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During chemotaxis, animals compute spatial information about odor gradients to make 

navigational choices for finding or avoiding an odor source. The challenge to the neural 

circuitry is to interpret and respond to odor concentrations that change over time as 

animals traverse a gradient. In this thesis, I ask how a nervous system regulates spatial 

navigation by studying the chemotaxis response of Caenorhabditis elegans to diacetyl.  

A behavioral analysis demonstrated that AWA sensory neurons drive chemotaxis over 

several orders of magnitude in odor concentration, providing an entry point for dissecting 

the mechanistic basis of chemotaxis at the level of neural activity. Precise microfluidic 

stimulation enabled me to dissociate space from time in the olfactory input to 

characterize how odor sensing relates to behavior. I systematically measured neuronal 

responses to odor in the diacetyl chemotaxis circuit, aided by a newly developed 

imaging system with flexible stimulus delivery and elevated throughput. I found reliable 

sensory responses to the behaviorally relevant range of odor concentrations. I then 

followed odor-evoked activity to downstream interneurons that integrate sensory input. 

Adaptation of neuronal responses to odor yielded a highly sensitive response to small 

increases in odor concentration at the interneuron level, providing a mechanism for 



efficient gradient sensing during klinokinesis. Adaptation dynamics at the sensory level 

were stimulus-dependent and cell-autonomously altered in several classes of mutant 

animals.  

Behavioral responses to different concentrations of diacetyl resulted from overlapping 

contributions from multiple sensory neurons. AWA was specifically required for 

orientation behavior in response to small increases in odor concentration that are 

encountered in shallow gradients, demonstrating functional specialization amongst 

sensory neurons for stimulus characteristics. This work sheds light on an algorithm 

underlying acute behavioral computation and its biological implementation. 

The experimental results are presented in two parts: 

Chapter 2 describes the development of a microscope for high-throughput imaging of 

neuronal activity in Caenorhabditis elegans. I present a characterization of 

chemosensory responses to odor and its correlation with behavior. This work has been 

published (Larsch et al., 2013). 

Chapter 3 describes the functional architecture of the AWA chemosensory circuit and 

the role of adaptation in maintaining sensitivity over a wide range of stimulus intensities. 

This work is currently being prepared for publication. 
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Chapter 1 Introduction 

Spatial orientation 

Spatial orientation is a fundamental problem in biology, because the environment of 

organisms is rarely uniform. Different regions differ in their value to the organism by 

providing more nutrients, suitable mating partners, or better shelter from harsh 

conditions. As a result sophisticated sensory systems have evolved allowing organisms 

to navigate to favorable conditions. These range from the migration of birds to feeding 

grounds using the earth’s magnetic field to bacterial chemotaxis, by which individual 

cells swim towards peak levels of nutrients in a gradient. 

The robustness of spatial orientation makes it an attractive paradigm to study the 

neuronal basis of behavior. In this study, we dissect the ability of the nematode 

Caenorhabditis elegans to navigate in a spatial gradient of food-related odors, 

comprising behavioral strategy, neuronal circuit function, and cellular physiology. These 

three levels loosely recapitulate the levels of analysis put forth by David Marr as a 

framework for understanding computation and neural circuitry in the visual system (Marr 

and Poggio, 1976): to distinguish several ‘nearly independent levels of description’ that 

can be summarized as computational, algorithmic and mechanistic (Marr and Poggio, 

1976). 

The computational level defines the problem to be solved by the system, or, in other 

words, makes assumptions about the behavioral goal and the available sensory 

information. In the case of chemotaxis for example, we regard ‘find source of attractive 

odor’ as the behaviorally defined computation.  
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The algorithmic level addresses the circuit level logic that solves the computation and 

typically, a given computation can be implemented by independent algorithms. For 

example, conceptually, gradient climbing could be achieved by comparison of two 

simultaneously sampling sensors or by temporal differentiation of a single sensor to 

regulate motor activity. (See (Braitenberg, 1986) for a rich description of thought 

experiments on hypothetical ‘vehicles’ performing a variety of computations.) It may be 

useful to consider sub-levels within the algorithmic level to appreciate conceptual 

hierarchy, by analogy to the levels of computer programming including machine 

language, assemblers and high level scripting language.  

The mechanistic level is concerned with the implementation of a specific algorithm in 

biological hardware. For example, how is temporal differentiation achieved at the level of 

molecules or synaptic connections between neurons? 

Behavioral strategies for spatial orientation 

Categorizing orientation strategies based on the information about the stimulus available 

to the organism can help to explicitly define the computation involved in a specific 

behavior, thus constraining how it is implemented at the level of algorithms (Figure 1-1) 

(Codling et al., 2008; Fraenkel, 1961; Schöne, 1984). Conceptually, two general classes 

of strategies of orientation are distinguished: 
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Figure 1-1 Strategies for spatial orientation. 
During Tropotaxis, two spatially separated sensory organs detect differences in stimulus 
intensities. During klinotaxis, stimulus sensing at one sensor is coupled to 
proprioreception to bias motor output. During klinokinesis, stimulus intensity is compared 
between successive measurements. If attractant levels increase, turning is low. If 
attractant levels fall, turning is high. Turn orientation is random. Illustration by Hannah 
Hesse. 

Taxis 

In direct orientation (taxis, from Greek: tassein – “arrange”), the organism detects 

stimulus direction relative to its own body orientation, allowing deterministic steering. 

This response is also called directional or oriented. Taxis strategies are subdivided 

depending on how the organism detects stimulus orientation. Sufficiently large 

organisms can compare stimulus intensities between spatially separated sensors and 

orient based in this comparison (tropotaxis from Greek: tropos – “change, turn”). For 

example, a comparison of the time at which sound arrives at the left versus the right ears 

is used in vertebrate sound localization (Kandel, 2013). In the alternative strategy of 

klinotaxis (Greek: klinein – “to bend”), the animal moves its own sensory organs with 

respect to the stimulus to detect spatial patterns. For example, Drosophila larva actively 
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sweep their head several times before tending to turn towards the side of stronger 

attractant stimulation (Gomez-Marin and Louis, 2011). 

Kinesis 

An alternative class of strategies uses indirect orientation (kinesis, Greek: “movement”), 

where the organism samples the stimulus at a single point in space without reference to 

its own body orientation and uses this measurement to regulate speed (orthokinesis, 

Greek: orthos – “straight”) or path sinuosity (klinokinesis). Sinuosity is a purely spatial 

measure to describe the amount of turning associated with a path, regardless of details 

of movement. Alternatively, if turns are typically sharp and infrequent, researchers use 

turning frequency to describe the turning events associated with a path. Kinesis can be 

implemented with absolute or differential stimulus detection (A-kinesis, D-kinesis) 

meaning that movement is controlled with respect to the absolute stimulus intensity or 

the change in intensity between steps (Codling et al., 2008). The strategy based on 

changes in intensity is sometimes called an adaptation-based mechanism.  

The terminology used to describe these phenomena is still under refinement and not 

necessarily pervasive across disciplines. For example, bacterial movement in a chemical 

gradient has the characteristics of klinokinesis but is typically called chemotaxis (Berg, 

2004). We will use the term chemotaxis to refer to any migration towards chemicals, 

irrespective of the underlying strategy. 

The random walk model 

A process consisting of successive steps with random orientation can be formalized 

mathematically as a random walk. Its most basic form is the uncorrelated and unbiased 
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random walk in which the orientation of each step is random and independent of prior 

steps; the process has no history. Unbiased random walks exhibit no net drift on a 

population level. These idealizations are closely met by Brownian motion of microscopic 

particles and the random walk framework is the basis of most of the theory on diffusive 

processes (Berg, 1993; Codling et al., 2008).  

Random walk models also capture aspects of movement generated by living organisms. 

One famous example is bacterial chemotaxis which can be interpreted as a correlated 

biased random walk. It differs in two important characteristics from simple diffusion. First, 

bacteria (and all other organisms) exhibit a certain level of ‘persistence’ in their 

orientation stemming from the fact that biological mechanisms for generating thrust for 

locomotion typically have a preferred orientation (forwards). This leads to a correlation in 

orientations during successive time bins. Second, bacteria can bias the frequency of 

reorientation maneuvers, termed tumbles, in response to external stimuli such as a 

concentration gradient of a nutritious sugar such that they produce a net drift towards 

attractants and away from repellents (Berg, 2004). 

Change detection can drive kinesis more efficiently than absolute detection 

The random walk formalism can be used to assess different orientation strategies for 

their ability to generate drift in a gradient (Berg, 1993; Codling et al., 2008). 

Comparisons of absolute and differential kinesis mechanisms show that only differential 

kinesis can efficiently drive a biased random walk towards stimulus peaks (Benhamou 

and Bovet, 1989). This becomes intuitively clear by envisioning an organism in a 

gradient. Using only absolute stimulus levels to control turning, the organism needs to 

increase turning with increasing stimulus levels in order to spend relatively more time 
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near the peak than away from the peak. This reduces its diffusivity and thus limits 

motility by increasing path sinuosity locally. The ‘attraction’ generated by this absolute 

kinesis is unstable because an organism moving away from the peak will become less 

and less likely to turn back towards the peak and eventually get lost. If an organism 

explores a patchy environment, locally reducing mean square diffusion within favorable 

patches and increasing mean square diffusion between patches is considered an 

efficient patch use strategy. Therefore, absolute kinesis is sometimes termed a space 

use mechanism rather than an orientation mechanism.  

Using changes in stimulus intensity to control turning for differential kinesis enables the 

organism to selectively prolong runs in the ‘correct’ orientation i.e. when the change in 

attractant concentration is positive and or shorten runs in the ‘incorrect’ orientation i.e. 

when the change in attractant concentration is negative. This will effectively decrease 

the duration of runs in the incorrect orientation and thus impose directionality on the 

random walk even though individual turns are randomly oriented. The computational 

cost of differential kinesis is that it requires constant updating or memory to calculate the 

difference in stimulus intensities between steps.  

Significance of adaptation for the biased random walk 

One mechanism to differentiate an input is response adaptation or desensitization. 

Adaptation converts the initially strong response to a stimulus to a lower steady state 

level even if the stimulus persists (Figure 1-2). After adaptation diminishes the response, 

the system may be able to respond to another increase in stimulus intensity. 

Mechanistically, a response can be transient if stimulation triggers two antagonistic 

processes that lead to formation and decay of the response with some temporal disparity 
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(Koshland et al., 1982). Thus, the response exhibits memory because it reports the 

difference between the intensity of the previous and the current stimulus, rather than 

absolute stimulus intensity. An adapting cell ‘forgets’ the stimulus with a time constant 

determined by the relative rates of formation and decay of the response. 

Figure 1-2 Alternative modes of response adaptation. 
A response without adaptation reaches a steady state proportional to stimulus intensity. 
Adaptation converts the initially strong response to a lower steady state level. Steady 
state level and time course of adaptation depend on the relative rates of formation (kf) 
and decay (kd) of the response. During perfect adaptation, the response returns exactly 
to baseline. An adapting sensory systems can report absolute or relative dC/dt. A 
system reports relative dC/dt if responses to two identical fold-changes in stimulus 
intensity (e.g. 1 to 2 and 2 to 4, both 2 x fold change) are similar. Weber’s law requires 
that peak response magnitude be constant for a given fold-change. Fold change 
detection is met if response dynamics and magnitude are constant. Illustration by 
Hannah Hesse. 
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A second benefit of adaptation is that it increases information transmission by increasing 

the dynamic range of the response around stimulus levels encountered in the recent 

past (Wark et al., 2007). This property can greatly improve performance of a sensory 

system that needs to encode a wide range of stimulus intensities with high resolution. 

Human vision, for example, operates over nine order of magnitude of light intensities 

ranging from dim moonlight to bright sunlight (Rieke and Rudd, 2009). Similarly, C. 

elegans chemotaxes towards the odor diacetyl over at least seven order of magnitude in 

odor concentration (Bargmann et al., 1993). 

Fold-change detection 

There are special cases of adaptation defined by the exact relationship of the response 

intensity with the stimulus level (Figure 1-2). In perfect or exact adaptation, the response 

returns to the baseline level at steady state, regardless of stimulus intensity. Exact 

adaptation is indeed observed across a wide range of sensory modalities and in 

bacterial chemotaxis. The regulation of turning frequency of single cells in response to 

attractant stimulation exhibits robust and exact adaptation over several orders of 

magnitude in attractant concentration (Barkai and Leibler, 1997; Berg, 2004). 

A system that adapts and therefore reports changes rather than absolute stimulus 

intensity may report absolute changes in intensity or relative changes. If two increases in 

stimulus intensity of the same relative magnitude (i.e. 1 to 2 and 2 to 4, both increase by 

a factor of 2) cause the same response magnitude including identical response 

dynamics, the system performs fold-change detection (Goentoro et al., 2009; Shoval et 

al., 2010) (Figure 1-2). Certain molecular pathways such as stimulation of beta-catenin 
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responses by Wnt signaling and nuclear entry of MAPK after EGF stimulation exhibit 

fold-change characteristics (Cohen-Saidon et al., 2009; Goentoro and Kirschner, 2009). 

Fold-change detection is reminiscent of Weber’s law, derived from psychophysical 

experiments in the visual system, which says that the just noticeable difference between 

two stimuli is proportional to the magnitude of the stimuli (Weber, 1905). Fold-change 

detection is defined more strictly than Weber’s law, requiring conserved response 

dynamics across different stimulus levels, whereas Weber’s law is satisfied with 

conserved peak response magnitude (Figure 1-2). 

Normalization and adaptation 

A normalized response to a stimulus is dependent on the magnitude of the total stimulus 

intensity, integrating multiple inputs. For example odor responses of individual first layer 

projection neurons in the antennal lobe of Drosophila melanogaster are normalized by 

the mean population response in the antennal lobe (Wilson, 2013). Effectively, the 

contribution of each neuron is scaled by the total number of neurons active at a 

particular time. Like adaptation, normalization works to keep sensory systems from 

saturating, expanding their dynamic range. 

Network motifs for adaptation 

The mechanism of adaptation in the presence of persistent stimulation can be 

conceptualized as the result of reciprocal interactions within a network consisting of an 

input, a response and an inhibitor (Ma et al., 2009). Specific interaction rules between 

these components can produce adaptation and in fact, a comprehensive computational 

search of all possible interactions showed that only two sets of interactions can achieve 

exact adaptation independent of stimulation level (Ma et al., 2009). Knowing a priori the 
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network motif underlying adaptation in a given biological system might inform 

experiments to reveal the biochemical implementation. A theoretical approach is 

currently being developed with the aim to infer network topology from experimentally 

measured responses to systematic stimulation using step pulses of varying pulse length 

and interpulse interval as inputs (Rahi et al., in preparation). The relationship of pulse 

length with the interpulse interval yielding maximal mean output might serve as a 

signature to distinguish between five alternative network topologies that can produce 

exact or inexact adaptation. This approach has not yet been applied to analyze neuronal 

network topologies. 

Spatial orientation in Caenorhabditis elegans 

The soil nematode Caenorhabditis elegans navigates the environment in response to 

numerous sensory cues. Animals have a preferred oxygen level, temperature, light, 

substrate osmolarity and texture, and they migrate towards these levels when allowed to 

move freely in a gradient (Gray et al., 2004; Mori and Ohshima, 1995; Ward et al., 2008; 

Zhang, 2008). In addition, animals respond with attraction or repulsion to a large number 

of chemicals that are thought to signal the presence of food or harmful conditions such 

as predators or toxins (Bargmann, 2006a). Pheromones can trigger complex 

physiological and behavioral programs such as the transition into a different 

developmental ‘dauer’ stage (Bargmann and Horvitz, 1991a) or regulate aggregation 

(Macosko et al., 2009). For this work, we will focus on stimuli that trigger robust 

orientation behavior. Chemicals with high enough vapor pressure to diffuse significantly 

in air upon evaporation will be called odors, to distinguish them from tastants which 

dissolve and diffuse predominantly in the liquid phase. Diacetyl (Butane-2,3-dione) is a 

typical odor with a vapor pressure of 7.5 kPa whereas non-volatile Na+ and Cl- ions are 
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typical tastants. Irrespective of volatility, chemicals must re-dissolve in the liquid phase 

surrounding C. elegans on its substrate in order to interact with odorant receptors. 

The small size of C. elegans places important constraints on its detection of chemical 

gradients. 11 pairs of chemosensory amphid sensory neurons detect chemicals via 

sensory dendrites that project to the tip of the nose to reach two olfactory pores where 

they contact the environment (Ward et al., 1975). Like most neurons in C. elegans, 

amphid sensory neurons are found as bilateral pairs (left and right) that can be 

functionally distinct. The two AWC neurons, for example, exhibit asymmetric gene 

expression and drive behavior to partially overlapping but distinct sets of odors (Wes and 

Bargmann, 2001). In other neurons such as AWA, no such differentiation between the 

two sister neurons is known and they are presumed to detect the same chemicals. Two 

sensory neurons detecting the same stimulus theoretically provide a substrate for 

bilateral left-right sensing, but C. elegans locomotion is inconsistent with this strategy 

because animals crawl on their sides using dorsoventral body bends and cannot turn 

effectively along the left-right axis. Their posture aligns the left and right olfactory pores 

over the plane defined by the substrate and hence, animals can effectively only sample 

odor concentrations at one point in space at a time (Ward et al., 1975). 

Chemotaxis strategies in Caenorhabditis elegans 

Forward runs and turns alternate during locomotion 

Analysis of C. elegans locomotion in gradients of tastants, temperature and odors has 

provided evidence for both taxis and kinesis strategies during spatial orientation. 

Generally, animals generate forward thrust on planar substrates by undulatory 

movement (Wallace, 1968). On homogeneous substrates such as agar plates, animals 
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spend most of their time in relatively straight (<50 deg/sec) forward motion that is 

occasionally interrupted by sudden changes in direction, termed turns (> 50 deg/sec) 

(Pierce-Shimomura et al., 1999). Two stereotyped turning patterns are typically 

distinguished. (1) A reversal followed by forward motion in a different direction. (2) A 

reversal followed by a sharp turn in which the animals head touches its tail, resembling 

the greek letter Omega, followed by forward motion, typically with a large change in 

direction (omega turn). 

Animals removed from food exhibit a biphasic regulation of basal turning rates. The rate 

of turns is high for about 20 minutes, followed by a reduction in turning and long runs 

thereafter. This behavior results in low mean square diffusion during the first phase 

(termed local search) and dispersal in the second phase (Gray et al., 2005). The 

modulation of turns under these conditions is interpreted as a component of local 

exploitation vs. exploration strategy independent of orientation towards a specific 

stimulus. 

Chemotaxis can be assessed on agar plates 

A convenient and widely adopted way to assess chemotaxis in C. elegans is on flat agar 

plates. A chemical gradient is formed by spotting a chemical onto the plate and allowing 

it to diffuse in agar or air before placing about one hundred animals at some distance 

from the chemical. The migration towards or away from the chemical may be quantified 

after a defined amount of time, e.g. one hour. Alternatively, the entire experiment is 

recorded for subsequent analysis of individual animal paths. 
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Evidence for klinokinesis 

The first demonstration that C. elegans regulates the rate of turning in response to 

chemical stimulation came from tethered animals where imposed decreases in attractant 

concentration increased the rate of turning (Dusenbery, 1980). Consistent with this 

observation, freely moving animals in a concentration gradient modulate the rate of 

turning, or, reciprocally, run length as a function of the change in concentration (dC/dt) 

(Iino and Yoshida, 2009; Pierce-Shimomura et al., 1999; Tsunozaki et al., 2008). 

Animals going up a gradient of an attractive chemical perform fewer turns than animals 

going down the gradient; In other words, the probability of turning is inversely correlated 

with dC/dt. The angle of each turn is, to a first approximation, random. Therefore, turns 

contribute to chemotaxis largely by randomizing bearing angle after animals experience 

a drop in attractants, resulting in a biased random walk towards higher attractant 

concentration. Computational modeling of this klinokinesis strategy with experimentally 

derived parameters was sufficient to generate chemotaxis behavior but the efficiency 

was less than that of wild type animals (Iino and Yoshida, 2009; Pierce-Shimomura et 

al., 1999). Further analysis revealed that post-turn bearing angles had a weak bias 

towards the peak of the gradient, a feature that improved chemotaxis performance in the 

model (Pierce-Shimomura et al., 1999). 

Evidence for klinotaxis 

In addition to klinokinesis, C. elegans uses a klinotaxis strategy of deterministic steering. 

In smooth gradients, animals on paths orthogonal to the gradient tend to curve gradually 

into the gradient (Iino and Yoshida, 2009; Luo et al., 2014) and on the edges of sharp 
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odor gradients, animals exhibit ‘surf turns’ steering into the odor with high probability 

(Albrecht and Bargmann, 2011). 

Klinotaxis and klinokinesis appear to act in parallel in C. elegans (Iino and Yoshida, 

2009; Luo et al., 2014). While both strategies are generally sufficient to drive chemotaxis 

in a computer simulation, it was argued that only the combined strategy recapitulates the 

efficiency of wild type animals and each strategy might be specialized for specific 

environments (Appleby, 2013; Iino and Yoshida, 2009). 

Neural substrates for spatial orientation 

The stereotyped arrangement of neurons and their wiring in C. elegans neurons has 

greatly facilitated the repeatable manipulation of identified neurons to study their 

contribution to behavior. Micro-surgery using a laserbeam made it possible to kill specific 

neurons in individual animals before testing their behavior in a chemotaxis experiment 

(Bargmann and Horvitz, 1991b; Fang-Yen et al., 2012). This paradigm revealed specific 

requirements for defined classes of neurons during chemotaxis. 

Chemosensory neurons 

Chemosensory neurons are directly regulated via interaction of receptor molecules with 

their external ligands. The C. elegans genome encodes over 1000 odorant receptors, 

and each olfactory sensory neuron expresses many receptors (Bargmann, 2006a; Brear 

et al., 2014; Taniguchi et al., 2014), but specific odor-receptor interactions have been 

demonstrated in only a few cases. 
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Different classes of chemosensory neurons have distinct ciliated structures at the distal 

tip of their dendrites, presumably specializations to improve stimulus detection. Cilia are 

thought to be the site of primary sensory transduction because signaling molecules such 

as olfactory receptors, G-proteins and transduction channels localize to this 

compartment (Brear et al., 2014; Tobin et al., 2002). Sensory cilia in C. elegans vary 

greatly in shape between individual classes of sensory neurons ranging from simple 

pointed endings in ASH to flattened sheet-like or highly branched structures in AWA 

(Doroquez et al., 2014) but the functional consequences of different cilium structures are 

not known. While cilium structure is generally stereotypic for each class of sensory 

neurons, morphological remodeling can occur at least in some cilia in response to 

environmental cues. For example, reduced sensory signaling in AWB sensory neurons 

causes remodeling of their cilia membrane structures (Mukhopadhyay et al., 2008). 

Chemotaxis to specific chemicals requires identified sensory neurons 

Laser ablations revealed that chemotaxis towards many chemicals strictly requires 

stimulus-specific types of sensory neurons (Figure 1-3). For example, ablation of AWA 

sensory neurons abolishes chemotaxis to a subset of volatile odors such as diacetyl and 

pyrazine whereas ablation of AWC sensory neurons abolishes chemotaxis to isoamyl 

alcohol, butanone and benzaldehyde. ASE sensory neurons are required for NaCl 

chemotaxis and are therefore considered gustatory neurons (Bargmann and Horvitz, 

1991b; Bargmann et al., 1993). AWA mediated chemotaxis to diacetyl depends entirely 

on the odorant receptor ODR-10 (Sengupta et al., 1996). The requirement of AWA and 

ODR-10 for diacetyl chemotaxis is limited to low diacetyl concentrations. At higher 

concentrations AWA ablated animals still localize the odor. Double ablations revealed 

that AWC sensory neurons compensate for the loss of AWA and drive chemotaxis 
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behavior to high concentrations of diacetyl (Bargmann et al., 1993; Chou et al., 2001). 

Together, these results suggest that the sensory representation of specific chemicals at 

some concentrations may be driven by a single pair of sensory neurons, potentially 

simplifying the analysis of processing by the downstream circuit.  

Sensory neuron identity predicts the sign of the chemotaxis response 

C. elegans is attracted to a large panel of chemicals representing a diverse structural 

space and is repelled by a smaller number of chemicals (Bargmann and Horvitz, 1991b; 

Ward, 1973). Laser ablation revealed that avoidance or negative chemotaxis is mediated 

by a dedicated set of sensory neurons, AWB, ASH and ADL (Bargmann et al., 1993). It 

is the identity of the sensory neuron expressing a specific receptor that determines 

whether a given chemical binding to that receptor acts as an attractant or repellent. For 

example, wild type attraction to diacetyl can be re-programmed into avoidance by 

ectopic expression of the diacetyl receptor ODR-10 in AWB in animals that lack ODR-10 

in AWA where it is normally expressed (Troemel et al., 1997). These results suggest that 

behavioral specificity to different stimuli arises from properties that are inherent to the 

sensory neuron and that activation of a single type of sensory neuron is sufficient to 

drive chemotaxis behavior. 
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Figure 1-3 Neurons involved in chemotaxis. 
(Top) schematic of the anterior end of C. elegans indicating the approximate location of 
four sensory neurons and four interneurons. Axonal processes make specific synaptic 
and gap junction contacts with each other in the nerve ring that wraps around the 
pharynx (green). Sensory neurons project a dendrite towards the tip of the nose animal. 
(Bottom) Sensory neurons are drawn with representative ligands. Selected synaptic 
contacts () and gap junctions (├┤) of AWA to interneurons are shown. Neurons 
labeled in blue/red decrease/increase turning behavior when activated, respectively. 
Illustration by Hannah Hesse, adapted from www.wormatlas.com. 
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Sensory transduction in chemosensory neurons 

C. elegans chemosensory neurons fall into two groups based on their primary signal 

transduction channel that converts ligand binding to a change in the membrane 

potential. Odor signaling in both groups begins in the sensory cilia with odor binding to 

G-protein coupled receptors and G-protein activation (Bargmann, 2006a). In one group, 

including AWA and ASH this signal converges onto transient receptor potential (TRP) 

channels. Animals lacking the main TRPV channel proteins OSM-9 and OCR-2 lose 

behaviors driven by cells that use this mode of transduction (Tobin et al., 2002). The 

biochemical steps linking G-protein activation to the opening of TRP channels include a 

requirement for of polyunsaturated fatty acids (PUFA) (Kahn-Kirby et al., 2004) but the 

regulation of PUFAs and their role in channel gating are currently unclear.  

In the other group, including AWC and AWB sensory neurons, G-protein activation 

regulates levels of cyclic GMP that opens cyclic nucleotide gated (CNG) channels. A 

variety of guanylate cyclases (GC) and phosphodiesterases (PDE) are expressed in 

cyclic GMP sensitive neurons. It is not known which of these enzymes are directly 

regulated by G-proteins. The major necessary CNG channel proteins are TAX-2 and 

TAX-4 (Bargmann, 2006a). Interestingly, AWC also expresses the TRP channel subunit 

OSM-9 but in this neuron it regulates behavioral adaptation of the chemotaxis response 

after long term exposure with certain odors rather than primary sensory transduction 

(Colbert and Bargmann, 1995). 

Internal state can modify behavioral preference 

The chemotaxis response to some chemicals can be modified by experience, a process 

that may involve associative learning. For example, AWC_ON neurons normally drive 
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attraction to the odor butanone. This response can be modified by prior exposure to 

butanone. Exposure to butanone for 1 hour in the presence of food increases attraction 

to butanone (Torayama et al., 2007). Exposure to butanone for 2 hours in the absence of 

food inverts the behavior into repulsion, and certain mutations in AWC_ON signaling 

molecules can cause this behavior even in naïve animals (Tsunozaki et al., 2008).  

Similarly, animals starved in the presence of 50 mM NaCl revert their naïve ASE 

mediated attraction to 50 mM NaCl into avoidance and this avoidance can be induced by 

enforced translocation of an insulin receptor within ASE sensory neurons (Ohno et al., 

2014). Furthermore, salt chemotaxis is directed towards a setpoint concentration 

associated with the presence of food, such that animals grown at 50 mM NaCl migrate 

up the gradient when placed at 25 mM and down the gradient when placed at 75 mM 

(Luo et al., 2014; Saeki et al., 2001). 

These examples demonstrate a high degree of plasticity in the chemotaxis response and 

suggest that the behavioral valence of certain stimuli can be regulated within the sensory 

network. 

Interneurons 

Chemosensory neurons in C. elegans form chemical and electrical synapses onto 

interneurons that are sometimes referred to as ‘first layer interneurons’ (White et al., 

1986). For AWA, these include AIA, AIB, AIY and AIZ interneurons (Figure 1-3). 

Systematic laser ablation and subsequent analysis of locomotion patterns has revealed 

roles for these interneurons in the regulation of turning frequency in isotropic 

environments (Gray et al., 2005; Tsalik and Hobert, 2003) and numerous studies have 

extended these results using laser ablations or genetic ablations and optogenetic 
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silencing in the context of chemotaxis, thermotaxis, mechanosensation and spontaneous 

locomotion (Iino and Yoshida, 2009; Piggott et al., 2011; Shinkai et al., 2011; Shtonda 

and Avery, 2006; Yoshida et al., 2012). Generally, higher activity in AIA and AIY 

interneurons suppresses turning whereas loss of function in these neurons increases 

turning and the reverse is observed for AIB and AIZ interneurons (Figure 1-3). This has 

led to the hypothesis that sensory neurons drive chemotaxis behavior by dynamically 

modulating interneuron activity. This hypothesis was tested most extensively for ASE 

mediated salt chemotaxis. A complex picture emerges suggesting that of AIA, AIB, AIY 

and AIZ interneurons, no individual interneuron is strictly required for chemotaxis but 

they can be differentially required for klinotaxis vs. klinokinesis. For example AIB 

interneuron ablation causes a lower turning frequency and thus reduces the efficiency of 

the klinokinesis component of salt chemotaxis while leaving the klinotaxis component 

intact (Iino and Yoshida, 2009; Luo et al., 2014).  

One promising candidate interneuron that might control klinotaxis is the RIA interneuron. 

Compartmentalized activity in RIA represents both odor information and information 

about the bending angle of the animal’s neck, which is regulated from SMD motor 

neurons and odor information (Hendricks et al., 2012). This combination could serve as 

a neural substrate for gradual steering in a gradient: As the animal moves orthogonally 

to the gradient, the self-generated undulations of the head could lead to detectable 

differences in odor concentration at different phases of the undulation cycle. However, 

no direct evidence for this mechanisms currently exists. RIA or another neuron with 

similar properties might increase the amplitude of bends when they coincide with the 

detection of an increase in odor concentration, thus steering animals towards the peak. 

Further research is needed for a better understanding of the acute contribution of 

individual interneurons during chemotaxis. 
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Neural activity in the chemotaxis circuit 

Calcium as a readout for neuronal activity 

With the development of genetically encoded calcium indicators (GECI), measurements 

of intracellular calcium have become a convenient readout of neural activity in C. 

elegans and other animals. Intracellular calcium is usually low in neurons at rest. 

Elevated calcium correlates with neural activation and drives synaptic transmission by 

promoting synaptic vesicle fusion. Calcium transients in C. elegans chemosensory 

neurons are initiated from G-protein coupled receptor signaling converging either on 

CNG cation channels or TRPV channels (Bargmann, 2006a), both of which are 

somewhat calcium permeable. The transduction current generated by these events is 

amplified by voltage gated calcium channels (VGCC) and second messenger cascades 

that promote calcium release from intracellular stores and the extracellular lumen. Most 

neurons in C. elegans display graded membrane potentials rather than spiking action 

potentials. The lack of spikes correlates with the evolutionary loss of voltage activated 

Na channels in the C. elegans genome. Interpreting elevated calcium as a direct proxy 

for neural activation is useful, but likely an oversimplification, because neuronal calcium 

dynamics in the cell body do not always correlate with neuronal depolarization and 

synaptic signaling (Komuniecki et al., 2014). For example, RIA interneuron calcium 

levels are anticorrelated in two regions of the RIA axon and calcium transients in AIA 

and AIY interneurons are mostly confined to the neurite (Chalasani et al., 2007; Larsch 

et al., 2013). Furthermore, calcium has been implicated in feedback mechanisms that 

generally dampen the cellular responses (Kato et al., 2014; Kuhara et al., 2002). Whole 

cell calcium levels may therefore be a read-out of multiple processes including neuronal 

activation. 
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Calcium imaging in sensory neurons reveals ON cells and OFF cells 

Laser ablations and genetic analysis have mapped specific stimuli to most sensory 

neurons in C. elegans. With the advent of calcium imaging, it became possible to study 

the nature of this mapping at the level of neural activity. Recordings of stimulus-evoked 

calcium transients exist for many C. elegans sensory neurons. The majority of these 

recordings were obtained from glued or trapped animals treated with step increases in 

stimulus intensity. 

Chemosensory neurons fall into two groups based on the direction of their stimulus-

evoked calcium responses. In some neurons, such as AWA, ASH and ASEL, calcium 

levels rise with increased ligand concentration. In other neurons, such as ASER and 

AWC, calcium levels fall below resting levels upon stimulation and rise after stimulus 

removal (Chalasani et al., 2007; Fukuto et al., 2004; Shinkai et al., 2011; Suzuki et al., 

2008). These latter neurons are thought to have significant basal transmitter release that 

is suppressed upon stimulation. The molecular determinant of the response polarity is 

presumably embedded in the sensory transduction machinery. 

The diversification of sensory neurons into ON and OFF cells is reminiscent of the 

segregation of processing pathways in the vertebrate visual system at the level of bipolar 

and retinal ganglion cells (Kandel, 2013) and in laminar cells of the Drosophila eye 

(Joesch et al., 2010). In the salt sensing ASE neurons this segregation emerges 

between the two sister neurons: ASER calcium levels decrease with upshifts in salt 

concentration and increase with downshifts whereas ASEL calcium increases with 

upshifts and is insensitive to downshifts (Suzuki et al., 2008). The asymmetric responses 

could together provide a substrate for behavioral responses that are similarly sensitive to 
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upshifts and downshifts, although ASER is essential and ASEL is dispensable for salt 

chemotaxis under most conditions (Luo et al., 2014), and several chemicals trigger 

chemotaxis with high fidelity even though they are only represented by one response 

polarity at the sensory level. Therefore, the functional significance of ON and OFF 

response polarities remains an open question. 

Calcium imaging in Interneurons 

Many first layer interneurons exhibit stimulus evoked calcium transients, often 

superimposed on fluctuations in calcium levels that are not related to the stimulus. For 

example, AIA and AIY interneurons increase calcium concentration in response to step 

pulses with attractive odors isoamyl alcohol or diacetyl (Chalasani et al., 2007, 2010; 

Larsch et al., 2013) suggesting that both neurons receive input from both AWC and 

AWA. The response polarity of the two sensory neurons is opposite, but they elicit the 

same polarity response in the interneurons. Therefore, AIA and AIY interneurons must 

differentially interpret signals from AWC versus AWA. Glutamate signaling from AWC 

onto inhibitory GLC-3 glutamate receptors in AIA is thought to suppress AIA activity at 

rest; this suppression is released upon odor stimulation when AWC calcium falls 

(Chalasani et al., 2010). The wiring diagram indicates a gap junction between AIA and 

AWA, which is likely a sign preserving connection between these two neurons.  

Calcium imaging in freely moving animals 

While immobilized animals offer practical advantages for calcium imaging, it is not 

always possible in this configuration to recapitulate the sensory experience of a freely 

moving animal to study neural responses to behaviorally relevant stimuli. Furthermore, 

interneurons reflect not only sensory input but also internal states and proprioceptive 
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feedback that are likely to be affected by restraint. Calcium recordings from sensory 

neurons in freely moving animals have largely matched those obtained from immobilized 

animals (Clark et al., 2006; Larsch et al., 2013; Luo et al., 2014), confirming the notion 

that sensory neurons can faithfully reflect sensory information, irrespective of the internal 

state of the animal. Several cases of interneuron imaging on the other hand have 

revealed extensive correlations of calcium responses with animal movements and 

behavioral state transitions. For example, high AIB and AVA calcium levels generally 

correlate with reversal behavior whereas AIY calcium levels fall upon initiation of 

reversals (Luo et al., 2014; Piggott et al., 2011). Transitions from dwelling to roaming 

states correlate with low calcium levels in NSM and high calcium levels in AIY (Flavell et 

al., 2013). 

Variability in behavior and neuronal responses 

Behavioral responses to sensory stimulation can be variable, even if conditions are 

precisely controlled. For example, behavioral analysis of C. elegans exposed to 

chemical stimulation in microfluidic devices showed that individual animals could 

respond by generating a pirouette, a reversal or no behavior at all (Albrecht and 

Bargmann, 2011). We have recently extended this analysis to show that under similar 

conditions, sensory responses faithfully reflect stimulation, independent of the behavioral 

response elicited by each stimulus (Larsch et al., 2013). Motor command neuron activity 

on the other hand correlates closely with behavior (Chronis et al., 2007; Larsch et al., 

2013; Luo et al., 2014; Piggott et al., 2011). It is therefore likely that variability arises in 

the layers of interneurons between sensory input and motor command output, which in 

the case of C. elegans can be on the order of one to five synapses (Varshney et al., 

2011). Consequently, it is of interest to improve imaging techniques to record large 



25 
 

samples of neural activity from many animals under precisely controlled conditions to 

understand how flexible behaviors arise from a stereotyped circuit such as the C. 

elegans nervous system. 

  



26 
 

Chapter 2 has been published in the journal PNAS (Larsch et al., 2013) 

HIGH THROUGHPUT IMAGING OF NEURONAL ACTIVITY IN CAENORHABDITIS ELEGANS 

Author contributions: 

Johannes Larsch, Donovan Ventimiglia, Cori Bargmann, Dirk Albrecht 

The work described in this paper was the result of a close collaboration with Dirk 

Albrecht who was a PostDoc in the lab and had developed large microfluidic devices for 

high content behavioral analysis (Albrecht and Bargmann, 2011). The collaboration 

started after I showed in pilot experiments using these microfluidic devices that AWA 

GCaMP signals can be recorded in freely moving animals at low magnification.  

I initiated and performed experiments involving the odor diacetyl and AWA and AIA 

neurons and the drug nemadipineA on suggestion of Yifan Xu (data in Figure 2-1, Figure 

2-4, Figure 2-5, Figure 2-6, Figure 2-7, Figure 2-8, Figure 2-11, Figure 2-12e,h, Figure 

2-3) except for the chemical screen which was driven by DRA (Figure 2-9). I initiated the 

use of tetramizole to paralyze groups of animals for simultaneous imaging and 

generated strains with high GCaMP expression in AWA, AWC and AIA. DRA and I jointly 

wrote analysis scripts for neuronal tracking and data analysis. 

DRA initiated and performed experiments involving neurons other than AWA and wrote 

scripts for behavioral analysis and the characterization of the optical properties of the 

system (Figure 2-4, Figure 2-12, Figure 2-13, Figure 2-5, Figure 2-6, Figure 2-10) 

DRA designed and fabricated miniaturized PDMS devices and devised multi-odor 

stimulation via multi-channel valves and electronics for pulsed illumination. CIB and DRA 

supervised data analysis, experimental design and preparation of the manuscript. 

DV performed and analyzed gradient experiments (Figure 2-13).  



27 
 

Chapter 2 High throughput imaging of neuronal activity in 

Caenorhabditis elegans 

Summary 

Neuronal responses to sensory inputs can vary based on genotype, development, 

experience, or stochastic factors. Existing neuronal recording techniques examine a 

single animal at a time, limiting understanding of the variability and range of potential 

responses. To scale up neuronal recordings, we here describe a system for 

simultaneous wide-field imaging of neuronal calcium activity from at least 20 

Caenorhabditis elegans animals under precise microfluidic chemical stimulation. This 

increased experimental throughput was used to perform a systematic characterization of 

chemosensory neuron responses to multiple odors, odor concentrations, and temporal 

patterns, as well as responses to pharmacological manipulation. The system allowed 

recordings from sensory neurons and interneurons in freely moving animals, whose 

neuronal responses could be correlated with behavior. Wide-field imaging provides a 

tool for comprehensive circuit analysis with elevated throughput in C. elegans. 
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Introduction 

Modern neuronal recording techniques are labor- and equipment-intensive, and 

generally designed to obtain maximal information from individual animals. However, 

individuals differ from one another. To understand the full range and variability of 

neuronal responses, it is desirable to apply high-throughput methods and systematic 

data collection to many animals under controlled stimulation conditions.  

The nematode C. elegans is particularly amenable to high-throughput studies of neural 

and behavioral activity, which are facilitated by its small size, compact nervous system, 

ease of genetic modification, well-defined behavioral repertoire, and transparent body 

with optical access to single defined neurons. Optical neural recordings in C. elegans 

have primarily used high-magnification imaging of neurons expressing a genetically-

encoded calcium indicator such as GCaMP or cameleon. Glued preparations (Faumont 

and Lockery, 2006) or partial-body traps (Chronis et al., 2007; McCormick et al., 2011; 

Wen et al., 2012) enable imaging of calcium dynamics in head neurons, but 

immobilization limits the animal’s behavioral repertoire. More complex behaviors can be 

visualized in freely-moving animals on agar surfaces by using a moving stage or 

objective and computer-controlled feedback to track a moving animal and keep a 

specific neuron in view (Ben Arous et al., 2010; Faumont et al., 2011; Piggott et al., 

2011; Zheng et al., 2012). These methods monitor a single animal at a time, as do 

optical and electrophysiological recording methods in flies, fish, and rodents, which rely 

upon complex surgeries, implanted sensors, and dedicated equipment for each animal 

(Ahrens et al., 2012; Dombeck et al., 2007; Ghosh et al., 2011; Maimon et al., 2010; 

Wilson and McNaughton, 1993).  
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Here we describe a strategy for recording neuronal activity evoked by precise chemical 

stimulation of freely-moving or anaesthetized C. elegans using wide-field microscopy. 

We adapted previous microfluidic arenas optimized for normal C. elegans crawling 

behavior and repeatable spatiotemporal stimulation (Albrecht and Bargmann, 2011) to 

simultaneous optical recording of calcium transients in individual neurons. The 

automated microscope is capable of continuous recording from over 20 animals at once 

for hours during repeated stimulation without user interaction. We demonstrate the 

performance of this method by systematically surveying neural responses to stimulation 

parameters, testing pharmacological modulators of neural dynamics, and correlating 

stimulus-evoked locomotory behaviors with calcium dynamics in several chemosensory 

neurons and interneurons. Our results demonstrate broad capabilities of wide-field 

microscopy for neural imaging. 
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Results 

Fluorescence imaging at low magnification  

Wide-field microscopy eases the challenge of neuron registration and focus in moving 

samples including live animals. As objective magnification (M) is reduced, the total 

volume from which light is projected onto the camera expands greatly, with the area 

field-of-view scaling by 1/M2 and axial depth-of-field by ~1/M. Fluorescent signals can be 

recorded from any neuron within this volume without stage tracking or focusing, as long 

as individual neurons can be resolved, motion blur is minimized, and signals exceed 

background noise. We met these requirements for calcium imaging of C. elegans 

neurons on a standard inverted epifluorescence microscope using high numerical 

aperture (NA) objectives (2.5x/0.12 NA or 5x/0.25 NA) and a sensitive low-noise 

electron-multiplying charged coupled device (EM-CCD) camera to maximize the signal-

to-noise of fluorescence recordings, and fast-switching solid-state illumination to 

minimize motion artifacts and phototoxicity (Figure 2-1A).  
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Figure 2-1 Wide-field imaging of neural activity with microfluidic stimulation. 
(A) Schematic of the automated microscope. Video acquisition and fluidic valves for 
chemical stimulation are computer-controlled; fluorescence illumination is pulsed via 
digital signals synchronized with each camera frame. No motorized stage or focus 
mechanisms are needed with low-magnification objectives and glass-mounted 
microfluidic arenas. (B) Brightfield image of the microfluidic arena containing three 
animals and dye to distinguish fluidic channels (gray) from microposts. Scale bar, 1mm. 
(C) Full-frame camera image showing one adult animal expressing GCaMP2.2b in the 
AWA sensory neurons. Scale bar, 1 mm. (D) Magnified view of the head from panel c. 
Red box indicates the integration window. Scale bar, 50 µm. (E) AWA sensory neuron 
response (relative fluorescence, ΔF/F0) and speed of a moving animal responding to a 1-
s pulse of 1 µM diacetyl odor (DA). (F) Comparison of the single fluorescence trace at 
2.5x from panel e, filtered to quantify individual response magnitude and dynamics, the 
mean of 16 repeated stimulations of the same moving animal, and a single recording in 
a stationary animal at 40x magnification. 
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A microfluidic arena for C. elegans behavioral analysis (Albrecht and Bargmann, 2011) 

was miniaturized to keep animals within the 3.28 x 3.28 mm2 field-of-view and ~50 µm 

depth-of-field at 2.5x magnification while delivering precise patterns of chemical 

stimulation. The fluidic design contained a structured micropost array for unimpeded 

crawling locomotion, barriers to prevent animal escape, and inlet channels tailored to 

present temporal pulses, spatial stripes, or linear gradients of liquid-borne stimuli 

(Albrecht and Bargmann, 2011) (Figure 2-1B and Figure 2-2). The microscope 

automatically controlled chemical stimulation via fluidic valves, selecting the 

concentration and timing parameters according to a programmed pattern (Figure 2-1A). 

A software suite, called NeuroTracker, tracked multiple animals as they traversed the 

arena, integrated fluorescent signals, corrected for background and illumination, and 

automatically detected behavioral responses, as described in the Supplementary Note. 

The duration of optical neural recordings is typically limited by phototoxicity and 

photobleaching that reduce signal fidelity over time. Phototoxic damage in C. elegans is 

evident after 20 min of cumulative blue-light illumination by increased autofluorescence 

in many tissues (Clokey and Jacobson, 1986; Coburn et al., 2013). In contrast, pulsed 

illumination (10 ms per 100 ms frame) did not cause photodamage over at least 2 hours 

(Figure 2-3). Short illumination pulses also prevented motion blur in animals moving at 

up to 2 mm s−1, ten-fold greater than mean crawling speed (Figure 2-4). 
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Figure 2-2 Microfluidic device patterns and external fluidic connections.  
(a-d) Microfluidic device designs. Black lines indicate fluidic channels. A, B, C, stimulus 
inlets; loading, animal loading inlet; out, outflow port; ctrl1 & ctrl2, control fluid inlets. 
Scale bar, 5 mm.  Devices deliver a temporal pulse (a), spatial stripe (b), or linear 
gradient (c) to one or two independent animal populations (d). Magnified panel below (d) 
shows horizontal division separating the top and bottom arenas. Scale bar, 1 mm. (e) 
Operation of pulse device via shifting streams. With ctrl1 open and ctrl2 closed, stream A 
(bright) passes through the arena whereas B (dark) flows around the arena to outflow 
(top). With ctrl2 open and ctrl1 closed, B flows through arena (bottom). Scale bar, 1 mm. 
(f-h) Stimuli are delivered from a syringe reservoir (priming syringe aids in removing air 
bubbles) (f), via 8-position distribution valve (g), or by transfer of inlet tubing to multiwell 
plates (h). 
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Figure 2-3 Pulsed illumination prevents phototoxicity. 
Autofluorescence over 2 hrs during constant blue light (450−490 nm) exposure or pulsed 
exposure at 10 ms pulses every 100 ms. Exposure was one minute every two minutes 
for both modes. Autofluorescence was calculated as median intensity of brightest 2% of 
pixels from 40x40 pixels surrounding the neuron, excluding 9x9 pixels containing the 
neuron. Mean ± s.e.m., n=9 animals for constant exposure, n=6 animals for pulsed 
exposure. Representative frames are shown at 120 min. 
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Figure 2-4 Pulsed illumination and large depth-of-focus prevent motion artifacts. 
(a) Ethogram of behavior during 20 s buffer presentation followed by 10 s diacetyl odor 
presentation, recorded with 10 ms pulsed illumination (left), and corresponding heatmap 
of AWA activity (right). AWA activity was low during spontaneous reversal and pirouette 
behaviors in buffer and rose in odor. (b) Ethogram of spontaneous reversals in buffer, 
short (black) and long pirouette (dark red), aligned to reversal onset (top). 
Corresponding mean velocity (center) and mean AWA fluorescence (n=44 reversals) 
showed reverse movement but no effect on neural fluorescence. (c) Scatter plot of 
instantaneous velocity vs. AWA fluorescence during 20 s buffer presentation from panel 
a. No correlation was observed; negative correlation would have suggested motion blur. 

We expressed the genetically-encoded calcium sensor GCaMP2.2b in the two AWA 

sensory neurons, which respond to the attractive odor diacetyl with an increase in 

intracellular calcium indicative of depolarization (Bargmann et al., 1993; Shinkai et al., 

2011). At 2.5x magnification, AWA neuron morphology could not be resolved due to 

spatial undersampling (6.4 μm/pixel, compared to an AWA cell body diameter of 3−5 

μm), so a larger region of interest of standard size was used for analysis (Figure 2-1C,D 

and Figure 2-5). In response to a 1s pulse of diacetyl (10-7 dilution; 1.15 µM), we 
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detected a rapid increase and then a gradual decline in the integrated fluorescence 

signal (Figure 2-1E) that closely resembled standard high-magnification recordings of 

AWA GCaMP responses (Figure 2-1F). The fluorescence signal-to-noise ratio was 

proportional to objective magnification but remained above ~10 at 2.5x (Figure 2-1F and 

Figure 2-6), a value sufficient for quantification of response magnitude and dynamics 

from temporally-filtered single traces or averaged repeated trials. Thus, wide-field 

imaging at reduced resolution permits accurate measurement of GCaMP signal 

dynamics in individual C. elegans neurons. 

 

Figure 2-5 Quantification of neural fluorescence from wide-field images. 
(a) Full field-of-view at 2.5x/0.12 N.A. showing 11 animals in the arena. (b) Magnified 
view of the head of one animal, directly magnified from panel a. (c) Same view after 
switching to 40x/0.75 N.A. Red boxes in b,c represent 4 x 4 pixel2 (25.6 x 25.6 µm2) 
integration region centered on the neuron soma. (d) Diagram of AWA neuron. (e,f) 
Neural fluorescence integrated across 2x2 to 6x6 pixel2 boxes centered on the soma. 
Raw fluorescence (F) scales inversely with box size (e), but normalized fluorescence 
(ΔF/F0) is independent of box size (f). Larger boxes reduce artifacts due to imperfect 
tracking, and smaller boxes exclude nearby fluorescence such as gut autofluorescence. 
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Figure 2-6 AWA sensory neuron responses at various magnifications.  
(a) Representative fluorescence traces from a single animal subjected to two 1 s pulses 
of 1 µM diacetyl odor at the indicated objective magnifications (2.5x to 40x) with 1.0x (left 
panel) or 0.63x (right panel) camera adapters. The light source power level was 
adjusted, from 100% at 2.5x magnification to 3% at 40x magnification, for comparable 
baseline fluorescence at each magnification (pixel value ~1500). AWA neural 
fluorescence was obtained after downsampling images to 2.5x resolution (i.e., by factors 
of 2−16 for 5x−40x objectives) and integrating a 4x4 pixel2 region corresponding to 
25x25 µm2 (1x adapter) or 40x40 µm2 (0.63x). Magnitude and dynamics of responses 
did not change with objective magnification, but additional noise was present at lower 
magnifications. Noise was Gaussian, such that averaging n traces reduced noise by 
sqrt(n); for example, the average of 20 traces at 2.5x (*) resembles a single trace at 10x. 
(b) Comparison of the field of view at different magnifications, superimposed upon an 
adult animal in a microfluidic arena. Scale bar, 1 mm. (c) Signal-to-noise ratio (SNR) in 
calcium recordings from panel a, calculated as mean baseline fluorescence divided by 
standard deviation for the first 5 s of each trace before odor was applied. In each case 
the left bar is with 1.0x camera adapter and the right bar is with 0.63c camera adapter. 
N.A., numerical aperture. *, SNR for mean of 20 repeated trials. 
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High-throughput neural recordings in response to dynamic odor stimuli 

A unique aspect of the wide-field imaging system is the ability to monitor at least 20 

animals at once (Figure 2-7A), in contrast to high-magnification systems that focus 

closely on a single animal. Because maintaining the identity of so many moving animals 

is challenging, we first established that odor-evoked calcium transients in AWA sensory 

neurons were similar in the presence or absence of the paralytic acetylcholine agonist 

tetramisole (Lewis et al., 1980) (Figure 2-7B). Next, we measured 2,852 AWA calcium 

responses from a total of 40 immobilized animals subjected to repeated diacetyl pulses 

of varying concentration, duration, or rate of concentration change (dC/dt) (Figure 2-7).  

All animals responded to diacetyl odor with increased fluorescence of the GCaMP2.2b 

indicator in AWA neurons (Figure 2-7C). Habituation was evident during the first few 

odor presentations, resulting in a ~20% reduction in peak magnitude over five trials 

(Figure 2-7C,D). The peak and the initial slope of the AWA calcium response showed a 

dose-dependent increase across a 105-fold diacetyl concentration range from 1 nM to 

100 µM (Figure 2-7E,H). The calcium response rose throughout the 10-s odor pulse for 

low and high odor concentrations, but fell before odor was removed at intermediate 

concentrations (0.1−1 µM); this short-term densitization recovered in the 50 s before the 

subsequent odor pulse. Peak AWA calcium levels increased with odor duration up to the 

saturation point (2 s at 1 µM) (Figure 2-7F,I). The rate of odor concentration change 

(dC/dt) affected the magnitude, slope, and apparent latency of the neural response 

(Figure 2-7G,J). Thus, AWA sensory neuron dynamics reflect both the magnitude and 

the temporal properties of chemical stimuli. 
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Figure 2-7 High-throughput recording of neural responses. 
(A) Camera frame showing 23 animals expressing G-CaMP2.2b in AWA neurons 
(arrowheads). (B) AWA sensory neuron responses are similar in freely-moving and 
paralyzed animals. Each curve represents mean fluorescence of one animal, n=20 trials 
each for 2 moving and 6 paralyzed animals. (C) Odor-evoked fluorescence during ten 
repeated 10 s pulses of 1 µM diacetyl at one pulse per minute. Each row represents an 
individual animal in panel A; orange trace is from the animal indicated by an orange 
arrowhead. (D) Mean peak AWA fluorescence and peak coefficient of variation (CV) for 
repeats 1–5 (dark blue) and 6–10 (light blue) calculated from data in panel C. (E-G) 
Mean AWA fluorescence response to systematic variation in (E) odor concentration (10 
s pulses), (F) odor duration (1 µM diacetyl), (G) odor gradient (dC/dt) (5 s pulses, 0-1 µM 
diacetyl). Schematics on top represent time course of stimulus modulation, measured 
from fluorescein dye controls. Light shading on calcium traces depicts s.e.m. (H-J) Mean 
(blue) AWA peak fluorescence and time of response peak are influenced by odor 
concentration (H), pulse duration (I), and odor gradient (J), as calculated from traces in 
panels E-G. The peak response appeared saturated at 10 uM diacetyl (10 s pulse, E,H), 
and at 3 s of stimulation (1 uM diacetyl, F,I). C, control (buffer) stimulus. Orange curves 
represent the individual animal highlighted in panels A,C. For all data in D-J, error bars 
represent s.d., n=8–22 animals, one experiment per stimulus parameter, 6–12 trials per 
condition. 
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A single animal’s response was reliable with respect to each stimulation parameter, but 

differences were observed across individual animals. Dose-response curves for 

individual animals yielded half-maximal effective concentration (EC50) that varied by two 

orders of magnitude (Figure 2-8). Response magnitude was more variable between 

animals than between repeated stimulation of one animal, and more variable for the first 

five trials than later repeats; hence, the most consistent calcium responses were 

obtained from an individual animal after a few preconditioning pulses (Figure 2-7D).  

 

Figure 2-8 Variable individual animal diacetyl dose-response curves.  
(a) Dose-response curves for 22 individual animals subjected to ten repeated 10 s 
pulses of diacetyl odor, from 1 nM to 100 µM in ascending sequence, one pulse per 
minute (70 mins total). c, buffer control. Combined data are presented in Figure 2. The 
odor concentration yielding a 50% peak response, the EC50, was determined for each 
animal from a four-parameter sigmoidal curve fit. Vertical red lines indicate EC50; 
shading indicates range across all animals. (b) Summary of diacetyl EC50 for the AWA 
neurons in 22 animals. Sensitivity varies by 1-2 orders of magnitude across these 
animals; median EC50 = 30.6 nM diacetyl. 
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Efficient determination of a neuron’s chemical receptive field  

In previous studies, laborious behavioral assays and laser ablation experiments 

demonstrated that each C. elegans chemosensory neuron detects multiple odors, tastes, 

or pheromone stimuli (Bargmann, 2006a). To more efficiently map chemical stimuli to 

sensory neurons, we used the wide-field imaging system to test AWA neural responses 

to 30 small-molecule odors (Figure 2-9A,B). Odors were delivered sequentially in 

triplicate from 96-well plates using ~60 µL sample per trial.  

The known AWA-sensed odors diacetyl, pyrazine, 2,4,5-trimethylthiazole, and 2,3-

pentanedione elicited robust calcium transients in nearly all tested animals (Figure 

2-9A,B). Dose-response curves revealed a substantial variation across these four odors 

in sensitivity (Figure 2-9A). A broad survey of odors tested at 10-6 dilution showed that 

benzaldehyde and butanone, known to be detected primarily by AWC neurons, did not 

elicit reliable responses in AWA (Figure 2-9B).  

Among previously uncharacterized odors, hexyl acetate elicited a response comparable 

to known AWA odors. Interestingly, several other 3- to 7-carbon acetates elicited 

responses in only a subset of animals (Figure 2-9B). These responses were consistently 

weak or strong across repeated stimulation of an individual, but uncorrelated to the 

strength of the individual’s diacetyl response (Figure 2-9D,E and Figure 2-10).  

Similar experiments in odr-10(ky32) mutant animals, which have a loss of function 

mutation in the diacetyl receptor (Sengupta et al., 1996), demonstrated greatly 

diminished AWA responses to 1 µM diacetyl, whereas responses for most other odors 

were preserved (Figure 2-9B,C). Mutant animals also failed to respond to the related 

odor 2,3-pentanedione, suggesting that ODR-10 contributes to its detection. 
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Figure 2-9 Chemical screening of neural responses.  
(A) Neurometric curves of peak fluorescence in AWA neurons subjected to increasing 
concentrations of four odors. DA, diacetyl; Pyr, pyrazine; 2-MP, 2-methylpyrazine; TMT, 
2,4,5-trimethylthiazole. Data are mean ± s.e.m., n=22 traces (1 experiment, 11 animals, 
2 trials each). (B) Small-molecule odor screen for AWA-detected odors. Thirty odors (10-

6 dilution) were presented from a 96-well plate, sequentially and in triplicate, to 12 wild-
type (WT) and five odr-10 mutant animals. Heatmap shows mean peak fluorescence 
following odor addition. Multiple positive controls (1 µM diacetyl) indicate neural 
sensitivity throughout the series, and negative controls (ctrl, S-basal buffer) show no 
contamination across odors. Data represent 2,456 traces from 17 animals in two 
experiments. Odors with reduced response in odr-10 mutants are indicated by *, P<0.05 
via ANOVA with Benjamini-Hochberg correction. (C) Individual animal mean responses 
to diacetyl, S-basal buffer, and butyl acetate for WT (blue) and odr-10 mutants (red). 
(D,E) Peak AWA response to diacetyl is strongly correlated with a second presentation 
of diacetyl (P<0.0001, panel D) but uncorrelated with response to butyl acetate (P=0.6, 
panel E). Points represent mean of each animal and error bars are s.e.m. for n=3 trials 
per animal. 
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Figure 2-10 Variable responses to butyl acetate across animals.  
Plots represent AWA calcium responses from three successive trials (colored) of twelve 
individual wild-type animals to a 10-6 dilution of butyl acetate during the odor panel 
experiments (Figure 3). Gray dotted line indicates the mean response of three 
presentations of diacetyl odor (10-7 dilution), recorded in the same animals prior to butyl 
acetate responses. Each animal consistently responded strongly or weakly to butyl 
acetate over the three trials, and all animals responded strongly to diacetyl. 
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Pharmacological modulation of neural activity 

High-throughput pharmacological screening of C. elegans can identify new modulators 

of conserved biological pathways as well as antihelminthic agents (Kwok et al., 2006; 

Lockery et al., 2012; Petrascheck et al., 2007). One such screen and subsequent 

genetic analysis identified nemadipine-A as a compound that induces morphological and 

egg-laying defects by antagonizing the α1-subunit of C. elegans L-type voltage gated 

calcium channels, EGL-19 (Kwok et al., 2006). Reduced-function mutations in egl-19 

and other L-type calcium channel blockers decrease stimulus-evoked calcium transients 

in ADL (Suzuki et al., 2003), ASH (Hilliard et al., 2005) and URX (Busch et al., 2012) 

sensory neurons, implicating the L-type channel in sensory activity. We assessed the 

suitability of the high-throughput system for chemical screening by examining the effects 

of nemadipine-A on AWA calcium transients. Animals were challenged with nine diacetyl 

pulses to establish a baseline response, then switched to 10 µM nemadipine-A for the 

next ten diacetyl pulses, then returned to initial conditions (Figure 2-11A). Within 1 

minute in nemadipine-A, the AWA calcium response was suppressed by ~70%; this 

suppression recovered in 1-2 minutes after washout (Figure 2-11B).  
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Figure 2-11 Pharmacological modulation of neural responses to odors.  
(A) Seven animals were subjected to repeated 1 µM diacetyl odor pulses (10 s) in the 
presence or absence of 10 µM nemadipine-A, an L-type calcium channel antagonist. 
Rows represent odor-evoked AWA calcium transients in individual animals measured 
simultaneously. Each trial was repeated once per minute. (B) Peak fluorescence 
response per trial after odor addition. Error bars indicate s.e.m., n=7 animals from A. **, 
P<0.001; ns, not significant. (C) Dose response curve for nemadipine-A inhibition of 
responses to 1 µM diacetyl odor stimulation. Mean ± s.e.m., n=12 animals, 6 trials per 
concentration, 1 experiment. Blue curve is sigmoidal fit and grey lines represent 
individual animal curves. (D) Dose response curve for inhibition of diacetyl response by 
10 µM nemadipine-A, which increases the EC50 about 100-fold from 30 nM (Figure 2-8) 
to 2.5 µM DA. Mean ± s.e.m., n=8 animals, 6 trials per concentration, 1 experiment. 

A dose-response curve for nemadipine-A inhibition of AWA calcium transients yielded an 

IC50 of 4.6 µM nemadipine A (Figure 2-11C), comparable to its 1–5 µM IC50 for egg-

laying and morphological phenotypes (Kwok et al., 2006). Nemadipine-A strongly 

inhibited AWA responses to low diacetyl concentrations, but had minimal effects at 

saturating diacetyl levels (Figure 2-11D), suggesting that the voltage-gated EGL-19 

channel amplifies AWA calcium signals to weak odor stimuli.  
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Neural activity during free-moving behavioral responses 

Direct observation of neuronal activity in unrestrained animals is essential for 

understanding how neural signals guide behavior. One interesting aspect of behavior is 

its variability in apparently constant conditions. For example, when C. elegans 

experiences removal of the attractive odor isoamyl alcohol (IAA), which is sensed by 

AWC sensory neurons, it can generate a pirouette (a reversal coupled to a sharp omega 

turn) or just a reversal, or it can fail to respond at all (Albrecht and Bargmann, 2011; 

Pierce-Shimomura et al., 1999). To characterize the neural signals associated with these 

responses, we subjected freely-moving animals to 60 repeated IAA pulses and 

simultaneously recorded behavior and calcium transients in one AWC neuron using the 

GCaMP3 calcium sensor (Figure 2-12A-C). Regardless of the behavioral outcome, the 

animal’s AWC calcium transients had similar response dynamics and magnitude (Figure 

2-12C-E). These observations suggest that AWC calcium transients reliably report 

sensory input and that the variable behavioral response arises at a different site. 

Individual animals expressing GCaMP in AWA or ASH sensory neurons also showed 

consistent calcium transients upon diacetyl or glycerol addition, respectively, despite 

behavioral responses that varied across trials (Figure 2-12E).  

Contrasting results were obtained in the same IAA odor stimulation paradigm when 

calcium was monitored in the AVA command interneurons, which drive backward 

locomotion (Chalfie et al., 1985). AVA calcium levels were coupled to the behavioral 

output, not the sensory input, rising during ~90% of reversals and declining during 

forward motion (Figure 2-12F). The fraction responding and dynamics of the AVA 

response were similar to previous recordings of AVA during spontaneous reversals 
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using high-magnification tracking systems (Ben Arous et al., 2010; Faumont et al., 2011; 

Piggott et al., 2011).  

Detection of subcellular calcium transients in interneurons 

In AIA and AIY interneurons, calcium transients occur primarily along axonal processes 

rather than in cell bodies (Chalasani et al., 2007, 2010). To accommodate weaker 

fluorescent signals, we used a 5x/0.25 NA objective and 0.63x demagnification lens for 

substantially higher light-gathering power at a similar spatial resolution (5.1 µm/pixel) 

and field-of-view (2.6 x 2.6 mm2) than the 2.5x/0.12 NA objective (Figure 2-12G,I).   

We measured AIA interneuron activity in moving animals by tracking the bright cell body 

and integrating fluorescence in a larger region that included a portion of the axon. 

Calcium levels in AIA interneurons increased upon diacetyl addition and fell immediately 

when odor was removed (Figure 2-12H), like previously reported responses of AIA 

neurons to IAA odor in trapped animals (Chalasani et al., 2010). Calcium levels also 

rose in neurites of the AIY interneurons upon addition of diacetyl or IAA, although no 

responses were observed in the AIY cell body to either odor (Figure 2-12J). 
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Figure 2-12 Sensory neuron, interneuron, and behavioral responses. 
(A) Time course of odor stimulation, AWCON neuron fluorescence, and locomotory 
behavior in a single animal following 10 µM isoamyl alcohol (IAA) odor stimulation. Black 
indicates short reversal; gray, forward movement. (B) Ethogram of behavioral 
responses, grouped by predominant response to odor removal: Forward, short Reverse, 
or Pirouette (coupled reversal and omega turn). Red indicates the long reversal 
component of a pirouette response. White, missing data. (C) AWCON activity 
corresponding to each trial (row) in B. (D) Average AWCON fluorescence for each 
behavioral response group in B. (E) Behavior response probability and superimposed 
behavior-calcium average traces for AWC (data from D) and from AWA stimulated by 1 
µM diacetyl (DA) and ASH stimulated by 0.5 M glycerol (Gly). No significant differences 
were seen between peak calcium levels associated with different behaviors. Data in B-E 
are from two animals tested individually per neuron-stimulus pair, 60 trials per animal. 
(F) AVA (backward command interneuron) activity in freely-moving animals stimulated 
with IAA odor rose upon initiation of reverse movement and fell after reversal 
termination. (G) GCaMP expression in AIA interneuron neurites and soma. (H) Time 
course of AIA response to 1 µM DA stimulation in freely-moving animals. AIA 
fluorescence was integrated in a 6 x 6 pixel area that included the cell body and a 
portion of the neurite. Shading indicates s.e.m., n=18 traces from 4 animals, 1 
experiment. (I) AIY::GCaMP expression. The two anterior bright spots represent 
integrated fluorescence across the neurite. (J) AIY responses to 10 s pulses of 10 µM 
IAA and 1 µM DA recorded at the neurite or soma in stationary animals. Shading 
indicates s.e.m., n=70 traces from 7 animals, 1 experiment. (K) Partial list of neurons 
transducing stimulus information to behavioral response. Pointed and T-shaped arrows 
indicate functional excitatory and inhibitory interactions confirmed in this work, 
respectively. 
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Responses to spatial odor patterns 

Whereas temporal stimulus patterns, such as odor pulses, provide a uniform stimulus 

history to many animals across repeated experiments, spatial odor patterns may better 

approximate sensory signals experienced during goal-directed tasks such as 

chemotaxis. To demonstrate the ability to correlate behavior and neural activity in 

response to spatial chemical patterns, we used a modified microfluidic device that 

presented a stable ~1 mm wide stripe of odor with a sharp interface at the stripe edge 

(Albrecht and Bargmann, 2011) (Figure 2-13A and Figure 2-2). As a freely-moving 

animal left the 1 µM IAA odor stripe, AWC fluorescence increased sharply, often 

preceding a reversal or pirouette behavior that reoriented the animal back into the 

attractive odor (Figure 2-13B). A second device presented a linear odor gradient (300 

µM/mm IAA) across the arena (Figure 2-13C). Each excursion down the odor gradient 

elicited AWC neural activity, frequently followed by reversal or turning behaviors that 

returned the animal to an elevated odor concentration (Figure 2-13D,E). The intervals 

between odor decrease, neural activation, and reversal response were longer in the 

shallow stimulus gradient (up to several seconds) than they were at the sharp odor edge 

of a stripe; on average an animal traversed 0.6 mm down the gradient before responding 

with a reorienting behavior (Figure 2-13E). 
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Figure 2-13 Neural and behavioral responses to spatial odor patterns. 
(A) Brightfield image of the microfluidic arena presenting a stable horizontal fluidic stripe 
(visualized with dye). Scale bar, 1 mm. (B) Time course of y-axis position and AWC 
neuron fluorescence of a single animal responding to a stripe of isoamyl alcohol (IAA) 
odor. Vertical lines and open circles indicate the onset of AWC activity increase, which 
coincided with odor decrease at the lower or upper stripe edge (blue arrowheads) and 
preceded the onset of behavioral responses (red arrowheads). (C) Brightfield image of a 
linear odor gradient (visualized with dye). Scale bar, 1 mm. (D) y-axis position and AWC 
fluorescence of one animal responding to a linear IAA gradient. labels as in B. (E) 
Temporal alignment of position in a linear gradient to the initiation of reversal or pirouette 
responses. Four representative descents are shown, indicating the onset of gradient 
descent (blue arrowheads), increased AWC activity (circles), and behavioral response 
(red arrowheads). Below, individual trajectories, mean relative position, and mean AWC 
fluorescence for 24 gradient descents aligned to the onset of reversal response. Shading 
indicates s.e.m., n=2 animals from independent experiments. 
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Chapter 3 Acute adaptation in a chemotaxis circuit of 

Caenorhabditis elegans 

Summary 

Spatial orientation is a ubiquitous problem in biology. The compact nervous system of 

the soil nematode Caenorhabditis elegans is ideally suited to reveal the circuit 

implementation of computations underlying oriented navigation through space. In C. 

elegans, food odors regulate the frequency of stereotyped turning events, ultimately 

driving animals to the odor source via klinokinesis, a biased random walk strategy 

analogous to chemotaxis of E. coli in nutrient gradients. This behavioral strategy 

requires differential stimulus representation that is sensitive to changes in rather than 

absolute levels of odor concentrations. Here, we present a survey of neuronal activity in 

the chemotaxis circuit and behavior of C. elegans. Odor-evoked responses at the 

sensory level adapted within seconds and were further sharpened in a downstream 

interneuron, yielding sensitive fold-change detection over two orders of magnitude in 

odor concentration. Mutations in genes with conserved roles in ciliary function affected 

the dynamics of adaptation. Fold-change detection was preserved at the behavioral 

level, demonstrating that C. elegans can reliably detect changes in odor concentration to 

navigate odor gradients. This work sheds light on the biological implementation of an 

adaptation-based algorithm that may underlie acute computation during spatial 

orientation. 
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Introduction 

Natural environments offer regions that differ in their value to organisms, for example, by 

providing more nutrients, suitable mating partners, or shelter. As a result sophisticated 

sensory systems have evolved to allow animals to navigate to favorable conditions. 

Design principles derived from animal navigation are fundamental examples of 

sensorimotor transformations within nervous systems that relate behavior to external 

stimulation. Some of these have inspired biomimetic engineering of autonomous robots 

that mimic spatial computations performed by animals (Franz and Mallot, 2000). 

The nematode worm C. elegans orients in response to many external sensory cues 

including temperature, osmolarity, light and water soluble as well as volatile chemicals 

(Bono and Villu Maricq, 2005). For example, animals migrate towards food odors in a 

process called chemotaxis. C. elegans locomotion in isotropic environments alternates 

between relatively straight ‘runs’ and sporadic ‘turns’ of random orientation, resembling a 

random walk (Berg, 1993; Pierce-Shimomura et al., 1999). Animals chemotax in odor 

gradients by prolonging runs in the efficient orientation, towards attractants or away from 

repellents, relative to the inefficient orientation, reminiscent of the biased random walk 

observed in bacterial chemotaxis (Berg, 2004; Pierce-Shimomura et al., 1999).  

A remarkable feature of chemotaxis is its robustness and sensitivity over several orders 

of magnitude in odor concentration. For example, the odor diacetyl elicits chemotaxis 

over at least seven orders of magnitude in odor concentration (Bargmann et al., 1993), 

suggesting active mechanisms for keeping the underlying sensory system within 

dynamic range. It has thus been hypothesized that animals monitor relative changes 

rather than absolute odor concentrations (Bono and Villu Maricq, 2005). In addition, 
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theory suggests that biased random walks require differential stimulus representation 

(Benhamou and Bovet, 1989). One mechanism to differentiate an input is response 

adaptation. Adaptation converts the initially strong response to a stimulus to a lower 

steady state level even if the stimulus persists. After adaptation diminishes the response, 

the system may be able to respond to another increase in stimulus intensity. Adaptation 

is a functionally conserved mechanism across phyla and sensory modalities including 

bacterial chemotaxis (Berg and Brown, 1972), invertebrate and vertebrate olfaction 

(Reisert and Zhao, 2011; Wilson, 2013) and vision (Montell, 2012; Rieke and Rudd, 

2009) 

Special cases of adaptation are defined by the exact relationship of the response 

intensity to the stimulus level. In perfect or exact adaptation, responses return to the 

baseline level at steady state, regardless of stimulus intensity. Exact adaptation is 

implemented as a robust internal control feedback mechanism in bacterial chemotaxis 

(Barkai and Leibler, 1997).  

If two increases in stimulus intensity of the same relative magnitude (i.e. 1 to 2 and 2 to 

4, both constitute a two-fold increase) cause the same response, the system performs 

fold-change detection (FCD) (Goentoro et al., 2009; Shoval et al., 2010). Certain 

molecular responses such as beta-catenin accumulation stimulated by Wnt and nuclear 

entry of MAPK stimulated by EGF exhibit FCD (Cohen-Saidon et al., 2009; Goentoro 

and Kirschner, 2009). FCD is reminiscent of Weber’s law, derived from psychophysical 

experiments in the visual system, which says that the just noticeable difference between 

two stimuli is proportional to stimulus magnitude (Weber, 1905). FCD is defined stricter 

than Weber’s law, requiring conserved response dynamics across stimulus levels 

whereas Weber’s law is satisfied with conserved peak response magnitude. 
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Five chemosensory neurons mediate odor responses in C. elegans and specificity 

amongst neurons is endowed by selective expression of different sets of olfactory 

receptor genes (Bargmann, 2006b). Laser ablations and genetic analysis revealed that 

diacetyl chemotaxis is driven by AWA sensory neurons at certain odor concentrations 

(Bargmann et al., 1993; Sengupta et al., 1996) providing an entry point to the neural 

basis of chemotaxis. Behavioral analysis showed that C. elegans regulates turns in 

response to changes in odor concentration rather than absolute odor levels (Iino and 

Yoshida, 2009; Pierce-Shimomura et al., 1999), supporting a role for adaptation in 

chemotaxis. At the neuronal level, odor-evoked responses in several sensory neurons 

including AWA exhibit short term adaptation (Hilliard et al., 2004; Larsch et al., 2013; 

Suzuki et al., 2008).  

We hypothesized that adaptation of odor-evoked AWA activity provides a cellular 

mechanism to sensitize AWA to fold changes, thus enabling chemotaxis over a wide 

range of odor concentrations. We systematically measured neuronal responses to odor 

in the diacetyl chemotaxis circuit and followed odor-evoked activity from AWA sensory 

neurons to connected downstream interneurons where it is integrated with activity from 

other neurons. Adaptation of neuronal responses to odor yielded a sensitive response to 

small increases in odor concentration in AIA interneurons that were necessary for 

behavior, providing a mechanism for efficient gradient sensing. Adaptation dynamics at 

the sensory level were stimulus-dependent and cell-autonomously altered in several 

classes of mutants.  
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Behavioral responses to different concentrations of diacetyl resulted from overlapping 

contributions from multiple sensory neurons. AWA was specifically required for transient 

orientation behavior in response to small increases in odor concentration that are 

encountered in shallow gradients, demonstrating functional specialization amongst 

sensory neurons for particular stimulus characteristics.  
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Results 

AWA neural dynamics reveal adaptation on multiple time scales 

AWA sensory neurons respond to diacetyl pulses with dose-dependent calcium 

transients (Larsch et al., 2013; Shinkai et al., 2011). We found odor-evoked responses to 

be strongly dependent on stimulation history, prompting the analysis of response 

adaptation and its implications for chemotaxis.  

During continuous stimulation with diacetyl, AWA calcium fell within 30 s to a low steady 

state level that was maintained for 5 minutes until diacetyl was removed (Figure 3-1a). 

To better understand the dynamics of desensitization, we stimulated animals with pairs 

of short odor pulses at varying intervals (Figure 3-1b). AWA responses to the first pulse 

of each pair were consistent, but short inter-pulse intervals diminished responses to a 

second pulse. The effect on the second pulse was largest with an interval of four 

seconds but recovered for intervals longer than ten seconds (Figure 3-1b). 

Desensitization could be overcome by stimulation with higher odor concentrations, 

indicating that this process represents a reduction in sensitivity rather than a general 

inability to respond (Figure 3-1c).  
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Figure 3-1 Rapid desensitization of odor-evoked AWA calcium transients.  
(a) Mean AWA response (relative GCaMP fluorescence, ∆F/F0) to 5 min pulse of 1uM 
diacetyl (gray horizontal bar); trace shading = S.E.M, n = 12 animals, 3 stimulations 
each. (b) A short 1 uM odor pulse reduces subsequent responses for 3-6 s. Mean AWA 
fluorescence to 1 s paired pulses with 1-10 s inter-pulse interval and 60 sec between 
pulse pairs. Horizontal bars above traces indicate pulse timing, colors relate pulse timing 
to respective AWA responses. (*P<.001; ns, not significant versus first pulse by ANOVA 
and Bonferroni’s correction for multiple comparisons). (c) Desensitization of AWA 
response to 1 µM  diacetyl (red) is overcome by stimulation with 5µM diacetyl (red). 
Shading shows s.e.m., n=63 traces from 9 animals x 7 trials. 
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Responses to odors also changed gradually on a minute time scale. In a five hour 

experiment, we pulsed animals once per minute with a 5 s pulse of 1 uM diacetyl (Figure 

3-2a). Peak AWA calcium responses fell rapidly during the first 5-10 odor pulses, then 

more slowly over the next ~300 pulses (Figure 3-2a). The degree of habituation to 10 s 

stimuli depended on the pulse duty cycle, with shorter inter-pulse intervals leading to 

greater habituation (Figure 3-2b). 

Habituation re-scaled odor response magnitude but preserved the desensitization 

property of a given odor concentration (Figure 3-2c-e). For example, the peak magnitude 

of the response to 0.1 uM diacetyl fell over 50% after 5 pulses, but the characteristic 

within-pulse desensitization at this concentration was always preserved. Thus, sustained 

stimulation and intermittent stimulation at a given odor concentration reduce odor 

responses in distinct ways. 
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Figure 3-2 Habituation of odor-evoked AWA calcium transients.  
(a) Mean peak AWA fluorescence during repeated stimulation for 5 s every 60 s at 1 uM. 
Gray: 11 individual animals, black: best fit to the equation y = y0*exp(-k*t) separately 
during two phases: 1, pulses 1-7, 2, pulses 11-300. (b) Mean AWA response to 
stimulation with 10 s pulses at 1 uM diacetyl depends on the inter-pulse interval. (c) 
Mean AWA fluorescence during odor stimulation at six concentrations. Each stimulus is 
presented six times for 10 s separated by 60 s and additional 60 s between 
concentration blocks. Shading = s.e.m. n = 21 animals. (d) Concentration dependent 
AWA response dynamics are preserved during adaptation. Traces are mean AWA 
fluorescence during 5 repeated stimulations in five blocks representing one 
concentration each. Pulse order within each block is color coded: green, first; blue, last. 
Black lines are best fit to the equation y = c + y0*exp(-k*t). n = 9 animals. The first 
response to 10 uM was not fitted because its shape was inconsistent with the model. (e) 
Response decay k is consistent across repeated pulses of the same concentration but 
different between concentrations (same data and colors as in d) (*P<.01; ns, not 
significant). 
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We extended AWA calcium imaging to a panel of genetic mutants in cellular odor 

signaling components to dissect the molecular requirements for odor sensing and 

desensitization. Dose-response measurements of AWA calcium transients showed a ten 

thousand fold reduction in sensitivity of AWA in odr-10(ky32) receptor mutant animals 

compared to wild type animals (Figure 3-3), confirming ODR-10 as the sole receptor in 

AWA for behaviorally relevant concentrations of diacetyl. G-Protein signaling 

downstream of odr-10 converges onto a group of three TRPV channel proteins 

(Bargmann, 2006a). No calcium responses were observed in osm-9(ky10) TRPV mutant 

animals up to 100 uM diacetyl (Figure 3-3) and ocr-2(ak47) mutants were one thousand 

fold less sensitive than wild type (Figure 3-3). ocr-1/ocr-2 double mutants were as 

defective as osm-9 mutants (Figure 3-3). These results confirm that the OSM-9/OCR-

2/OCR-1 TRPV channels are strictly required for AWA signaling to odor, and reveal 

partially redundant roles for OCR-1 and OCR-2 in stimulating calcium influx.  

Downstream of TRPV, voltage gated calcium channels (VGCCs) can amplify calcium 

currents and odor-induced depolarization. The L-type VGCC blocker nemadipine acutely 

reduces calcium responses in AWA (Kwok et al., 2006; Larsch et al., 2013), and AWA 

calcium responses in egl-19(n582) partial loss of function mutants in the L-type VGCC 

were strongly reduced across all concentrations (Figure 3-3). In agreement with 

behavioral and genetic analysis, AWA calcium responses did not require the cyclic 

nucleotide channel subunits tax-4 or tax-2 (data not shown), which are necessary for 

signaling in other sensory neurons such as AWC and ASE (Bargmann, 2006a; Suzuki et 

al., 2008). 
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Figure 3-3 AWA odor responses are lost in sensory transduction mutants. 
(Top) mean AWA fluorescence during dose response experiments using 10 s pulses and 
six stimulations at each concentration. No switch: baseline fluorescence without 
actuation of the stimulus switching valve. Buffer: stimulation from a separate buffer 
reservoir. Vertical bar to the left indicates 1 ∆F/F0. Gray shading indicates odor stimulus. 
(Bottom) Peak AWA fluorescence during stimulation at 1 uM. (**P<.0001 versus wild 
type). Schematic of AWA chemosensory signal transduction pathways adapted from 
(Bargmann, 2006a).  
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Modulators of the sensory response to diacetyl pulses 

To test if desensitization of the calcium response is intrinsic to AWA or mediated by 

feedback from other neurons, we tested unc-13 and unc-18 mutants that have severely 

reduced synaptic transmission (Richmond et al., 1999; Weimer et al., 2003). Unc-

18(e234), unc-13(e51) and unc-13(s69) had odor responses that decreased normally 

within and across odor pulses, suggesting that desensitization and habituation are 

independent of synaptic input (Figure 3-4). Unexpectedly, CB450 unc-13(e450) mutant 

animals did not show fast desensitization at any odor concentration. Instead, calcium 

rose and plateaued during a 10 s stimulation (Figure 3-4). Using high throughput 

imaging, linkage analysis, and whole genome sequencing, we determined that the defect 

was not caused by the unc-13 mutation but rather by a linked mutation in che-3, the 

cytosolic dynein heavy chain motor protein (Wicks et al., 2000). che-3 is 0.37 map units 

from unc-13, explaining why the two alleles co-segregated. The canonical loss of 

function allele che-3(e1124) had the same AWA defects as CB450, suggesting that 

enhanced AWA responses in CB450 represent the effect of loss of function of the CHE-3 

motor protein (Figure 3-4). 
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Figure 3-4 Fast desensitization is lost in several mutants in the IFT machinery.  
Traces are mean AWA fluorescence during odor stimulation, n=5-10 animals per 
genotype. Gray shading indicates odor stimulus. Wild type responses desensitize at 
intermediate concentrations (black arrow) but IFT (intraflagellar transport) mutants did 
not desensitize (red arrows). The anterograde IFT motor osm-3 is required for 
morphogenesis of channel cilia, but does not affect AWA. (Bottom) other alleles of unc-
13 and one allele of unc-18 showed normal desensitization at 1 uM diacetyl, shading: 
s.e.m. n=5-10 animals per genotype, 1 pulse each. 
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Intraflagellar transport mutants have defects in desensitization and habituation 

Olfactory receptor neurons detect chemicals in specialized membrane compartments 

termed cilia that are structurally conserved across metazoans (Bargmann, 2006a; 

Doroquez et al., 2014; Perkins et al., 1986). che-3 falls within a group of genes involved 

in intraflagellar transport (IFT) that are necessary for cilia morphogenesis and have been 

implicated in an emerging class of diseases know as ciliopathies (Gerdes et al., 2009). 

IFT mutants in C. elegans generally fail to chemotax to a variety of sensory cues 

(Perkins et al., 1986).  

We confirmed the structural defect of AWA cilia by fluorescence imaging of AWA::GFP 

in che-3(e1124) as well as other IFT mutants such as the IFT adaptor OSM-6 (Fig.5 and 

data not shown) (Collet et al., 1998). Although there was an AWA structural defect in 

these mutants, we found that che-3(e1124), osm-6(p811) and che-2(e1033), another IFT 

adaptor mutant (Fujiwara et al., 1999) had stronger odor-evoked calcium transients than 

wild type in AWA at intermediate odor concentrations (Figure 3-4, Figure 3-5). Moreover, 

responses in the IFT mutants showed no fast desensitization and no habituation after 

repeated stimulation. (Figure 3-4, Figure 3-5f). The defects in osm-6(p811) could be 

rescued by AWA-restricted expression of an osm-6 cDNA (Figure 3-5e, Figure 3-6) 

suggesting that the increased sensitivity in the mutant is cell-autonomous to AWA. 
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Figure 3-5 Genetic modulators of AWA adaptation.  
(a) Mean AWA fluorescence during odor stimulation. AWA responses do not desensitize 
in osm-6(p811) mutant animals, and habituate exessively in inpp5e(ky121) mutant 
animals. (b) Mean peak AWA fluorescence and time to peak calculated from (a). Time to 
peak was shortest at intermediate concentrations in wild type but not osm-6(p811) 
animals (*P<.01; ns, not significant). Peak responses fitted to a Hill equation indicate a 
higher gain in osm-6, see methods. Error bars represent sd, n=10-21 animals x 6 pulses 
at each concentration) (c) Fluorescence z-stack projection of anterior tip of 
representative animals expressing GFP in AWA sensory neurons showing the sensory 
dendrite. Cilia are stunted in osm-6(p811) animals. (d) Fluorescence z-stack projection 
of the nerve ring of a representative animal expressing a T25B9.10::gfp fusion gene from 
a recombineered fosmid. Diffuse GFP expression is observed in many neurons. AWA 
was identified by mCherry expression from a separate transgene (mCherry not shown). 
(e) Time to peak of AWA fluorescence during stimulation at 1 uM diacetyl (**P<.001; ns, 
not significant versus wild type). Error bars represent s.e.m. n = 5-20 animals, 1 pulse 
each. (f) Mean peak AWA fluorescence during repeated stimulation for 10 s every 60 s 
at 1 uM diacetyl. Traces at right are mean AWA fluorescence during stimulation #30. 
Error bars and shading represent s.e.m. n = 5-12 animals. (g) Peak AWA fluorescence 
quantified during stimulation #10 is reduced in three alleles of T25B9.10 (inpp5e). 
Rescue was achieved by fosmid transgenes that encompass T25B9.10 or by expressing 
T25B9.10 cDNA in AWA. (**P<.0001; *P<.001 versus wild type). n = 7-38 animals, 1 
pulse each. 
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Figure 3-6 Rescue of AWA fluorescence dynamics.  
Traces are mean AWA fluorescence during odor stimulation. Gray shading indicates 
odor stimulus. Desensitization was rescued in osm-6(p811) mutants by expressing osm-
6 cDNA in AWA (black arrows). Sensitivity at low diacetyl concentrations and normal 
habituation were restored in inpp5e(ky121) mutants by expressing mCherry::T25B9.10a 
cDNA in AWA (red arrows). 
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Phospholipid signaling regulates AWA desensitization 

To find novel molecular regulators of AWA adaptation, we tested additional mutants with 

defects in chemotaxis to AWA sensed odors (Roayaie, Bargmann, unpublished results). 

We observed that calcium responses to diacetyl were weaker at low concentrations and 

desensitized more quickly upon repeated stimulation in ky121 mutants than in wild type 

(Figure 3-5a,f,g). We mapped this phenotype to a missense mutation in the predicted 

Phosphoinositol-5-Phosphatase (INPP5) T25B9.10. Two independent predicted null 

mutations of T25B9.10 had AWA calcium defects similar to ky121, indicating that this 

phenotype likely represents a complete loss of gene function (Figure 3-5a). AWA 

response magnitude was rescued by wild type transgenes including T25B9.10 on a 37 

kb fosmid (WRM061dE11) that was expressed in AWA and many other neurons (Figure 

3-5d) or by AWA-restricted expression of T25B9.10a::mCherry cDNA (Figure 3-5a, 

Figure 3-6). 

The T25B9.10 locus encodes three predicted isoforms (a-c) generated by alternative 

splicing of the predicted first exons. Reverse transcription PCR identified two cDNAs 

T25B9.10a(short) and T25B9.10b(long) that were both sufficient to rescue the 

adaptation phenotype cell specifically in AWA (Figure 3-5g) suggesting that T25B9.10 

acts cell autonomously in AWA to maintain odor sensitivity at low stimulation regimes. 

Loss of function in T25B9.10 also disrupted signal transduction in ASH sensory neurons, 

which have a bi-phasic response to 1M glycerol consisting of a transient increase in 

calcium during glycerol stimulation and a second peak upon odor removal (Chronis et 

al., 2007). The ky121 allele caused a 75% reduction in ASH magnitude of the initial 

response, but did not reduce the second peak (Figure A-0-4). 
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The closest human homolog of T25B9.10 INPP5E localizes to and stabilizes primary 

cilia. Mutations in this gene can cause Joubert syndrome, a ciliopathy affecting midbrain 

development (Bielas et al., 2009; Jacoby et al., 2009). We detected diffuse cytoplasmic 

fluorescence of T25B9.10a::mCherry and a genomic T25B9.10::GFP fusion, so cilia 

localization may not be preserved across species (Figure 3-5d and data not shown).  

The INPP5 class of enzymes removes the 5’ phosphate of specific phospholipid 

substrates that act as targeting signals for intracellular localization and trafficking (Bae et 

al., 2009; Conduit et al., 2012). For, example, acute depletion of phosphatidylinositol 4,5-

bisphosphate by ectopic membrane recruitment of a 5-phosphatase domain in HEK293 

cells disrupted endocytosis of angiotensin II, type 2C serotonin and b2 adrenergic 

receptors (Toth et al., 2012).Therefore, T25B9.10 might regulate sensitivity via a role in 

odorant receptor trafficking. The diacetyl receptor ODR-10::GFP is distributed evenly in 

wild type cilia but had a tendency to accumulate in patches at the end of ciliary branches 

in ky121 animals (Figure 3-7). C. elegans INPP5 may act in AWA to increase sensitivity 

at low odor concentrations and reduce habituation by affecting odorant receptor 

localization or cilium structure in a subtle way. 
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Figure 3-7 inpp5e affects the distribution of the diacetyl receptor ODR-10. 
(Left) fluorescence z-stack projection of anterior tip of representative animals showing 
ODR-10::GFP localization to AWA cilia. Fluorescence is evenly distributed in cilia of wild 
type animals. Fluorescent patches (white arrowhead) occur in inpp5e(ky121) animals. 
(Right) 50 z-stack projections were scored by 18 people who were asked to match 
images to the wild type or mutant fluorescence pattern (see methods). Bars represent 
the percentage of correct calls for each image. Green lines indicate scoring distributions 
for 100 simulated rounds of 50 random guesses (thin lines) and the mean for these 100 
rounds (thick line). 
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Interneuron responses to diacetyl pulses 

The neurites of the AIA interneurons responded to diacetyl pulses from 1 nM to 100 uM 

with transient calcium increases (Figure 3-8a). Unlike AWA responses, which were 

100% reliable, AIA occasionally failed to respond to individual odor pulses. AIA 

responses were highly sensitive, with a median EC50 of 7 nM. Unlike AWA, AIA peak 

responses were only weakly dose dependent: they saturated at ~100 nM diacetyl, and 

fell sharply at 100uM (Figure 3-8a,b). Desensitization within 10 s pulses was also highly 

uniform across concentrations so that AIA had a characteristic odor response shape. 

The peak response to repeated pulses at the same concentration of diacetyl decreased 

weakly after the first pulse and were stable thereafter (Figure 3-8a,b), unlike AWA 

responses that could be suppressed by 50% or more at certain concentrations. 

Together, these results suggest that the diacetyl signals in AIA are relatively uniform 

whereas responses in AWA are highly sensitive to odor concentration and history. 
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Figure 3-8 AIA integrates input from AWA and other neurons. 
(a) Individual animal (top) and mean (bottom) AIA neurite fluorescence during dose 
response experiment. Each stimulus is presented six times for 10 s separated by 60 s, 
additional 60 s between concentration blocks. (b) Mean AIA neurite fluorescence per 
odor pulse, six repeats at each concentration are superimposed. ceh-36(ky640) and odr-
7(ky4) are transcription factor mutants affecting AWC and AWA developmental cell fate. 
(c) Mean AIA neurite fluorescence during 1 uM diacetyl stimulation, shading represents 
s.e.m. n = 54-144 responses from 9-24 animals per genotype. (d,e) Peak AIA neurite 
fluorescence (d) and delay to respond (e) during 1 uM diacetyl stimulation. Delay is the 
time from odor pulse begin until fluorescence levels exceed 2 standard deviations of 
baseline fluorescence (**P<.0001; ns, not significant versus wild type). 
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AIA responses reflect AWA-dependent and AWA-independent diacetyl signals 

To identify the sensory origin of AIA diacetyl responses, we examined mutant animals. 

odr-7(ky4) and odr-10(ky32) mutants with defective AWA neurons had sensitive AIA 

responses to diacetyl, but these responses were reduced in magnitude and altered in 

their dynamics compared to wild type animals (Figure 3-8b-e).  

The AWC neurons have previously been shown to support diacetyl chemotaxis at high 

concentrations (Chou et al., 2001). A ceh-36(ky646) mutation results in developmental 

loss of the AWC and ASEL neurons (Koga and Ohshima, 2004). This mutant had near-

normal AIA calcium responses to diacetyl (Figure 3-8b-e), but ceh-36(ky646) odr-7(ky4) 

double mutant animals had only 10% of the wild type response to diacetyl (Figure 3-8d). 

This suggests that the second sensory neuron that senses diacetyl could be AWC or 

ASEL 

The AWC neurons express the vesicular glutamate transporter eat-4, which supports 

their synaptic response. Like ceh-36, eat-4 mutations had little effect on AIA responses 

to diacetyl, but eat-4(ky4); odr-10(ky32) double mutants were severely defective across 

the concentration range (Figure 3-9). A comparable interaction was observed with osm-

6. We conclude that AWA is a major source of AIA diacetyl responses but is supported 

by one or more additional sensory neuron(s) affected by ceh-36, eat-4 and osm-6. 
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Figure 3-9 Parallel transmission of diacetyl signals to AIA. 
AIA receives diacetyl signals in parallel via odr-10/odr-7 and ceh-36/osm-6/eat-4. (Top) 
Mean AIA neurite fluorescence during odor stimulation (gray shading). The vesicular 
glutamate transporter eat-4 regulates AWC synaptic output. Top five rows are repeated 
from Figure 3-8. (Bottom) peak AIA neurite fluorescence. (**P<.0001; +P<.01; .P<.05; 
ns, not significant versus wild type).  
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Neural representation of fold-changes in odor concentration 

To ask how AWA responds to smaller changes in odor concentration, we measured 

AWA calcium responses to twelve successive increases in diacetyl concentration from 

0.01 to 1.58 uM. Each step represented an increase in odor concentration of 58% 

relative to the previous concentration (fold-change) and lasted one minute (Figure 

3-10a). AWA responded to eight fold-change steps with an increase in calcium that 

returned to baseline within about 30 seconds. Above 0.64 uM diacetyl, AWA calcium 

responses became larger and adapted only partially within the 60 seconds before the 

next stimulation (Figure 3-10a,c).  

AIA interneurons also responded with transient calcium increases to this series of odor 

steps (Figure 3-10b). Response dynamics in AIA were more similar between successive 

odor steps than in AWA (Figure 3-10d): AIA had a three-fold lower coefficient of variation 

than AWA for response magnitudes across the full range of odor concentrations (Figure 

3-10e). Thus, response normalization in AIA extended fold-change detection across a 

wider range of concentrations compared to AWA (Figure 3-10a,b). 

AIA responses to diacetyl fold changes were ODR-10 dependent (Figure 3-10b,d), even 

at concentrations at which AIA can respond to diacetyl from a baseline (Figure 3-9). This 

result indicates that AWA sensory neurons are sensitive to and necessary for the 

detection of 58% fold changes, whereas the other sensory neurons dependent on ceh-

36, eat-4, and osm-6 are insensitive in this stimulation regime. 
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Figure 3-10 AWA and AIA responses to fold-changes in odor concentration. 
(a) Mean AWA fluorescence during 12 successive 58% increases in odor concentration 
from 0.01 uM to 1.6 uM diacetyl. The first step from no odor to 0.01 uM is maintained for 
10 minutes, subsequent steps are 1 minute each. Black line below trace indicates step 
timing. (b) AIA neurite fluorescence during fold-change stimulation. (c,d) Mean AWA (c) 
and AIA (d) fluorescence for each fold-change increases superimposed. (e) Coefficient 
of variance of peak fluorescence during fold-change stimulation was calculated for each 
animal as the standard deviation of 12 peak responses during fold-change stimulation 
divided by the mean peak response. Error bars represent s.e.m. n = 14-16 animals; 
**P<.0001 
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The altered dynamics of diacetyl responses in osm-6(p811) and inpp5e(ky121) mutants 

were associated with defects in the fold change response as well. AWA neurons of osm-

6(p811) IFT mutant animals failed to return to baseline between odor pulses, and AWA 

neurons of inpp5e(ky121) mutants responded weakly across all concentrations (Figure 

3-11). 

To some extend, these defects were reversed by the AIA neuron which normalized the 

response to more closely resemble the wild type (Figure 3-11). 

 

Figure 3-11 AWA and AIA responses to fold-changes in osm-6 and inpp5e mutants. 
Mean AWA and AIA calcium responses in osm-6(p811) and inpp5e(ky121) mutant 
animals. Vertical bars in a-f indicate 1 ∆F/F0. 
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Behavior in microfluidic devices 

Having established that AWA detects changes in odor concentration and relays this 

information to downstream interneurons, we wanted to relate these stimulus regimes to 

spatial orientation behavior. To define stimuli that trigger chemotaxis specifically through 

the AWA sensory neurons we monitored animal behavior in a microfluidic device during 

stimulation with diacetyl. Microfluidic devices provide a structured liquid environment to 

deliver precise quantities of chemicals to unrestrained animals. Animal behavior is 

recorded for post-hoc high content analysis of stereotyped patterns of locomotion with 

respect to odor encounters (Albrecht and Bargmann, 2011).  

We first observed navigation in spatial odor gradients; in this configuration, animals 

control their sensory experience actively by moving within the gradient, as they do in 

chemotaxis on agar plates. Animals were tested in a sigmoidal gradient between 

selectable diacetyl concentrations (Figure 3-12a,b). Wild type animals distributed evenly 

throughout the arena when odor was uniform in the device, but readily migrated towards 

the peak when a gradient was present (Figure 3-12b). Individual animals occasionally 

descended the gradient but on average, animals remained near the peak of the gradient. 

In addition, animals spent more time at the device edge, irrespective of the presence or 

absence of odor (Figure 3-12b), a behavior that may result from mechanosensation at 

the walls of the device (Nam et al., 2013). To quantify chemotaxis performance we 

calculated a chemotactic index that reflects at each time point the distance of all worms 

to the top of the gradient. This index is -1 if all animals are at the center of the gradient, -

1 if all animals are at the device edge, and near zero if all animals distribute randomly. 
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Figure 3-12 Chemotaxis in microfluidic gradients. 
(a) (Middle) camera frame showing microfluidic device. Darker shading in the center is 
dye gradient. Scale bar = 10 mm. Stimulus reservoirs are connected to the device via a 
multi-channel valve to serve continuous flow and allow computer-controlled stimulus 
selection (not shown). (Left) magnified view showing two animals (black arrowheads) 
crawling through device post array. (Right) background subtracted dye intensity profile in 
arbitrary units. For example, a gradient from 0.1 uM to 1 uM has a dC/dx of 0.11 uM/mm 
on the approximately linear flanks and worms moving at .2 mm/sec experienced a rate of 
change in concentration (dC/dt) of up to .019 uM/sec (also see Figure 3-14). (b) (Top) 
gradient peak concentration of diacetyl was increased ten-fold every 15 minutes from 0.1 
nM to 100 uM at the center whereas the edges were held constant at 0.1 nM, creating a 
sigmoidal diacetyl gradient. Animals are introduced into the center of the device and 
disperse evenly in the absence of a gradient. Wild type residence along the device’s y-
profile increased in the center in the presence of a gradient. (middle) Mean chemotaxis 
index representing the distance of all animals from the device center during 2 s time 
bins. Shading represents s.e.m. n = 2 sets of 20-30 animals per genotype. (bottom) 
Mean chemotaxis 5-15 minutes after exchanging gradient center concentration. Error 
bars: s.e.m. (c) Simplified chemotaxis assay using concentrations between 0.1 uM and 
1.6 uM diacetyl. The edge is held constant at 0.4 uM diacetyl, the center is 0.1, 0.4 or 
1.6 uM diacetyl or dye (0.5 mg mL–1 xylene cyanole). Data display as in (b), n = 2-3 sets 
of 20-30 animals per genotype; *P<.001; ns, not significant. 
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To define the range of diacetyl concentrations that can elicit chemotaxis, we varied the 

peak of the gradient from 1 nM to 100 uM, the range that AWA sensory neurons can 

detect (Larsch et al., 2013). Chemotaxis performance was relatively constant from 10 

nm to 10 uM and dropped at 100 uM (Figure 3-12b). This dose response relationship is 

reminiscent of that found in plate assays where high odor concentrations also result in a 

drop in performance relative to lower concentrations (Bargmann et al., 1993). The 

chemotaxis response is therefore sensitive over three orders of magnitude in peak 

concentration and saturates above 10 uM. 

The diacetyl receptor ODR-10 is required for diacetyl chemotaxis on plates and AWA 

calcium responses to diacetyl (Larsch et al., 2013; Sengupta et al., 1996). In the 

microfluidic gradient device, odr-10(ky32) animals did not chemotax if the diacetyl 

concentration at the peak of the gradient was below 10 uM (Figure 3-12b), indicating that 

this behavior required AWA sensory neurons. The ODR-10 receptor was not required for 

chemotaxis towards a control dye used at the end of the experiment (Figure 3-12c). 

Interestingly, odr-10(ky32) animals performed better than wild type animals at 100 uM 

(Figure 3-12b) suggesting that saturated AWA neurons interfere with chemotaxis 

performance mediated by lower affinity neurons. Based on these result, we generated a 

simplified assay for detection of gradients in the range of 1 uM diacetyl. odr-10(ky32) 

were defective in this assay (Figure 3-12c). 

To test for a role of AIA in diacetyl-induced behavior, we examined a strain in which AIA 

was inactivated by expressing a constitutively active form of the ERG-like potassium 



82 
 

channel UNC-103 (Shinkai et al., 2011). These animals were severely defective in 

diacetyl chemotaxis in the microfluidic chamber (Figure 3-12c). 

Pirouettes in response to fold-changes in odor concentration 

In principle, turns could be modulated only when odor concentrations increase, only 

when odor concentrations decrease or under both conditions. Either mechanism alone is 

theoretically sufficient to bias a random walk. To distinguish among these possibilities, 

we measured turning rates in response to defined temporal upsteps and downsteps of 

diacetyl concentration in a microfluidic pulse device in which all animals experience the 

same stimulus history (Albrecht and Bargmann, 2011) (Figure 3-13).  

Animals were pre-adapted to 0.1 uM diacetyl, then exposed to five 58% upsteps from 

0.1 uM to 1 uM at an interval of 2 minutes, followed by five downsteps, visiting the same 

concentrations used during upsteps (Figure 3-13, Figure 3-14). Animals were then 

behaviorally classified for their instantaneous behavioral state (Albrecht and Bargmann, 

2011). At steady state after pre-adaptation at 0.1 uM, 80% of animals were engaged in 

forward locomotion and 20% in reversals or omega turns (reorientations) (Figure 

3-13a,b). Each odor upstep caused a transient suppression of turning before 30 

seconds, and a subsequent complete recovery within the following 30 seconds (Figure 

3-13a,b). However, successive downsteps had no effect on the turning rate (Figure 

3-13a,b). 

We next delivered six successive 58% upsteps in odor concentration from 0.1 uM to 

1.58 uM at an interval of one minute between each step, followed by a larger downstep 

to 0.1 uM diacetyl. As before, each upstep transiently suppressed turning and the turning 

rate adapted to the baseline within each step (Figure 3-13c). Unlike the small 
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downsteps, a large step from 1.58 uM to 0.1 uM strongly increased turning with 

subsequent recovery over 5 minutes (Figure 3-13d).  

Returning to the AWA diacetyl receptor ODR-10, we found that suppression of turns 

following upsteps was strongly reduced in odr-10(ky32) mutant animals (Figure 3-13c,d). 

By contrast, the increased turning following the large downstep was not reduced 

compared to wild type, suggesting that sensory inputs other than AWA contribute to this 

behavior. Hyperpolarizing AIA abolished the behavioral response to upsteps but not a 

large downstep (Figure 3-13c,d). 
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Figure 3-13 Fold-change step responses in microfluidic gradients. 
(a) (Top) schematic of stimulus protocol. In pulse configuration, liquid flow exchanges 
stimulus fluids continuously throughout the device. Stimuli were delivered via a computer 
controlled multi-channel valve from up to eight liquid reservoirs. Half-time for stimulus 
switching was 20 s, matching the magnitude of dC/dt experienced during crawling in the 
microfluidic gradient device (see Figure 3-14). Concentration increased every 2 minutes 
by 58% per step from 0.1 to 1 uM diacetyl. (Bottom) instantaneous fraction of animals 
engaged in turning behavior during fold-change stimulation. Fraction of animals turning 
was lower 5-15 s after each upstep compared to baseline before first upstep in wild type 
animals (*P<.05). Fraction of animals was unchanged 5-15 s after downsteps compared 
to baseline before first downstep. Shading represents s.e.m. n = 4 sets of 20-30 animals 
per genotype x 2 repeats per set. (b) Percent change in the fraction of animals turning 
during all upsteps was larger for wild type animals compared to odr-10(ky32) mutant 
animals (*P<.001). Error bars represent s.e.m. (c) Instantaneous turning rate during 58% 
upsteps from 0.1 to 1.6 uM diacetyl lasting 1 minute each, followed by a large downstep 
from 1.6 to 0.1 uM diacetyl. Statistics as in (a), (*P<.001; ‘.’ P<.05). n = 4 – 10 sets of 20-
30 animals per genotype. (d) Percent change in the fraction of animals turning, statistics 
as in (b). Downstep response was quantified as the change in the mean fraction of 
animals turning during 10-70 seconds after the downstep compared to 60 seconds prior 
to the downstep. 
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Figure 3-14 Time-course of odor switching during fold-changes. 
To approximate odor concentration, we measured dye intensity over time at one 
concentration (0.5 mg mL–1 xylene cyanole) and extrapolated the resulting time course 
to seven 58% fold-changes from 0.1 uM to 1.6 uM diacetyl. The time to reach half 
maximal concentration during each step was 15-25 seconds, depending on the location 
in the microfluidic device and we used the mean for this extrapolation. (Top) absolute 
concentration (blue) and linear fit (red) during the first 10 seconds of stimulation. 
(Middle) change in concentration. (Bottom) change in concentration divided by starting 
concentration of each step. In summary, animals experience peak dC/dt of 4-40 nM/sec 
during the 7 58% fold-change steps, corresponding to a relative change of up to 4%/sec 
relative to the starting concentration of each step. This is similar to dC/dt experienced in 
the microfluidic gradient assay (Figure 3-12). 
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Optogenetic interrogation of the AWA-AIA connection 

While odor stimulation is the most natural means of stimulating the chemotaxis circuit, 

overlapping odor recognition by multiple sensory neurons leaves ambiguity that can be 

addressed by orthogonal cell-specific activation experiments. Recently, Chrimson, a far 

red-shifted variant of Channelrhodopsin was described (Klapoetke et al., 2014) with 

excitation wavelength that overlaps minimally with G-CaMP, enabling recordings of 

calcium transients during cell specific light activation. 

When Chrimson was co-expressed with G-CaMP in AWA sensory neurons, we observed 

strong calcium transients upon illumination with 605 nm light (Figure 3-15a-c). Perhaps 

surprisingly, Chrimson recapitulated the AWA calcium dynamics observed during odor 

stimulation: Transients varied with light duration and intensity (Figure 3-15b) and peak 

calcium was observed after five seconds even if the light stimulus was sustained for ten 

seconds (Figure 3-15c). AWA calcium transients with variable slopes could be generated 

by varying the rate of increase in light intensity during stimulation (Figure 3-15c).  

By expressing Chrimson in AWA and G-CaMP in AIA, we were able to ask if AWA 

activation is sufficient to modulate calcium in AIA. Indeed, Chrimson excitation in AWA 

induced transients in AIA with a similar magnitude as diacetyl administration (Figure 

3-15d,e).  

To ask if AWA activation is sufficient to modulate turning behavior we excited Chrimson 

in AWA and quantified turning rates of animals on agar plates. AWA activation 

suppressed turning within 5 seconds. After 20 seconds, turning off the light elicited a 

rebound turning behavior (Figure 3-15e).   
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Figure 3-15 Optogenetic probing of the AWA-AIA circuit.  
(a) Schematic of optogenetic probing of AWA: Chrimson is co-expressed with GCaMP in 
AWA. Red light excites Chrimson to depolarize AWA. Blue light excites GCaMP to emit 
green fluorescence. (b) (Left) mean AWA fluorescence during Chrimson stimulation for 2 
or 5 seconds. (Right) Magnitude of AWA fluorescence is dependent on Chrimson 
stimulation intensity. (c) AWA fluorescence during Chrimson stimulation ramping to 
maximum within 10, 20 or 40 seconds. (d) Probing of signal transmission from AWA 
expressing Chrimson to AIA expressing GCaMP. 10 s Chrimson stimulation alternated 
with one 10 s pulse of diacetyl. Shading represents s.e.m. n = 15 animals. (e) Mean 
fraction of animals turning during 20 s Chrimson stimulation. Error bars represent s.e.m. 
n = 3 experiments, 15-20 animals each. 

These results suggest that a single depolarization of AWA with Chrimson is sufficient 

both for transmission of an informative signal to AIA, and for regulation of turning 

behavior in a pattern that resembles wild type responses to diacetyl. 
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Agent-based model of diacetyl chemotaxis 

The fold-change experiments suggest an asymmetric turning bias elicited by AWA 

stimulation: small increases suppress turning, but small decreases do not enhance 

turning. An open question is whether these changes are sufficient to explain 

accumulation in our microfluidic gradient assay. To explore this possibility, we 

implemented an agent based biased random walk model in NetLogo (Wilensky, 1999). 

We defined a virtual gradient and agents that use a set of rules to control their 

movement that matched the spatial properties of odor and C. elegans locomotion in the 

microfluidic gradient assay (Figure 3-16a). Agents travelled in straight runs at a constant 

speed of 0.2 mm/sec and had a baseline turning rate of 20%. Turns were modeled as a 

5 second period without locomotion, and subsequent heading was random. Turn 

probability was regulated by odor concentration as agents traversed a sigmoidal virtual 

odor gradient. The model was used to explore the effect of different modes of odor 

sensing on chemotaxis performance. 

In a preliminary model, the initiation rate of turns p(turn) was regulated by absolute odor 

levels (no adaptation). In separate runs, increases in odor concentration increased or 

decreased turning respectively.  

1a)                   

(turns increase with odor concentration) 

1b)                            
      

(turns decrease with odor concentration, in this case exponentially) 
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This model with modulation of turns by absolute odor concentrations did not exhibit any 

chemotaxis. 

Building from the data obtained for AWA odor responses, we next modeled regulation of 

the turning rate by (absolute) changes in odor levels (the result of adaptation). To match 

our behavioral data using small 58% changes in odor concentration, turns were 

suppressed if dC/dt was positive. If dC/dt was negative, agents turned with baseline 

probability.  

2)                                         for dC/dt >0 

                              for dC/dt < 0 

The choice to model p(turn) in with this particular function was made to reflect that 

turning rates asymptotically approach a low level for large dC/dt. In the range of 0.1 to 1 

uM diacetyl, the response of turn suppression was similar during successive fold-

changes (Figure 3-13). Therefore, we cannot determine the exact shape of the 

relationship of dC/dt and turning rate. For the purpose of this model, we chose k of the 

exponential decay model (equation 2) to suppress the baseline turning rate of 0.05 

initiations per second by 75% in response to the first 58% fold-change from 0.1 to 0.158 

uM representing a dC/dt of ~3 nM/sec1. 

k: ~500 [s / uM] 

This model produced efficient chemotaxis in a virtual gradient (Figure 3-16b).  

                                                
1
The exact shape of the function relating p(turn) to dC/dt can be experimentally obtained by 

surveying turning responses to a wider range of different fold-change steps in diacetyl 
concentration but the main purpose of the model is at this point to show how different modes of 
odor sensing can produce qualitatively different chemotaxis behavior.  
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Figure 3-16 Multi-agent model of chemotaxis. 
(a) Virtual gradient arena, showing relative residence of agents during 10000 simulation 
steps at 2 Hz. Lighter shading indicates more time spent. Red line: simulated odor 
gradient ranging from 0.001 – 0.1 uM diacetyl. gray line: histogram of relative residence. 
(b) Model chemotaxis over time for 10 individual simulations with 100 agents each (thin 
lines). Thick line indicates mean, shading represents s.e.m. Agents start at randomized 
locations. (c) Steady state model chemotaxis at different peak gradient diacetyl 
concentrations using absolute concentrations as the input to calculate dC/dt. Mean of 5 
simulations per concentration, error bars: s.e.m. (d) Transformation of actual odor 
concentration into perceived concentration by the Hill function that describes AWA’s 
odor to calcium input/output function. Gradient before and after transformation is shown 
for 5 different peak odor concentrations, low end of gradient is kept constant at 0.001 uM 
odor. (e) Model chemotaxis using transformed odor concentrations as the input to 
calculate dC/dt. Data in panel (c) is reproduced in gray for comparison. 
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By analogy to the microfluidic gradient, we calculated a chemotaxis index at each time 

point representing the distance of each agent from the top of the gradient. The agent 

chemotaxis index in the virtual gradient increased in a dose dependent manner and 

saturated at peak gradient concentrations of 1 uM (Figure 3-16c). In this simple model, 

the sensitivity (EC50) of the chemotaxis response was solely determined by k, the factor 

scaling turn suppression at a given dC/dt. When concentrations were very high (e.g. 100 

uM), dC/dt was also high and strongly suppressed turning in agents moving up the 

gradients, resulting in maximal chemotaxis performance.  

These results show that suppression of turns in response to odor increases is sufficient 

for gradient climbing on the length scales of our experiment. On the other hand, this 

simplified model is inconsistent with our chemotaxis data in two ways. First, real 

chemotaxis performance was relatively constant over several orders of magnitude at 

intermediate concentrations and fell at higher concentrations. Second, fold-change 

stimuli indicated that both neural and behavioral responses reflected relative changes in 

diacetyl concentration rather than absolute dC/dt (Figure 3-10, Figure 3-13).  

We therefore implemented a more sophisticated model of odor sensing that reflected 

sensitivity over the dynamic range of AWA sensory neurons. Instead of reading out 

actual odor concentration (Ca) at each agent’s position, that concentration was filtered 

through a saturating nonlinearity to yield the perceived concentration (Cp) which was 

subsequently used to calculate dC/dt.  

3)      
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EC50 and h were obtained from the experimentally measured AWA calcium responses to 

a wide range of diacetyl concentrations: 

EC50 = 100 nM 

h = 0.8 

With this transformation, perceived odor concentrations were bounded between zero 

and one (Figure 3-16d) and became buffered around the EC50 concentration. We re-ran 

the virtual dose response gradient experiment. Now, chemotaxis performance in the 

gradient increased at low concentrations and decreased at high concentrations, resulting 

in a bell shaped dose-response relationship (Figure 3-16). Agent chemotaxis was 

maximal near the EC50 for AWA odor sensitivity because this is the steepest part of the 

AWA dose response curve for odor perception and therefore, perceived dC/dt is largest. 

At higher concentrations, the non-linearity is saturated and perceived dC/dt falls. 

Further work is needed to include acute adaptive rescaling observed in AWA calcium 

responses to fold-changes into this model. This is expected to further broaden the range 

of concentrations where chemotaxis performance is constant at intermediate 

concentrations. 
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Discussion 

High throughput Imaging 

Imaging neural activity with low-magnification optics yielded substantial benefits in 

animal throughput, experiment duration and repeatable chemical stimulation compared 

to existing systems for high-magnification imaging of an individual restrained or freely-

moving animal. We obtained wide-field recordings of activity in sensory neurons, and 

from interneurons whose calcium transients were restricted to their axons, despite 

reduced spatial resolution and fluorescent signal-to-noise ratio. For many applications, 

such as characterizing stochastic neural and behavioral responses, it should be 

beneficial to increase experimental throughput at the expense of image resolution. 

Experimental reproducibility is often challenging for studies of animal behavior in which 

small variations in training, stimulus history, or assay conditions can substantially 

influence behavioral outcomes (Richter et al., 2009; Wahlsten et al., 2003). In our 

system, precisely-delivered chemical stimuli elicited predictable behavior probabilities 

and calcium responses: population-average responses adapted consistently over time at 

similar rates from one experiment to another, and individuals consistently responded 

strongly or weakly to repeated stimuli. Whereas C. elegans neural recordings generally 

have been made in naive animals, we found that sensory calcium responses in AWA 

were most variable during the first few stimuli, becoming more reproducible and stable 

after several pulses.  Defining the stable response regimes for other neurons and 

sensors should facilitate characterization of their properties and comparisons of their 

responses across experimental conditions. 
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The magnitude and sensitivity of odor-evoked AWA calcium dynamics varied among 

isogenic animals. Possible sources of this variation include developmental or epigenetic 

variations between animals, effects of recent experience or modulatory state, variability 

associated with the GCaMP transgene, or stochastic effects. These observations 

emphasize the need to examine neural and behavioral responses in many individual 

animals under repeatable stimulation. 

Continuing improvements in optical components, software, and neural sensors will likely 

further increase the experimental throughput of wide-field neural imaging. Cameras are 

already available with larger sensors for increased field-of-view, as are objectives with 

higher NA. Improvements to analysis software, particularly for tracking many freely-

moving animals, will be required for full automation of data analysis. 

We present here several examples of experiments enabled or accelerated by wide-field 

neural imaging. Mapping neural activity during probabilistic behaviors, such as decision-

making in complex or conflicting sensory environments, will require large numbers of 

neural recordings, as will genetic and pharmacological analyses of neural response 

dynamics. Long-term recordings should enable the continuous study of neural and 

behavioral plasticity, adaptation, and learning over hours. We anticipate this reliable and 

efficient system will aid in the detection of subtle neural phenotypes, the study of neural 

dynamics, and the generation of data for systems modeling of brain circuitry. 
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Roles for sensory adaptation during spatial orientation 

During navigation, organisms control their movement through space based on 

information extracted from the environment. Key to understanding this sensory-motor 

transformation is to define what information is extracted and how the behavioral goal is 

achieved by regulated, specific motor patterns.  To dissect the mechanisms underlying 

orientation in chemical gradients, we surveyed neuronal and behavioral responses in C. 

elegans during odor stimulation. Our results show that precise adaptation sensitizes the 

chemotaxis response to positive changes in diacetyl concentrations rather than absolute 

levels. At the behavioral level, small upsteps in odor concentration transiently 

suppressed reorientation behavior whereas small downsteps had no effect, providing a 

mechanism for indirect orientation in a stimulus gradient. 

The biased random walk model is currently the predominant formalization of C. elegans 

chemotaxis. It postulates that animals detect dC/dt to regulate the frequency of turns that 

are randomly oriented to prolong runs towards higher concentrations of attractants bias 

net movement up the gradient. Detection of dC/dt rather than absolute odor 

concentration requires adaptation at some level in the chemotaxis circuit. A second 

reason chemotaxis requires adaptation is response sensitivity over a wide input range, a 

dilemma sometimes called the ‘sensitivity paradox’ (Sourjik, 2004). The challenge is that 

for example E. coli responds to a 0.2% change in receptor occupancy with a ~20% 

change in tumbling frequency, a 100x signal amplification that is maintained over five 

orders of magnitude in stimulus concentration. A system with 100x amplification would 

saturate at 1% input signal intensity and thus behave no different from a system without 

amplification but higher sensitivity unless adaptation keeps signaling within the dynamic 

range (Sourjik, 2004). C. elegans faces a similar challenge because animals can 
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chemotax to certain odors such as diacetyl over seven orders of magnidute in 

concentration, suggesting active and acute adaptation mechanisms for maintaining 

sensitivity (Bargmann et al., 1993). 

Desensitization of sensory responses could provide a mechanism to differentiate inputs 

over a wide range of stimulus intensities without saturation. Alternatively, desensitization 

may also reflect other cellular properties such as novelty detection (Wark et al., 2007) 

acute protection from overstimulation, sharpening of response dynamics for efficient 

downstream processing or restricting cellular responses to a limited number of stimulus 

encounters to yield a switch like behavior. However, the functional consequences of 

sensory desensitization in C. elegans have not been explored systematically.  

Stimulus induced responses in several classes of C. elegans sensory neurons besides 

AWA are transient. For example, calcium levels in ASEL and ASH sensory neurons rise 

transiently in response to upsteps in salt and copper concentrations, respectively, and 

then return to baseline or a lower sustained level, depending on the stimulus 

concentration (Hilliard et al., 2004; Suzuki et al., 2008). Interestingly, desensitization is 

widespread but not a universal feature of C. elegans chemosensory neurons. For 

example, AWC and ASER sensory neurons respond to certain odors and salts, 

respectively, with little or no apparent adaptation for several minutes to hours (Chalasani 

et al., 2007; Suzuki et al., 2008). These neurons exhibit suppressed calcium levels upon 

stimulation. Generally, desensitization is more common in neurons that increase calcium 

levels upon stimulation: ADF (Qin et al., 2013), ADL (Jang et al., 2012), BAG (Zimmer et 

al., 2009) and AWB (Yoshida et al., 2012) belong in this group of ON neurons together 

with AWA and ASH. URX (Zimmer et al., 2009), ASK (Macosko et al., 2009) and AQR 

and PQR (Busch et al., 2012) are OFF neurons like AWC and ASER that do not 
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desensitize. One notable exception to this correlation are calcium responses in AFD 

sensory neurons to changes in carbon dioxide concentration. Like AWC, AFD exhibits 

suppressed calcium levels upon stimulation and an overshoot above baseline after 

stimulus removal but, unlike responses in AWC, AFD suppression is transient and 

returns to baseline within 60 seconds (Bretscher et al., 2011). 

This functional classification of sensory neurons may have implications for the sensitivity 

in detecting their respective ligands. Stimuli that are detected by non-adapting OFF-

polarity sensory neurons may still be differentiated by the downstream circuitry, but for 

any given signal transduction pathway, the sensitivity is limited by the least sensitive 

component; the system cannot be more sensitive than its sensor. Other sensory 

systems such as Drosophila olfaction increase overall sensitivity above the level of 

single receptor neurons by convergence of hundreds of sensory neurons onto fewer 

projection neurons (Bargmann, 2006b; Wilson, 2013) but this is not possible in C. 

elegans where many stimuli are detected by only a single pair of sensory neurons. By 

this argument, adaptation is most effective at the sensory level to increase sensitivity of 

a neural circuit. Within the sensory neuron, adaptation would be most effective at the 

receptor level. For example, adaptation in E. coli during chemotaxis involves 

desensitizing receptor molecules via methylation (Sourjik, 2004).  

At the sensory level, we have shown that AWA sensory neurons are transiently activated 

by increases in diacetyl concentration. Odor-evoked calcium transients revealed two 

distinct kinds of changes to AWA sensitivity on different time scales: within and between 

stimulations. Generally, naïve animals had the largest response magnitudes to odor 

stimulation, analogous to high sensitivity in the visual system after dark adaptation 

(Kandel, 2013). Repeated stimulation at a fixed frequency reduced response magnitudes 
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to individual odor pulses over the course of minutes, and this habituation recovered on a 

similar time scale in the absence of stimulation or during stimulation at a lower 

frequency. In addition, sustained stimulation at certain concentrations reduced the 

response magnitude within each odor pulse. In wild type animals, we observed this 

desensitization at concentrations between 0.1 and 10 uM diacetyl, but not at higher or 

lower concentrations.  

A desensitizing response during continuous stimulation indicates that two processes act 

antagonistically. One process is excitatory, acting to increase the response; the other is 

inhibitory, acting to decrease the response. Our recordings constitute a combined 

readout of the balance of both processes over a range of diacetyl concentrations. Our 

data is consistent with a model in which excitation increases gradually with diacetyl 

concentration between 0.01 and 100 uM, inhibition is triggered above 0.1 uM and 

antagonizes responses up to 10 uM, and inhibition is saturated above 10 uM. The rate of 

desensitization reflects the ratio of excitation to inhibition at specific diacetyl 

concentrations, not response magnitude. This dissociation between response magnitude 

and response decay suggests that the two phenomena are separately regulated by 

distinct physiological processes. 

Importantly, desensitization endows AWA with the ability to respond repeatedly to 

successive increases in odor concentration. We detected characteristics of fold change 

detection (FCD) in AWA calcium transients as defined by concentration-invariant 

response dynamics in response to 58% fold-changes in diacetyl concentration and a 

saturation point of this process just below 1 uM diacetyl concentration. 
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Together, these results reveal a complex set of concentration dependent dynamics of 

diacetyl induced AWA calcium transients. To relate absolute concentrations delivered in 

our microfluidic assays to odor dilutions applied in classical agar plate chemotaxis 

assays, we can use the odr-10(ky32) mutant for calibration. odr-10 mutant animals are 

defective in diacetyl plate chemotaxis at dilutions up to 1:10002. During gradient 

chemotaxis in the microfluidic device, we found that odr-10 mutant animals were 

defective up to 1 uM diacetyl, serving as an approximate equivalent between the two 

assays. Therefore, it is realistic to assume that desensitization and habituation reflect 

dynamic responses to behaviorally relevant diacetyl concentrations. 

Adaptation mutants reveal unexpected roles for conserved genes 

Two genetic lesions affected the dynamics of adaptation in opposite ways. These 

observations indicate that odor-evoked AWA response dynamics reflect physiologically 

regulated processes, and suggest that the balance of excitation and inhibition is actively 

maintained in wild type animals. 

Animals mutant in intraflagellar transport (IFT) neither desensitized nor habituated to 

diacetyl, and had stronger AWA diacetyl responses than wild type animals. 

Mechanistically, it is unclear how mutations in IFT genes affect AWA calcium responses. 

Possibilities include direct and indirect effects of IFT. For example, IFT may be directly 

required for desensitization and habituation by translocating signaling molecules, by 

analogy with light dependent movement of Arrestin in the Drosophila visual system 

(Montell, 2012). To address this particular hypothesis, we tested arr-1 mutants, the only 

                                                
2
 In a typical chemotaxis plate assay, 1 uL of this dilution is applied to a 10 cm agar plate 

containing approximately 10 mL agar. The odor is then left to diffuse under the lid of the plate for 
a few minutes before animals are introduced and allowed to chemotax in the gradient that has 
formed in the meantime. Quantifying the exact distribution of the gradient is challenging. 
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known arrestin homolog in C. elegans, but found no AWA desensitization defect (data 

not shown). Nonetheless, IFT could act by moving other signaling molecules. In addition, 

we have tried to inhibit IFT via bath application of a small molecule inhibitor of dynein 

that can acutely stall retrograde IFT without immediately disrupting primary cilium 

morphology in cell culture (Firestone et al., 2012) but pilot experiments did not yield an 

effect (data not shown). A more general formulation could be that IFT transports a 

cytoplasmic protein into cilia that is needed for habituation or adaptation, but not actively 

transported. An example might be calmodulin, which acts in vertebrate olfactory 

desensitization (Kurahashi and Menini, 1997; Munger, 2001). 

Alternatively, the adaptation defect may be a structural effect of stunted cilia that bring 

the diacetyl receptor and associated signaling molecules into abnormal physical 

interactions. Wild-type AWA cilia are highly branched and a large proportion of their 

surface is buried in a surrounding sheath cell (Doroquez et al., 2014). It is currently 

unclear where ligands interact with odorant receptors within this structure. One 

possibility is that odor signaling occurs at the exposed cilium shaft that may be largely 

intact in IFT mutants, and that cilium branches are partially or fully insulated from odor 

exposure and may therefore serve as regulatory domains. Currently, no data exists to 

support or refute this model. Our results, perhaps surprisingly, suggest that cilia may 

serve a net inhibitory function in AWA rather than mediating primary transduction of odor 

signaling. 
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AWA sensory neurons are specialized to detect small increases in diacetyl 

concentration 

Based on behavioral results in microfluidic and agar plate gradients, we anticipated that 

AWA sensory neurons and the diacetyl receptor odr-10 would be required for both 

neural circuit responses and behavioral responses to diacetyl concentrations below 1 

uM, but this was not strictly true. odr-10(ky32) AIA responses were similarly sensitive to 

diacetyl pulses as wild type animals, albeit with slower dynamics and lower response 

magnitudes, and we showed that this residual response is transmitted from other 

sensory neurons. Presumably, these other neurons also mediate the behavioral 

response to large step changes in diacetyl concentration, which are also AWA-

independent. However, no other neuron compensated for the loss of odr-10 function for 

responses of AIA interneurons or for responses at the behavioral level to fold-change 

upsteps in diacetyl concentration, indicating that only AWA was sensitive in this regime. 

Together, these results suggest that AWA is a specialized detector of small changes in 

diacetyl concentration, well suited to instruct downstream circuitry to regulate turns 

during chemotaxis. Over a certain range, AWA responses exhibit characteristics of FCD. 

Further experiments are needed to determine if AWA responses truly reflect absolute or 

relative dC/dt. A pilot survey suggests that AWA response magnitudes to diacetyl fold-

changes generally depend on the magnitude of the fold-change but can be 

superimposed on history- and concentration-dependent calcium fluctuations (Figure A-

0-5).  
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AIA interneurons perform a high gain, low threshold readout of AWA activity 

To understand which aspects of AWA dynamics are transmitted to other neurons as part 

of the sensory-motor transformation underlying chemotaxis, we extended calcium 

imaging to AIA interneurons. The wiring diagram shows a gap junction between AWA 

and AIA, and AIA neurites can respond to diacetyl with the same direction as AWA. In 

isotropic environments, loss of AIA neurons led to more turning behavior, suggesting 

that AIA neurons normally act to suppress turning (Chalasani et al., 2007). Therefore, in 

a simple model, activity could be transmitted from AWA to an interneuron AIA upon 

diacetyl detection and transiently suppress turning behavior. Consistent with this model, 

we found that AIA was highly sensitive to increases in diacetyl concentration.  

Despite the direct electrical coupling with AWA, AIA responses did not merely mirror 

AWA. Instead, AIA resembled a high gain readout of AWA activity that converted the 

richness of AWA dynamics observed across diacetyl concentrations and during repeated 

stimulation into uniform responses. AIA responses were also largely insensitive to 

perturbation of AWA dynamics caused by IFT and inpp5e mutants. These properties 

may arise from active cell-intrinsic amplification of inputs to AIA, for example by voltage 

activated currents. Our results also predict efficient inactivation mechanisms in AIA that 

can terminate calcium transients during ongoing signaling from AWA, because AIA 

responses desensitized within about ten seconds even at high odor concentrations and 

during sustained AWA depolarization using Chrimson. Together, AWA and AIA compute 

diacetyl dC/dt with high sensitivity and large response gain, which resembles a two 

stage process of adaptation and subsequent amplification. 
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Analogies in architectures for chemotaxis 

Our behavioral analysis and neural imaging showed that small changes in diacetyl 

concentrations are only sensed and acted upon when diacetyl concentrations rise. 

Turning frequency was suppressed during increases in odor concentration but 

unaffected by decreases in odor concentration. This is highly similar to the bacterial 

biased random walk strategy, where turning frequency of single cells is suppressed upon 

increases in attractant concentration but unchanged upon decreases (Berg and Brown, 

1972).  

In addition, signal processing in these two systems bears some resemblance: In E. coli, 

the ‘sensitivity paradox’ is resolved in part by a high-gain response of the motor proteins 

that mediate runs versus tumbles to CheY, the output of receptor signaling (Cluzel, 

2000; Sourjik, 2004). In C. elegans, AIA appears to serve a similar function by amplifying 

sensory AWA inputs into uniform responses that likely feed into motor control circuits to 

suppress turning. Consistent with this model, optogenetic activation of AIA suppresses 

turns (Navin Pokala, unpublished results). 

In both E. coli chemotaxis and C. elegans diacetyl chemotaxis, stimulation of turning 

above baseline can be observed in response to decreases in concentration once the 

step size becomes sufficiently large. In the case of E. coli, it was argued that its swim 

speed is barely sufficient to escape the drag of the surrounding media and hence it 

would be unlikely to experience such sudden changes in odor concentration (Berg, 

2004). Odor distributions in natural habitats of C. elegans are not known and it remains 

to be seen which modes of behavioral response are accessed during locomotion. 
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Chrimson stimulation showed that AWA is sufficient to trigger both suppression and 

enhancement of turning behavior. However, under natural odor stimulation, AWA is 

redundant with other neurons that enhance turning after diacetyl removal. 

Alternative behavioral strategies during chemotaxis 

The strong phenotype of AIA hyperpolarization in the microfluidic assay is in contrast to 

its minor effect on diacetyl chemotaxis on agar plates (Shinkai et al., 2011) (and our own 

unpublished results). This discrepancy may indicate a difference between chemotaxis 

strategies employed in the endpoint assay on agar plates versus in the microfluidic 

gradient assay. For example on plates, animals ascend the gradient once and are 

paralyzed by a drug at the odor source to facilitate animal counting, whereas the 

microfluidic assay reports the animals’ ability to constantly reorient to remain near the 

top of the gradient. In addition, the device geometry might prevent some strategies of 

locomotion that can be accessed on plates that are independent of AIA. This 

interpretation is consistent with a previous report of AIA laser ablation specifically 

disrupting regulation of turns in salt gradients but having little effect on the use of 

directed curves in the salt gradient (Iino and Yoshida, 2009). 

Wide field imaging unlocks a wider range of stimuli and genetic analysis of 

neural dynamics 

At the methodological level, this work demonstrates the strength of wide field imaging of 

neural activity with elevated throughput. In principle, the calcium imaging results 

presented in this study could have been obtained using traditional imaging techniques 

that focus on one animal and deliver one stimulus per experiment. However, largely 



106 
 

automated wide field imaging encouraged us to survey a wider range of stimulus 

conditions and thus led to a clearer picture of the dynamics of adaptation throughout the 

range of diacetyl concentrations that C. elegans detects. Testing ten animals each of two 

genotypes in a single experiment is not only convenient but is also valuable to confirm 

experimental consistency, for example by testing a set of control animals in each 

experiment that experience the same stimulation as the test animals. 

Despite the reduced spatial resolution during imaging, neural response dynamics could 

be reliably quantified even from individual animals. We found a single segregant animal 

among ~80 double mutant animals in two experiments using a specialized microfluidic 

device during the initial analysis of the CB450 strain. We recovered and propagated that 

animal for genome sequencing, providing an important pilot experiment towards genetic 

screening for mutants that affect neural dynamics. 
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Outlook 

We suggest that our work points to an adaptation based mechanism for spatial 

orientation in C. elegans. We hypothesize that the chemosensory AWA-AIA circuit 

computes and amplifies small positive dC/dt to suppress turning during runs towards 

diacetyl odor. Our hypothesis is built on a number of observations presented in this 

thesis: (1) Neural responses to diacetyl in AWA and AIA are transient and repeatable 

during successive upsteps in diacetyl concentration and thus reflect dC/dt rather than C 

of diacetyl. (2) The transient nature of AWA responses appears to be physiologically 

regulated. (3) The probability of turning is transiently suppressed during upsteps in 

diacetyl concentration. (4) Optogenetic depolarization of AWA (and AIA, N. Pokala) can 

mimic odor stimulation and suppress turns. 

Building on this hypothesis and the established assays and stimulus conditions will make 

it now possible to relate these observations more directly to the ultimate behavioral goal 

of gradient chemotaxis. 

Turns are thought to be largely undirected although a weak directional bias has been 

described (Iino and Yoshida, 2009; Pierce-Shimomura et al., 1999). We would like to 

characterize how turns contribute to spatial orientation in our assays to understand if the 

formalization of chemotaxis as a biased random walk is valid and this will require further 

behavioral analysis in microfluidic gradients. For example, an analysis of individual 

animal responses during interaction with spatial odor patterns should reveal if indeed 

turns are undirected and only modulated relative to the baseline when animals move up 

the gradient. Our initial attempts of this analysis met computational and intellectual 

challenges in the segmentation of behaviors (e.g. is what looks to the eye like three 
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closely spaced successive turns that eventually reorient the animal up the gradient a 

sequence of three undirected turns or, rather, one directed turning event? How can we 

deal with tracks lost during collisions?). Furthermore, the length scale of our current 

microfluidic device configuration is similar to the average run length at baseline (0.2 

mm/sec x ~ 20 s run length = 4 mm, compared to ~5 mm linear gradient regime within 

15 mm total extent of the gradient on both sides) making it difficult to relate the odor 

gradient to behavior. Larger devices are already being designed. 

Optogenetic stimulation provides a powerful means to test directly if suppression of turns 

is sufficient to generate spatial orientation. A more complete characterization of the 

AWA::Chrimson strain might identify stimulation intensities that closely mimic the 

behavioral effect of odor stimulation on turning frequency (to suppress but not 

subsequently enhance turns). It should be possible to devise a closed loop experiment 

to acutely bias the random walk of an animal in an isotropic environment by light 

activation of AWA when animals crawl in one orientation versus another, mimicking 

AWA activation during movement up and down a gradient. Uniform illumination would 

provide a purely temporal cue to the animal. In a pilot experiment, we provided patches 

of light of different intensities on an agar plate to animals expressing Chrimson in AWA. 

This crude experiment did not result in obvious accumulation of animals in those patches 

but more sophisticated paradigms such as light gradients may reveal if direct AWA 

depolarization can guide orientation behavior. 

Interpreting optogenetic experiments will benefit from a better understanding of the 

relationship of AWA depolarization and AWA output signaling to (subcellular) calcium. 

Our calcium imaging during Chrimson stimulation showed that calcium transients 

subside during light activation but electrophysiology revealed that Chrimson causes 
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sustained AWA depolarization (Qiang Liu, unpublished results). This bears the question 

if AWA depolarization and synaptic output are also transient, as calcium imaging 

suggests, and if AWA output also adapts and reflects dC/dt. It is currently challenging to 

apply odors during electrophysiological recordings but we expect that genetically 

encoded voltage sensors will soon become available for use in C. elegans. 

Furtheremore, a technique to image synaptic vesicle release is currently being 

developed that likely detects glutamatergic transmission and may be adaptable to 

monitor chemical transmission from AWA (Donovan Ventimiglia, unpublished results). 

We have not yet returned to the freely moving animal configuration with AWA imaging, in 

part because of difficulties to define AWA specific behaviors on the short length scale of 

the imaging arenas that seem to lend themselves more towards the analysis of AWC 

mediated behaviors during steeper changes in odor concentration. This question can 

now be revisited with a clearer picture of AWA specificity from our behavioral analysis in 

large devices and from AIA imaging. It will be important to measure how AWA 

represents diacetyl during ongoing navigation rather than enforced pulses of odor. 

Imaging AIA in this configuration will also open the possibility to address the question of 

sources of variability in the behavioral response. One might hypothesize that AIA 

activation predicts if an animal will suppress turns in response to a diacetyl pulse and 

that AIA would integrate diacetyl responses with inputs from other sensory neurons. In 

early experiments, we have extensively studied choice behavior between adjacent 

microfluidic stripes of diacetyl and isoamyl alcohol odor, presumably causing a 

behavioral dilemma to respond to AWA or AWC stimulation. Our results indicated that 

while the two sensory inputs were intact in the sensory neurons under these conditions, 

they canceled each other at the behavioral level. AIA might be the site of integration of 
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the two signals. In a stripe choice configuration, AIA activity might predict if an animal 

chooses the AWA or the AWC stripe. 

At the molecular level, we have yet to understand how AWA adapts to sustained 

stimulation and maintains sensitivity over many orders of magnitude in odor 

concentration. To guide genetic analysis of the signal transduction cascade, we have 

started a collaboration with Jamal Rahi aiming to infer the network topology of the 

adaptation circuit in AWA from calcium responses to systematic stimulation with diacetyl. 

We have generated a set of data that points towards a negative feedback loop mediating 

adaptation in AWA and we can now test if mutants in molecules thought to mediate 

feedback, such as Calmodulin, or disruption of calcium signaling using nemadipineA, 

change this topology. 

The ease of experimental access to AWA and the behavioral framework suggest that it 

may be possible to move the analysis of C. elegans chemotaxis towards the level of 

understanding achieved in E. coli. It may be possible to link molecular events underlying 

sensory signal transduction and the detection of dC/dt to behavioral output to provide an 

example of a complete circuit analysis spanning the levels of computation, algorithm and 

implementation. 
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Experimental Procedures 

Chapter 2: High Throughput Imaging 

Automated imaging and stimulation. 

We built the automated microscope on a Zeiss AxioObserver.A1 inverted body with 

Zeiss Fluar objective lenses (2.5x/0.12 NA, or 5x/0.25 NA) and an Andor iXon3 DU-897 

EM-CCD camera mounted with a 0.63x or 1.0x c-Mount adapter. A custom-built digital 

timing circuit synchronized image capture with illumination pulses of adjustable duration 

and delay from a Lumencor SOLA-LE solid-state lamp. Metamorph 7.7.6 software 

controlled both image streaming (typically 10–30 frames s−1 for 30–60 s) and stimulus 

delivery via digital signals (from National Instruments NI-DAQmx to an Automate 

Valvebank 8 II actuator and Lee Corporation solenoid valves) and via serial commands 

to a Hamilton MVP 8-way distribution valve. Custom journal scripts selected from various 

pre-programmed recording parameters (exposure, binning, stream length, trial interval) 

and stimulation parameters (stimulation valve timing and odor selection valves). Fully-

automated experiments (tested up to 12 hrs) required no further user intervention once a 

session was initiated.  

Microfluidic device designs. 

Odor pulses were delivered using a microfluidic device designed with a shifting-flow 

strategy that prevent pressure or flowrate discontinuities detectable by the animal 

(Chronis et al., 2007) (Figure 2-2A). One of two stimulus streams was directed into the 

arena using a computer-controlled three-way valve that switched the flow position of a 
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“control” fluid stream, while the other stimulus stream bypassed the arena directly to the 

outflow (Figure 2-2E).  

Stripe and gradient devices were based on our previous designs (Albrecht and 

Bargmann, 2011). In the stripe device, three separate fluidic inlets provided the top, 

middle, and bottom fluid streams (Figure 2-2B). In the linear gradient device, two fluid 

streams entered a three-stage ‘mixing tree’ composed of converging and diverging 

channels that divide the flow into nine streams with linearly-varying concentration (Figure 

2-2C). All spatial odor profiles were verified using dye solutions before each experiment. 

For direct comparison of neural responses in two populations (e.g. mutant vs. WT), we 

used a two-arena pulse device (Figure 2-2D), modified from the standard pulse device 

by adding a second animal loading port and a physical barrier parallel to fluid flow. 

Chemical switch timing was comparable in both arenas in this design, and the chemical 

screen in odr-10 mutants was performed in parallel with WT controls using this device 

(Figure 2-9B-E). 

Microfluidic device fabrication. 

We prepared monolayer microfluidic devices (Figure 2-2) using soft lithography (Albrecht 

and Bargmann, 2011). Briefly, we fabricated silicon mold masters using conventional 

photolithographic techniques to pattern a 70 μm layer of SU8 2050 photoresist 

(Microchem) on 4-inch wafers (Silicon Quest). Photomasks were printed at 5,080 dpi 

(Pageworks). We cast ~5-mm-thick PDMS devices (Sylgard 184 A and B, 1:10 by 

weight; Dow Corning) and cored inlet and outlet holes with a 1-mm dermal punch 

(Accuderm). We cleaned devices in 95% EtOH at least overnight to remove residual 

PDMS monomers, rinsed them in water and baked them for at least 30 min at 55 °C to 
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evaporate any absorbed EtOH. Devices were reversibly sealed against a hydrophobic 

25 x 50 mm glass slide, prepared by exposure to (tridecafluoro-1,1,2,2-tetrahydrooctyl)-

1-trichlorosilane (United Chemical Technologies) vapor for 1 h under vacuum. We 

placed a support glass slide containing inlet and outlet holes drilled with a diamond-

coated bit above the PDMS device and clamped it in a stage adapter (Warner 

Instruments, P-2) modified with longer screws and rubber washers.  

We regulated flow velocities in the arena from 0.1–2 mm s−1 by gravity proportional to 

the height differential, Δh, between stimulus and outflow reservoir surfaces, from 5–150 

cm. Fluidic connections were made with microbore tubing (Tygon S-54-HL, 0.020”ID) 

containing a metal tube (New England Small Tubing, NE-1027-12) on one end for 

insertion into the microfluidic device, and a Luer stub needle on the other for connection 

to a valve, reservoir, or syringe. We used high-purity Teflon PFA tubing (IDEX) to 

prevent cross-contamination when presenting multiple stimuli within an experiment. 

Stimuli were delivered from 30-mL syringe reservoirs (Figure 2-2F). Alternatively, up to 

eight stimuli were directed through an electrically-actuated distribution valve, e.g. for a 

dose response curve (Figure 2-2G). For chemical screening, stimulus streams were fed 

from a 96-well plate (Figure 2-2H).  

  



114 
 

Strains. 

C. elegans were maintained under standard conditions and fed OP50 bacteria(Brenner, 

1974). Wild-type worms were Bristol strain (N2). The following strains expressed 

GCaMP variants in different neurons:  

AWA:  CX14887, kyIs598 [gpa-6::GCaMP2.2b 50ng/μl] 

 CX15127, odr-10(ky32); kyIs598 

AWC:  CX14215, kyEx4467 [str-2::GCaMP5 D380Y 50ng/μl] 

ASH:  CX10979, kyEx2865 [sra-6::GCaMP3 100 ng/μl]  

AVA: CX15380, kyEx5170 [rig-3::GCaMP5.0 30ng/ul] 

AIA: CX14034, kyEx4345 [gcy-28d::GCaMP2.2b 50ng/ul] 

AIY: CX14780, lite-1(ce314); kyEx4857 [mod-1::GCaMP5 25ng/μl] 

The GCaMP cDNAs were kindly provided by Loren Looger and subcloned into the pSM 

vector using NotI restriction sites. Neuron-selective promoters were exchanged using 

FseI and AscI sites flanking the promoter sequence in this vector. Transgenic animals 

were generated by injecting DNA clones and a fluorescent co-injection marker (ofm-

1::dsRED) into gonads of young adult hermaphrodites.  We performed multi-copy 

integration of the gpa-6::GCaMP2.2b extrachromosomal array using UV irradiation, and 

the resulting strain CX14887 was back-crossed six times to wild-type C. elegans.  

To provide age-synchronized young adults for each experiment, we picked L4 larval 

stage animals onto agar plates 15–20 h earlier. Immediately before each experiment, we 

gently transferred 1 to 25 worms onto a fresh, unseeded agar plate with a small amount 

of bacteria. After removing excess bacteria, we flooded the plate with ~5 ml S-basal 
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buffer (100 mM NaCl and 50 mM potassium phosphate; pH 6.0). Swimming animals 

were then drawn into “worm loading” tubing using a 1-mL syringe. 

Stimulus preparation. 

Odor dilutions were prepared fresh on the day of the experiment from pure stock 

solutions (isoamyl alcohol, diacetyl, glycerol) or from 1:100 dilutions in ethanol for odor 

screening. Dilutions were made in S-basal buffer. Where mentioned, 1 mM (-)-

tetramisole hydrochloride (Sigma) was added to S-basal to paralyze body wall muscles 

and keep animals stationary. 

Experimental setup. 

We assembled the microfluidic arenas and degassed them in a vacuum desiccator for at 

least 10 min before loading S-basal buffer through the outlet port. This step ensures that 

any air bubbles absorb quickly into the PDMS. We connected tubing from the stimulus 

and control reservoirs to the arena and flushed the device with S-basal buffer. Next, we 

attached the loading tubing and gently injected 1–25 worms via syringe into the arena. 

Typically, 10-20 animals were loaded when animals were paralyzed during imaging, and 

1-2 animals were loaded for freely moving animals, to facilitate tracking. Buffer flow 

continuously washed the animals, removing any residual bacteria. Experiments in freely-

moving worms began typically after 15–20 min in the device and 30 min after removal 

from bacterial food, once local search behaviors subsided. For experiments in 

tetramisole-paralyzed worms, we allowed 60 minutes of buffer flow for maximal 

paralysis. For repeated stimulation, we preconditioned animals with 5–10 trials to 

stabilize responses, except for the dose response experiment in Figure 2 where we 

report responses of naïve animals.  
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After each experiment, we flushed arenas with water and soaked them in ethanol for 24 

h to remove any residual odor. Next, we rinsed devices in water, dried them in an air 

stream and baked them at 55 °C for at least 30 min. After this cleaning procedure, 

buffer-buffer controls showed no response, and devices could be reused over 30 times. 

Data analysis and statistics. 

We analyzed video for neural fluorescence and locomotory behavior using the 

NeuroTracker software suite, a set of custom ImageJ macros and MATLAB scripts 

described in the Supplementary Note. Typically, 70-90% of animals in the device could 

be tracked. Background-corrected integrated neural fluorescence traces F(t) were 

divided by baseline fluorescence F0 (mean for the first 5 s) to obtain the normalized 

calcium response (ΔF/F0), for each animal and stimulation trial. Normalized traces were 

then averaged across repeated trials for each animal. Population-average responses 

report the mean and variance of individual animal responses. Statistical comparisons 

were made by ANOVA using Bonferroni's correction for multiple comparisons, or the 

Benjamini-Hochberg correction where indicated. Data are presented from one 

experiment unless otherwise stated. 

Neuronal calcium response dynamics were quantified as the peak fluorescence and 

peak delay time determined for each animal and trial from normalized fluorescence 

traces smoothed with a 0.3-s window. Unless otherwise stated, we averaged calculated 

response parameters from repeated trials for each animal and reported statistics on the 

variance between animals. Peak fluorescence was calculated as maximum fluorescence 

during the stimulus pulse (stim) minus maximum fluorescence during the 2-s (20 frames) 
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period prior to stimulation (prestim): max(ΔF/F0)stim − max(ΔF/F0)prestim. Peak delay time 

was determined as the time after stimulus onset when maximum fluorescence occurred. 

Variance across repeated trials and across animals (Figure 2-7D) was calculated using 

the MATLAB "var" function on peak calcium fluorescence per neural trace. Dose-

response curves were fit using the MATLAB curve-fitting toolbox and function "cfit" to a 

four-parameter sigmoidal curve defined by F' = F'min + (F'max - F'min)/[1 + (EC50/C)ß ] 

where F' = ΔF/F0 for each trace and C is odor concentration. EC50 represents the odor 

concentration eliciting a 50% maximal peak response and the parameter ß represents 

the dynamic range of the response.  

Gradient quantification 

For experiments involving changes in the stimulus gradient dC/dt (Figure 2-7G,J), we 

measured dC/dt and stimulus timing in the imaging arena at different flow rates in 

separate dye experiments. dC/dt in the imaging arena was calculated by imaging 

fluorescein dye switched against buffer. We used the Matlab function “polyfit” to 

calculate the slope of increase in normalized dye fluorescence during four frames 

surrounding half maximal fluorescence. 

NeuroTracker software suite.    

Neural fluorescence was extracted from raw video data using a tracking macro 

("NeuronTracking") written in the ImageJ (NIH, version 1.45q). Neuron positions were 

tracked frame-to-frame for moving or stationary animals. The user first selects an 

intensity threshold and initial positions for each neuron and/or animal. The script 

automatically analyzes all animals using a particle tracking algorithm to identify the 
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brightest pixel within a local search region. The software tracks stationary animals 

throughout consecutive recordings based on position without further user intervention. 

When moving animals collide or rapidly change direction, the tracking software may halt 

(if no acceptable neuron location can be found) and await user input to reselect the 

neuron centroid.   

Raw fluorescence intensity FR was recorded as the mean intensity from a 4x4 pixel 

region centered on the center of mass of the object identified by the tracker (Figure 2-5) 

for all neurons except AIA where a 6x6 pixel region was used to include more of the 

signal contributed by the neurite. Background intensity Fbg was calculated as median 

intensity from a ring shaped region surrounding the tracked neuron at a distance to 

include mostly background pixels. Raw parameters saved to a text file for each neuron 

tracked include: frame number, x-y center of mass, integrated and maximum neuron 

intensity, and median background intensity, threshold value, and threshold area. 

Subsequent data analysis and display was performed in Matlab 2011b.  Background 

subtracted fluorescence F was calculated as F = FR – Fbg. Unless otherwise stated, we 

report change in fluorescence (ΔF/F0) as (F – F0)/ F0 where F0 is mean F during the first 

5s of each trial. 

Behavioral analysis 

We analyzed locomotory behavior from the raw video data with the "BehaviorMontage" 

ImageJ macro, which combines all trials of an experiment into a single montaged video, 

downsampled to ~40 pixels mm−1 resolution and 2 frames s−1. Adjusted videos were 

then compatible with the MATLAB script “SmallArenaTracker.m”, a modified version of 

the existing MATLAB ArenaWormTracker suite that segments each worm for centroid 
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and shape information and classifies its instantaneous behavioral state. Modifications 

were made to deconvolve the original video number and centroid position from a single 

montaged video per multi-trial experiment. Behavioral data were visualized for each trial 

and animal to verify correct classification and were manually corrected if necessary.  

Chapter 3 

Paired Pulse imaging 

Pairs of two one second pulses of diacetyl at 1 uM were delivered at intervals of 0 – 20 s 

within each pair and 60 s between pulse pairs. We analyzed odor responses after fast 

habituation of AWA had subsided and responses entered the consistent regime. 

Mapping of che-3 in CB450 

CB450 animals did not show desensitization of AWA responses to 10 s pulses of 1 uM 

diacetyl. To separate the unc-13(e450) allele from the mutation underlying the lack of 

desensitization, we back-crossed CB450 animals to wild type. The resulting F1 progeny 

were allowed to self-fertilize yielding F2 progeny of which ¼ had the uncoordinated 

phenotype caused by unc-13(e450). 80 uncoordinated F2 animals were screened for 

intact desensitization. An uncoordinated animal with intact desensitization would indicate 

that recombination had occurred between the two loci.  

80 animals were imaged in groups of 10-15 in a specialized device with four arenas that 

could be recorded sequentially, allowing us to paralyze and pre-adapt up to 50 animals 

at once for subsequent testing. Each arena was then recorded once and rudimentary 

analysis of raw fluorescence from individual animal AWA neurons identified one animal 
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with normal desensitization that could be recovered from the microfluidic device by 

carefully opening the device and using a platinum wire. This animal was propagated and 

homozygosed by identifying F3 progeny that only threw normally desensitizing F4 

progeny. 

We prepared genomic DNA from the homozygous backcrossed unc-13(e450) and the 

original CB450 using standard kits for whole genome sequencing. Sequence reads were 

aligned using custom written software (McGrath et al., 2011). Comparison of single 

nucleotide polymorphisms (SNPs) that differed between the two strains and the 

reference genome revealed 6 coding changes to the right of unc-13 on chromosome I in 

CB450 that were lost in the back-crossed strain. Rescue of AWA desensitization in 

CB450 using a fosmid containing wild type che-3 and comparison with AWA responses 

in the canonical che-3(e1124) identified the SNP in che-3 as the causal mutation in 

CB450 for defective desensitization. 

Mapping of inpp5e 

ky121 was described as having a defect in pyrazine chemotaxis, an odor detected by 

AWA. Genetic mapping had established linkage to the left of unc-30 on chromosome IV 

(Roayaie, Bargmann, unpublished results). We used the unc-30 marker to follow ky121 

during crosses with our imaging strain. F1 progeny was self-fertilized and the 

uncoordinated F2 progeny animals were tested for an AWA adaptation phenotype.  

After two additional back-crosses with wild type animals, whole genome sequencing 

identified 12 coding changes within 4 mega base pairs to the left of unc-30. Fosmid 

recue identified a SNP in T25B9.10 as the causal mutation. 
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Crowd-sourcing of inpp5e mutant phenotyping 

inpp5e(ky121) mutant animals had a tendency to exhibit patches of high ODR-10::GFP 

fluorescence in maximum intensity z-stack projections that were not present in wild type 

animals. Initial computational attempts using intensity histograms did not recover this 

difference. Instead, we generated a small internet page that displayed 5 representative 

images of each genotype labeled for reference. Below, we showed 50 additional, 

unlabeled images and visitors to the page were asked to label these images by paying 

attention to the fluorescent patches. All images had to be labeled as wild type or mutant. 

A $20 Amazon gift card was promised as a reward to the participant scoring the highest 

percentage of images correctly. 18 people (friends and family) participated. 

Microfluidic gradient assay 

We used microfluidic gradient chambers to create sigmoidal odor gradients of 32 mm 

width and a concentration profile that can be approximated by the logistic function 

where -1<x<1; k=5 and which is approximately linear on the two flanks of the gradient, 

(Figure 3-12) (Albrecht and Bargmann, 2011).  

For example, a gradient from 0.1 uM to 1 uM has a dC/dx of 0.11 uM/mm on the linear 

flanks and worms moving at .2 mm/sec experienced a rate of change in concentration 

(dC/dt) of up to .019 uM/sec. The device geometry constrains animals to paths at zero 

(parallel to the gradient) and sixty degree angles relative to the gradient. Animals 

crawling up the gradient experience a fold-change (% dC/dt) of approximately 1-5 %/sec, 

measured as the change in concentration over one second divided by the concentration 

at the beginning of that second. 
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We transferred groups of 20 animals into buffer-filled devices and allowed them to 

disperse and adapt to the novel environment for one hour. During the first 30-45 

minutes, animals moved more slowly and display elevated rates of pausing and short 

reversals, likely reflecting a local search strategy upon removal from food (Gray et al., 

2005) and after this period, animals entered a more consistent behavioral regime.  

After one hour, we started the flow of two different odor concentrations into the device to 

establish a gradient. One stimulus (A) flows through the middle of the arena and the 

other stimulus (B) flows on both sides. A mixing tree upstream of the arena facilitates 

diffusion between the two stimuli thereby generating a smooth gradient of intermediate 

concentrations. Our setup allowed computer-controlled dynamic switching of the 

stimulus passing through the middle of the device. 

Microfluidic Pulse Assay 

In this experimental design, all animals in a microfluidic arena are subjected to the same 

stimulus when a computer controlled valve switches between alternative flows into the 

arena. This setup produces increases in odor concentration as an exponential decay 

function with a time constant k of about 20 seconds. The time constant k reflects 

diffusive mixing of successive stimuli in the delivery channels before they enter the 

arena and can be tuned by modulating the flow rate through the device to achieve the 

desired dC/dt. To increase time resolution of our post-hoc analysis of turning behavior in 

response to odor steps, the timing of odor encounter was corrected for each animal’s 

location in the device based on dye measurements at the same flow rate (Albrecht and 

Bargmann, 2011). 
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The range of dC/dt during step pulses was chosen match the magnitude of dC/dt 

experienced during gradient crawling. During fold-changes in diacetyl concentration 

starting with a step from 0.1 to 0.158 uM and ending at 1.58 uM, dC/dt ranged from 

0.003 - 0.04 uM/sec and each pulse had a maximum fold change of 4%/sec (Figure 

3-14) (compared with 0.02 uM/sec in a gradient from .1 uM to 1 uM). 

Chrimson stimulation during calcium imaging 

To activate Chrimson during calcium imaging we mounted an external red LED above 

the microfluidic imaging chamber to illuminate animals with a wavelength band of 605/50 

nm, observing negligible bleed-through from the red LED into the G-CaMP recording 

(<10% of signal to noise ratio). 

The 470 nm light used to excite G-CaMP also triggered calcium transients in some 

animals when delivered at high intensities. We reduced this undesired activation by 

strobing the excitation light at a 10% duty cycle (10 ms ON, 90 ms OFF) at a reduced 

intensity of about 10 mW/cm^2 (10 % of light power normally used during wide field 

imaging). 

Because of dimmer G-CaMP expression in AIA processes compared to AWA cell 

bodies, we used light intensities of 100 mW/cm^2 to maintain an acceptable signal to 

noise ratio for G-CaMP imaging and could not entirely eliminate cross-activation of 

Chrimson. As a concequence, we observed strong blue light induce calcium transients in 

AIA in dark adapted animals (data not shown). Conveniently though, these adapted 

efficiently such that subsequent recordings only showed calcium transients in response 

to red light activation. 
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Strains used in Chapter 3 

Cilium morphology 
CX11826 kyEx3208 kyEx3208= odr-7::GFP + ofm-1::RFP 15ng/ul. 
CX15804 osm-6(p811); kyEx3208 
CX15805 ky121; kyEx3208 
CX15806 osm-3(p802); kyEx3208; kyIs587 

Crowdsourcing 

CX3344 kyIs53 kyIs53= full length odr-10::gfp 

CX15892 kyIs53;ky121 

AIA imaging 
CX15257 kyEx5128 kyEx5128= gcy28d::GCaMP D381Y, coel::dsRed 
CX16169 ceh-36(ky640) X ,kyEx5128 
CX16170 odr-10(ky32) X ,kyEx5128 
CX16171 odr-7(ky4) X ,kyEx5128 
CX15951 osm-6(p811),kyEx5128 
CX15953 ky121; kyEx5128 
CX16410 eat-4(ky5) ,kyEx5128 
CX16424 osm-6(p811),odr-10(ky32); 

kyEx5128 
CX16338 osm-6(p811), 

kyEx5128,kyEx5406 
kyEx5406 = odr-7p::mCherry::osm-6 5ng/ul, elt-
2::mCherry 2ng/ul, pSM 95ng/ul. 

CX16340 ky121; kyEx5128; kyEx5405 kyEx5405 = odr-7p::mCherry::T25B9.10a 5ng/ul, elt-
2::mCherry 2ng/ul, pSM 95ng/ul. 

AIA hyperpolarization 
CX14597 kyEx4745 kyEx4745 = gcy-28dp::unc-103(gof)::SL2::mCherry 

30ng/ul, elt-2::mCherry 2ng/ul, pSM 70ng/ul 

AWA imaging 
CX14887 = 
CX14647 

kyIs598 = kyIs587 kyIs598/kyIs587 = gpa-6p::G-CaMP2.2b 50ng/ul, 
coel::dsRed 15ng/ul, pSM 35ng/ul 

AWA signal transduction mutants 
CX15510 ocr-2(ak47); kyIs587 
CX15909 ocr-1(ak47), ocr-2(ok132); 

kyIs588 
CX15614 osm-9(ky10); kyIs587 
CX15127 odr-10 (ky32) X; kyIs587 
CX15217 egl-19(n582); kyIs587 
CX15504 tax4(p678); kyIs587 
CX15731 tax-2 (p691) I; kyIs587 
CX14881 unc-13 (e450) I che-3(kyX); 

kyIs587 
CX15140 unc-13 (e450) I; kyIs587 
CX15128 unc-13 (e51) I; kyIs587 
CX15129 unc-13 (s69) I; kyIs587 
CX16012 arr-1(ok401); kyIs587 

AWA IFT mutants & rescue 
CX15505 osm-6(p811); kyIs587 
CX15506 osm-3(p802); kyIs587 
CX15509 che-2(e1033); kyIs587 
CX15545 che-3(e1124); kyIs587 
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CX15959 kyIs587, osm-6(p811), kyEx5406 kyEx5406 = odr-7p::mCherry::osm-6 5ng/ul, elt-
2::mCherry 2ng/ul, pSM 95ng/ul.  

AWA inpp5 mutants & rescue 
CX15615 ky121; kyIs587 
CX15793 T25B9.10(gk850109); kyIs587 VC40856 = Million Mutation Project strain 
CX15831 T25B9.10(gk3262); kyIs587 VC2109 = KO consortium strain 
CX15763 ky121; kyEx5298; kyIs587 kyEx5298 = WRM061dE11 2ng/ul, elt-2::mCherry 

2ng/ul, pSM 96ng/ul.   
CX15765 ky121;kyEx5300; kyIs587 kyEx5300 = WRM0636cG02 2ng/ul, elt-2::mCherry 

2ng/ul, pSM 96ng/ul.   
CX15800 ky121;kyEx5325; kyIs587 kyEx5325 = odr-7p::T25B9.10a::sl2::mCherry 3ng/ul, 

elt-2::mCherry 2ng/ul, pSM 95ng/ul.   
CX15801 ky121; kyEx5326; kyIs587 kyEx5326 = odr-7p::T25B9.10b::sl2::mCherry 3ng/ul, 

elt-2::mCherry 2ng/ul, pSM 95ng/ul.   
CX15958 kyIs587, ky121, kyEx5405 kyEx5405 = odr-7p::mCherry::T25B9.10a 5ng/ul, elt-

2::mCherry 2ng/ul, pSM 95ng/ul.   
CX16082 kyEx4520; kyEx5405 kyEx4520 = T25B9.10::gfp TransgeneOmics construct 

5ng/ul, coel::dsRed 15ng/ul, pSM 80ng/ul. kyEx5405 
= odr-7p::mCherry::T25B9.10a 5ng/ul, elt-2::mCherry 
2ng/ul, pSM 95ng/ul 

CX15832 kyIs602, ky121 KyIs602= p-sra-6:GCaMP3.0 injected at 75ng/uL and 
coel:GFP injected at 10ng/uL, 

Chrimson 
CX16561 kyEx5128; kyEx5662 kyEx5128= gcy28d::GCaMP D381Y, coel::dsRed; 

KyEx5662 = odr-7p::Chrimson::SL2::mCherry 5ng/ul, 
elt-2::mCherry 2 ng/ul, pSM 93 ng/ul 

CX16573 kyIs587; kyEx5662 KyEx5662 = odr-7p::Chrimson::SL2::mCherry 5ng/ul, 
elt-2::mCherry 2 ng/ul, pSM 93 ng/ul.   
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Appendix 

 

Figure A-0-1 AWA specific rescue of AIA responses in osm-6 and inpp5e mutants. 
Weak AIA responses at 0.01 uM diacetyl concentration in inpp5e(ky121) mutants are 
rescued by expression of T25B9.10a in AWA (**P<.0001) n = 11-29 animals x six odor 
pulses. 
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Figure A-0-2 Individual animal neural responses to fold-change stimulation.  
AWA exhibits secondary calcium transients upon first stimulation at 0.01 uM and at 
concentrations above 0.63 uM. 
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Figure A-0-3 Diacetyl responses in ASE and AWC sensory neurons. 
Mean GCaMP fluorescence in ASE and AWC during diacetyl stimulation. AWC 
fluorescence is suppressed at diacetyl concentrations above 1 uM. 

Figure A-0-4 inpp5e also affects ASH sensory neuron responses to glycerol. 
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Figure A-0-5 AWA responses to different diacetyl fold-changes. 
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