown in Fig. 3.7. One food

attractant is located at point (0,0). The model starts at (0.1, -0.15) with the head angle

180◦ and it ends at the food source (0,0).
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Figure 3.7: The chemotaxis behavior of C. elegans produced by the single-sensory be-
havioral model for food attraction. One food source locates at the point (0,0). C. elegans
starts at (0.1, -0.15) with the head angle 180◦ and ends at the food source (0,0).

Toxin Avoidance

The training data for the single-sensory behavioral model for toxin avoidance include

two terms, Ctx(t) and Ctx(t−1), which range from 0 to 2 with interval 0.1. To train this

model, ASH functions as the input neuron to receive the training data Ctx(t), and AIY

is assigned to be the memory neuron to receive the training data Ctx(t− 1). Target data

for the two output neurons, Vleft for DB and Vright for VB, are calculated by Eqs. (2.33)

and (2.33), respectively.

The results of toxin avoidance are shown in Fig. 3.8. Four toxin resources locate

at (-0.2,0), (-0.1,-0.15), (0,0.2), and (0.1,-0.1), respectively. The worm starts at three

different positions (-0.16, -0.01), (0,0.18), (0.08,-0.05) with head angle 180◦, respectively.

It avoids the toxin repellents and moves towards a safe position away from toxin.

Comparing Fig. 3.3 with Fig. 3.7 for food attraction, Fig. 3.4 with Fig. 3.8 for toxin

avoidance, the single-sensory behavioral models, though still achieve the desired chemo-
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Figure 3.8: The chemotaxis behavior of C. elegans produced by the single-sensory be-
havioral model nearby four toxin repellents. Four toxin resources locate at (-0.2,0),
(-0.1,-0.15), (0,0.2), and (0.1,-0.1), respectively. The worm starts at three different posi-
tions (-0.16, -0.01), (0,0.18), (0.08,-0.05) with head angle 180◦, respectively. The worm
avoids the toxin repellents and moves towards a safe position away from toxin.

taxis behaviors, do not move as smooth as the that generated by the dual-sensory be-

havioral models, due to the lack of the gradient information of the concentration.

3.3 Integrated Behavioral Model

In previous sections we explore four chemotaxis behaviorial models individually,

which include dual-sensory model for food attraction, dual-sensory model for toxin avoid-

ance, single-sensory model for food attraction, and single-sensory model for toxin avoid-

ance. In this section, we combine the dual-sensory models for food attraction and toxin

avoidance together, as well as the single-sensory models. Our objective of the combi-

nation is to investigate whether these combined models can perform the task of finding

53



Chapter 3. Modeling the Chemotaxis Behaviors of C. elegans Based on the Biological
Wire Diagram with Invariant Speed

food and avoiding simultaneously.

3.3.1 Wire Diagrams

 

Figure 3.9: Neural diagram for a dual-sensory behavioral model for both food attraction
and toxin avoidance. ASEL and ASER are left-side and right-side input neurons for
food concentration. ASHL and ASHR are left-side and right-side input neurons for toxin
concentration. VB and DB are right-side and left-side motor neurons, and the rest are
hidden neurons.

The wire diagram for the integrated dual-sensory behavioral model is shown in

Fig. 3.9, which is the combination of Fig. 3.1 and Fig. 3.2. Note that all four sensory

neurons, ASEL, ASER, ASHL, and ASHR, are included. ASEL and ASER are left-side

and right-side input neurons for food concentration. ASHL and ASHR are left-side and
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DB VB

 

Figure 3.10: Neural diagram for a single-sensory behavioral model for both food at-
traction and toxin avoidance. ASE is the input neuron for food concentration. ASH is
the input neuron for toxin concentration. AIY is a memory neuron. VB and DB are
right-side and left-side motor neurons, and the rest are hidden neurons.

right-side input neurons for toxin concentration. VB and DB are right-side and left-side

motor neurons, and the rest neurons are hidden neurons.

The wire diagram for the integrated single-sensory behavioral model is shown in

Fig. 3.10, which is the combination of Fig. 3.5 and Fig. 3.6, including both ASE and

ASH. ASE is the input neuron for food concentration. ASH is the input neuron for toxin

concentration. AIY is a memory neuron. VB and DB are right-side and left-side motor

neurons, and the rest are hidden neurons.
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Figure 3.11: The chemotaxis behavior of the dual-sensory behavioral model for food
attraction and toxin avoidance. The food and toxin locate at (-0.1,0) and (0.1,0), respec-
tively. C. elegans starts at (0.08,0.04) with the head angle 90◦, and at the end reaches
the food source.

3.3.2 Learning Tasks

Analogous to Section 2.3 and Section 2.4, the biological models are trained to learn

the SLFs as shown in Fig. 2.8 for the dual-sensory biological model and Fig. 2.17 for

the single-sensory biological model. The two wire diagrams, as shown in Fig. 3.9 and

Fig. 3.10, are trained by RTRL, which is described in Section 2.2.4.

3.3.3 Testing Results

When both food and toxin exist, the well trained biological models can perform

the expected chemotaxis behaviors. Fig. 3.11 shows the chemotaxis behavior of the

dual-sensory biological model. One food and one toxin locate at (-0.1,0) and (0.1,0),

respectively. C. elegans starts at (0.08,0.04) with the head angle 90◦, and at the end

reaches the food source.
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Figure 3.12: The chemotaxis behavior of the single-sensory behavioral model for food
attraction and toxin avoidance. The food and toxin locate at (-0.1,0) and (0.1,0) respec-
tively. C. elegans starts at (0.08,0.04) with the head angle 270◦, and at the end reaches
the food source.

Figure 3.13: The chemotaxis behavior of the single-sensory behavioral model nearby a
toxin repellent located at (0.1,0). The C. elegans starts from (0.07,0.04) with head angle
90◦, and finally it avoids the toxin.

Fig. 3.12 shows the chemotaxis behavior of the single-sensory biological model. One

food and one toxin locate at (-0.1,0) and (0.1,0) respectively. C. elegans starts at
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(0.08,0.04) with the head angle 270◦, and at the end it reaches the food source.

It would be interesting to investigate whether the integrated behavioral models can

perform equally well for a single task such as food attraction or toxin avoidance. For

simplicity we only illustrate the toxin avoidance by the single-sensory biological model.

As shown in Fig. 3.13, a toxin source is located at (0.1,0). The C. elegans model starts

from (0.07,0.04) with head angle 90◦, and finally it leaves far from the toxin source.

Above all, comparing the performances between artificial and biological models, we

cannot observe there are any obvious differences between them except that the first class

are the simplified neural connection models and the other is the biological models. How-

ever, for the integrated behavior, biological models can mimic the actual mechanism of

C. elegans when both food and toxin existed concurrently during chemotaxis, because the

ASE is only responsible for the food attraction and the ASH is only for the toxin avoid-

ance, which contrasts to the artificial models in which the food and toxin concentrations

are sensed by the same neuron.

3.4 Conclusion

In this chapter, the chemotaxis behaviors of C. elegans are investigated based on its

biological neural wire diagrams with the focus on food attraction, toxin avoidance, and

the integrated behaviors. DNN is chosen as the mathematical model for the biological

wire diagram. Our work based on the biological wire diagrams extends the existing

results based on the artificial DNN. These biological neural wire diagrams are extracted

from chemosensory neurons to motor neurons directly. It is the first time for us to explore

the biological neuron connections and train the biological models directly using RTRL

algorithm. Through intensive simulation tests on various scenarios, it is verified that
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the biological wire diagrams can successfully mimic the C. elegans to perform complex

chemotaxis behaviors. However, these biological behavioral models in this chapter keep

a constant speed. Even arriving at the food source or leaving far from the toxin source,

the C. elegans cannot stop spontaneously. In the next chapter, we will incorporate the

speed regulation mechanism into the biological behavioral models.
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Chapter 4

Modeling the Chemotaxis

Behaviors of C. elegans Based on

the Biological Wire Diagram with

Speed Regulation

Currently there are two opposite points of view about the relationship between the

concentration input and speed of C. elegans. One opinion is that the speed of C. elegans

is constant [87, 45], and the other one is that C. elegans will reduce its speed when

encountering the food [86]. In Chapter 3, we have investigated the chemotaxis behavior

of C. elegans by assuming its speed to be a constant and obtained the similar results as

[45]. To the best of our knowledge, the actual causation of the speed reducing is still

unknown. Thus in this chapter we assume its speed can be regulated according to the

concentration input.
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4.1 Introduction

The content in this chapter is to extend the work in Chapter 3. First, we use the

biological behavioral models in Chapter 3, which are constructed by extracting the bi-

ological wire diagrams directly from sensory neurons to motor neurons. There are six

chemotaxis behavioral models, which are classified into two kinds, one for dual-sensory

model and the other for single-sensory model. For each kind there are three models,

one for food attraction, one for toxin avoidance, and one integrated model for both food

attraction and toxin avoidance. As the same as Chapter 3, the wire diagram for each

model is represented by a dynamic neural network (DNN), and each neuron is described

as a non-linear active function. DNN is suitable for chemotaxis behavioral modeling ow-

ing to its dynamical nature, since its connections can be made analogous to the nature

ones such as synapses.

Second, we incorporate speed regulation into these biological behavioral models, so

that navigation is complete with orientation control and speed control. During the

locomotion, C. elegans can not only approach the food source (leave the toxin source),

but also reduce its speed when near to the food source (far from the toxin source).

Third, the synergy of dual-sensory and single-sensory models is explored. Gradient

information varies with respect to the distance between sources (food and toxin). C.

elegans behaves in dual-sensory behavioral mode when gradient difference (namely, the

concentration difference) between left and right sides is sufficiently large, whereas it

behaves in single-sensory mode if this gradient difference is too low to detect. In this

chapter, we provide an integrated behavioral model (based on the dual-sensory behavior

model) to perform the chemotaxis behaviors of food attraction and toxin avoidance

simultaneously, and this model works under either dual-sensory model or single-sensory
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mode based on the available gradient information. With concentration information, C.

elegans also can regulate the speed spontaneously.

Fourth, we test our models in different scenarios. In each scenario, C. elegans success-

fully approaches the food source or escapes from the toxin source. It verifies that SFLs

can well capture the chemotaxis behaviors. Furthermore, once C. elegans is trained to

learn the SFLs, it can perform its corresponding behaviors in different scenarios without

re-training.

Fifth, without losing the biological reality, we quantitatively analyze the results of

the single-sensory integrated model by comparing with other biological results. First,

we analyze the neuronal connectivities of the resultant wire diagrams by following the

method of [25]. In this way, we have investigated the similarity of these wire diagrams

and simplified them to smaller networks. Next, we use quantitative analysis method

to compare the trajectories of the resultant wire diagrams with the experiment results

provided by [19] and [87]. At last, we add the external noise and internal noise to

the resultant wire diagrams and test their robustness. We also quantitatively analyze

the trajectories of these wire diagrams affected by noises and compare them with the

experiment data provided in [87, 19].

This chapter is organized as following. Section 4.2 provides several preliminary re-

sults for subsequent sections, including the kinematics of locomotion, distribution of food

and toxin concentrations, DNN model, and the training method. Section 4.3 investigates

dual-sensory biological models with speed regulation for food attraction and toxin avoid-

ance. Section 4.4 investigates the single-sensory models with speed regulation for food

attraction and toxin avoidance. In Section 4.5, dual-sensory models are integrated to one

behavioral model to perform all the chemotaxis behaviors synchronously. In Section 4.6,
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the single-sensory integrated behavioral model is also produced to perform these chemo-

taxis behaviors synchronously. In Section 4.7, quantitative analysis are carried out by

comparing with the biological experiment results. In each section, the corresponding

neural wire diagrams, switching logic functions and testing results are demonstrated in

details. Section 4.8 concludes the chapter.

4.2 Kinematics Models

C. elegans performs the sinusoid form during locomotion. Only the head receives the

external concentration. In this chapter, C. elegans is modeled as a point source in the

x− y plane with velocity v(t) at head, and angle θ(t) measured from the x-axis at time

t, shown in Fig. 2.1.

The kinematic updating equations are:

x(t+ 1) = x(t) + v(t)T cos θ(t), (4.1)

y(t+ 1) = y(t) + v(t)T sin θ(t), (4.2)

θ(t) = θ(t− 1) + ∆θ(t), (4.3)

v(t) =
1

2
Vmax · [Vleft(t) + Vright(t)], (4.4)

∆θ(t) = γ(Vright(t)− Vleft(t))T, (4.5)

where x(t) and y(t) are the position values at time t. v(t) is the velocity of worm, which

is the average value of the left and right output neurons multiplying by the worm’s

maximum speed Vmax, 0.0022m/s. θ(t) is determined by the difference of left and right

output neurons multiplying by one constant γ, which is called turning rate [3]. T is the

sampling period. .

From the kinematic model above, it can be seen that the speed v(t) is changing
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according to the summation of two outputs: Vleft(t) + Vright(t), and the direction of

the worm θ is determined by the subtraction of two outputs: Vright(t) − Vleft(t). When

Vleft(t) > Vright(t), the worm turns right, and vice versa. When Vleft(t) = Vright(t),

the worm goes straightly. When Vleft(t) and Vright(t) become small and approach to 0,

the worm slows down to stop. Thus, both the speed and the direction are changeable

concurrently.

4.3 Dual-sensory Behavioral Model

In this section, we explore behaviors of dual-sensory models for food attraction and

toxin avoidance. For dual-sensory models, we assume that C. elegans is able to sense the

spatial difference of concentrations between the left-side and right-side sensory neurons.

Our target is to investigate whether the worm can direct itself towards the region of high

food concentration or away from the region of high toxin concentration, respectively.

Meanwhile, C. elegans can change its speed to zero when approaches the food or leaves

far away from the toxin source. The concentration distribution and the training method

are the same as those in Section 2.2.2 and Section 2.2.4, respectively.

4.3.1 Learning Tasks

The wire diagram of dual-sensory behavioral model for food attraction is shown as

Fig. 3.1, and for toxin avoidance is shown as Fig. 3.2. To construct the SLFs, we solve

Vleft(t) and Vright(t) from Eqs. (4.4) and (4.5):

64



Chapter 4. Modeling the Chemotaxis Behaviors of C. elegans Based on the Biological
Wire Diagram with Speed Regulation

Vleft(t) =
v(t)

Vmax︸ ︷︷ ︸
speed

−
∆θ(t)

2γT︸ ︷︷ ︸
orientation

, (4.6)

Vright(t) =
v(t)

Vmax︸ ︷︷ ︸
speed

+
∆θ(t)

2γT︸ ︷︷ ︸
orientation

. (4.7)

From Eqs. (4.6) and (4.7), both Vleft(t) and Vright(t) are determined by two compo-

nents: speed and orientation. In this work, we assume that the speed v(t) is determined

by the average value of concentration Cleft(t) and Cright(t), and the orientation is deter-

mined by the difference between Cleft(t) and Cright(t). Thus, SLFs can be constructed

as:

Vleft(t) = φ(C(t))︸ ︷︷ ︸
speed

−σ(C(t),∆Csp(t))︸ ︷︷ ︸
orientation

, (4.8)

Vright(t) = φ(C(t))︸ ︷︷ ︸
speed

+σ(C(t),∆Csp(t))︸ ︷︷ ︸
orientation

. (4.9)

Here φ(C(t)) is a SLF of speed with the average concentration, C(t) = (Cleft(t) +

Cright(t))/2. σ(C(t),∆Csp(t)) is a SLF of orientation with the arguments C(t) and

spatial concentration difference, ∆Csp(t) = Cleft(t)− Cright(t).

SLFs for Food Attraction

SLFs for food are chosen to be:

φ(Cf (t)) =
1

2

√
C2
max,f −C

2
f (t), (4.10)

σ(Cf (t),∆Cf,sp(t)) =
1

2

√
C2
max,f −C

2
f (t) · tanh(∆Cf,sp(t)), (4.11)
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Figure 4.1: Plot of switching logic function for food attraction with speed changing based
on dual-sensory neuron models. When ∆Cf,sp(t) = 0, C. elegans goes straightly. When
∆Cf,sp(t) > 0, Vright(t) > Vleft(t), the worm turns left and vice versa. When Cf (t) is
smaller, outputs are larger and vice versa. Here Cmax,f is set to be 2. The inputs of
Cf,left(t) and Cf,right(t) range from 0 to 2, hence the range of Cf (t) is [0 2], and ∆Cf,sp(t)
is [−2, 2].

where Cf (t) =
Cf,left(t)+Cf,right(t)

2 is the average concentration of food, and ∆Cf,sp(t) =

Cf,left(t) − Cf,right(t) is the concentration difference of food. Cmax,f is the highest con-

centration value of food source. The final motor neural outputs, Vright(t) and Vleft(t),

as functions of arguments Cf (t) and ∆Cf,sp(t), are illustrated in Fig. 4.1.

From Fig. 4.1, we can see that when Cf (t) is small, the outputs of Vleft(t) and Vright(t)

are large. When the Cf (t) becomes larger, the outputs of Vleft(t) and Vright(t) decrease

and finally down to zero. By this mechanism, C. elegans achieves the speed regulation

ability. For the orientation control, as shown in Fig. 4.1 and Fig. 4.2, we can observe

that when ∆Cf,sp(t) = 0, the outputs Vleft(t) = Vright(t), C. elegans goes straightly.

When ∆Cf,sp(t) > 0, which means that food located on the left side, the outputs are

Vleft(t) < Vright(t), which make the worm turns left and vice versa.

The choice of SLFs is not limited to Eqs. (4.10) and (4.11). Generally speaking,
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Figure 4.2: Movement of C. elegans during food attraction. When ∆Cf,sp(t) = 0, C.
elegans goes straightly. When ∆Cf,sp(t) > 0, the worm turns left (left figure) and vice
versa (right figure).

φ(Cf (t)) should be reciprocal to Cf (t) for food attraction. C. elegans must stop when

it reaches a food source, namely, Cf (t) reaches maximum. For the orientation control,

σ(Cf (t),∆Cf,sp(t)) is reciprocal to Cf (t) but proportional to ∆Cf,sp(t). When approach-

ing a food source, sharp turning is not necessary even if ∆Cf,sp(t)) is very large. However,

when C. elegans leaves far from the food source, a large ∆Cf,sp(t) leads to a sharp turn-

ing.

SLFs for Toxin Avoidance

During toxin avoidance, the speed of C. elegans should decrease gradually when

leaving away from the toxin source, i.e., the concentration decreases. Thus, the SLF of

speed should be proportional to the average concentration. Also, the orientation of toxin

avoidance should be right opposite to food attraction. For instance, C. elegans should

turn left when the toxin source is on the right-hand side, and vice versa. For simplicity,
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Figure 4.3: Plot of switching logic function for toxin avoidance with speed changing
based on dual-sensory neuron models. When ∆Ctx,sp(t) = 0, C. elegans goes straightly.
when ∆Ctx,sp(t) > 0 the outputs are Vleft(t) > Vright(t) that make the worm turns right
and vice versa. When Ctx(t) is large, the outputs are large. When the Ctx(t) is near to
0, the outputs are down to zero.

φ(C(t)) are chosen linearly proportional to average concentration. The SLFs are:

φ(Ctx(t)) =
Ctx(t)

2
, (4.12)

σ(Ctx(t),∆Ctx,sp(t)) = −
Ctx(t)

2
tanh(∆Ctx,sp(t)), (4.13)

where Ctx(t) =
Ctx,left(t)+Ctx,right(t)

2 is the average concentration of toxin, and ∆Ctx,sp(t) =

Ctx,left(t)−Ctx,right(t) is the concentration difference of toxin. It can be seen that Ctx(t)

regulates the speed and ∆Ctx,sp(t) determines the turning. The final motor neural out-

puts, Vright(t) and Vleft(t), as functions of arguments Ctx(t) and ∆Ctx,sp(t), are illustrated

in Fig. 4.3.

The movement of C. elegans during toxin avoidance is demonstrated in Fig. 4.4. When

∆Ctx,sp(t) > 0, implying that the toxin source is on the left side, then Vleft(t) > Vright(t),

the left-side speed is faster than the right-side speed. Thus C. elegans turns right.
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Figure 4.4: Movement of C. elegans during toxin avoidance. When ∆Ctx,sp(t) = 0, C.
elegans goes straightly. When ∆Ctx,sp(t) > 0 the worm turns right (left figure) and vice
versa (right figure).

Similarly, when ∆Ctx,sp(t) < 0, then Vleft(t) < Vright(t), and C. elegans turns left. When

∆Ctx,sp(t) = 0, Vleft(t) = Vright(t), C. elegans goes straightly. For the speed regulation,

when Ctx(t) is large, the outputs of Vleft(t) and Vright(t) are large. When the Ctx(t)

decreases, Vleft(t) and Vright(t) also decrease linearly and finally down to zero.

From the Eqs. (4.10) and (4.12), we can observe that SLFs of speed are opposite for

food attraction and toxin avoidance, due to the nature of tasks. For food attraction, the

gradient is

∂φ(Cf (t))

∂Cf (t)
= −

Cf (t)

2
√

C2
max,f − C

2
f (t)

,

which is negative. For toxin avoidance, the gradient is

∂φ(Ctx(t))

∂Ctx

=
1

2
,

which is positive. In such circumstances, when concentration is higher, or C. elegans is

nearby the source, C. elegans is going to stop before food or move quickly from toxin.

Comparing Eqs. (4.11) and (4.13), and noting the “-” sign in (4.13), SLFs of orientation
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are made to function in an opposite manner due to the nature of tasks. When concentra-

tion is higher on one side, C. elegans should turn to this side for food attraction, whereas

turn to the opposite side for toxin avoidance.

4.3.2 Testing Results

The wire diagram models of food attraction and toxin avoidance, shown in Fig. 3.1

and Fig. 3.2, respectively, are trained to remember the input-output mappings for food

attraction (Fig. 4.1) and toxin avoidance (Fig. 4.3), where inputs are the average concen-

tration and concentration difference, and outputs are motor neuron voltages Vleft and

Vright given by Eqs. (4.8) and (4.9).
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Figure 4.5: The test results of food attraction with speed changing for dual-sensory
model. One food source is located at point (0, 0) with Gaussian distribution. The worm
starts at three different locations (−0.1,−0.1), (0.12,−0.06), (1, 0.14) with initial angle
θ(0) = 0◦. Finally the worm finds the correct direction towards the food and stops after
approaches food.

The training data are randomly generated in the interval [0, 2] for average concentra-
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tion, and [−2, 2] for concentration difference. The corresponding output data of DNN for

training are calculated using the input-output mapping shown in Fig. 4.1 and Fig. 4.3

for food attraction and toxin avoidance, respectively.

For food attraction, Fig. 4.5 shows the test results. One food source is located at

point (0, 0) with Gaussian distribution. The worm starts at three different locations

(−0.1,−0.1), (0.12,−0.06), (1, 0.14) with initial angle θ(0) = 0◦. The worm is able to

find the correct direction towards the food and reduces its speed when approaches the

source, and stops at the place nearby the food.
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Figure 4.6: The test results of toxin avoidance with speed changing. Four toxin resources
locate at (−0.2, 0), (−0.1,−0.15), (0, 0.2), and (0.1,−0.1). The worm starts at three
different positions (−0.18,−0.03), (0, 0.15), (0.08,−0.1) with initial head angle randomly.
Finally the worm successfully finds the lower toxin concentration place to settle down.

For toxin avoidance, Fig. 4.6 shows the test results. Four toxin sources are located at

(−0.2, 0), (−0.1,−0.15), (0, 0.2), and (0.1,−0.1). C. elegans starts at three different posi-

tions (−0.18,−0.03), (0, 0.15), (0.08,−0.1) with initial head angle θ randomly generated.
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C. elegans escapes from the toxin sources and towards the lower toxin concentration

places. With the toxin concentration decreasing, C. elegans gradually reduces its speed

and finally stops.

4.4 Single-sensory Behavioral Model

In this section, the behaviors of single-sensory modes for food attraction and toxin

avoidance are explored. Our objective is to investigate whether C. elegans with one

sensory neuron can direct itself towards the region of higher food concentration or away

from the region of higher toxin concentration, respectively. At the same time, C. elegans

can change its speed to zero when it approaches the food or leaves far away from the

toxin source. The concentration distribution and the training method are the same as

those in Section 2.2.2 and Section 2.2.4, respectively.

4.4.1 Learning Tasks

The wire diagram of dual-sensory behavioral model for food attraction is shown as

Fig. 3.5, and for toxin avoidance is shown as Fig. 3.6. Following the same method

in Section.2.4.2, we assume that C. elegans uses the temporal concentration difference

∆Ctp(t) = C(t)−C(t− 1) for navigation. However, with ∆Ctp(t), C. elegans only knows

whether the forward direction is correct or not. For instance, for food attraction, when

∆Cf,tp(t) > 0, C. elegans is heading the correct direction. When ∆Cf,tp(t) ≤ 0, C.

elegans is heading a wrong direction and it should turn. In this work we assume the

worm choose right turning as its preference. Hence the left-side motor neuron output

is always higher than or equal to the right motor neuron. SLFs for the single-sensory
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models are constructed as:

Vleft(t) = φ(C(t))︸ ︷︷ ︸
speed

, (4.14)

Vright(t) = φ(C(t))︸ ︷︷ ︸
speed

+σ(C(t),∆Ctp(t))︸ ︷︷ ︸
orientation

, (4.15)

where φ(C(t)) is a SLF of speed with the concentration input C(t), σ(C(t),∆Ctp(t)) is

a SLF of orientation with the arguments C(t) and temporal concentration difference,

∆Ctp(t) = C(t)−C(t−1). This SLF of orientation only appears in (4.15). In this way, if

the direction of C. elegans is correct, ∆Ctp(t) > 0, and then σ(C(t),∆Ctp(t)) = 0, which

has no influence in Vright. When ∆Ctp ≤ 0, σ(C(t),∆Ctp(t)) outputs a negative value.

Thus, C. elegans turns right.

Compared with SLFs for dual-sensory mode Eqs. (4.8) and (4.9), the SLFs for single-

sensory mode Eqs. (4.14) and (4.15) are not symmetric. This is because in single-sensory

mode we assume that the worm can only turn right or go straightly. Thus it is adequate

to add the term σ(C(t),∆Ctp(t)) to the Vright(t) only.

SLFs for Food Attraction

SLFs for the single-sensory mode during food attraction are designed as:

φ(Cf (t)) = Cmax,f − Cf (t), (4.16)

σ(Cf (t),∆Cf,tp(t)) = (Cmax,f −Cf (t)) · (tanh(∆Cf,tp(t) + 1)− 1), (4.17)

where Cf (t) is the concentration input of food, and ∆Cf,tp(t) = Cf (t)−Cf (t− 1) is the

temporal food concentration difference between two time steps at t and t− 1. Cmax,f is

the maximum value of the food concentration. The final motor neural outputs, Vleft(t)

and Vright(t), as functions of arguments Cf (t) and ∆Cf,tp(t), are shown in Fig. 4.7.
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Figure 4.7: The SLFs for the single sensory model during food attraction. If Cf (t) >
Cf (t − 1), C. elegans moves in the correct direction and will move the same direction.
When Cf (t) ≤ Cf (t− 1) (wrong direction), the output of Vright is smaller than the Vleft,
then C. elegans turns right. When the input Cf (t) is approaching to Cmax,f , the outputs
of both motor neurons will approach to zero. In general, a smaller C(t) will yield relative
larger outputs.
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Figure 4.8: Movement of the single sensory model for (a) food attraction, and (b) toxin
avoidance. In (a), if Cf (t) ≥ Cf (t − 1), C. elegans is in the correct direction, thus goes
straightly. When Cf (t) < Cf (t−1) (wrong direction), the output of Vright is smaller than
Vleft, which makes C. elegans turn right. In figure (b), the behavior of toxin avoidance
is opposite to the food attraction. If Ctx(t) ≥ Ctx(t − 1), C. elegans turns right. When
Ctx(t) < Ctx(t− 1), it go straightly.
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The movements of C. elegans during food attraction are shown in Fig. 4.7 and

Fig. 4.8 (a). If Cf (t) is small, the outputs of Vleft(t) and Vright(t) are large. When

Cf (t) becomes larger, the amplitudes of Vleft(t) and Vright(t) decrease and finally be-

come zero. Through this mechanism, C. elegans achieves the speed regulation ability.

For the orientation control, when ∆Cf,tp > 0, C. elegans moves towards the correct

direction. Thus σ(Cf (t),∆Cf,tp(t)) = 0, that is Vleft = Vright, and C. elegans goes s-

traightly. When ∆Cf,tp ≤ 0, which means C. elegans moves towards the wrong direction,

σ(Cf (t),∆Cf,tp(t)) < 0, resulting in Vleft < Vright. Thus, C. elegans turns right.

The choice of SLFs is not limited to Eqs. (4.16) and (4.17). φ(Cf (t)) should be

reciprocal to Cf (t) for food attraction. C. elegans needs to stop when it reaches the food

source, namely, Cf (t) reaches maximum. For the orientation control, σ(Cf (t),∆Cf,tp(t))

is reciprocal to Cf (t) but proportional to ∆Cf,tp(t). Furthermore, when nearby the food

source, sharp turning is not necessary even if ∆Cf,tp(t) is very negative. However, when

C. elegans leaves far from the food source, a large ∆Cf,tp(t) leads to a sharp turning.

SLFs for Toxin Avoidance

The SLFs of toxin avoidance for the single-sensory model should be opposite to the

SLFs of food attraction. The SLFs are designed as:

φ(Ctx(t)) = Ctx(t), (4.18)

σ(Ctx(t),∆Ctx,tp(t)) = Ctx(t) · (− tanh(∆Ctx,tp(t) + 1)− 1), (4.19)

where Ctx(t) is the toxin concentration input at time t, and ∆Ctx,tp(t) = Ctx(t)−Ctx(t−1)

is the temporal toxin concentration difference between two consecutive time steps. In
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Figure 4.9: The SLFs for single sensory model during toxin avoidance. If Ctx(t) <
Ctx(t − 1), C. elegans moves in the correct direction and will move the same direction.
When Ctx(t) ≥ Ctx(t − 1) (wrong direction), the output of Vright is smaller than the
Vleft, then C. elegans turns right. When the input Ctx(t) is near to zero, the outputs of
both motor neurons will approach to zero. In general, a smaller Ctx(t) will yield relative
smaller outputs.

Eq. (4.18) φ(Ctx(t)) controls the speed, and in Eq. (4.19) σ(Ctx(t),∆Ctx,tp(t)) controls

the orientation. The plot of the SLFs is shown in Fig. 4.9.

The movements of C. elegans during toxin avoidance can be referred in Fig. 4.9 and

Fig. 4.8(b). When Ctx(t) ≥ Ctx(t − 1), C. elegans moves towards the wrong direction.

In this case, σ(Ctx(t),∆Ctx,tp(t)) < 0, which yields Vright < Vleft, and C. elegans turns

right. When σ(Ctx(t),∆Ctx,tp(t)) = 0, thus Vright = Vleft and C. elegans goes straightly.

For the speed regulation, when the input Ctx(t) approaches to 0, the outputs Vleft and

Vright also approach to zero, so C. elegans reduces its speed down to zero. When Ctx(t)

is large, Vleft and Vright are also large, maintaining a high speed.

From the Eqs. (4.16) and (4.18), we can observe that SLFs of speed for food attraction

and toxin avoidance are in opposite manners due to the nature of tasks. For food
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attraction, the gradient is

∂φ(Cf (t))

∂Cf (t)
= −1, (4.20)

which is negative. For toxin avoidance, the gradient is

∂φ(Ctx(t))

∂Ctx(t)
= 1, (4.21)

which is positive. In such circumstances, when concentration is higher, C. elegans is

going to stop before food or move quickly from toxin. By comparing (4.17) and (4.19),

SLFs of orientation have the opposite logics for food attraction and for toxin avoidance.

When concentration at time t is higher than that at the previous time t− 1, C. elegans

should go straightly for food attraction, or turn for toxin avoidance.

4.4.2 Testing Results

The single-sensory wire diagram models of food attraction and toxin avoidance, shown

in Fig. 3.5 and Fig. 3.6, respectively, are trained to remember the input-output mappings

for food attraction (Fig. 4.7) and toxin avoidance (Fig. 4.9).

For the training data, the input data includes two terms, C(t) and C(t − 1), which

range from 0 to 2, with interval 0.1. Outputs are motor neuron voltages Vleft and Vright

given by Eqs. (4.14) and (4.15).

The test results for food attraction are shown in Fig. 4.10. The food source is located

at the point (0, 0) with Gaussian distribution. C. elegans starts at two different locations

(−0.08,−0.07), (0, 0.12) with initial angle 180◦. C. elegansmoves towards the food source

and finally stops when it approaches the food after some right turns.

The test results for toxin avoidance are shown in Fig. 4.11. Four toxin resources
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Figure 4.10: Simulation results for the food attraction of single-sensory model. Food
source is located at the point (0,0) with Gaussian distribution. C. elegans starts at two
different locations (−0.08,−0.07), (0, 0.12) with initial angle 180◦. The worm moves
towards the food source and settles down when it approaches the food after some right
turns.
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Figure 4.11: Simulation results for the toxin avoidance on single-sensory model. Four
toxin resources locate at (−0.2, 0), (−0.1,−0.15), (0, 0.2), and (0.1,−0.1). C. elegans
starts at three different positions (−0.13,−0.11), (0.07,−0.1), (0, 0.18) with head angle
randomly. It successfully finds the lower toxin concentration place to settle down.
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are located at (−0.2, 0), (−0.1,−0.15), (0, 0.2), and (0.1,−0.1), respectively. C. elegans

starts at three different positions (−0.13,−0.11), (0.07,−0.1), (0, 0.18) with head angle

randomly generated. C. elegans successfully finds the lower toxin concentration places

after several right turns and finally stops.

4.5 Integrated Dual-sensory Behavioral Model

In previous sections we explore the chemotaxis behaviors of food attraction and toxin

avoidance separately. In this section we construct an integrated behavioral model that

can learn and replicate all chemotaxis behaviors, including food attraction and toxin

avoidance under either single-sensory or dual-sensory models with speed regulation. The

wire diagram for this integrated dual-sensory behavioral model is shown as Fig. 3.9.

4.5.1 Learning Tasks

To perform the chemotaxis tasks under dual-sensory mode, single-sensory mode, and

speed regulation, four inputs are sensed by input neurons: 1) food concentration on the

left side (Cf,left) by ASEL, 2) food concentration on the right side (Cf,right) by ASER,

3) toxin concentration on the left side (Ctx,left) by ASHL, 4) toxin concentration on

the right side (Ctx,right) by ASHR. Outputs of motor neurons consist of several SLFs as
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below.

Vleft(t) = [φ1(C̄f (t)) + φ2(C̄tx(t))]︸ ︷︷ ︸
speed

−

[φ1(C̄f (t)) + φ2(C̄tx(t))] � σ1(∆Csp(t))︸ ︷︷ ︸
orientation by spatial information

(4.22)

Vright(t) = [φ1(C̄f (t)) + φ2(C̄tx(t))]︸ ︷︷ ︸
speed

+

[φ1(C̄f (t)) + φ2(C̄tx(t))] � σ1(∆Csp(t))︸ ︷︷ ︸
orientation by spatial information

+

[φ1(C̄f (t)) + φ2(C̄tx(t))] � σ2(∆Ctp(t))︸ ︷︷ ︸
orientation by temporal information

, (4.23)

where the SLFs are defined as:

φ1(C̄f (t)) = −0.5C̄f (t) + 1, (4.24)

φ2(C̄tx(t)) = 0.5C̄tx(t), (4.25)

σ1(∆Csp(t)) = tanh(∆Csp(t)), (4.26)

σ2(∆Ctp(t)) = tanh(∆Ctp(t) + 1)− 1, (4.27)

and inputs are defined below:

C̄f (t) =
Cf,left(t) + Cf,right(t)

2
, (4.28)

C̄tx(t) =
Ctx,left(t) + Ctx,right(t)

2
, (4.29)

∆Csp(t) = Cf,left(t)− Cf,right(t)−Ctx,left(t) + Ctx,right(t), (4.30)

∆Ctp(t) = C̄f (t)− C̄f (t− 1)− C̄tx(t) + C̄tx(t− 1). (4.31)

For the speed regulation mechanism, the speed of C. elegans is determined by both

food and toxin concentrations. The effect of the food concentration makes C. elegans

stop only when it arrives at the food source, otherwise it will cruise continually. It is
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Figure 4.12: Plots of SLFs for the integrated model. In (a) Cf (t) and Ctx(t) determine
the motor neurons outputs. In (b), ∆Csp(t) controls the orientation changing by spatial
information, function as dual-sensory model. In (c), ∆Ctp(t) controls the orientation
changing by temporal information, function as single-sensory model.
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in accord with the statement of reference [88] that C. elegans spends nearly all of its

time grazing on bacterial lawns, and if there is no bacteria, it moves around the plate to

search for food. The effect of the toxin concentration makes C. elegans continue moving

and changing its direction as long as toxin concentration is smelled. In Eqs. (4.22) and

(4.23), φ1(C̄f (t)) and φ2(C̄tx(t)) determine the speed. The SLFs for the speed is shown

in Fig. 4.12 (a). When C. elegans approaches the food source, the high value of C̄f (t)

yields a low output value of φ1(C̄f (t)); or when C. elegans is faraway from the toxin, the

low value of C̄tx(t) yields a low output value of φ2(C̄tx(t)). Thus both the Vright(t) and

Vleft(t) are near to zero, and the worm comes to stop.

For the the orientation changing, the Vleft(t) in Eq. (4.22) is only determined by

∆Csp(t). In contrast, Vright(t) in Eq. (4.23) is determined by both ∆Csp(t) and ∆Ctp(t).

If C. elegans cannot distinguish the concentration difference between left-hand and right-

hand sides, which means ∆Csp(t) = 0 and σ1(∆Csp(t)) = 0, the worm can still guide itself

by the temporal information σ2(∆Ctp(t)). In such circumstances, the integrated biologi-

cal model behaviors like a single-sensory mode. In the contrary, if temporal concentration

difference ∆Ctp(t) = 0, then σ2(∆Ctp(t)) = 0 and C. elegans must navigate according

to ∆Csp(t) as the dual-sensory mode. The mechanism of orientation changing can refer

to Fig. 4.12 (b) for σ1(∆Csp(t)) (dual-sensory mode) and Fig. 4.12(c) for σ2(∆Ctp(t))

(single-sensory mode). In Fig. 4.12(b), when ∆Csp(t) > 0, it means the summation of

left-hand side food and right-hand side toxin concentration is bigger than the summa-

tion of right-side food and left-side toxin concentration. Thus σ1(∆Csp(t)) > 0, namely,

Vright > Vleft, the worm turns left. It is vice versa for ∆Csp(t) < 0. In Fig. 4.12(c), if

∆Ctp(t) ≥ 0, the food concentration is higher than that at the previous time, or the toxin

concentration is lower than that at the previous time. Thus, the output σ2(∆Ctp(t)) = 0
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and C. elegans does not turn. If the ∆Ctp(t) < 0, C. elegans goes wrongly, and the

output σ2(∆Ctp(t)) < 0 yielding Vleft > Vright. Thus, the worm turns right.

4.5.2 Testing Results

In this section, we test the locomotion behaviors of C. elegans in two conditions: 1)

food source and toxin source are overlapped slightly; 2) food source and toxin source

are overlapped largely. For the training data, the inputs of the wire diagram contain

four variables [Cf,left, Cf,right, Ct,left, Ct,right]
T . Each variable ranges from 0 to 2, with

interval 0.1. The output data are computed according to Eqs. (4.22) and (4.23). The

learning rate for the training is set between 0.0005 and 0.002. Satisfactory training

results are obtained after 20 thousand epochs of training.

A. Test in Scenario with Food Source and Toxin Source Slightly Overlapped

We first test C. elegans in a scenario with food and toxin concentration slightly

overlapped. Three toxin sources are located at (−200, 0), (−100,−150), (0, 200) and

a food source is located at (100,−100), as shown in Fig. 4.13(a). Fig. 4.13(b) is the

enlarged area of Fig. 4.13(a) with x-axis [−120,−40] and y-axis [−180,−120]. Starting

from point (−80,−150) with initial head angle 200◦, shown in Fig. 4.13(b), C. elegans

behaves in the single-sensory mode because the concentration difference between left and

right sides is very small. As a result, C. elegans turns right. It should be noted that

C. elegans should turn left in this case according to the dual-sensory mode. C. elegans

switches to the dual-sensory mode when it arrives the point (−75,−138), and leaves the

toxin. When it “smells” the food concentration at point (−47,−125), it goes straightly

to the food source and finally switches to the single-sensory mode again, rights turning,

and at last stops.
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Figure 4.13: (a) is the test results of integrated model. (b) is the enlarged area of (a)
with x-axis [-120 -40] and y-axis [-180 -120].

When starting from point (50, 180) with head angle 90◦, as shown in Fig. 4.13(a),

C. elegans escapes from the toxin quickly. When C. elegans arrives at the low toxin

concentration places, it cannot distinguish the concentration difference between the left

and right sides. Consequently C. elegans behaviors in the single-sensory mode, navigates

itself by a serial of right turns. After detecting the food concentration, it goes towards

the food source first in the single-sensory mode and then switches to the dual-sensory

mode. Finally it switches to the single-sensory mode again, after several right turns it

stops.
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Figure 4.14: (a) is the 3-D plot of food and toxin distributions with a large overlapping.
(b) illustrates the corresponding gradient information of (a). From (b) we can see that
there are some areas where the gradients of food and toxin are identical (intersection
places).

B. Test in Scenario with Food Source and Toxin Source Largely Overlapped

In this test, we investigate the scenario where the food and toxin concentrations

located at (30, 0) and (−30, 0) are largely overlapped with Gaussian distribution, as

shown in Fig. 4.14(a). The gradient distribution of the food and toxin concentration is

shown in Fig. 4.14(b). When the food and toxin concentration overlapping severely, the

best place for the worm is the one furthest to the toxin source and nearest to the food

source, namely, gradients of food and toxin concentrations at this place are identical.

Theoretically, this location can be calculated according to ∇Cf = ∇Ctx, where ∇Cf =

∂Cf

∂x
î+

∂Cf

∂y
ĵ and ∇Ctx = ∂Ctx

∂x
î+ ∂Ctx

∂y
ĵ. In this test example, the location is (65.72, 0).
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Figure 4.15: The test results when the food and toxin sources are overlapped largely.

The test results are shown in Fig. 4.15. When C. elegans starts from (−90, 0) with

initial angle 0◦ (face to the toxin), where there is no food concentration, it avoids the

toxin by a right turn and settles down at the place with the lowest toxin concentration.

When starting from the point (−65, 0) with initial angle 0◦ (face to the toxin) where the

toxin and food concentration are overlapping, C. elegans bypasses the toxin source and

circles around the point (65.72, 0). When starting from the point (140, 0) with initial

angle 180◦ (face to the food), C. elegans moves towards the food initially and circles

around the point (65.72, 0).

4.6 Integrated Single-sensory Behavioral Model

In Section 4.5, although the integrated dual-sensory behavioral model can perform

in both dual-sensory model and single-sensory model, it lacks the biological grounding.
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From the biological aspect, most of the experiment results show that C. elegans navi-

gates its direction by using the concentration gradient through time [87, 45, 20], namely,

temporal concentration information. Thus, in this section, we explore the integrated

single-sensory behavioral model to achieve the chemotaxis behaviors of finding food and

avoiding toxin concurrently, as well as speed regulation.

The wire diagram for the integrated single-sensory behavioral model is shown in

Fig. 3.10. Biologically, in other works [18, 61] the head swing neurons such as RMD,

SMB, SMD, RIA, and RIB are involved. In this work, we focus on the relationship

between the chemotaxis concentration and the outputs of motor neurons, VB and DB.

Thus, these head swing neurons are out of the scope of this chapter.

4.6.1 Learning Tasks

SLFs for the integrated single-sensory behavioral model are designed as:

Vleft(t) = φ1(Cf (t)) + φ2(Ctx(t))︸ ︷︷ ︸
speed

, (4.32)

Vright(t) = φ1(Cf (t)) + φ2(Ctx(t))︸ ︷︷ ︸
speed

+ [φ1(Cf (t)) + φ2(Ctx(t))] · σ(∆Cft(t))︸ ︷︷ ︸
orientation

,(4.33)

where

φ1(Cf (t)) = −0.5Cf (t) + 1, (4.34)

φ2(Ctx(t)) = 0.5Ctx(t), (4.35)

σ(∆Cft(t)) = tanh(∆Cft(t) + 1)− 1, (4.36)

∆Cft(t) = Cf (t)− Cf (t− 1)− Ctx(t) + Ctx(t− 1). (4.37)

The SLFs of the speed are shown in Fig. 4.16(a). In Eqs. (4.32) and (4.33), φ1(Cf (t))

and φ2(Ctx(t)) determine the speed. When C. elegans approaches the food source, the
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Figure 4.16: Plot of switching logic function for the integrated chemotaxis behavioral
model. In (a), Cf (t) and Ctx(t) determine the outputs of motor neurons for speed
regulation. In (b), ∆Cft(t) controls the orientation.

high input value of Cf (t) yields a low output value of φ1(Cf (t)); when C. elegans is far-

away from the toxin, the low input value of Ctx(t) yields a low output value of φ2(Ctx(t)).

In this case, both the Vright(t) and Vleft(t) are near zero, and the worm comes to stop.

Otherwise, C. elegans will keep moving.

For the orientation control, based on the assumption that C. elegans can only turn

right or go straightly, it is adequate to add the term σ(∆Cft(t)) to Vright(t) only. In

Fig. 4.16(b), ∆Cft(t) ≥ 0 means the food concentration is higher than that at the

previous time, or the toxin concentration is lower than that at the previous time. In
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this case, for equation (4.36), σ(∆Cft(t)) is near zero and C. elegans does not turn. If

∆Cft(t) < 0, C. elegans goes wrongly, and σ(∆Cft(t)) < 0, yielding Vleft > Vright. Thus

the worm turns right.

4.6.2 Testing Results

The integrated chemotaxis behavioral model, as shown in Fig. 3.10, is trained to

remember the input-output mapping (Fig. 4.16). The inputs of training data include

Cf (t) for ASE, Ctx(t) for ASH, and Cf (t− 1)− Ctx(t − 1) for AIY. The range of input

data is from 0 to 2 with interval 0.1. Target data for the two motor neurons, Vleft for

DB and Vright for VB, are calculated by Eqs. (4.32) and (4.33), respectively.

The tests are carried out in three different scenarios. In the first scenario, as shown

in Fig. 4.17, one food is located at point (−0.11, 0) and one toxin is located at point

(0.11, 0) with slightly overlapped concentration. C. elegans starts at (0.09, 0.03) where

it is near the toxin without food concentration. It escapes from toxin first, and when C.

elegans detects the food concentration it moves towards to the food and finally stops.

In the second scenario, as shown in Fig. 4.18, one food source is located at (−0.03, 0)

and one toxin source is located at (0.03, 0) with concentrations largely overlapped. The

2D concentration distribution along x-axis is shown in Fig. 4.19(a). Here we assume that

the direction of x-axis is the positive direction. Accordingly, the gradients of food and

toxin concentrations along the positive direction are shown in Fig.4.19(b). There are two

points where the gradients of food and toxin concentrations are identical: x = −0.07 and

x = 0.07. The direction is determined by Eq. (4.37), which can be written as ∆Cft(t) =

∆Cf (t)−∆Ctx(t), where ∆Cf (t) = Cf (t)−Cf (t− 1) and ∆Ctx(t) = Ctx(t)−Ctx(t− 1).

As shown in Fig. 4.16(b), if ∆Cft(t) > 0 (∆Cf (t) > ∆Ctx(t)), C. elegans goes straightly.

Otherwise, it will turn. As shown in Fig. 4.19(b), along the positive direction, when
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Figure 4.17: Testing results for the integrated chemotaxis behavioral model in the first
scenario. One food is located at point (−0.11, 0) and one toxin is located at point (0.11, 0)
with slightly overlapped concentration.

x < −0.07, i.e., on the left of the point P, ∆Cf (t) > ∆Ctx(t), resulting ∆Cft(t) > 0, so

C. elegans will move towards the positive direction until it reaches the point P, namely,

the stable equilibrium. When −0.07 < x < 0.07, i.e., in between the points P and

Q, ∆Cf (t) < ∆Ctx(t), resulting ∆Cft(t) < 0, so C. elegans will turn its direction and

move towards the negative direction until it arrives at x = −0.07, namely, the stable

equilibrium P. When x > 0.07, i.e., on the right of the point Q, ∆Cf (t) > ∆Ctx(t),

resulting ∆Cft(t) > 0. C. elegans will move towards the positive direction until the toxin

concentration disappears, namely, away from the unstable equilibrium Q. In conclusion,

the target places of this case are the point (−0.07, 0) and where no toxin concentration

exists on the toxin side.

The testing results are shown in Fig. 4.18. When C. elegans starts from (0.08, 0), i.e.,

on the right side of the unstable equilibrium Q, and with initial angle 180◦ (facing the
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Figure 4.18: Testing results for the integrated chemotaxis behavioral model in the second
scenario. One food source is located at (−0.03, 0) and one toxin source is located at
(0.03, 0) with largely overlapped concentration.
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Figure 4.19: (a) 2D concentration distributions of food and toxin along x-axis. (b)
The gradients of food and toxin concentrations along the positive direction (direction of
x-axis).

toxin, shown as track A), where both food and toxin concentrations are present at the

same time, the worm avoids the toxin by a right turn and leaves faraway from the toxin
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source. Finally it settles down at the place without toxin concentration. When starting

from the point (0.06,−0.02), i.e., in between points P and Q, and with initial angle

135◦ (facing the toxin, shown as track B) where both toxin and food concentrations exist

simultaneously, C. elegans bypasses the toxin source and navigates itself towards the food

source, and finally it settles down around the stable equilibrium P at (−0.07, 0). When

starting from the point (−0.15,−0.05), i.e., on the left side of the stable equilibrium

P, and with initial angle 180◦ (facing against the food, shown as track C), C. elegans

moves towards to the food and finally settles down around the the stable equilibrium P

at (−0.07, 0). It can be seen that when food concentration and toxin concentration are

largely overlapping, the testing results are consistent with the gradient-based analysis,

namely, C. elegans is attracted towards the stable equilibrium, point P, and repelled from

the unstable equilibrium, point Q.

In the last scenario, twenty-five toxin sources are distributed as a 5 × 5 grid. As

shown in Fig. 4.20, black dots depict the toxin sources and circle lines are the boundaries

of toxin concentration. One food source is located at (0, 0.45). C. elegans starts at three

different locations, (−0.02,−0.01), (0, 0.02), and (0.02,−0.02) respectively, with random

initial angles. All the three starting points are very near the central toxin source. From

the tracks, it is obvious that C. elegans escapes from the toxin by passing the boundary

areas where the toxin gradient and magnitude are relatively low. C. elegans successfully

escapes from the toxin and settles down at the places where no toxin concentration exists

(see the left and bottom tracks). Furthermore, if C. elegans smells the food concentration

(see the top track), it navigates itself towards the food source and finally stops.

From the test results, we can conclude that the integrated chemotaxis behavioral

model can well performs the chemotaxis behaviors on finding food and avoiding toxin
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Figure 4.20: Testing results for the integrated behavioral model in the third scenario.
Twenty-five toxin resources are distributed as a 5 × 5 grid. One food source is located
at (0, 0.45).

simultaneously with speed regulation. Furthermore, it also verifies that when SLFs are

learned, C. elegans can perform the chemotaxis behaviors in different environments.

4.7 Comparative Analysis

In this section, we provide the comparison of our results to other works. To our best

knowledge, the existing results of other works are based on the opinion that C. elegans

uses the temporal concentration information for navigation, namely, single-sensory be-

havioral model. Thus in this section, we only analyze the results of our single-sensory

behavioral models and compare them with other works.
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Figure 4.21: The similarity analysis of the resultant wire diagrams. (a) Thirty wire
diagrams for the food attraction behavioral model are clustered into three groups by
k-means algorithm. (b) Thirty wire diagrams for the toxin avoidance behavioral model
are clustered into three groups by k-means algorithm. (c) Thirty wire diagrams for the
integrated behavioral model are clustered into the same group.

4.7.1 Wire Diagram Analysis

In our work, we obtain thirty wire diagrams for each single-sensory behavioral model

after providing random initial weights and training. The successful training rates are

about 60% for both food attraction and for toxin avoidance behavioral models, and

about 47% for the integrated chemotaxis behavioral model. When the learned behaviors

become more sophisticated, the training would be more difficult. Furthermore, we also

optimized the wire diagrams by Genetic Algorithm and obtained the same results.

For the network similarity, we first cluster the thirty wire diagrams in each behavioral

model by using k-means algorithm, and then verify the clustering results by Analysis of

Variance (ANOVA). For each kind of behavioral model, we calculate the summation of

absolute weight values of every wire diagram, denoted as Qi, i = 1, ..., Nm (Nm = 30),

and then apply k-means algorithm to cluster these wire diagrams according to the value

of Qi. The results are shown in Fig. 4.21. As shown in Fig. 4.21(a), each dot represents its
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corresponding wire diagram for food attraction behavioral model, and the value in x-axis

denotes the summation of the absolute weight values of its corresponding wire diagram.

The asterisks represent the clustering centers. These dots are clustered into three groups

by k-means algorithm. The inter-group mean squared error (MSE) is 1.60 for Groups 1,

2, and 3. The intra-group MSEs are 0.23 for Group 1, 0.32 for Group 2, and 0.19 for

Group 3. The clustering result is analyzed by ANOVA. By setting the significance level

α = 0.05 in ANOVA analysis, we obtain the observed value F = 559.71 and the critical

value FCritical = 3.35. F > FCritical denotes the three groups are significantly different,

which means the clustering is effective. As shown in Fig. 4.21(b), the dots denote the

wire diagrams for toxin avoidance behavioral model. These dots can be clustered into

three groups and the asterisks represent the clustering centers. The inter-group MSE is

1.61 for Groups 1, 2, and 3. The intra-group MSEs are 0.17 for Group 1, 0.16 for Group

2, and 0.10 for Group 3. By setting α = 0.05, we obtain F = 1450.76 and FCritical = 3.35.

F > FCritical denotes the effectiveness of this clustering. As shown in Fig. 4.21(c), the

dots denote the wire diagrams for integrated behavioral model. These dots are difficult

to be clustered by k-means algorithm, so we cluster them to be one group. Within the

group, the intra-group MSE is 0.13. From these results we can conclude that the solution

is not unique for each behavioral model. The wire diagrams in the same group have small

MSE, which are less than 0.32, and the wire diagrams in different groups have relatively

larger MSE, which are greater than 1.60.

Furthermore, following the method of [25], we first find out the “all-off” neurons

that are inactive and the “all-on” neurons that are saturated active. Next, we remove

these “all-off” neurons from the wire diagrams and move these “all-on” neurons to their

downstream neurons as bias. In this way, the wire diagrams are simplified and the

95



Chapter 4. Modeling the Chemotaxis Behaviors of C. elegans Based on the Biological
Wire Diagram with Speed Regulation

 

 

 

(a) 

(b) 

Input neuron 

Input neuron 

Output neurons 

Output neurons 

Interneurons 

Interneurons 

Figure 4.22: (a) Resultant wire diagram for food attraction behavioral model. After
the “all-off” neurons are removed and the “all-on” neurons are moved to downstream
neurons, the simplified network contains six interneurons instead of twelve. (b) Resultant
wire diagram for toxin avoidance behavioral model. After the “all-off” neurons are
removed and the “all-on” neurons are moved to downstream neurons, the simplified
network contains seven interneurons instead of thirteen.
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relevant networks are obtained. For the food attraction behavioral model, the “all-

off” neurons are PVP, ADF, RIF, and AVD, because all weights of these neurons are

small and near to zero. The wire diagrams without these neurons can still perform the

behavior for food attraction well. The “all-on” neurons for the food attraction behavioral

model are DVA and AVB. After we move these neurons to their downstream neurons,

the resultant wire diagram is shown in Fig. 4.22(a). As shown in Fig. 4.22(a), there

are six interneurons instead of twelve interneurons after simplifying. By following the

same way, the resultant wire diagram for toxin avoidance behavioral model is shown

in Fig. 4.22(b). The “all-off” neurons are PVP and RIF that are removed from wire

diagram. The “all-on” neurons are DVA, AVD, and AVB. After simplification, we can

see that there are seven interneurons instead of thirteen interneurons. By comparing

Figs. 4.22(a) and (b), one additional neuron ADF exists in the wire diagram of toxin

avoidance behavior model. This is because there is no direct connection from sensory

neuron ASH to memory neuron AIY biologically, and the function of ADF here is to

transmit the signal from ASH to AIY. For the integrated behavioral model, the “all-off”

neuron is PVP that can be removed from the wire diagram. However, we haven’t found

any neurons that can serve as the “all-on” neurons since all neurons are not saturated

activated.

By comparing with another similar work [44] that provides a model for food attrac-

tion, our model contains three more interneurons. This is because we not only consider

the turning mechanism, as [44] did, but also incorporate the speed regulation mechanis-

m. Moreover, the integrated behavioral model needs eleven interneurons (after PVP is

removed). If we remove one or more interneurons, till now we have not obtained any

satisfactory wire diagrams after training. The reason that more interneurons are needed
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in our models is aroused by the complexity of our learning task: finding food, avoiding

toxin, and regulating speed synchronously.

4.7.2 Behaviors Analysis

In this subsection we provide the quantitative analysis of the trajectories of our models

by comparing with experiment results. To the best of our knowledge, the references about

the quantitative analysis of the trajectories for toxin avoidance behaviors and integrated

behaviors (for both food and toxin) are limited. Thus in this subsection we only provide

the analysis of the food attraction behavioral model by comparing with the experiment

results of wild type C. elegans provided by [87] and [19].

We analyze the relationships between (1) speed and concentration, (2) turning rate

and concentration, (3) turning rate and change of concentration (dC(t)/dt), and (4)

probability of turning and dC(t)/dt by following the methods in [87] and [19] . The

simulation time is 1500 seconds, and we record the location, concentration, and direction

per second. Hence, for each relationship analysis, there are 1500 tracking data, and these

data are classified into 15 groups. Every group contains 100 data and is represented as

a dot in Fig. 4.23. The values of each dot in x-axis and y-axis are calculated by taking

the average of the 100 data in the same group. The error bar for each dot indicates the

standard deviation of the data within the same group. The solid lines in each sub-figure

are the best-fitting quadratic functions of their corresponding dots. The dotted lines

represent the experiment results of [87] and [19].

In this work, Least Square Method is adopted to fit these dots, as shown in Fig. 4.23.

The quality of fitting is analyzed by using R2 method [89]. R2 is defined as R2 =

1 − SSerr/SStot, where SStot =
∑N

i=1 (yi − y)2 and SSerr =
∑N

i=1 (yi − fi)
2. yi (i =

1, . . . , N) are the testing results that should be fitted, and each testing result has an
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Figure 4.23: Statistical analysis of trajectories for food attraction behavior model. (a)
The relationship between speed and concentration. (b) The relationship between turning
rate and concentration. (c) The relationship between turning rate and dC(t)/dt. (d)
The relationship between probability of turning and dC(t)/dt.

99



Chapter 4. Modeling the Chemotaxis Behaviors of C. elegans Based on the Biological
Wire Diagram with Speed Regulation

associated experiment result fi (i = 1, . . . , N). N is the number of the testing results,

and y is the average value of yi (i = 1, . . . , N). The value of R2 is equal to or less than 1,

which is used to describe how well a regression curve fits the testing results. An R2 near

1 indicates that the regression curve fits the testing results well, while the more negative

value of R2 indicates the worse of fitting. In this work, we analyze (1) the degree of

the curves to fit the dots (testing results), measured by R2
dot, and (2) the degree of the

curves to fit the experiment results, measured by R2
ep.

In Fig. 4.23(a), the fitted polynomial equation (solid line) is y = −0.073x2+0.0287x+

0.224 (R2
dot= 1.00, R2

ep= −0.92). We can observe that the speed is inversely proportional

to the concentration. However, our result is different from the experiment data of [19]

(dotted line), which concludes that the speed of C. elegans is weakly dependent on the

food concentration. The reason for this difference is that in this work we assume C.

elegans will reduce its speed by following the increasing of food concentration.

As shown in Fig. 4.23(b), the fitted polynomial equation (solid line) is y = −0.5959x+

15.7926 (R2
dot= 0.40, R2

ep= −25.58). We can observe that the turning rate weakly de-

pends on the food concentration, and it is similar to the experiment result of [19] (dotted

line). The relationship between turning rate and dC(t)/dt is shown in Fig.4.23(c). The

fitted polynomial equation (solid line) is y = 27291x3 + 1953x2 − 236x + 6 (R2
dot= 1.00,

R2
ep= −2.18). In this figure, the larger negative value of dC(t)/dt yields the larger

magnitude of turning rate, and once dC(t)/dt is positive, the turning rate reduces to

zero. This result is similar to the experiment data of [87] (dotted line). At last, we

follow the same way of [87] to analyze the relationship between probability of turning

and dC(t)/dt. As shown in Fig. 4.23(d), these dots can be approximated by formula

y = 0.023/(a + ebx+d) + c, where y is the probability of turning, and x is the change of
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concentration dC(t)/dt, and a, b, c, d are constants. For our case, the values of these

parameters are a = 0.3448, b = 300, c = 0, and d = −0.8. The fitted formula is plotted

as the solid line in Fig. 4.23(d), with R2
dot= 0.99 and R2

ep= 0.67. The experiment data

of [87] is plotted as the dotted line in Fig. 4.23(d). The parameters obtained by [87] are

a = 0.40, b = 140, c = 0.0033, and d = 0. From both our result and the experiment

result, we can observe that they share the same shape and the probability of turning is

higher when dC(t)/dt is more negative.

Above all, except for the first relationship (speed and concentration), other three

relationships are in accord with the experiment results. Furthermore, we can explain the

abrupt turn and continue turn of our models through Fig. 4.23(c) and (d). More negative

values in dC(t)/dt yield larger magnitudes of the turning rate and higher probability of

turning, which lead to the abrupt turn. In contrast, small negative values of dC(t)/dt

only yield small magnitudes of the turning rate and low probability of turning, which

lead to the slight and continual turn. Additionally, if dC(t)/dt is positive, the turning

rate and the probability of turning will approach zero, which make C. elegans move

straightly.

4.7.3 Performance with Noises

This subsection discusses the robustness of the DNN-based behavioral models in the

presence of noises. We test the performance of our behavioral models by adding the

external noise and internal noise. For the external noise, we add the randomly generated

noise with the range [0, 0.02] and [0, 0.2] (1% and 10% of the largest magnitude of input

concentration) to concentration signals. Due to the page limitation, we only present the

results for food attraction. The result is shown in Fig. 4.24. It can be seen that, with

the external noise, there are more turns appearing and the tracks are less smooth than
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Figure 4.24: Testing results by adding the external noise.

Figure 4.25: Testing results by adding the internal noise.
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that without the external noise. However, the worm can still reach the final destination

correctly.

Next we add the internal noise to the wire diagram for food attraction. By following

the method in [90], we add the synaptic noise (one kind of the internal noise) to the wire

diagram. The testing result is shown in Fig. 4.25. The internal noise range is between

−0.003 and 0.003 (about 1% of the average weight value), and between −0.03 and 0.03

(about 10% of the average weight value). As shown in Fig. 4.25, C. elegans without

the internal noise can guide itself towards the food source. When the noise range is

between −0.003 and 0.003, C. elegans can still move towards the food source. When the

noise range is between −0.03 and 0.03, C. elegans circles around the starting place. In

comparison, DNN-based models are more robust for the external noise.

Furthermore, we quantitatively analyze the trajectories that are affected by the ex-

ternal and internal noises. By following the methods in [87] and [19], we analyze the

relationship between (1) turning rate and concentration, and (2) probability of turning

and dC(t)/dt as what we have done in subsection 4.7.2.

The relationship between turning rate and concentration are shown in Fig. 4.26(a).

The results with the external noise (solid line: y = −0.5959x+15.7926, R2
dot= 0.40, R2

ep=

−25.58 ) and with the internal noise (dashed line: y = − 0.3657x + 1.0066, R2
dot= 0.24,

R2
ep= −4278.3) indicate that the turning rate weakly depends on the concentration, which

are the same as the conclusion of [19]. As shown in Fig. 4.26 (a), we can observe that the

fitting result for experimental data with the internal noise (dashed line, R2
ep= −4278.3)

is much worse than that with the external noise (solid line, R2
ep= −25.58). This poor

fitting is due to the internal noise that greatly affects the locomotion behaviors of our

models.
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Figure 4.26: Statistical analysis for food attraction behavior with noises. (a) The rela-
tionship between turning rate and concentration with the external and internal noises.
(b) The relationship between probability of turning and dC(t)/dt with the external and
internal noises.

The relationship between probability of turning and dC(t)/dt is shown in Fig. 4.26(b).

The result with the external noise can be approximated by formula y = 0.023/(a +

ebx+d) + c, where a = 0.3448, b = 200, c = 0, and d = −0.3, shown as the solid line.

R2
dot= 0.99 and R2

ep= 0.89 for this fitting. However, for the result with the internal noise

(asterisks), the relationship between probability of turning and dC(t)/dt is not apparent,

and it cannot be approximated by the formula y = 0.023/(a + ebx+d) + c. Instead, we

approximate these data by y = 0.1149x+0.0598, but the fitting is poor, since R2
dot= 0.05

and R2
ep= −782.83. The poor fitting is also due to the internal noise that greatly affects

the locomotion behaviors of our models. Additionally, it is interesting to note that the

result with the internal noise is similar to the results shown as Fig. 7 (E) and Fig. 7 (I)

in [87], which are the experiment results with neurons ablation.

From the analysis results, the behavior of our model with the external noise is similar

to the behavior of wild-type C. elegans, whereas the behavior of the model with the

internal noise is similar to the behavior of C. elegans with neuron ablation.
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4.8 Conclusion

In this chapter, the chemotaxis behaviors of C. elegans for food attraction and toxin

avoidance, as well as speed regulation are investigated. First, biological wire diagrams

are used to investigate the chemotaxis behaviors. Second, we design the kinematic model

to describe the locomotion behaviors, that is, turning and speed regulation. Third, a

set of switching logic functions are constructed to represent the chemotaxis behaviors of

food attraction, toxin avoidance, integrated behaviors, as well as speed regulation. All

these switching logic functions can be learned by DNN models with RTRL. The testing

results verify that these chemotaxis behavioral models can well perform the complex

chemotaxis behaviors in different circumstances, and their behaviors are similar to the

real C. elegans by comparing with the experimental data .

Till now, all the chemotaxis behaviors are investigated on the condition that C.

elegans moves as a point mass. Actually, C. elegans uses undulatory movement for

locomotion. In the next chapter, we will explore the undulatory movement through

DNN approach.
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Chapter 5

Modeling the 3D Undulatory

Locomotion Behavior of C.

elegans Based on the Artificial

DNN

In previous chapters, we have investigated the locomotion behaviors of C. elegans

by treating it to be a single point in the simulated environment. However, C. elegans

performs the undulatory movement during locomotion. From this chapter, we will explore

the undulatory locomotion by using both artificial and biological neural networks. In

this chapter, a 3D undulatory locomotion model is investigated based on the artificial

DNN.

5.1 Introduction

Undulatory locomotion is one of the fundamental behaviors of the footless animals,

such as larva, worm, snake, and even some mammals. Among these animals, the snake

has been widely studied to disclose the mechanism of undulatory motion. However, due
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to the huge amount of neurons and muscle-bone structures of the snake, it is difficult

to study the motion mechanism from cellular level. Fortunately, C. elegans offers us an

ideal model to study the mechanism of undulatory locomotion behavior. The undulato-

ry locomotion of C. elegans is similar to some limbless animals, e.g. ascaris and snake,

whereas the neural circuit of C. elegans is much simpler than those and it can be modeled

easily. This enables us to study their undulatory motion at the cellular level. Further-

more, if we realize these mechanisms on the computer, it may be possible to incorporate

these biological or biomimetic methods into the undulatory robots, which can achieve

at least four tasks: 1) rescuing survivors in complex areas where human cannot enter

[91]; 2) checking the inner side of the industrial equipment pipes [92]; 3) crawling on the

ground, under the ground, or through the chink for military utilities [93]; 4) checking

the stomach, blood vessels, or intestine for clinical use [94].

The study of undulatory locomotion behavior of C. elegans began in recent years.

Suzuki et al. explored the locomotion behaviors of C. elegans in forward movement,

backward movement, and turning [42, 43, 40, 42]. Boyle et al. investigated how the

muscles and neurons of C. elegans created the S wave and how it was propagated from

the head to tail [33, 95]. At last, they designed and constructed a robot inspired by

C. elegans [39]. In another work [61], a locomotion model was constructed based on

the experimental results. This computational model can predict the mechanisms under-

lying various behaviors of mutant C. elegans. The above models crawl in 2D, namely,

performing the undulatory behavior on the horizontal plane. The model in [42] can lift

up its head during moving, but the rest of its body crawls in 2D on the ground. Till

now the only 3D locomotion model was constructed in [62]. The body of this 3D model

was assembled by 25 boxes and the muscles were represented by the springs. Without
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preserving the biological anatomical structure, the locomotion behavior of this 3D model

was displayed mainly in the game engine, and no precise mathematical description was

given.

Figure 5.1: The image of C. elegans during locomotion. The arrows indicate the lifted
parts of C. elegans.

In this work, we analyze the 3D locomotion behavior of C. elegans by observing the

video record, as shown in Fig. 5.1. The arrows in Fig. 5.1 indicate the lifted parts when

C. elegans is in high-speed crawling. This phenomenon is analogous to the locomotion

of snake that lifts up the most bent parts during full speed movement [96]. Inspired

by this fact, in this chapter we study the 3D locomotion behavior by investigating the

cooperation mechanism of nervous system and muscular system. The novelty of this

work involves six aspects.

First, without losing the reality, our model is based on the anatomical muscle struc-

ture of C. elegans provided in [85]. The whole body is divided into 11 muscle segments,

and in each muscle segment there are four pieces of muscles located in four quadrants.

These 11 muscle segments are represented as a multi-joint rigid link model with 12 links

and 13 joints. The first joint and the last joint denote the head and the tail tips, and

other eleven joints stand for the center of each muscle segment.
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Second, the nervous system of C. elegans is represented as a DNN in our model. DNN

has the function of mimicking the nervous system and realizing some important functions

of real animals, such as dynamic locomotion [97], associate memory [98], etc. Further-

more, the strong learning capability of DNN can make the locomotion system adapt

different environment quickly, and it also can generate different locomotion patterns ac-

cording to different environments. In our model, DNN involves three parts: head DNN,

CPG, and body DNN. The head DNN contains two sensory neurons, three interneurons

and one output neuron. The function of the head DNN is to smell the outside concen-

tration and make the decision of turning or going straightly. CPG produces the sinusoid

waves for undulatory locomotion. The body DNN receives the sinusoid waves generated

by the head DNN and CPG, and passes the waves through each segment. In each seg-

ment, the structure of the body DNN is identical with biological connections, and the

function of the body DNN is to produce the signals to the muscles in four quadrants.

The phase lag of the sinusoid wave, which is the critical factor to create the undulato-

ry behavior, is produced by incorporating the time delay when the wave is transferred

through DNN in consecutive segments.

Third, the 3D shape of C. elegans during locomotion is investigated. The 3D shape is

determined by the joint angles projected onto the sagittal plane (dividing the worm into

left and right parts, namely, x-y plane) and the coronal plane (dividing the worm into

dorsal and ventral parts, namely, x-z plane). Comparing with other existing models, our

model uses the lengths of muscles to control the joint angles directly. In our work, the

relations between these angles and the lengths of four quadrant muscles are determined.

In other words, once we know the lengths of muscles, the 3D shape is fixed.

Forth, the muscle model is designed to associate with the outputs of DNN. When
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receiving the sinusoid wave from the DNN, the length of muscle will change according

to the magnitude of signal, and the joint angle will also change accordingly. In this way,

we can use the outputs of DNN to control the shape of C. elegans.

Fifth, with the learning capability of DNN, our model can implement the chemotaxis

behaviors of finding food and avoiding toxin concurrently after the head DNN learns a

set of nonlinear functions. These nonlinear functions are called switching logic functions

(SLFs) to approximate the logic of C. elegans during chemotaxis locomotion. Once SLFs

are learned well, our model can perform the chemotaxis behaviors in different simulated

environments.

At last, image records of actual C. elegans are analyzed to verify the effectiveness

of our model. Furthermore, quantitative analyses of the trajectories of our model are

carried out by comparing the experiment results in [19] and [87]. Finally, we simplify the

well optimized head DNN to be smaller ones according to the method of [25] and find

out two patterns that are similar to the result in [25].

This chapter is organized as following. Section 5.2 provides the biological background

of C. elegans consisting of muscle structure and neuronal structure. Section 5.3 discusses

the locomotion system, which includes the head DNN, CPG, body DNN, and muscle

system. The structure of DNN and muscles, as well as the mathematical models are

provided in details. In Section 5.4 , we first investigate the 3D body shape, and then

explore the relation between the muscle length and the joint angles on the sagittal plane

(x-y plane) and the coronal plane (x-z plane). At last the relation between muscle length

and motor neuron outputs is determined. Thus, once the outputs of DNN are known,

the 3D shape is determined. In Section 5.5, the methods to optimize the head DNN and

the body DNN are provided. Section 5.6 gives the testing results. In Section 5.7, the
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comparative analyses of our results with the experiment results of real C. elegans are

provided. Section 5.8 concludes this chapter and discusses the future works.

5.2 Anatomical Structure of C. elegans for Locomotion

5.2.1 Muscle and Body Structure

C. elegans with a simply cylindrical body is about 1 millimeter in length. The body

wall muscles can be classified into 4 quadrants on the transverse plane, as shown in

Fig. 5.2 (a). These four quadrants are dorsal-left (DL), ventral-left (VL), ventral-right

(VR), and dorsal-right (DR). Its 95 body wall muscle cells are arranged as pairs located

in four quadrants along the body, as shown in Fig. 5.2 (b). Each of DL, VR, and DR

quadrants contains 24 muscle cells, except for the VL quadrant, which contains 23 muscle

cells. During locomotion, C. elegans lies aside (uses the left or right side touching the

ground) and moves over a surface by propagating dorsal/ventral flexures along its body

[85]. Based on the muscles structure, the body can be divided into 11 muscle segments.

The center of each muscle segment in Fig. 5.2 (b) is depicted as a joint in Fig. 5.2 (c).

For instance, muscles in Fig. 5.2 (b) denoted as 3 and 4 in each quadrant form the second

segment, as shown in Fig. 5.2 (c). Muscles from 21 to 24 (21 to 23 for VL quadrant) form

the last segment, because anatomically these three or four muscles in each quadrant are

controlled by the same motor neuron [83]. As shown in Fig. 5.2 (c), by adding another

2 joints (denoted as 0 and 12), which denote the head and the tail tips respectively, the

whole body is represented by 13 joints. These 13 nodes are connected by 12 links. Thus

body of C. elegans is depicted as a multi-joint rigid link system.
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Figure 5.2: (a) Muscle structure of C. elegans. The muscles are divided into 4 quadrants
on the transverse plane. (b) Body structure of C. elegans. Each quadrant contains 23
or 24 muscle cells. (c) The whole body is divided into 11 muscle segments according to
the muscle structure and depicted as a multi-joint rigid link system with 13 joints and
12 links.
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Figure 5.3: Neuronal circuit of C. elegans for locomotion. Motor neurons DB and VB
are for forward locomotion; DA and VA are for backward locomotion; VD and DD are
inhibitory neuron for muscles coordination.

5.2.2 Neuronal Structure for Locomotion

The locomotion behavior of C. elegans is determined by the actions of muscles, where-

as the muscles are controlled by the motor neurons. The motor neurons are distributed

along the ventral side of the body from head to tail. There are three types of motor neu-

rons: B type (DB and VB) for forward locomotion, A type (DA and VA) for backward

locomotion, and D type (VD and DD) for muscles coordination. There are 58 motor

neurons for the three types. As shown in Fig. 5.3, DBi (i=1,...,7) and V Bi (i=1,...,11)

receive the command signals from command neurons PVC and AVB, and active the mus-

cles to perform the forwards locomotion behavior. DAi (i=1,...,9) and V Ai (i=1,...,12)

receive the command signals from command neurons AVA and AVD to produce the back-

ward locomotion signals to muscles. DDi (i=1,...,6) and V Di (i=1,...,13) are inhibitory

motor neurons. DB, DA, and DD control the muscles on the dorsal side; VB, VA, and

VD control the muscles on the ventral side. During forward locomotion, if DB activates

the dorsal side muscle, the VD will inhibit the opposite side muscle (ventral side); if

VB activates the ventral side muscle, the DD will inhibit the opposite side muscle (dor-

sal side). In this way, the forward undulatory movement is generated. The mechanism
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for backward locomotion is similar to that for the forward locomotion, except that DA

replaces DB and VA replaces VB. The circuits for forward locomotion and backward

locomotion work mutual exclusively [85, 23].

5.3 Locomotion System Modeling

In our model, undulatory forward and backward movements require wave signals

sent from the nervous system to the motor neurons. Muscles receive the signals from

the motor neurons to perform the corresponding behaviors. In our work, we adopt DNN

to represent the nervous system of C. elegans, which is classified into three parts: head

DNN, CPG, and body DNN. Muscle is modeled by investigating the relation between

the muscle length and the neuronal inputs.

5.3.1 Head DNN

In our model, the head DNN achieves the decision making function by generating

the turning signal to the motor neurons. The head DNN, which is an artificial brain

[99], is inspired by the neural networks in [45] and [47]. As shown in Fig. 5.4, the

head DNN contains six neurons. ASE and ASH are sensory neurons for food and toxin

concentrations, respectively. I1, I2, and I3 are interneurons, while neuron OUT is output

neuron. All neurons in the head DNN are fully connected and each neuron has the self-

connection. The active function of each neuron is the same as that in our preceding work

[100]:

τi
dVi(t)

dt
= −Vi(t) + βi tanh(

N∑

j=1,j 6=i

wij(Vj(t)− V j))

+bi + δiC(t) (5.1)
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CPG

Head

Figure 5.4: DNN and the muscle structure of C. elegans. DNN is classified into three
parts: head DNN, CPG, and body DNN. The head DNN contains six neurons that
achieves the decision making function for chemotaxis behavior. CPG involves four neu-
rons, C1 and C2 generating the sinusoid waves and C3 and C4 adjusting the phase lag.
In the body DNN, two command neurons “PVC, AVB” and “AVA, AVD” switch the
circuits for forward and backward locomotion. The signals are passed from the first
segment to the last segment in sequence for forward locomotion (vice versa for backward
locomotion), and are also transmitted to muscles. The muscles function as actuators and
act according to motor neurons’ outputs.
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where τi is the time constant that controls the time delay. Vi(t) is the voltage of neuron

i at time t. Vj(t) is the voltage of input neuron j. wij is the connection weight from

neuron j to i. The constant V j is the center of the conductance of the jth neuron, which

means at this voltage there is no transmitter released from the jth neuron [44]. bi is a

constant bias introduced here to adjust the resting potential value [73]. δi = 1 if the

neuron i is the sensor neuron, otherwise δi = 0. βi is a constant should be determined.

The head DNN has the ability to approximate any arbitrary nonlinear functions [101].

If we can construct some nonlinear functions to map the input-output relations of the

decision making of C. elegans, the head DNN can generate the desired signals to the

motor neurons to perform the chemotaxis behaviors after training. The way to construct

the nonlinear functions and the procedure to train the head DNN are discussed in Section

5.5.

5.3.2 CPG

Up to now, there are two ways to model the mechanism of C. elegans to generate the

undulatory wave: one based on CPG [61] and the other based on the sensory feedback

mechanism [35, 37]. Recent research work indicates that C. elegans does not use CPG

to propagate the undulatory wave [35, 37, 102, 103], and in work [30, 103] they claim

that there is a CPG in the head while the sensory feedback mechanism is responsible for

propagating the undulatory wave along the body. Our ultimate goal for this chapter is to

build a 3D locomotion model for the worm-like robot. Thus, for modeling convenience,

it is a relatively easy way to choose a CPG as the undulatory wave generator. The

undulatory wave generated by CPG is passed through the motor neurons of each segment

to produce the undulatory locomotion behavior. The sensory feedback mechanism is not

incorporated into this model.
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CPG for this model contains four dynamic neurons, as shown in Fig. 5.4. C1 and C2

are used to generate the sinusoid waves. The voltages of C1 and C2 are calculated by

the following equations.

τ
�

V = AGV, (5.2)

AG =


 0 −2π

2π 0


 ,

V = [VC1
, VC2

]T ,

where τ is a constant. According to [104], by choosing the initial values VC1
(0) = 1 and

VC2
(0) = 0, the inner periodic signal generator VC1

and VC2
can produce co-sinusoidal

signals, VC1
(t) = cos(ωt) and VC2

(t) = sin(ωt), where ω = 2π/τ .

After two sinusoid waves are generated by the neurons C1 and C2, two neurons (C3

and C4) are involved to adjust the phases of the sinusoid waves to yield the outputs of

CPG. The voltages updating of C3 and C4 are

τC3

�

V C3
(t) = −VC3

(t) + VC1
(t), (5.3)

τC4

�

V C4
(t) = −VC4

(t) + VC2
(t), (5.4)

where τC3
and τC4

are time constants to control the phase lag.

The sinusoid waves pass through DB and VB from head to tail for forward locomotion,

and pass through DA and VA from tail to head for backward locomotion. Furthermore,

according to [56], the sinusoid waves passed through DB and VB should have the opposite

phase to ensure the alternating dorsoventral sweeps. This kind of opposite phase can

be obtained by trials to adjust the parameters τC3
and τC4

in Eqs. (5.3) and (5.4),

respectively.
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5.3.3 Body DNN

The body DNN is divided into 11 segments according to the muscle structure. When

crawling, C. elegans lies aside on the ground. In our work, we assume that the right side

of C. elegans touches the ground. By overlooking, the ventral side is our left-hand side,

and the dorsal side is our right-hand side, as shown in Fig. 5.5. Under the assumption, we

divide the 3D space to four directions: left, right, up, and down. For the simplification

, we rename the four quadrants muscles as: ld (left-down) for VR, lu (left-up) for VL,

rd (right-down) for DR, and ru (right-up) for DL. The connections between neurons and

muscles for one body segment are shown in Fig. 5.4. In our model, each segment owns

the same structure.

Neurons DB, VB, DA, and VA are active neurons that excite the muscles. VD and

DD are inhibitory neurons that inhibit their counterpart muscles. DB, VB, VD, and DD

are involved in the circuit for forward locomotion, and DA, VA, VD, and DD are involved

in the circuit for backward locomotion. According to [85], the circuits for forward and

backward locomotion work mutual exclusively. The command neurons PVC and AVB

control the forward locomotion, and AVA and AVD control the backward locomotion

by switching on or off their corresponding motor neurons [105] [37]. In this work, we

combine PVC and AVB to be one neuron “PVC, AVB”, and AVA and AVD to be “AVA,

AVD”. When neuron “PVC, AVB” is active, the neuron “AVA, AVD” is inhibited. Thus

when DB and VB neurons are working to propagate the sinusoid wave, DA and VA are

not working. It is vice versa if “AVA, AVD” is active.

There are six motor neurons in each segment, which are connected according to

the biological wire diagram. These motor neurons are depicted as dynamic neurons

[67] with the activity function as Eq. (5.1). During forward locomotion, as shown in
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Figure 5.5: C. elegans lies aside on the ground. We assume that the right side of C.
elegans touches the ground. The ventral side is our left-hand side, and the dorsal side
is our right-hand side, For simplicity and directviewing, muscles in four quadrants are
renamed as: ld (left-down) for ventral-right, lu (left-up) for ventral-left, rd (right-down)
for dorsal-right, and ru (right-up) for dorsal-left.

Fig. 5.4, DB, VB are activated by command neuron “AVB, PVC”, and DA, VA are

inhibited by command neuron “AVA, AVD”. The sinusoid signals from head or preceding

segment are fed into DB and VB. Output signals of DB and VB are transmitted into

their corresponding muscles. VB connects two muscles on the left side, and DB connects

two muscles on the right side. DD receives signal from VB, and sends its output to

the muscles on the right side. VD receives signal from DB, and sends its output to the

muscles on the left side. At the same time, DB and VB send their outputs to the next

segment. There is a time delay ∆τ when the signal passes through each segment. Muscles

are actuators that receive the motor neurons’ signals and produce certain activities. The

sinusoid shape is produced by the reactions of muscles to the time delayed signals.

5.3.4 Model of Muscle

In our work, the muscles serve as the actuators driven by the outputs of DNN

[95]. The connections between muscles and motor neurons in one segment are shown
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in Fig. 5.6, which are extracted from Fig. 5.4. The left side muscles receive three inputs

from motor neurons VB, VD, and VA. The right side muscles receive three inputs from

motor neurons DB, DD, and DA. The arrows indicate the excitatory connections, while

the blunted lines indicate the inhibitory connections. For segment i at time t, we let

Ii,l(t) be the input of anyone of the two muscles for the left side, and Ii,r(t) for the right

side. The relations between inputs of muscles and voltages of motor neurons are

Il,i(t) = wMi,V BiVV B,i(t) + wMi,V AiVV A,i(t)

+wMi,V DiVV D,i(t), (5.5)

Ir,i(t) = wMi,DBiVDB,i(t) +wMi,DAiVDA,i(t)

+wMi,DDiVDD,i(t), (5.6)

where VV B,i(t), VV A,i(t), and VV D,i(t) are the output voltages of left side motor neurons

V Bi, V Ai, and V Di at time t, respectively. VDB,i(t), VDA,i(t), and VDD,i(t) are the

output voltages of right side motor neurons DBi, DAi, and DDi at time t, respectively.

wMi,V Bi, wMi,V Ai, and wMi,V Di are the connection weights from V Bi, V Ai, and V Di to

left side muscle, respectively. wMi,DBi, wMi,DAi, and wMi,DDi are the connection weights

from DBi, DAi, and DDi to right side muscle, respectively.

In segment i, the lengths of muscles for left-up, left-down, right-up, and right-down

are denoted as llu,i, lld,i, lru,i, and lrd,i, respectively. The relation between the lengths of
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Figure 5.6: The connection between muscles and motor neurons.

muscles and inputs are:

llu,i(t) = Llu,i + σlu(Il,i(t)), (5.7)

lld,i(t) = Lld,i + σld(Il,i(t)), (5.8)

lru,i(t) = Lru,i + σru(Ir,i(t)), (5.9)

lrd,i(t) = Lrd,i + σrd(Ir,i(t)), (5.10)

where Llu,i, Lld,i, Lru,i, and Lrd,i are the lengths of relaxed muscles without being affected

by neuronal inputs. σlu, σld, σru, and σrd are the nonlinear activity functions, which will

be explored in Section 5.4.3.

5.4 3D Locomotion Behaviors Modeling

5.4.1 Motion Modality

Undulatory movement is the primary way for C. elegans to move. According to [61],

the whole body shapes as a sinusoid wave about 1.5 to 2 periods during locomotion. In

our work we consider that the wave length is 1.5 sinusoid wave periods. The form of C.

elegans during locomotion is shown in Fig. 5.7.
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Figure 5.7: (a) The shape of C. elegans on the x-y plane. The whole body is represented
as 12 links and shapes as a sinusoid wave with 1.5 periods. (b)The shape of C. elegans
on the x-z plane. It is obviously that some of the body parts lift up the ground, and the
frequency is twice of that on the horizontal plane.

In our work, we explore the movements of C. elegans in 3D. Fig. 5.7 (a) shows its

shape on the horizontal (x-y) plane by overlooking, and (b) shows the shape on the

vertical (x-z) plane. It can be seen that C. elegans displays a standard sinusoid wave

from head to tail on the x-y plane, and it lifts up some parts of its body on the x-z plane.

The most bent parts on the x-y plane lift up highest above the ground, and the unbent

parts on the x-y plane touch the ground. For example, as shown in Fig. 5.7 (b), links 2,

6, and 10 lift up highest above the ground, and links 0, 4, 8, and 12 touch the ground.

The dot line in Fig. 5.7 (b) is the trace of the joints on the x-z plane during locomotion.

To construct the locomotion model in 3D, we should calculate how the angles between

two consequent links vary at different time, both on the x-y plane (θi) and the x-z plane

(θv,i). According to [106], when C. elegans moves as a sinusoid wave on the x-y plane,
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as shown in Fig. 5.7 (a),

φi = Ai sin(wt+ φstart − iφLag,i), (5.11)

θi = φi−1 − φi, (5.12)

where φi (i = 0, ..., 11) is the angle between link i+1 and the x-axis. Ai is the magnitude

of the φi, and w is the angular velocity. φstart is initial angle, and φLag,i is the phase lag.

θi (i = 1, ..., 11) is the angle between two consecutive links, i and i+ 1.

On the x-z plane, as shown in Fig. 5.7 (b), the angle φv,i (i = 0, ..., 11) between the

link i+1 and the ground (x-y plane) is a sinusoid function, but the frequency is double.

φv,i = Av,i sin(2wt+ 2φstart − 2iφLag,i), (5.13)

θv,i = φv,i−1 − φv,i, (5.14)

where Av,i is the magnitude of the φv,i, and w, φstart, and φLag,i have the same values as

those in Eq. (5.11). θv,i (i = 1, ..., 11) is the angle between two consecutive links i and

i+ 1 on the x-z plane.

Thus given Ai, Av,i, w, φstart, and φLag,i, from Eqs. (5.11) to (5.14), we can briefly

determine the shape of C. elegans at time t.

5.4.2 Muscle Length and Joint Angle

Two angles (θi and θv,i) determine the shape of C. elegans during locomotion. These

angles are yielded by the contracting or extending of the muscles. In this subsection, we

explore the relation between the lengths of muscles and the angles.

We assume that each muscle acts separately. Fig. 5.8 (a) shows one muscle segment

of C. elegans. The angle between link i and link i + 1 can be measured as θ on the x-y
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Figure 5.8: (a) One muscle segment i is shown in 3D. The lengths of muscles in four
quadrants are denoted as lru, llr, lrd, and lld. (b) The projection of the middle plane of
the muscle segment of (a) (dotted line) on the x-y plane without shape change, which
means all the four quadrant muscles are relaxed. (c) The projection of (a) on the x-y
plane during sinusoid locomotion. (d) The projection of (a) on the x-z plane during
sinusoid locomotion. Joint angles between link i and link i+1 are measured as θ on the
x-y plane and θv on the x-z plane, as shown in (c) and (d), respectively.
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plane, and θv on the x-z plane, as shown in Fig. 5.8 (c) and (d), respectively. The values

of θ and θv are determined by the lengths of muscles in four quadrants.

As shown in Fig. 5.8 (b), the rectangle (A′A′′C ′′C ′) is the projection of the middle

plane (dotted line) of Fig. 5.8 (a) onto the x-y plane without the shape change. Dashed

lines stand for the other two consecutive segments. In Fig. 5.8 (b), |A′C ′| = lrm =

(lru + lrd)/2, which represents the average length of two muscles on the right side, and

|A′′C ′′| = llm = (llu + lld)/2, which represents the average length of two muscles on the

left side. During undulatory locomotion, muscles change their lengths, so the shape of

one segment as shown in Fig. 5.8 (b) will become to shape as shown in Fig. 5.8 (c).

We set the length of each link is l, and in Fig. 5.8 (c) |AB| = l
2 , |A

′A| = d
2 . It can

be proved that ∠DBC = ∠AOB = θ, and drawing D′A//B′B yields ∠A′AD′ = θ and

|AB| = |D′B′| = l
2 . Thus,

lrm = |
⌢

A′C ′| = 2|
⌢

A′B′|

= 2(|
⌢

A′D′|+ |
⌢

D′B′|)

= 2(
d

2
θ +

l

2
)

= l + dθ. (5.15)

Following the same way, the relation between llm and θ is:

llm = l − dθ. (5.16)

The projection of the muscle segment of Fig. 5.8 (a) on the x-z plane is shown as

Fig. 5.8 (d).
⌢

E′G′,
⌢

E′′G′′,
⌢

F ′H ′, and
⌢

F ′′H ′′ represent four quadrants muscles, lru, llu, lrd,

and lld, respectively. |
⌢

A′C ′| = lrm and |
⌢

A′′C ′′| = llm, which are the projections of |
⌢

A′C ′|
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and |
⌢

A′′C ′′| in Fig. 5.8 (c), respectively. It can be proved that ∠A′OvrB
′ = ∠A′′OvlB

′′ =

∠PBC ′ = θv. Following the same method to deal with Fig. 5.8 (c), we obtain:

lru = lrm + dθv, (5.17)

llu = llm + dθv, (5.18)

lrd = lrm − dθv, (5.19)

lld = llm − dθv. (5.20)

By substituting Eqs. (5.15) and (5.16) to Eqs. (5.17), (5.18), (5.19), and (5.20), for any

muscle segment i, we obtain the relation between the lengths of four quadrant muscles

and the two angles:

lru,i = l + dθi + dθv,i, (5.21)

llu,i = l − dθi + dθv,i, (5.22)

lrd,i = l + dθi − dθv,i, (5.23)

lld,i = l − dθi − dθv,i. (5.24)

From Eqs. (5.21), (5.23), (5.22), and (5.24), we know that lengths of muscles in four

quadrants, lru, lrd, llu, and lld, are related to the joint angles θi and θv,i. Since link

length l and body diameter d are two constants, once the lengths of the four quadrant

muscles are known, the two joint angles θv,i and θi can be determined.

5.4.3 Muscle Lengths and Outputs of Motor Neurons

The lengths of muscles are controlled by the outputs of motor neurons. For example,

during forward locomotion, muscles on the left side are controlled by motor neurons DB
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and DD, and muscles on the right side are controlled by motor neurons VB and VD.

In this subsection, we explore the relation between the outputs of motor neurons and

lengths of muscles.

Locomotion Without Turning

We first investigate the undulatory locomotion behavior of C. elegans without turning.

Substituting Eq. (5.11) to Eq. (5.12) yields

θi = Ai−1 sin(wt+ φstart − (i− 1)φLag,(i−1))

−Ai sin(wt+ φstart − iφLag,i). (5.25)

During straight undulatory locomotion, we assume Ai = A and φLag,i = φLag, where

i = 1, . . . , 11. Eq. (5.25) is simplified as

θi = Aθ,i cos(wt+ φstart − iφLag +
φLag

2
), (i = 1, ..., 11), (5.26)

where Aθ,i = 2A sin(
φLag

2 ) is a constant.

Furthermore, by substituting Eq. (5.13) to Eq. (5.14), we have

θv,i = Aθv,i cos(2wt + 2φstart − 2iφLag + φLag), (i = 1, ..., 11), (5.27)

where Aθv,i = 2Av,isin(φLag) is a constant.

Now the changes of θi and θv,i during straight movement of C. elegans are determined.
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By substituting Eqs. (5.26) and (5.27), Eqs. (5.21)–(5.24) become

lru,i(t) = 2dAθv,iM
2
i (t) + dAθ,iMi(t)− dAθv,i + l, (5.28)

llu,i(t) = 2dAθv,iM
2
i (t)− dAθ,iMi(t)− dAθv,i + l, (5.29)

lrd,i(t) = −2dAθv,iM
2
i (t) + dAθ,iMi(t) + dAθv,i + l, (5.30)

lld,i(t) = −2dAθv,iM
2
i (t)− dAθ,iMi(t) + dAθv,i + l, (5.31)

where

Mi(t) = cos(wt+ φstart − iφLag + φLag/2). (5.32)

In this work we assume the lengths of the relaxed muscles Llu, Lld, Lru, and Lrd in

Eqs. (5.7)–(5.10) to be l. Thus Eqs. (5.7)–(5.10) and Eqs. (5.28)–(5.31) can be rewritten

as

σlu(Il,i(t)) = 2dAθv,iM
2
i (t)− dAθ,iMi(t)− dAθv,i, (5.33)

σld(Il,i(t)) = −2dAθv,iM
2
i (t)− dAθ,iMi(t) + dAθv,i, (5.34)

σru(Ir,i(t)) = 2dAθv,iM
2
i (t) + dAθ,iMi(t)− dAθv,i, (5.35)

σrd(Ir,i(t)) = −2dAθv,iM
2
i (t) + dAθ,iMi(t) + dAθv,i. (5.36)

Il,i in Eq. (5.33), for example, is determined by VV B,i, VV A,i, and VV D,i in Eq. (5.5).

Furthermore, VV B,i and VV A,i work mutual exclusively [85], and VV B,i and VV D,i are two

sinusoid waves with opposite phases [56]. Thus for forward locomotion, Eq. (5.5) can be

simplified as

Il,i(t) = ∆wMV iVV B,i(t), (5.37)
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where ∆wMV i = wMi,V Bi −wMi,V Di. VV B,i(t) is the sinusoid wave that can be adjusted

as VV B,i(t) = Mi(t) in Eq. (5.32). Thus Eq. (5.33) can be rewritten as

σlu(VV B,i(t)) =
2dAθv,i

∆w2
MV i

V 2
V B,i

(t)−
dAθ,i

∆wMV i
VV B,i(t)− dAθv,i, (5.38)

and it also can be written in a general form as below

σlu(x) =
2dAθv,i

∆w2
MV i

x2 −
dAθ,i

∆wMV i
x− dAθv,i. (5.39)

Following the same way, Eqs. (5.34)–(5.36) are rewritten as

σld(x) = −
2dAθv,i

∆w2
MV i

x2 −
dAθ,i

∆wMV i

x+ dAθv,i, (5.40)

σru(x) =
2dAθv,i

∆w2
MDi

x2 −
dAθ,i

∆wMDi
x− dAθv,i, (5.41)

σrd(x) = −
2dAθv,i

∆w2
MDi

x2 −
dAθ,i

∆wMDi

x+ dAθv,i. (5.42)

Till now the Eqs. (5.7)–(5.10) are determined. We can observe that the lengths of

four quadrants muscle are determined by the voltages of the motor neurons, VDB,i and

VV B,i. In other words, once the voltages of VDB,i and VV B,i are known, the lengths of

four quadrants are determined.

Locomotion with Turning

During undulatory locomotion, C. elegans will change its direction to approach the

food or leave faraway from the toxin. The head DNN in our model achieves the decision

making mechanism by generating the turning signal to the motor neurons. When C.

elegans needs turning, the output of VOUT in the head DNN is non-zero, otherwise it

keeps its output to be zero. In this subsection we first investigate the effect of VOUT on

the lengths of muscles, and next the effect of VOUT on the joint angles, ∆θ and ∆θv.
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Effected by VOUT (t), Eq. (5.37) becomes

I ′
l,i
(t) = ∆wMV i(VV B,i(t) + VOUT (t)). (5.43)

Thus the change for left-up muscle is

∆llu,i(t) = l′lu,i(t)− llu,i(t)

= σlu(I
′
l,i(t))− σlu(Il,i(t))

= σlu(∆wMV i(VV B,i(t) + VOUT (t))) − σlu(∆wMV iVV B,i(t))

= 2dAθv,iV
2
OUT

(t) + (4dAθv,iVV B(t)− dAθ,i)VOUT (t). (5.44)

Following the same method, the changes of other muscles are

∆lld,i(t) = −2dAθv,iV
2
OUT

(t)− (4dAθv,iVV B(t) + dAθ,i)VOUT (t), (5.45)

∆lru,i(t) = 2dAθv,iV
2
OUT

(t) + (4dAθv,iVDB(t) + dAθ,i)VOUT (t), (5.46)

∆lrd,i(t) = −2dAθv,iV
2
OUT

(t)− (4dAθv,iVDB(t)− dAθ,i)VOUT (t). (5.47)

We can observe that the Eqs. (5.44)–(5.47) are quadratic functions. In our work, we

set VOUT (t) ∈ [0, VMax]. If VOUT (t) = 0, ∆llu,i(t), ∆lld,i(t), ∆lru,i(t), and ∆lrd,i(t) are

equal to zero. Thus the head DNN does not have the effect on the lengths of muscles.

Otherwise, the the lengths of muscles will be affected when VOUT (t) > 0. It should be

noted that ∆llu,i(t), ∆lld,i(t), ∆lru,i(t), and ∆lrd,i(t) are bounded since VOUT ∈ [0, VMax]

and VV B(t) ∈ [−1, 1].

Next, we explore the effect of VOUT on θi and θv,i. Since VV B,i(t) = Mi(t) in E-
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q. (5.32), Eq. (5.26) can be written as

θi(t) = Aθ,iVV B,i(t). (5.48)

If influenced by VOUT (t),

θ′i(t) = Aθ,i(VV B,i(t) + VOUT (t)). (5.49)

Thus the change of θi(t) is

∆θi(t) = θ′i(t)− θi(t)

= Aθ,iVOUT (t). (5.50)

Since VOUT ∈ [0, VMax], the range of ∆θi is [0, Aθ,iVMax], which is bounded.

For Eq. (5.27),

θv,i(t) = Aθv,i cos(2wt + 2φstart − 2iφLag + φLag)

= Aθv,i[2cos
2(wt+ φstart − iφLag + φLag/2) − 1]

= Aθv,i[2V
2
V B,i

(t)− 1]. (5.51)

If influenced by VOUT (t),

θ
′

v,i(t) = Aθv,i[2(VV B,i(t) + VOUT (t))
2 − 1]. (5.52)

Thus the change of θv,i(t) is

∆θv,i(t) = θ
′

v,i
(t)− θv,i(t)

= 2Aθv,iV
2
OUT (t) + 4Aθv,iVV B,i(t)VOUT (t). (5.53)
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In Eq. (5.53), if VOUT (t) = 0, ∆θv,i(t) = 0, which means the head DNN does not affect on

∆θv,i(t). However, VOUT (t) > 0 means VOUT (t) influences ∆θv,i(t). Since Eq. (5.53) is a

formal quadratic function, ∆θv,i(t) is bounded once VV B,i(t) and VOUT (t) are bounded.

Above all, the effects of the head DNN on the lengths of muscles and joint angles have

been investigated. The changes of the lengths of muscles and joint angles are bounded

as long as the outputs of CPG and the head DNN are bounded.

5.4.4 Shape Determination in 3D

The sinusoid waves are generated in the head DNN and CPG that are passed through

each segment with invariant frequency and phase lag. The muscles receive the outputs

of DNN, and their lengths will be changed according to the DNN inputs. The changes of

the lengths of muscles make the joint angles change accordingly, which yields the shape

of C. elegans variable in 3D.

If the lengths of muscles, lru,i(t), lrd,i(t), are known, we can calculate the θi(t) and

θv,i(t) (i=1, ..., 11) from Eqs. (5.21) and (5.23),

θi(t) = (lru,i(t) + lrd,i(t)− 2li)/(2di), (5.54)

θv,i(t) = (lru,i(t)− lrd,i(t))/(2di). (5.55)

Next, given the first link, φ0(t) = A0sin(wt+φstart) and φv,0(t) = Av,0sin(2wt+2φstart),

as shown in Fig. 5.7, φi and φv,i (i=1, ..., 11) can be determined as

φi(t) = φi−1(t)− θi(t), (5.56)

φv,i(t) = φv,(i−1)(t)− θv,i(t). (5.57)

Once we know the location of first joint (x0(t), y0(t), z0(t)), other joints (i=1, ..., 12)
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are determined:

xi(t) = xi−1(t) + li cos(φi−1(t)), (5.58)

yi(t) = yi−1(t) + li sin(φi−1(t)), (5.59)

zi(t) = zi−1(t) + li sin(φv,(i−1)(t)). (5.60)

5.5 Optimization

For our model, the parameters of the head DNN and body DNN should be optimized

to implement the undulatory locomotion behavior. In this section, the optimization

procedures are discussed in detail.

5.5.1 Head DNN for Decision Making

The head DNN achieves the decision making function to decide whether to turn

or go straightly during chemotaxis locomotion. Due to its learning ability, the head

DNN can approximate any arbitrary nonlinear functions [101]. In this subsection we

first construct some SLFs to approximate the chemotaxis behavior of C. elegans. Next,

Differential Evolution (DE) specially designed for real value optimization is adopted to

train the head DNN to approximate these SLFs.

Switching Logic Functions

In this work, we follow our preceding work [100] to construct the SLFs to denote the

input-output mapping of the chemotaxis behavior. SLFs for food attraction and toxin

avoidance are

DOUT (t) = aS · tanh(bS ·∆Cft(t) + cS) + dS , (5.61)
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aS · tanh(bS ·∆Cft(t) + cS) + dS
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Figure 5.9: SLFs for food attraction and toxin avoidance. When ∆Cft(t) ≥ 0, C. elegans
goes towards the correct direction. DOUT (t) = 0 means C. elegans does not need to turn
its direction. When ∆Cft(t) < 0, C. elegans goes towards the wrong direction. In this
case, DOUT (t) is greater than zero, which sends the turning signal to the body DNN.

where DOUT is the desired output of VOUT in the head DNN. aS, bS , cS , and dS are

parameters should be determined.

∆Cft(t) = ∆Cf (t)−∆Ctx(t), (5.62)

where ∆Cf (t) = Cf (t)−Cf (t− 1) and ∆Ctx(t) = Ctx(t)−Ctx(t− 1) are the changes of

food concentration and toxin concentration at two time steps, respectively.

The shape of SLFs is shown in Fig. 5.9. When ∆Cft(t) ≥ 0, the food concentration

is higher than that at the previous time, or the toxin concentration is lower than that at

the previous time. In this case, the direction is correct, and DOUT (t) = 0 means that C.

elegans does not need to turn. Otherwise, ∆Cft(t) < 0 indicates the food concentration

is lower than that at the previous time, or the toxin concentration is higher than that at

the previous time, which means C. elegans goes wrongly. In this case, DOUT (t) is greater

than zero, which sends the turning signal to the body DNN.
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Differential Evolution

There are several kinds of heuristic optimization algorithms that can be adopted to

train the DNN, such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA),

and Differential Evolution (DE). Among them, DE is one of the powerful stochastic

real-parameter optimization algorithms [107, 108]. DE operates through similar compu-

tational steps as employed by a standard evolutionary algorithm (EA). In the following,

the details of five key components of DE, i.e., Chromosome with initialization, Fitness

function, Mutation, Crossover, and Selection, are presented.

i) Chromosome with initialization: In the head DNN there are 86 parameters should

be optimized: 6 for self-connections of neurons, 56 for the neuronal connections, 6 for τ ,

6 for β, 6 for V and 6 for b. Thus the parametric vector x is encoded as a chromosome

with 86 units, where each unit is called a gene. These genes are coded with real-valued

xj(j = 1, · · · , 86). We define xj,max and xj,min (j = 1, · · · , 86) to be the upper bound

and lower bound of the gene xj . Thus at the generation k = 0, we initialize the jth gene

of the ith chromosome as

xj,i,0 = xj,min + randi,j[0, 1] · (xj,max − xj,min), (5.63)

where i = 1, · · · , N (N is the number of chromosomes), and randi,j[0, 1] is a uniformly

distributed random number lying between 0 and 1.

ii) Fitness function: DE uses the fitness function to evaluate the quality of chro-

mosome. To optimize the head DNN, in our work we construct Nt training data. The

fitness function of the ith chromosome xi is

fit(xi) =
1

2

Nt∑

k=1

[DOUT,i(k)− VOUT,i(k)]
2, (5.64)
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where DOUT,i(k) is calculated by Eq. (5.61), which is the desired output value of the

head DNN with the kth training data as the input. VOUT,i(k) is the actual output of the

head DNN with the kth training data as the input.

iii) Mutation: In DE, a parent chromosome from the current generation is called

target vector, and a mutant vector obtained through the differential mutation operation

is known as donor vector. The offspring, called trial vector, is formed by recombining

the donor vector with the target vector. In one of the simplest forms of DE-mutation, to

create the donor vector for each ith target vector from the current population, three other

distinct parameter vectors, denoted as xri
1

, xri
2

, and xri
3

are sampled randomly from the

current population. The indices ri1, r
i
2, and ri3, which are different from the base vector

index i, are mutually exclusive integers randomly chosen from the range [1, N ]. Now the

difference of any two of the three vectors is scaled by a scalar F and the scaled difference

is added to the third one. Hence we obtain the donor vector vi and the process can be

expressed as for the kth generation

vi,k = xri
1
,k + F · (xri

2
,k − xri

3
,k). (5.65)

iv) Crossover: For the crossover operation, the donor vector vi,k = [v1,i,k, · · · , v86,i,k]

exchanges its components with the target vector xi,k = [x1,i,k, · · · , x86,i,k] to form the

trail vector ui,k = [u1,i,k, · · · , u86,i,k]. In this work, binomial mechanism is adopted and

the mechanism is outlined as

uj,i,k =





vj,i,k, if (randi,j[0, 1] ≤ Cr or j = jrand),

xj,i,k, otherwise,

(5.66)

where jrand ∈ [1, 86] is a randomly chosen index, which ensures that ui,k gets at least

one component from vi,k.

136



Chapter 5. Modeling the 3D Undulatory Locomotion Behavior of C. elegans Based on
the Artificial DNN

v) Selection: To determine whether the target or the trail vector survives to the next

generation, selection procedure is performed.

xi,k =





ui,k, if fit(ui,k) ≤ fit(xi,k)

xi,k, otherwise.

(5.67)

From Eq. (5.67), if the new trial vector yields an equal or lower fitness value, it replaces

the corresponding target vector in the next generation; otherwise, the target vector is

retained in the population.

With the above well defined DE components, the detailed procedure of DE is pre-

sented as follows.

Step 1): Set the control parameters of DE: scale factor F = 0.5, crossover rate

Cr = 0.5, and the population size N = 20.

Step 2): Initialization. Set the generation number k = 0 and randomly initialize the

20 chromosomes with real-valued genes, by following Eq. (5.63).

Step 3): Evaluation. Each chromosome is assigned a fitness value according to E-

q. (5.64). The lower the fitness value, the better the chromosome.

Step 4): Stop criteria. If the evolution generation index k reaches the maximum num-

ber 1000, or if there is no obvious decrease of the best fitness value after 50 consecutive

generations, the DE stops; otherwise, go to Step 5).

Step 5): Do Mutation, Crossover, and Selection sequentially along with Eqs. (5.65)

– (5.67).

Step 6): k = k + 1 and go to Step 3).

In our work, we use the DE toolbox for Matlab directly to optimize the head DNN.
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5.5.2 Body DNN for Signal Transmission

The body DNN is responsible for the sinusoid wave transmission. After generated

by CPG and the head DNN, the sinusoid wave is transmitted from the first segment to

the last one for forward locomotion (from the last segment to the first one for backward

locomotion). We incorporate the time delay ∆τ to the sinusoid wave when it travels

through each segment, which produces the phase lag. The body DNN in each segment

owns the same structure, as shown in Fig. 5.6. There are 10 weights should be optimized

in each segment.

For forward locomotion for the left side muscles, VV B and VDB are two sinusoid

waves with opposite phases (VV B = −VDB), and it is in the same case for VV B and

VV D [56]. Thus we let weight wV D,DB = 1 for transmitting the signal from DB to V D.

Since VV B = −VV D and wM,V B is positive (excitatory synapse) and wM,V D is negative

(inhibitory synapse), we can let wM,V B = −wM,VD for simplification. In the same way,

for the right side muscles, wDD,V B = 1 and wM,DB = −wM,DD.

Thus for the inputs of the muscles, Eqs. (5.5) and (5.6) can be simplified as:

Il(t) = 2wM,V BVV B(t), (5.68)

Ir(t) = 2wM,DBVDB(t). (5.69)

The values of wM,V B and wM,DB in our work are determined by trials, which are provided

in Table 5.1. Other weights for backward locomotion are determined in the same way as

for forward locomotion.
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Table 5.1: Parameters settings

Parameter Value Description
τV A 0 Time constant in Eq. (5.3)
τDA 20 Time constant in Eq. (5.4)

wMi,V Bi 0.5
Weight from neuron V Bi

to muscle Mi in Eq. (5.5)

wMi,DBi 0.5
Weight from neuron DBi

to muscle Mi in Eq. (5.6)

wMi,V Ai 0.5
Weight from neuron V Ai

to muscle Mi in Eq. (5.5)

wMi,DAi 0.5
Weight from neuron DAi

to muscle Mi in Eq. (5.6)

wMi,V Di -0.5
Weight from neuron V Di

to muscle Mi in Eq. (5.5)

wMi,DDi -0.5
Weight from neuron DDi

to muscle Mi in Eq. (5.6)
A 0.6011 Magnitude of φ in Eq. (5.11)
ω π rad/s Speed of sinusoid wave in Eq. (5.11)

φstart -π/8 rad Starting phase in Eq. (5.11)
φLag 0.7854 rad Phase lag in Eq. (5.11)
Av 0.1777 Magnitude of φv in Eq. (5.13)
l 0.1 mm Length of each link in Eqs. (5.21)–(5.24)
φ0 π/4 rad φ0 at the beginning time in Eq. (5.56)

d 0.1 mm
Height of the muscle segment in

Eqs. (5.21)–(5.24) and shown in Fig. 5.8
τ 2 Time constant of CPG in Eq. (5.2)

Aθ,i 0.4601 Magnitude of θ in Eq. (5.26)
Aθv,i 0.2513 Magnitude of θv in Eq. (5.27)

∆wMVi
1

Weight from VV B,i to the left
side muscle in Eqs. (5.39) and (5.40)

∆wMDi
1

Weight from VDB,i to the right
side muscle in Eqs. (5.41) and (5.42)

aS -0.285 Parameter of SLFs in Eq. (5.61)
bS 20 Parameter of SLFs in Eq. (5.61)
cS 3 Parameter of SLFs in Eq. (5.61)
dS 0.285 Parameter of SLFs in Eq. (5.61)

xj,max 20 Maximum value in Eq. (5.63)
xj,min -20 Minimum value in Eq. (5.63)
N 20 Population size for Eq. (5.63)
Cr 0.5 Crossover rate for Eq. (5.66)

VMax 0.57 Largest value for VOUT in Eq. (5.43)
Nt 200 Number of training data in Eq. (5.64)
∆τ 0.25 s Time delay for each segment

wDD,V B 1 Fig. 5.6 weight from V B to DD
wV D,DB 1 Fig. 5.6 weight from V D to DB
wV D,DA 1 Fig. 5.6 weight from V D to DA
wDD,V A 1 Fig. 5.6 weight from DD to V A
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5.6 Testing Results

In this section, we test 1) the lengths of muscles in four quadrants, which vary

periodically; 2) behaviors of forward and backward locomotions; 3) shape of C. elegans

during locomotion in 3D; 4) finding food; 5) avoiding toxin; 6) finding food and avoiding

toxin simultaneously. Parameter settings are listed in TABLE 5.1. All the tests are

conducted in Matlab 2011(b) under the Windows 7 operating system.

5.6.1 Periodically Changing of Muscle Length

0 0.5 1 1.5 2
0.5

1

1.5

Period

0 0.5 1 1.5 2
0.5

1

1.5

Period

Right-down

Left-up

Left-down

(b)

(a) Magnitude (  0.1 mm)

Magnitude (  0.1 mm)

Right-down

Left-down

Left-up

Right-up

Right-up

Figure 5.10: Periodically changing of the lengths of muscles. (a) The four muscles vary
in the first muscle segment. (b) The four muscles vary in the second muscle segment.

The lengths of four quadrants muscles varying within 2 periods are show in Fig. 5.10.

Fig. 5.10 (a) shows the changes of four muscles in the first muscle segment, which control

the joint 1. Fig. 5.10 (b) shows the changes of four muscles in the second muscle segment,

which control the joint 2. At t = 0, the configuration of C. elegans is shown in Fig. 5.7.

For joint 1 at t = 0, the lengths of right-up and right-down muscles are identical, and
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it is the same as the lengths of left-up and left-down muscles, as shown in Fig. 5.10 (a).

At this time, the muscles on the right side are longer than the muscles on the left side.

This makes the link 1 and link 2 have an angle θ1 6= 0 on the x-y plane but θv,1 = 0 on

the x-z plane. For the joint 2, which is bent heavily on the x-y plane at time t = 0, the

right side muscles are longer than the left side muscles that produces the biggest angle

of θ2 on the x-y plane, as shown in Fig. 5.10 (b). On both left and right sides, the upper

muscles are longer than the down muscles. Thus θv,2 > 0 on the x-z plane, and the joint

2 lifts up from the ground.

The muscles change periodically with the same period of CPG, and the phase lag

between two consecutive links is one forth of a period. For instance, the changes of the

lengths of muscles for segment 2 are one forth period delayed after segment 1, as shown

in Figs. 5.10 (a) and (b).

5.6.2 Forward and Backward Locomotion

The 3D forward locomotion behavior of C. elegans is shown in Fig. 5.11. The period

of one sinusoid wave is 2s. The speed is 0.4 mm/s and the start point is (-0.5, 0, 0.02).

Figs. 5.11 (a), (b), and (c) show the appearances of C. elegans at time t=0 s, t=1 s,

and t=2 s, respectively. These plots verify that our model can well perform the forward

locomotion behaviors in 3D.

For the backward locomotion, the signal is transmitted from tail to head. We plot

the outlines during backward locomotion at time t=0 s, t=1 s, and t=2 s, as shown

in Figs. 5.12 (a), (b), and (c), respectively. From Fig. 5.12, we can observe that the

proposed model also well performs the backward locomotion in 3D.
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Figure 5.11: The 3D forward locomotion behavior of C. elegans. (a) The shape of C.
elegans when it begins to move at the point (-0.5, 0, 0.02) at t = 0 s. (b) The shape of
C. elegans at t = 1 s. (c) The shape of C. elegans at t = 2 s. During one period (2 s), it
is obviously that some body parts lift up during forward locomotion.

5.6.3 The Shape During Locomotion

We capture the images of C. elegans model during locomotion, as shown in Fig. 5.13.

From Fig. 5.13 (a), we can observe that C. elegans lifts up parts of its body . Joints 2,

6, and 10 are most bent on the x-y plane and lift up highest on the x-z plane. Joints 0,

4, 8, and 12 touch the ground. Fig. 5.13 (b) is the projection of Fig. 5.13 (a) on the x-y

plane. Here we can see that it shapes as a sinusoid wave on the x-y plane as the real
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Figure 5.12: The 3D backward locomotion behavior of C. elegans. (a) The shape of
C.elegans at the beginning time t = 0 s. (b) The shape of C.elegans at t = 1 s. (c) The
shape of C. elegans at t = 2 s. From these figures, it is obviously that C. elegans lifts up
parts of its body during backward locomotion.

worm does. Fig. 5.13 (c) is the projection of Fig. 5.13 (a) on to the x-z plane. Fig. 5.13

(c) verifies that the testing result of our model is in accordance with our theory that the

bent parts on the x-y plane lift up on the x-z plane.
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Figure 5.13: The shape of C. elegans during locomotion. (a) The outline of C. elegans
at a random time. Joints 2, 6, and 10 are bent mostly and lifted up highest. Joints 0, 4,
8, and 12 touch the ground. (b) The projection of (a) on the x-y plane. It appears as a
formal sinusoid wave. c) The projection of (a) on the x-z plane. Some body parts of C.
elegans lift up to the ground.

144



Chapter 5. Modeling the 3D Undulatory Locomotion Behavior of C. elegans Based on
the Artificial DNN

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

x ( × 0.1 mm)

y 
( 

×
 0

.1
 m

m
)

Food

Start

End

Start
Start

Figure 5.14: Testing results for food attraction. One food source is located at (0, 0) with
Gaussian distribution. C. elegans starts at three different locations (−30, 30), (0,−30),
and (40, 40), respectively. It moves towards the food source and finally moves around it.

5.6.4 Finding Food

In order to test whether our model can perform the task of finding food, we put the

C. elegans into the scenario in which a food source is located at (0, 0) with Gaussian

distribution. By overlooking, the trajectories are shown in Fig. 5.14. C. elegans starts at

three different locations (−30, 30), (0,−30), and (40, 40), respectively. It moves towards

the food source and finally moves around it. From the testing result, we can observe that

C. elegans has successfully achieved the task of finding food. The movement similarity

between our model and the experiment results is discussed in Section 5.7.
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Figure 5.15: Testing results for toxin avoidance. Nine toxin resources are distributed
nonuniformly as a 3 × 3 grid. The locomotion model starts at three different positions
(0, 20), (20, 30), and (10,−20), respectively. It successfully finds the zero toxin concen-
tration places to settle down.

5.6.5 Avoiding Toxin

To test our model for toxin avoidance, nine toxin sources are distributed nonuni-

formly as a 3 × 3 grid, as shown in Fig. 5.15. In this figure, each dot indicates a toxin

source and each circle line denotes the boundary of its corresponding toxin distribution.

The locomotion model starts at three different positions (0, 20), (20, 30), and (10,−20),

respectively. It escapes the toxin sources successfully by a series of turns and arrives at

the places without toxin concentration. From the trajectories in Fig. 5.15, it is obvious

that the model can escapes the toxin area where the toxin distributions are not uniform.

5.6.6 Finding Food and Avoiding Toxin Simultaneously

To test whether our model can perform the task of finding food and avoiding toxin

simultaneously, we construct the scenario with nine sources distributed as a 3 × 3 grid.

As shown in Fig. 5.16 (a), except the asterisk located at (−30, 0) is the food source,
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Figure 5.16: Testing results for finding food and avoiding toxin simultaneously. (a) Nine
sources are distributed as a 3×3 grid. One food source (asterisk) is located at (−30, 0) and
other dots denote the toxin sources. C. elegans starts at two different locations (0, 15) and
(30,−10), respectively. It successfully escapes from the toxin sources. Furthermore, once
C. elegans smells the food concentration (starting from (0, 15)), it navigates itself towards
the food source and finally moves around it. (b) The zoomed image of the rectangular
area in (a). It shows the Ω turn in 2D. (c) The zoomed image of the rectangular area
in (a). It shows the Ω turn in 3D. It can be observed that some parts of the body lift
above the ground.
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other eight dots denote the toxin sources. The circular lines are the boundaries of food

and toxin concentrations. In our test, C. elegans starts at two different locations (0, 15)

and (30,−10), respectively. From the trajectory starting from (30,−10), it is obvious

that C. elegans escapes from the toxin by passing the boundary areas where the toxin

gradient and magnitude are relatively low. Finally C. elegans successfully escapes from

the toxin and settles down at the places where no toxin concentration exists. When

starting from (0, 15), C. elegans escapes from the toxin sources first. Once it smells the

food concentration, it moves towards the food source and finally surrounds it.

The zoomed image of the rectangular area in Fig. 5.16 (a) is shown as Fig. 5.16 (b)

and Fig. 5.16 (c) in 2D and 3D, respectively. It is obviously that our model well mimics

the Ω turn, as shown in Fig. 5.16 (b). Furthermore, the 3D body shape of omega turn

is shown in Fig. 5.16 (c). From this figure we can observe that some parts of body lift

above the ground, which is analogous to the real C. elegans, as shown in Fig. 5.1.

5.7 Comparative Analysis

5.7.1 Validation by Analyzing the Video of the Real Worm

Head 

Tail 

Figure 5.17: Image of actual C. elegans body are divided into 12 links in computer
software to analyze.
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Figure 5.18: Images of C. elegans during fast forward locomotion at time t=0, 1, 2 s.
The body shape is 1.5 periods of sinusoid wave length, and one periods time is 2 s

The video of actual C. elegans is provided by Yong Loo Lin School of Medicine,

National University of Singapore, which can be accessed at website [109]. C. elegans is

enlarged 50 times in the video. A software, Nandub, is used to transfer the video to

image files in JPG format with 30 frames per second. These images are imported into

the image processing software, Scion Image, for analyzing the velocity, joint angle, and

body shape.

The velocity of the head is computed by using the Scion Image. The velocity depends

on the worm size and the undulatory frequency. From our analysis, the velocity of actual

worm is between 0.2 mm/s and 0.8 mm/s, which is close to [40]. For the joint angle

variations, we divided the C. elegans into 12 segments, as shown in Fig. 5.17, and use

the tool of the Scion Image to calculate the angles. The absolute value of angles varies

from about 0 rad to 0.44 rad.

Finally, we select a C. elegans in high-speed forward locomotion, as shown in Fig. 5.18.

From Figs. 5.18 (a), (b), and (c), we can observe that C. elegans shapes its body to be

1.5 periods of sinusoid wave length, and one period time is 2s. These biological results

verify that the performance of the locomotion model does not lose the characters of real

C. elegans, such as the body shape and the undulatory period.

149



Chapter 5. Modeling the 3D Undulatory Locomotion Behavior of C. elegans Based on
the Artificial DNN

X
X

Y

Y

A B B

t

t+T/8
t+2T/8

t+3T/8

t+6T/8
t+7T/8

t+Tt+4T/8

t+5T/8

t+2T/8

t+2T/8
t t+T/8

t+2T/8

t+3T/8

t+3T/8

t+3T/8

t+4T/8

t+4T/8

t+4T/8

t+5T/8

t+5T/8

t+5T/8

t+6T/8

t+6T/8

t+6T/8

t+7T/8

t+7T/8

t+7T/8

t+T

t+T

t+T

(a)
(b)

Track aTrack b

Track c

Track d

dorsal side

dorsal side

ventral side

ventral side

 

Figure 5.19: Analysis of the turning behaviors. (a) The decision making of the model
happens at Point A and B. Track a is the trajectory of straightly forward locomotion.
Track b is the trajectory of turning starting at Point A. The turning degree is decided by
VOUT . If VOUT is large enough, Ω turn happens, otherwise the slightly turning happens.
(b) Track c is the trajectory of straightly forward locomotion. Track d is the trajectory
of turning starting at Point B. In this case, Ω turn cannot happen.

5.7.2 Turning Behaviors Analysis

From the trajectories in Fig. 5.14, Fig. 5.15, and Fig. 5.16 (a), there are two types

of turning behaviors can be observed: the slight turn and the sharp turn. The turning

behaviors are generated by the turning signal (VOUT ) of the head DNN. In this subsection,

we analysis how VOUT produces the turning behaviors.

For forward locomotion, the undulatory wave, which is the combination of the outputs

of CPG and VOUT , is transmitted from the head to tail. As shown in Fig. 5.19, tracks

a and c show the trajectories of joint 1 during locomotion without turning. According

to the turning mechanism, the locomotion model makes the turning decision when joint

1 at the points A and B. If it turns at point A, the turning trajectory is shown as track

b in Fig. 5.19 (a). If it turns at point B, the turning trajectory is shown as track d in

Fig. 5.19 (b).

If the model needs turning at point A, as shown in Fig. 5.19 (a), VOUT is a constant

from t to t+ T/2. According to Eq. (5.50), VOUT 6= 0 yields more turning towards the
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ventral side. For example, in track b the model should turn more ∆θ than its original

direction at each time step T/8. Thus, from point A to point B, the model turns 4∆θ

more than its original direction. If it still needs turning at the point B, following the

same way, within the next T/2, it also turns 4∆θ more than its original direction. Above

all, for a whole period T , the maximum direction change is 8∆θ = 8AθVOUT according

to Eq. (5.50). By substituting the values of Aθ and VOUT in Table. 5.1, the maximum

direction change of the model is 170◦ within one period T .

The shapes of the model are different when it turns at point A and point B. When

turning at point A, the ventral side muscle will contract more severely than its original

contraction since VOUT 6= 0. If VOUT is small, the turning angle is small, which yields

the slight turn. If VOUT is large, the great turning angle can yield the Ω turn, as shown

in Fig. 5.19 (a). When turning at point B, the model cannot produces Ω turn. This

is because when turning at time t and point B, as shown in Fig. 5.19 (b), the ventral

side muscle should relax, and the dorsal side muscle should contract. The turning signal

VOUT can reduce the relaxing of the ventral side muscle, and decrease the contraction of

the dorsal side muscle. Thus, the slight turn towards the ventral side happens. However,

VOUT is not large enough to make the contraction of the dorsal side muscle to be highly

relaxed. Thus, Ω turn towards the ventral side could not happen in this case.

5.7.3 Trajectory Analysis

In this subsection, we analyze the trajectories of the locomotion model by following

the method provided in [110]. As said in [110], all the undulatory locomotion trajectories

151



Chapter 5. Modeling the 3D Undulatory Locomotion Behavior of C. elegans Based on
the Artificial DNN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) A/q=0.5 (b)  A/q=1

(c) A/q=1.38 (d) A/q=2.1 

Ventral side 

Dorsal side 

Dorsal side 

Ventral side 

Ventral side 

Ventral side 

Dorsal side Dorsal side 

Figure 5.20: Trajectory analysis. (a) Trajectory of turning with small magnitude. (b)
Trajectory of the straight forward locomotion. (c) Trajectory of the slight turn. (d)
Trajectory of the Ω turn.

of C. elegans can be approximated by a set of coupled second-order differential equation,

d2x

ds2
= −κ

dy

ds
, (5.70)

d2y

ds2
= κ

dx

ds
, (5.71)

with the initial conditions

x(s = 0) = x0,
dx(s)

ds

∣∣∣∣
s=0

= tx0
, (5.72)

y(s = 0) = y0,
dy(s)

ds

∣∣∣∣
s=0

= ty0 , (5.73)

where (x0, y0) is the position of the worm tail at the beginning of the trajectory and the

tangent unit vector, t̂0 = (tx0
, ty0), describes the orientation of the trajectory at t = 0.

In Eqs. (5.70) and (5.71),

κ(s) = As sin(qss+ φs), (5.74)

where As is the magnitude, qs is the wavevector, and φs is the phase of the wave.
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The different values of As/qs yield different shapes of trajectories. The range of As/qs

is between 0.6 and 3.0 for [110], and between 0.5 and 2.1 for our case. A/q = 0.5, as

shown in Fig. 5.20 (a), indicates the trajectory of turning at Point B in Fig. 5.19 (b). In

this case, VOUT , which inhibits the contraction of dorsal side muscles, yields the small

magnitude of curve towards the ventral side. A/q = 1, as shown in Fig. 5.20 (b), indicates

the trajectory of the straight forward locomotion. Fig. 5.20 (c) with A/q = 1.38 and

Fig. 5.20 (d) with A/q = 2.1 show the trajectories of the turning at Point A in Fig. 5.19

(a). In the two cases, VOUT enlarges the contraction of ventral side muscles, which yields

the large magnitude of curve towards the dorsal side. A/q = 1.38 indicates the slight

turning, and A/q = 2.1 indicates the Ω turning.

From the analysis we can note that our results are in accord with the results in [110],

which could verify the validity of the locomotion model in straight forward locomotion,

slight turn, and Ω turn.

5.7.4 Head DNN Analysis

Figure 5.21: Two patterns in the optimized networks. For both patterns, direct connec-
tions from the input neurons to the output neuron exist, and the self-connection exists for
the interneuron. The difference between them is the signs of the weights for interneuron.

In our work, we have optimized 30 head DNNs using DE. By following the method of
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[25], we first find out the “all-off” neurons that are inactive and the “all-on” neurons that

are saturated active. Next, we remove these “all-off” neurons from the networks and move

these “all-on” neurons to their downstream neurons as bias. In this way, these networks

are simplified to be structured as four neurons (two sensory neurons, one interneuron,

and one output neuron). Two patterns are found among these resultant networks, as

shown in Fig. 5.21 (a) and (b). The direct connections from the input neurons (ASE

and ASH) to the output neuron (OUT) are preserved in both patterns, and the self-

connection exists for the interneuron (NI). The difference between two patterns is the

signs of the weights for the interneuron, which are opposite. Biologically, the positive

and negative neuronal connections are existing in the brain of animals [111].

Figure 5.22: Two features are extracted among the simplified networks. The feature in
(a) functions as a differentiator, and the feature in (b) functions as the time delay.

Furthermore, as shown in Figs. 5.22 (a) and (b), two features are extracted among

the simplified networks, which are the same as the results of [47] and [25]. The feature in

Fig. 5.22 (a) functions as a differentiator, and the self-feedback in Fig. 5.22 (b) functions

a time delay. For example, as shown in Fig. 5.21 (b), the signal coming from the sensory

neuron ASE goes straightly to the output neuron where it is deducted by the delayed

signal of ASE that passes through the interneuron NI. In this way, the differentiation

information of dC(t)/dt can be obtained.
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5.8 Conclusion

In this chapter we investigate the undulatory locomotion of C. elegans and a 3D

locomotion model is developed to perform the forward and backward locomotion, as

well as the chemotaxis behavior of finding food and avoiding toxin. First, according to

the biological muscle structure we use 12 multi-joint rigid links to represent the body.

Each joint stands for the center of its corresponding muscle segment, and is controlled

by four quadrants muscles. Second, the nervous system of C. elegans is depicted as a

DNN, which is divided into three parts: the head DNN, CPG, and the body DNN. The

head DNN produces the turning signal, and CPG generates the sinusoid wave. The

function of body DNN is to transmit the sinusoid wave throughout the body as well

as to muscles. Third, muscle models are constructed, in which the lengths of muscles

vary according to the outputs of DNN. Fourth, the joint angles on the x-y plane and the

x-z plane are controlled by the lengths of muscles, and the relation between them are

determined. Furthermore, the relation between the lengths of muscles and outputs of

DNN is known, so we can use DNN to control the joint angles. Fifth, the decision making

of the chemotaxis behavior is approximated by SLFs, which are learned by the head

DNN using DE. In the testing part, the proposed model performs well for both forward

and backward movements in 3D. Furthermore, it successfully achieves the chemotaxis

behaviors of finding food and avoiding toxin by performing a series of slight turns and

Ω turns. At last, the quantitative analyses are provided to verify the effectiveness of

our model by comparing with the experiment data of real C. elegans. In next chapter,

the biological wire diagram of C. elegans will be investigated directly to perform these

undulatory locomotion behaviors.
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Modeling the Undulatory

Locomotion Behavior of C.

elegans Based on the Biological

Wire Diagram

In Chapter 5, we have investigated the 3D undulatory behavior of C. elegans based

on the artificial DNN. In this chapter, instead of using the artificial DNN, we will explore

the undulatory locomotion behavior directly based on the biological wire diagram. As an

extended work of Chapter 5, our objective is to model the chemotaxis behavior based on

the undulatory locomotion. There are two issues that are addressed in this chapter: (1)

decision making for chemotaxis and (2) coordination of motor neurons and muscles for

undulatory locomotion. Our model is tested in different simulated environments for the

chemotaxis behavior. Furthermore, the quantitative analysis is conducted by comparing

with the experimental result and other related work. At last, a worm-like robot has been

constructed to perform the undulatory behavior based on the theoretical results.
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Figure 6.1: Head wire diagram. Three ellipses represent the sensory neurons. Circles
represent the interneurons. Diamonds represent the command neurons. Rectangles rep-
resent the motor neurons.

6.1 Biological Model for Undulatory Locomotion

6.1.1 Head Wire Diagram

By following the same method in Section 3.1.1, we extract the neural wire diagram

of C. elegans for undulatory locomotion, as shown in Fig. 6.1. Three sensory neurons

(ellipses), ASEL, ASER, and ASH, function as input neurons. AVD, AVB, AVA, and

PVC are four command neurons (diamonds). Twelve circles indicate the interneurons and

the rectangles represent the motor neurons. The prominent difference between Fig. 6.1

and other biological wire diagrams in Chapter 3 and Chapter 4 involves two aspects. One

aspect is that six motor neurons, RMD(D/V), SMB(D/V), and SMD(D/V), are involved

157



Chapter 6. Modeling the Undulatory Locomotion Behavior of C. elegans Based on the
Biological Wire Diagram

in Fig. 6.1. These neurons control the head and neck muscles and play the critical role

in undulatory locomotion [18]. The second aspect is that two motor neurons DB and

VB are expanded to be VBi (i = 1 . . . 11) and DBi(i = 1 . . . 7) in Fig. 6.1.

The function of the head wire diagram is to achieve the decision making function for

chemotaxis. Furthermore, it also controls the oscillation of muscles in the head and neck.

These contents will be discussed in Section 6.2.

6.1.2 Motor Neurons and Muscles

By using the data provided in [1, 83, 112], we extract the wire diagram of motor

neurons and muscles for forward locomotion, as shown in Fig. 6.2. Command neuron

AVB has the connections to VBi (i = 1 . . . 11) and DBi(i = 1 . . . 7), as well as PVC

connects VBi (i = 3 . . . 11) and DBi(i = 2 . . . 7). Interneuron DVA has the connections

to DBi(i = 1 . . . 7) but does not have the connection to the ventral side motor neurons

VBi (i = 1 . . . 11). Six motor neurons, SMD(D/V), SMB(D/V) and SMD(D/V) that

control the head and neck muscles do not connect the command neurons AVB and PVC,

but they receive the synaptic inputs from head interneurons, as shown in Fig. 6.1. Each

motor neuron (DB, DD, VB, VD) has the connection to muscles. VB and DB that are

controlled by command neurons AVB and PVC activate the muscles, whereas VD and

DD that only receive the signals from VB and DB inhibit the muscles. It is interesting

that motor neurons in the same group are not fully connected. For instance, VB7 and

VB8 are not connected between segments 8 and 9, where the vulva exists anatomically.

This disconnection supports the hypothesis that the motor neurons alone are not the

primary organs to propagate the undulatory wave along the body [14, 103]. The method

to generate and propagate the undulatory wave by muscles and motor neurons will be

discussed in Section 6.2.
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Figure 6.2: Wire diagram of motor neurons and neuromuscular connections of C. elegans
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6.2 Undulatory Locomotion Modeling

6.2.1 Sensory Neurons

The most recent research results in [54, 56, 57] indicate that there exists two types

of sensory neurons for the chemotaxis: on-cell and off-cell. On-cell is the sensory neuron

that only actives when outside stimulus increases, whereas off-cell only actives when

outside stimulus decreases. It is well known that ASEL is the on-cell and ASER is the

off-cell [54].

The mechanisms of “on-cell ” and “off-cell” achieve the decision making function

for chemotaxis. The simplest case is that the going or turning behaviors, in which the

presence or absence of the behavior under investigation is dictated by the presence or

absence of the stimulus and the internal state of the animal. In our work, we adopt the

sensory neuron model from [56].

Von = σs(D(t)), (6.1)

Voff = σs(−D(t)), (6.2)

where Von is the voltage of on-cell and Voff is the voltage of the off-cell. D(t) = CN(t)−

CM(t), where CN(t) is the average concentration over the contiguous interval [t−N, t],

and CM(t) is the average concentration over the interval [t − (N +M), t − N ]. N and

M are the durations of the two intervals. σs(·) is the activation function

σs(x) =
A

1 + exp(−ks(x+ x0))
, (6.3)

where A is the amplitude, and ks controls the steepness, and the threshold x0 is a

constant. From Eqs. (6.1) and (6.2) we can observe that the logics of on-cell and off-cell
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are opposite.

Except the sensory neurons ASEL and ASER that are responsible for the attractant

(food), another sensory neuron ASH is responsible for the repellent source (toxin). Once

C. elegans smells the repellent concentration, ASH will be activated to produce the

turning behavior such as slight turn or Ω turn. The activation function for ASH is

VASH = σASH(Ctx(t)), (6.4)

where Ctx(t) is the toxin concentration, and σASH(·) is the activation function having

the same form and parameter setting as Eq. (6.3).

6.2.2 CPG

The mechanism to generate the undulatory wave is another important aspect for

the locomotion of C. elegans. The basic method to generate the undulatory locomotion

pattern is to use a CPG. The research work [103] mentioned that there should be a

pattern generator near the head to generate the rhythmic bending of the most anterior

segment. Another research work in [61] found that there existed two potential CPGs

in the head: AIZ-AIA-AWA-AIZ and RIB-RIG-URY-RIB. Biologically, AIZ, AIA, and

AWA have the specific functions that are not suitable for the CPG [87, 113, 114, 115, 116].

Thus in our model we adopt the last choice by using neurons RIB, RIG, and URY to

serve as the CPG.

Following Eq. (5.2), the CPG for the biological undulatory locomotion model is

τb
�

Vb = AbVb, (6.5)
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where

τb =




τ
RIG

0 0

0 τ
RIB

0

0 0 τ
URY


 , (6.6)

Ab =




0 −2π 0

2π 0 0

1 0 −1


 , (6.7)

Vb =




VRIG

VRIB

VURY


 . (6.8)

By choosing the initial values V
RIG

(0) = 1, V
RIB

(0) = 0, and τ
RIG

= τ
RIB

, the inner

periodic signal generators V
RIG

and V
RIB

can produce co-sinusoidal signals, V
RIG

=

cos(ωt) and V
RIB

= sin(ωt), where ω = 2π/τ
RIG

. V
URY

can generate either cos(ωt)

or sin(ωt) wave by adjusting τ
URY

.

6.2.3 Motor Neuron

The connection of motor neurons is shown in Fig. 6.2. B-type neurons are activation

neurons, whereas D-type neurons are inhibition neurons. According to [50], these motor

neurons are not spiking neurons. Furthermore, they can receive the feedback of body

shape to generate the undulatory wave and propel it forward or backward [14, 32, 103].

This feedback mechanism is called proprioception [103], and the proprioceptive coupling

between neurons and muscles are transduced by B-type motor neurons. As suggested in

[103], the bending of anterior segment directly determines the activity of posterior B-type

motor neurons, and the potential of B-type neuron positively determines the activities

of its connected muscles. Thus, it can be concluded that the bending of anterior body

regions dictates the bending of posterior body regions during forward movement. B-type
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neurons are modeled by following [32]

CB
dVB

dt
= −GB(VB − Erev)− Ishape + IAVB , (6.9)

where CB is the cell’s membrane capacitance; Erev is the cell’s effective reversal poten-

tial; GB is the total effective membrane conductance. For motor neuron i, Ishape,i =

∑n
j=1w

Pro
ij σpro

j (lj) is the proprioceptive feedback from the shape of its connected mus-

cles. wPro
ij is the proprioception weight from muscle j to motor neuron i. lj is the length

of muscle in segment j. σpro
j (·) is a sigmoid function

σpro(l) =
Ap

1 + exp(−kp(l − l0))
+ bp, (6.10)

where the steepness parameter kp and the threshold l0 are two constants. In Eq. (6.9),

IAV B = GAV B(VAV B − VB) is the command neuron input. AVB in our model functions

as switching on or off the motor neurons for forward locomotion.

For D-type motor neurons, we use the model in [32] directly.

CD
dVD

dt
= −GD(VD − Erev)− Isyn, (6.11)

where Isyn = σD(Vpre) is the synaptic input from B-type neurons. Vpre is the summation

of the presynaptic voltages and σD(Vpre) is the sigmoid function that has the same form

and parameter setting as Eq. (6.10).

6.2.4 Muscle

Biological Function

The anatomical muscle structure of C. elegans has been discussed in Section 5.2.1

and shown in Fig. 5.2. It is well known that the periodical contraction and relaxation of
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the muscles generate the undulatory wave, but how this wave being propagated is still

an open issue.

In Ascaris, the body wall muscles are electrically coupled by gap junctions and appear

to propagate the undulatory wave independently of the nervous system [117]. Similarly,

it may not be surprised that C. elegans muscles have a similar pattern generating (or

pattern modulation) role in locomotion. Thus, for a recent model in [61], the strong

gap junction coupling is adopted to propagate the undulatory signal through the body.

However, two latest experimental results indicate that the gap junctions between muscles

are insufficient to propagate bending signal between neighboring body regions [95, 103].

Without using the muscles, another choice for the wave propagation is the motor neurons

since they are connected by gap junctions. However, from the biological wire diagram,

as shown in Fig. 6.2, these motor neurons are not fully connected, e.g. VB7 and VB8.

So it is still a problem by using the motor neurons alone to propagate the undulatory

wave.

Recently, a research work [103] has uncovered this issue. It claims that except a

CPG near the head generates the undulatory wave of the most anterior segment, the

proprioceptive coupling between muscles and motor neurons also can generate and prop-

agate the undulatory wave. The bending of one body region requires the bending of

its anterior neighbor and the muscle activity is positively correlated with the curvature

of adjacent anterior neighbors. B-type motor neurons are directly responsible for this

proprioceptive coupling. The phase lag of undulatory wave is produced by the neuro-

muscular delay, which is yielded by the synaptic transmission and/or the limiting speed

of muscle contraction.
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Muscle Modeling

Ventral (dorsal) muscle cells receive both excitatory and inhibitory inputs from VB

(DB) and VD (DD) motor neurons, respectively. By following [95], the inputs to the

ventral side and dorsal side muscles are

IV,i =

11∑

j=1

wmV B,ijVV B,j+

13∑

j=1

wmV D,ijVV D,j, (6.12)

ID,i =
6∑

j=1

wmDD,ijVDD,j+
7∑

j=1

wmDB,ijVDB,j , (6.13)

where VV B,j , VV D,j, VDD,j and VDB,j are the voltages of motor neurons V Bj, V Dj , DDj

and DBj, respectively. wmV B,ij , wmVD,ij, wmDD,ij and wmDB,ij are the connection

weights from neurons V Bj, V Dj , DDj and DBj to muscle cell i, respectively.

The activation states of muscles are represented by the variable AD
M,i and AV

M,i for

the dorsal side and ventral side muscles in segment i, respectively [95],

τM
dA

(D,V )
M,i

dt
= I(V,D),i −A

(D,V )
M,i , (6.14)

where τM is the time constant, and I(V,D),i comes from Eqs. (6.12) and (6.13). The muscle

activation state decides the muscle length. We modify Eqs. (5.7)-(5.10) to represent the

relation between the muscle activation state and the muscle length.

lD,i = l0 + σl(A
D
M,i), (6.15)

lV,i = l0 + σl(A
V
M,i), (6.16)

where lD,i and lV,i are the lengths of muscles in segment i on the dorsal side and ventral

side, respectively. l0 is the muscle length when relaxing.
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The muscle activation function σl(·) is

σl(x) =
Al

1 + exp(−kl(x−A0
M ))

+ bl, (6.17)

where Al, kl, A
0
M and bl are constants should be determined and their values are provided

in Section 6.3.

6.2.5 Body Segment

Before shape change

After shape change
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Figure 6.3: (a) One body segment without body changing. (b) One body segment with
body changing.

In this chapter, the body of C. elegans is divided into 10 segments according to the

muscle structure and represented as a multi-joint rigid link system with 12 joints and 11

links, as shown in Fig. 5.2. Each segment without shape changing is shown in Fig. 6.3(a).

During locomotion, the muscle segment will change its shape, as shown in Fig. 6.3(b).

Thus, we need to explore how the body shape changing influences the joint angle θ.
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As shown in Fig. 6.3(a), for the segment i, the dorsal side muscle is lD,i in length

and the ventral side muscle is lV,i in length, represented as A′C ′ and A′′C ′′, respectively.

The original lengths of lD,i and lV,i are equal to l0. During locomotion, muscles change

their lengths, so the shape of muscle as shown in Fig. 6.3(a) will change to the shape as

shown in Fig. 6.3(b). Let the length of each link be l0, so in Fig. 6.3(b) |AB| = l0
2 and

|A′A| = d
2 . It can be proved that ∠DBC = ∠A′OB′ = θi, and drawing D′A//B′B yields

∠A′AD′ = θi and |AB| = |D′B′| = l
2 . Thus,

lD,i = |
⌢

A′C ′| = 2|
⌢

A′B′|

= 2(|
⌢

A′D′|+ |
⌢

D′B′|)

= 2(
d

2
θi +

l0
2
)

= l0 + dθi. (6.18)

Following the same way, the relation between lV,i and θi is:

lV,i = l0 − dθi. (6.19)

After resolving Eqs. (6.18) and (6.19), we obtain

θi =
lD,i − lV,i

2d
. (6.20)

From Eq. (6.20), we can observe that the joint angle θi is determined by the difference

of muscle length between the dorsal and ventral muscles. Furthermore, lD,i and lV,i

are determined by the outputs of motor neurons, referring Eqs. (6.12)-(6.16). Once

the connection weights from motor neurons to muscles are determined, the muscles will

change their lengths according to the outputs of the motor neurons.
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6.3 Testing Results

In this section, we first provide the method to train our model and the parameter

setting. Next, we test the chemotaxis behavior of our model for finding food and avoiding

toxin in different scenarios. Third, the trajectories of our model are analyzed quantita-

tively by comparing with the experiment results. Last, the well trained wire diagrams

are simplified, and two patterns are found.

6.3.1 Optimization and Parameter Setting

Body Optimization

Because of the very complicated neuronal and neuromuscular connections, as shown

in Figs. 6.1 and 6.2, our first step for training is to simplify the wire diagram. From

the neuromuscular structure, we assume that two ventral side (dorsal side) muscles are

controlled by one motor neuron in the same muscle segment. In our model, the neuro-

muscular connections are listed in Table 6.1. As discussed in Section 6.2.5, we use 10

joint (refer to Fig. 5.2) to represent the 12 muscle segments. The last joint represents

the last three muscle segments since only one B-type motor neuron (DB7) controls these

dorsal side muscles, as shown in Fig. 6.2.

Table 6.1: Neuromuscular connection

Joint Muscle segment Ventral muscle Dorsal muscle

1 1 RMDV RMDD

2 2 SMBV SMBD

3 3 SMDV SMDD

4 4 VB1 VD1 VD2 DB1 DD1

5 5 VB2 VD3 DB2 DD2

6 6 VB3 VD4 DB3 DD3

7 7 VB4 VB5 VD5 VD6 DB4 DD4

8 8 VB6 VB7 VD7 VD8 DB5

9 9 VB8 VB9 VD9 VD10 DB6 DD5

10 10,11,12 VB10 VB11 VD11 VD12 VD13 DB7 DD6
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To propagate the undulatory wave from head to tail, the motor neurons receive the

curving status of their anterior muscles and active their connected muscles in current

muscle segment. The curving status of muscles in the current segment can be sensed

by the posterior motor neurons, which active the posterior muscles. In this way, the

undulatory wave could be translated. For simplification, in our model each motor neuron

for segment i only receives the curving status of muscles in segment i− 1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

D(t) (mM/s)

O
ut

pu
t (

V)

on−celloff−cell

A

Figure 6.4: Activations of on-cell and off-cell according to temporal concentration dif-
ference.

Head Optimization

The head wire diagram in our model generates the undulatory wave and the turning

signal that are transmitted to the motor neurons. Three sensory neurons (ASEL, AS-

ER, ASH) as the input neurons receive the food (ASEL and ASER) and toxin (ASH)

concentrations. ASEL and ASH are on-cells, whereas ASER is off-cells. According to E-

qs. (6.1)-(6.3), these sensory neurons can compute the temporal concentration difference

by themselves. The activations of on-cell and off-cell following the temporal concentra-

tion difference are shown in Fig. 6.4. The output of on-cell (solid line) is positive when

D(t) (temporal concentration difference) is greater than 0. Otherwise it maintains to be

0. off-cell (dashed line) has the opposite logic to on-cell.
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The outputs of the three sensory neurons will be transmitted to their connected

interneurons and finally to the motor neurons. In our model, the head wire diagram

is a three-layer DNN. The input layer contains three sensory neurons and output layer

contains two motor neurons (RMDV, RMDD). Except for three interneurons (RIG, URY,

RIB) that function as CPG, others interneurons form the second layer. We use Eq. (5.1)

to be the activation function of these interneurons.

−1 −0.5 0 0.5 1
0

∆C
fo

(t) = −V
ASEL

(t)+V
ASER

(t)+V
ASH

(t) [mM]

D
fo

(t)
 [V

]

αfo + dfo

αfo · tanh(bfo ·∆Cfo(t) + cfo) + dfo

Figure 6.5: SLF for the chemotaxis behavior of C. elegans.

To achieve the decision making for chemotaxis, we construct the SLF to represent

the chemotaxis behavior of C. elegans, as shown in Fig. 6.5. SLF for finding food and

avoiding toxin is

Dfo(t) = αfo · tanh(bfo ·∆Cfo(t) + cfo) + dfo, (6.21)

where Dfo(t) is the desired output of SLF. αfo, bfo, cfo and dfo are parameters to control

the shape of SLF.

∆Cfo(t) = −VASEL(t) + VASER(t) + VASH(t), (6.22)
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where VASEL(t), VASER(t) and VASH(t) are outputs of sensory neurons ASEL, ASER and

ASH at time t, respectively. According to [54, 56, 57], ASEL and ASER cannot active

at the same time. For food attraction, when C. elegans is towards the correct direction,

on-cell ASEL will active to be a positive value VASEL(t). −VASEL(t) is a negative value

that suppresses the output of Dfo(t) to be zero, as shown in Fig. 6.5. Contrarily, when

C. elegans is towards the wrong direction, off-cell ASER will be activated to a positive

value, which generates a turning signal to the motor neurons. For avoiding toxin, once

the temporal toxin concentration difference is greater than zero, VASH(t) is a positive

value, which generates the turning signal since Dfo(t) > 0.

To train the head wire diagram, we adopt the method in Chapter 4 to construct the

training data. There are three inputs for the training data with the range [−2, 2] and

two outputs (target data) with the range [0, 1]. The head wire diagram is trained by

Differential Evolution (DE). The details of DE have been discussed in Section 5.5.1.

Other Parameter Setting

Except for the parameters obtained by DE, other parameters are obtained by trial

and error, which are listed in Table 6.2.

Table 6.2: Parameters setting

Parameter Value Description

M 1 s Time duration in Eq.(6.1)

N 1 s Time duration in Eq.(6.2)

A 1 Magnitude of activation function in Eq.(6.3)

ks 6.5 Steepness of activation function in Eq.(6.3)

x0 -1 Constant in activation function Eq.(6.3)

τRIG 2 Time constant for CPG in Eq.(6.6)

τRIB 2 Time constant for CPG in Eq.(6.6)

τURY 0 Time constant for CPG in Eq.(6.6)

CB 0.01 Time constant for motor neuron in Eq.(6.9)

GB 1 Membrane conductance in Eq.(6.9)

Erev 0 Constant for cell’s potential in Eq.(6.9)
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Ap 43.5
Magnitude of activation function for
proprioceptive feedback in Eq.(6.10)

kp 0.2
Steepness of activation function for
proprioceptive feedback in Eq.(6.10)

l0 1 mm
Original muscle length in

Eqs.(6.10), (6.15) and (6.16)

bp -21.75
Constant for proprioceptive feedback

activation function in Eq.(6.10)

τM 0.01
Time constant for muscle activation

function in Eq.(6.14)

Al 9.23
Magnitude of muscle activation

function in Eq.(6.17)

kl 0.2
Steepness of muscle activation

function in Eq.(6.17)

A0
M 0

Constant for muscle activation
function in Eq.(6.17)

bl -4.62
Constant for muscle activation

function in Eq.(6.17)

αfo 0.5 Parameters for the magnitude of SLF in Eq.(6.21)

bfo 6 Parameters for the steepness of SLF in Eq.(6.21)

cfo 2.7 Parameters for the location of SLF in Eq.(6.21)

dfo 0.5 Parameters for the location of SLF in Eq.(6.21)

6.3.2 Chemotaxis Behavior

To test the chemotaxis behavior of our model, we put it into three different scenarios:

(1) only one food source existed, and (2) both food and toxin existed with concentration

slightly overlapped and (3) heavily overlapped.

One Food Source

As shown in Fig. 6.6, one food source is located at (0, 0) with Gaussian distribution.

C. elegans starts at four different locations, (20, 60), (57, 28), (−20,−40) and (−42,−14),

respectively. It moves towards the food source and finally moves around it. From the

resting result, we can observe that C. elegans has successfully achieved the task of finding

food.
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Figure 6.6: Testing result in the scenario that only one food is existed.

Figure 6.7: Testing result in the scenario that food and toxin concentrations are slightly
overlapped.
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Food and Toxin Concentrations Slightly Overlapped

To test whether our model can perform the task of finding food and avoiding toxin

simultaneously, we construct the scenario with nine sources distributed as a 3×3 grid. As

shown in Fig. 6.8, except for the asterisk located at (−30,−30) denotes the food source,

other eight dots denote the toxin sources. The circular lines are the boundaries of food

and toxin concentrations. In the test, C. elegans starts at two different locations (30, 15)

and (20, 30), respectively. From the trajectory starting from (30, 15), it is obvious that

C. elegans escapes from the toxin and finally settles down at the place where no toxin

concentration exists. When starting from (20, 30), C. elegans escapes from the toxin

sources first. Once it smells the food concentration, it moves towards the food source

and finally surrounds it.

Food and Toxin Concentrations Heavily Overlapped

Figure 6.8: Testing result in the scenario that food and toxin concentrations are heavily
overlapped.
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In this test, we construct the scenario in which one food source and one toxin source

are located at (−30, 0) and (30, 0), respectively, with concentrations largely overlapped,

as shown in Fig. 6.8. The gradient distributions of the food and toxin concentrations

can refer to Fig. 4.14(b). When the food and toxin concentrations overlap heavily, the

best place for the worm is (−65.72, 0), which has been discussed in Section 4.6.2. When

starting from the point (−150, 0), C. elegans moves towards the food and finally settles

down around the target place at (−65.72, 0) (track A). When C. elegans starts from

(10, 90), where both food and toxin concentrations exist, the worm avoids the toxin and

approaches the food. Finally, it settles down at the target place (−65.72, 0) (track B).

When starting from the point (60, 20), where both toxin and food concentrations exist,

C. elegans avoids the toxin and navigates itself faraway from the toxin source. Finally,

it settles down at the place without toxin concentration (track C).

6.3.3 Quantitative Analysis

To analyze the performance of our model, we provide the quantitative analysis of

the trajectories by comparing with the results as shown in Fig. 5.20. Following the

same method in Section 5.7.3, we investigate the relations between: (1) turning rate and

concentration by following the method in [19]; (2) average curving rate and dC(t)/dt;

and (3) probability of turning and dC(t)/dt by following the method in [87]. The result

is shown in Fig. 6.9.

In Fig. 6.9 (a) we can observe the turning rate weakly depends on the food concen-

tration (solid line), and it is similar to the experiment result of [19] (dashed line). The

relation between average curving rate and dC(t)/dt is shown in Fig.6.9 (b) (solid line).

In this figure, the larger negative value of dC(t)/dt yields the larger magnitude of curving

rate. However, once dC(t)/dt is positive, the curving rate reduces to zero. This result is
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Figure 6.9: Quantitative analysis of the trajectories for food attraction. (a) The relation
between turning rate and concentration. (b) The relation between average curving rate
and dC(t)/dt. (c) The relation between probability of turning and dC(t)/dt.

similar to the experiment data of [87] (dotted line). The relation between probability of

turning and dC(t)/dt is shown in Fig. 6.9 (c). Following the method in [87], our result

can be approximated by formula y = 0.023/(a+ ebx+d) + c, where y is the probability of

turning, and x is the change of concentration dC(t)/dt, and a, b, c, d are constants. For

our case, the values of these parameters are a = 0.55, b = 1000, c = 0, and d = −0.2,

and the formula is plotted as the solid line. The experiment data of [87] is plotted as the

dashed line and their parameters are a = 0.40, b = 140, c = 0.0033, and d = 0. From

Fig. 6.9 (c), we can observe that our result is similar to the experiment result.

However, by comparing the solid lines and dash-dot lines in Fig. 6.9, we can observe

that the results between our artificial model and biological model are different. By

inspecting the trajectories in Fig. 6.6 and Fig. 5.14, the trajectories for the artificial model

are smoother than those for the biological model, and more straight trajectories and sharp
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turns appear for the biological model. These differences may account for the low turning

rate, curving rate and turning probability for the biological model. Furthermore, deeper

exploration is needed in the future work to uncover these differences.

6.3.4 Wire Diagram Patterns

We simplify the well trained head wire diagrams by following the method in [25] and

find out two patterns, as shown in Figs. 6.10(a) and (b), respectively.

ASEL ASHASER

Inter-

neuron CPG

Motor 

Neurons

Motor 

Neurons

+ (-) + (-)- (+)

+(-) + +(-) +

ASEL ASHASER

Inter-

neuron CPG

Motor

Neurons

Motor

Neurons

+ (-) + (-)

+(-)
+ +(-) +

Figure 6.10: (a) The first pattern contains three sensory neurons. (b) The second pattern
contains two sensory neurons.

The difference between two patterns is that in pattern A there exists the connection

between ASEL and interneuron, whereas in pattern B, this connection is extremely weak

and even eliminated. However, wire diagrams for both patterns can achieve the same

task as finding food and avoiding toxin. Our result corresponds with the experimental

result that the chemotaxis behavior of C. elegans is not impaired heavily after ASEL is

ablated [118]. Furthermore, there exist two sub-patterns within either pattern A or B.

The difference between two sub-patterns is the opposite signs of the weights from sensory

neurons to motor neurons, as shown in Fig. 6.10.
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6.4 Worm-like Robot

In this section, a worm-like robot has been constructed to perform the undulatory lo-

comotion based on the theoretical results of this chapter. First, we describe the hardware

components, which involve eight actuators, one micro-controller, two wireless modules,

one distance sensor, one battery, and several connection equipments. Then, we illustrate

the way to assemble these hardware components to be the worm-like robot. Last, we

provide the experimental results for the forward and backward movements, as well as

the turning behaviors.

6.4.1 Hardware Components

Actuators

Figure 6.11: Servomotor Dynamixel AX-12A

The actuator used in the robot is the AX-12 model under the Dynamixel series

from ROBOTIS, as shown in Fig. 6.11. One of the key differences with the cheap and

common servo motors is its ability to provide feedback information. It can provide

feedback on angular position, angular velocity, load torque, motor temperature, etc. All

these feedback information can be used in a closed loop system to implement highly

complex algorithms. It should be noted that communication protocol for this kind of
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actuator is based on half duplex serial (only 1 pin for receive and transmit), which

is not supported by most micro-controller boards. Most of the micro-controllers these

days provide support for only full duplex (separate pins for receive and transmit) serial

communication and this limits the choices of micro-controllers that can be used for this

robot.

Micro-controller

Figure 6.12: ArbotiX micro-controller

The micro-controller board used in this robot is the Arbotix RoboController from

Vanadium Labs, as shown in Fig. 6.12. It provides the necessary half duplex serial

communication support required by the chosen actuator AX-12. It also features an

XBee wireless module which is based on the popular ZigBee protocol. It has complete

compatibility with Arduino Integrated Development Environment (IDE) and provides

support for most of the existing Arduino libraries.

XBee Wireless Module

The wireless module used for this project is the popular XBee module which follows

the ZigBee wireless protocols, as shown in Fig. 6.13. The main reason behind choosing

this wireless module is that the chosen micro-controller board has a built in socket for
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Figure 6.13: XBee wireless module

this module. Also, it is highly compatible with Arduino based platforms, making wireless

serial communication simple and convenient to perform.

Distance Sensor

Figure 6.14: Distance sensor

For the distance sensor, an ultrasonic range finder from Maxsonar is used, as shown

in Fig. 6.14. It emits an ultrasonic beam and senses the echo reflected from any object

in front. Depending on the time it takes for the echo to reflect back, it can determine

the reflecting object’s distance. It can theoretically detect objects from about 0 − 765

cm with very high resolution.

Battery

The AX-12 actuators require at least 7V for operation while the recommended range

is around 11V. The Arbotix RoboController recommends a Lithium Polymer battery of

11.1V for reliable power supply to both the micro-controller as well as the actuators.
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Figure 6.15: Battery

For this project, the Thunder Power RC 11.1V LiPo G6 Pro Lite battery is used. The

battery is shown in Fig. 6.15.

6.4.2 Components Assembly

Figure 6.16: Frames

Figure 6.17: Worm-like robot

The body of the worm-like robot is formed by the actuators which are connected by

181



Chapter 6. Modeling the Undulatory Locomotion Behavior of C. elegans Based on the
Biological Wire Diagram

special frames. These frames are shown as Fig. 6.16. The frame named OF-12SH is the

one that is connected to the moving part of the AX-12 actuator. The frame named OF-

12S is just used to connect the rotating part of one actuator to the back side of the next

actuator. Eight actuators are connected serially like a train to form the basic framework

of the robot, as shown in Fig. 6.17. For attaching wheels underneath the body, 20 wheels

with diameter 18 mm are used.

Figure 6.18: Head of the worm-like robot

The head of the robot, as shown in Fig. 6.18, is constructed to carry the micro-

controller board, the distance sensor and the battery. There are two pieces of 2 mm

transparent acrylic boards to compose the head frame. The top frame is assigned the

task of holding the micro-controller board, and the bottom acrylic board is assigned the

task of containing the battery. The distance sensor is fixed onto the top acrylic board.

6.4.3 Experimental Results

To control a particular actuator to turn a particular angular position, a value must

be written to the memory location called “Goal Position”. Therefore, the serial data

should include the actuator ID, the memory location address and the value to be written
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in this location. The value of ID can range from 0 to 255, and 254 is the broadcast

ID, meaning providing this value on the serial bus that will communicate with all the

actuators in the network at once. AX-12 has a 10 bit resolution and an operating angle

of 0− 300 degrees. Thus, the whole operating range is divided into numbers represented

within the range from 0 to 1023, with the resolution being 300/1023 = 0.294 degrees.

This means changing the value by 1 changes the angle by 0.294 degrees. As shown in

Figure 6.19: Ax-12 Goal Position

Fig. 6.19, the middle position is 150 degrees. To move the actuator to a certain angle x,

for example, the value that must be written to the memory location “Goal Position” is

ActuatorData = (1023/300) ∗ x = 3.41 ∗ x (6.23)

In order to write any serial value to the actuator control table, Arbotix RoboCon-

troller board has a specialized built in library that can perform all the low level serial

communication, making it highly convenient and easy to use. Using the functions of this

library, values can be written to or read from any of the memory locations present inside

the actuator control table.
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Forward/Backward Locomotion

Figure 6.20: Forward locomotion

Figure 6.21: Backward locomotion
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The forward locomotion of the robot is shown in Fig. 6.20. The wave travels along

the robot’s body as it performs lateral undulation to move forward. Figs. 6.20 A to D

show the different positions of the robot as it creates the undulatory locomotion.

For backward locomotion, the wave is propagated in the opposite direction comparing

with the wave for the forward locomotion. As shown in Fig. 6.21, two small patches can

be seen in the plots. Judging from the change in position of these patches relative to the

robot as we move from A to D, the robot is moving backward.

Turning Behaviors

Figure 6.22: Right-side turning

With the same parameters for the forward locomotion, the right-side turning be-

havior is achieved by adding the deflection angle of 5 degrees or 0.0873 radians to the

servomotors when they rotate towards the right side. The figures as shown in Fig. 6.22

demonstrate the right-side turning of the robot while moving forward.
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Figure 6.23: Left-side turning

Figure 6.24: C-shape towards the right-side

Fig. 6.23 shows the left-side turning of the robot while moving forward. The left-side

turning behavior is achieved by adding the deflection angle of 5 degrees or 0.0873 radians
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Figure 6.25: C-shape towards the left-side

to the servomotors when they rotate towards the left side.

C-shape Movement

In the experiment, we use the robot to the mimic the C-shape movement of C. elegans,

which happens when it is in water. Fig. 6.24 shows the C-shape movement towards the

right-side, and Fig. 6.25 shows the C-shape movement towards the left-side. As can be

seen from these figures, the robot coils up into a C-shape and then returns to the zero

position, which allows the robot to turn very sharply within a short distance.

6.5 Conclusion and Discussion

In this chapter, we investigate the undulatory locomotion of C. elegans based on the

biological neural wire diagram and muscle structure. A locomotion model is developed to

perform the chemotaxis behavior of finding food and avoiding toxin. First, the nervous
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system is divided into two parts: the head DNN and the motor neurons of the body.

The head DNN produces the turning signal and generates the sinusoid wave. The motor

neurons control the activations of muscles. The proprioceptive mechanism is adopted,

which makes the motor neurons have the ability to detect the curving grade of the

anterior muscles. Incorporated with the proprioceptive mechanism, the undulatory wave

can be propagated even the motor neurons are not fully connected biologically. Second,

11 multi-joint rigid links are adopted to represent the body. Each joint stands for the

center of its corresponding muscle segment. Third, muscle models are constructed, in

which the muscle lengths vary according to the outputs of DNN. Fourth, the joint angles

are controlled by the muscle lengths, and the relation between the angles and muscle

lengths are determined. Fifth, the latest biological results are adopted to model the

sensory neurons, e.g. on-cell and off-cell. Sixth, in the testing part, the proposed model

performs well for the chemotaxis behaviors of finding food and avoiding toxin. The

quantitative analysis is also provided to verify the effectiveness of our model. At last, a

worm-like robot has been constructed to perform the forward and backward movements,

right-side and left-side turning, and C-shape movement.

The main differences between the models in Chapter 5 and Chapter 6 involve four

aspects. First, the model in Chapter 5 is a bio-inspired model (artificial model), whose

nervous system and muscular structure are not based on the anatomical structure of C.

elegans. By contrast, the model in Chapter 6 is a biological model, whose nervous system

and muscular structure are strictly based on the anatomical structure of C. elegans.

Second, the artificial model in Chapter 5 performs the snake-like locomotion in 3D,

whereas the biological model in Chapter 6 performs the undulatory locomotion in 2D. The

artificial model is based on the idea in [61]. However, the work of [61] does not provide
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the kinematics model and its model cannot move, even for the chemotaxis behaviors.

Thus, in Chapter 5 a 3D locomotion model inspired from C. elegans is constructed to

perform the snake-like undulatory locomotion. The biological model can only perform

the 2D undulatory locomotion because till now the mainstream viewpoint is that C.

elegans restricts its performance in 2D. However, in future once the locomotion of C.

elegans has been proved biologically in 3D, we can initiate the work to study how the

biological model to perform the 3D undulatory locomotion.

Third, there is a head DNN in the artificial model that functions as the differentiator

for the decision making of turning. Sensory neurons in the head DNN only function

as the input neurons. However, in the biological model this differentiation function is

achieved by the sensory neurons themselves. The sensory neurons are classified into on-

cell and off-cell. Every on-cell and off-cell can produce the turning signal according to

the gradient of input concentration.

Forth, the methods to propagate the undulatory waves are different. For the artificial

model, the undulatory waves are transmitted by the motor neurons. However, for the

biological model, the proprioceptive mechanism is adopted and the undulatory waves are

transmitted by the cooperation of both muscles and motor neurons.

Furthermore, both artificial and biological models share two similarities. One is that

there are a group of neurons serving as the pattern generator to produce the undulatory

wave in the head. The other one is that the head DNNs in both models are trained to

learn the SLFs for decision making and they can be optimized to smaller ones.
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7.1 Summary and Conclusion

This thesis investigates the chemotaxis behavior and undulatory locomotion of C.

elegans by using both artificial and biological neural networks. The detailed modeling of

chemotaxis behavior and undulatory locomotion of C. elegans has revealed the decision

making mechanism of its nervous system, as well as the coordination mechanism of the

nervous system and muscles.

In Chapter 2, the artificial models and in Chapter 3 the biological models are con-

structed to investigate the chemotaxis behavior of C. elegans. Two artificial and six

biological behavioral models are constructed for food attraction, toxin avoidance, and

integrated behaviors. The eight behavioral models are clustered into two groups, dual-

sensory behavioral model and single-sensory behavioral model. The dual-sensory be-

havioral model uses the spatial concentration difference for navigation while the single-

sensory behavioral model uses the temporal concentration difference for navigation. The

wire diagram for each model is represented by a DNN, and each neuron is described as a

nonlinear active function. We investigate the food attraction and toxin avoidance behav-

iors separately at the beginning, and then an integrated chemotaxis behavioral model
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is exploited to perform the two behaviors simultaneously. In these models, the sensory

neuron ASE receives the food concentration and ASH receives the toxin concentration.

The neuron AIY serves as a memory neuron in the single-sensory behavioral model to

record the concentration at the previous time for computing the temporal concentration

gradient, which makes C. elegans have the ability to move towards the food or escape

the toxin. To represent the chemotaxis behaviors, a set of nonlinear switching logic func-

tions (SFLs) are introduced to map the relation between temporal gradient information

of concentration (input) and motor neuron (output) that decides the navigation. SLFs

in our work are inspired biologically and can mimic the logic of the brain cooperated

with DNN. Once having learned SLFs, DNN can regenerate its corresponding chemotaxis

behavioral motions.

In Chapters 2 and 3, we model the chemotaxis behavior of C. elegans base on the

point of view that its speed is a constant. In Chapter 4, we have incorporated the speed

regulation mechanism into these chemotaxis behavioral models so that the navigation is

complete with the orientation control and speed control. By following the same method

in Chapter 3, we explore the dual-sensory model, single-sensory model, and integrated

behavioral model for finding food and avoiding toxin. The testing results show that

C. elegans could not only approach the food source (avoid the toxin source), but also

reduce its speed when getting close to the food source (far away from the toxin source) in

different circumstances. We also quantitatively analyze the behaviors of our models by

comparing with the experimental data, which verifies the effectiveness and authenticity

of our models.

In Chapters 5, we extend our research to the undulatory locomotion behavior of C.

elegans, and a 3D undulatory locomotion model is provided based on the artificial DNN.
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According to the muscle structure, the whole body is represented as a multi-joint rigid

link model. The 3D shape is determined by the joint angles projected onto the sagittal

plane and the coronal plane. The relations between these joint angles and the lengths

of four quadrant muscles are determined. Once the muscles receive the sinusoid waves

from DNN, their lengths would change accordingly, which yield the variations of the joint

angles. In the test part, the undulatory locomotion behavioral model is tested in different

scenarios. In each scenario, C. elegans successfully performs the undulatory locomotion

to approach the food source or escape the toxin source. We also have quantitatively

analyzed our results and compared them with other work and found some similar results.

In Chapters 6, instead of the artificial DNN, we investigate the undulatory locomotion

behavior of C. elegans directly on its biological neural wire diagram and muscle structure.

The same as Chapters 5, the biological undulatory behavioral model can perform the

undulatory locomotion to approach the food source or escape the toxin source. Further-

more, we also quantitatively analyze our results and compare them with other work. At

last, a worm-like robot has been constructed to perform the undulatory behavior based

on the theoretical results.

From the whole work, there are six points are concluded. First, the chemotaxis

behaviors of C. elegans can be represented as a set of non-linear functions, which provide

a new way to model the animal’s behaviors. These nonlinear functions are constructed

based on the logic of chemotaxis behaviors and the well trained models can be put into

different environments to perform their desired tasks. The methods to design these

nonlinear functions are not unique, and different forms of functions can be designed as

long as the logic is correct.

Second, we verify the major chemotaxis strategy for C. elegans: biased turning. In
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the thesis, all the locomotion models successfully achieve the chemotaxis behaviors even

though they can only turn towards the ventral side. It proves that biologically the

mechanism of biased turning is sufficient to accomplish the chemotaxis behaviors.

Third, there should be a group of neurons that function as the differentiator for the

decision making of C. elegans during chemotaxis. From the analysis of the optimized

wire diagrams, the inhibitory feedbacks are found for interneurons. The function of the

inhibitory feedback is to regulate the response latency of the system’s output relative

to its input. Such regulation would be significant in the C. elegans nervous system to

calculate the differentiation information dC(t)/dt.

Forth, the artificial undulatory model in Chapter 5 based on the anatomical structure

of C. elegans can well perform the 3D snake-like undulatory locomotion. To implement

the 3D movement, two undulatory waves should be transmitted through the body simul-

taneously: waves on the horizontal plane and on the vertical plane. The frequency of

the wave on the vertical plane is doubled for that on the horizontal plane.

Fifth, biologically the motor neurons of C. elegans are not fully connected and the gap

junctions between muscles are insufficient to propagate bending signal between neigh-

boring body regions. It raises the problem that whether C. elegans uses the motor

neurons or muscles alone to propagate the undulatory wave. The model in Chapter 6 by

incorporating the proprioceptive mechanism well addresses the problem. A circuit near

the head generates the undulatory wave for the most anterior segment, and the proprio-

ceptive coupling between muscles and motor neurons is responsible for propagating the

undulatory wave.

Sixth, the redundancy phenomenon of the sensory neuron is found in the locomotion

model. In Chapter 6, we analyzed the well optimized models and found that the sensory
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neuron ASEL can be eliminated for some models without affecting their chemotaxis

behaviors. From the result we predicate that ASEL could serve as the redundant sensory

neuron of ASEH, and this predication is supported by the experimental result that the

chemotaxis behavior of C. elegans is not impaired after ASEL is ablated.

7.2 Suggestions for Future Work

While the results of this thesis have some contributions in the engineering field, we

are still a long way from the ultimate goal of a complete understanding of the chemotaxis

behaviors and undulatory locomotion of C. elegans. For the next step, we will investigate

the 3D undulatory locomotion of C. elegans based on its biological structure. Further-

more, the 3D locomotion robot inspired by C. elegans will also be investigated. The

structure of one segment of 3D robot is shown in Fig. 7.1, and the conceptual image of

the 3D robot is shown in Fig. 7.2. Our final goal to construct the 3D robot is to benefit

our life, e.g. for rescuing survivors, military use, and clinical use.

Figure 7.1: Structure of one segment of 3D robot

Figure 7.2: 3D worm-like robot
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In the end, we should mention that the whole work in the thesis is based on the

engineering point of view. However, the methods and results from biology are also very

important to improve our efficiency and quality. In future work, we would better combine

the experimental and modeling communities and this combined effort can yield results

far beyond what could be achieved by either approach alone. Modelers cannot leave

far away from the biological reality, and experimentalists should hold the principles of

computational modeling and keep them in mind when designing experiments. Finally,

we should learn to recognize the strengths of each other, as well as the weaknesses of

ours.
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