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Abstract
In Caenorhabditis elegans (C. elegans) and in neuroscience generally, a hierarchical view

of nervous systems prevails. Roughly speaking, sensory neurons encode the external

environment, interneurons encode internal state and decisions, and motor neurons encode

muscle activation. Here, using an integrated approach to model sensory computation

and decision making in C. elegans, I show a striking phenomenon. Via the simplest

modulation possible, sensitization and desensitization, sensory neurons in C. elegans can

also encode the animal’s internal state.

In this thesis, I present a modeling framework, and use it to implement two detailed

models of sensory adaptation and decision making. In the first model I consider a decision

making task, in which worms need to cross a lethal barrier in order to reach an attractant

on the other side. My model captures the experimental results, and predicts a minimal set

of requirements. This model‘s mechanism is reminiscent of similar top-down attention

modulation motifs in mammalian cortex.

In the second model, I consider a form of plasticity in which animals alternate their

perception of a signal from attractive to repulsive. I show how the model encodes

high and low-level behavioral states, balancing attraction and aversion, exploration and

exploitation, pushing the ‘decision making’ into the sensory layer. Furthermore, this

model predicts that specific sensory neurons may have the capacity to selectively control

distinct motor programs.

To accomplish these results, the modeling framework was designed to simulate a full

sensory motor pathway and an in silico simulation arena, allowing it to reproduce

experimental findings from multiple assays. Hopefully, this allows the model to be used

by the C. elegans community and to be extended, bringing us closer to the larger aim of

understanding distributed computation and the integrated neural control of behavior in a

whole animal.
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Chapter 1

Introduction

“There’s a difference between knowing the path and walking the path”

– Morpheus

Long before I learned about (computational) neuroscience, the brain was studied by

generations of scientists and (natural) philosophers. Already in ancient Egypt, 5000

years ago, a physician correlated brain damage with impaired movement of the limbs

[36]. In ancient Greece, around 400 BCE, the Hippocratic doctors first proposed that

the brain is the source of every thought, emotion and action [43]. However, it was not

until the Renaissance that the brain became generally accepted as the source of cognition,

and it took until the nineteenth century for Santiago Ramón y Cajal to convince the

scientific community that the brain consists of a large number of brain cells called neurons

which communicate through specialized branches forming a distributed network. Finally,

in 1952 Hodgkin and Huxley showed how a neuron ‘holds’ (encodes) information by

altering the potential across its membrane using the flow of ions in and out of the cell [48].

Using their experimental results, they created the Hodgkin-Huxley model of a neuron,

which is so good at describing a neuron’s basic functioning, that it is still used in many

computational models today.
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Of all cognitive faculties the one perhaps most amenable to research is plasticity, or the

ability to learn. Indeed, ‘will’, consciousness, and even reasoning are very difficult to

capture experimentally or even to define. Thus, not surprisingly, the start of modern

neuroscience begins with the quest for the engram: the physical trace of a memory in the

brain.

In the 1960s Eric Kandel set out to find the engram. He figured that by combining

the black box approach of psychology with mechanistic understanding from biology he

could make an animal learn while simultaneously watching its brain for any changes.

To make this task somewhat simpler, Kandel decided to use a sea snail, Aplysia, which

has ≈ 20 000 large neurons1. The size of the neurons allowed Kandel to physically

stick an electrode into a single neuron and measure its electrical activity. Contrary to

the commonly held view at the time that simple organisms were incapable of complex

learning, Kandel found that the the snail’s gill withdrawal reflex (where it closes its

gill if you poke it) was amenable to habituation (weakening over time), sensitization

(strengthening over time) and associative conditioning (coupling with another unrelated

stimulus). Using these learning paradigms in several clever experiments, Kandel

successfully located the individual neurons involved in the reflex and found the engram:

the genetic and molecular changes leading to a weakening or strengthening of the

connection between two neurons, effectively holding the memory for the strength of the

gill withdrawal reflex. In 2000 he won the Nobel Prize in Physiology or Medicine for this

discovery.

Neuroscience has continued to bridge psychology and biology while adding physics,

chemistry and computer science into the mix. Since the fifties we have learned a

tremendous amount and created a very powerful set of tools to probe the mysteries of

the mind. It is thus that the next big question of neuroscience can be explored: how do

1The cell body size of Aplysia abdominal ganglion neurons is between 0.05-0.1 mm in diameter with
the largest neurons around 1 mm [39], humans have approximately a trillion neurons, the largest of which
are around 0.1 mm.
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brains make decisions? Arguably, behind every behavior lies a decision. In the simplest

case whether to perform an action or not, and in other cases a choice between many

possible alternatives. Indeed, if they are to maximize their fitness, animals should weigh

their options carefully, making sure they find sufficient food, mates and shelter, all while

avoiding predators and hazardous environments.

To understand how a nervous system produces complex behavior, I believe one should

find the simplest organism that shows a behavior of interest, taking care to choose an

animal that has an easy to study nervous system. While there are many model organisms

in neuroscience, Kandel’s sea snails, fruit flies, zebrafishes and mice, to name some, only

a single species has had its complete nervous system, complete genome and complete

cell lineage mapped: the roundworm, Ceanorhabditis elegans (C. elegans). Thousands

of researchers over the course of more than fifty years have massively expanded our

knowledge of this otherwise unremarkable animal. While this was not clear to the

early pioneers, many of the molecular, cellular and macroscopic pathways are conserved

between worms and humans. Thus, the more we learn about C. elegans, the better

we understand genetics, development, cognition and their interaction across the animal

kingdom and in ourselves.

1.1 The worm

Roundworms are one of the most successful species on earth. This group of animals, also

known as the phylum Nematoda, is so ubiquitous, that if everything except nematodes

suddenly disappeared the shape of our planet would remain visible consisting of billions

of worms.

One of these wonderful nematodes is the roundworm C. elegans. While not well known

outside of science, or even beyond biology and neuroscience, C. elegans might well be

the best studied multicellular organism on earth. It was the first multicellular species to
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have its full genome sequenced [34], the first species to have its complete cell lineage

reconstructed [96] and the first and only species to have its nervous system including

every connection mapped [109].

Behavioral studies have shown conclusively that C. elegans is capable of richly

responding to its environment – it can find food, avoid predators, and seek habitable

environmental conditions – integrating external cues with internal state to produce the

most adaptive behavior.

1.2 Aims and methodology

The main objective of my PhD was to develop a generic computational model of

C. elegans decision making. Such a model could increase our understanding of circuit

mechanisms underlying sensory integration. In our daily lives, we continuously have to

process endless streams of information from all of our senses. We combine our sight,

smell, hearing and body posture into a single continuous representation of ourselves

and the surrounding world. While we do this seemingly without effort, the immense

complexity underlying this feat has become painfully apparent from the world of artificial

intelligence. Even in relatively well constrained domains, such as driving a car on the

highway, the problem of knowing your surroundings and more importantly predicting the

effects of your actions, is incredibly hard.

This PhD was done in the School of Computing, so unsurprisingly, this thesis revolves

around computational modeling. One of the things I like best about the field of computing

is the breath of topics it can be applied to. However, one could argue neuroscience stands

out in its blending with informatics. Not only have highly reliable models of neurons

stood the test of time but cognition itself is a form of computation. While our own

brains are (still) far too complex to study the neuronal computation beyond several tens
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of thousands of neurons simultaneously2 [74], C. elegans is simple enough to look at how

its nervous system is calculating what decision to make.

Computational models of C. elegans have varied considerably in approaches and research

questions. Some models have focused on the neuronal level [62] while other, high level

models, have set out to account for specific behaviors; the latter class of models typically

lack or include very simplistic representations of the nervous systems [79, 94]. Here, I am

concerned with intermediate level models that include some neuronal and neural circuit

details and aim to offer explanatory and predictive power on the neural specification of

behavior.

To remain grounded in physiological and behavioral evidence, such models tend to focus

on a limited subset of the nervous system. This class of models therefore distinguishes

itself from models of the entire head nervous system [114], or even the entire nervous

system of the animal [98] that focus instead on patterns of connectivity and circuit-

level insights. Of the above, Xu et al. [114] is particularly noteworthy as it models both

uni-sensory and multi-sensory navigation behaviors and offers interesting predictions on

possible pathways for speed regulation. The inclusion of a fully realistic circuit avoids

the assumption of a single or very limited neural pathway. However, it is important to

note that for many of the neurons included in such models, no experimental evidence

of behavioral function exists. Thus, the potential power of circuit-wide models to gain

circuit wide insight, or to implicate new neurons or neural pathways in a computation is

also the source of their limitation.

Most intermediate-level models (focusing on specific subcircuits) have also focused on a

single assay or type of assay. Prominent examples include chemotaxis on a salt gradient

assay [3, 37, 56, 57] or forward locomotion [13, 16, 79, 108]. Such models vary in their

level of detail. For example, Boyle et al. [13] and later Izquierdo and Beer [56] include a

2though the Human Brain Project is trying to create a model of a complete human brain over the coming
decade
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more realistic worm body to support forward locomotion, the latter within the context of

a salt chemotaxis task. Models of chemotaxis behaviors have mostly focused on a single

sensory-motor pathway, and a single motor behavior – either steering [55–57, 112, 113]

or a biased random walk [32, 33, 37]. The first chemotaxis model to consider both motor

programs in detail is Appleby’s model of salt chemotaxis [3], followed by Xu et al. [114].

However, with the exception of Xu and Deng [113], none of these models were tested

with multiple experimental assays.

It is a premise of my approach, that in modeling a complex system such as C. elegans, the

focus on a single assay places a significant limitation on a model’s predictive power. In

other words, it is likely that a model tuned to account for one assay will fail when tested on

another. In embarking on this research, I was motivated by the desire to push the envelope

of C. elegans modeling to account for multiple behaviors under multiple conditions with a

single model. This motivation is driven both by fundamental questions as to the ability of

a single model to account for multiple behaviors, and by the desire to provide a useful tool

to the research community, a model framework that can in time be extended to include

more neurons, more neuronal and circuit mechanisms and more assays.

Here, I set out to build a generalizable model of C. elegans capable of reproducing

a wide variety of experiments, and capable of rapid inclusion of novel experimental

findings. One of the important unifying factors for researchers working on C. elegans

is the desire to do it all in C. elegans, the whole genome, the whole cell lineage, the

whole neural circuit and the whole transcriptome. This is because ultimately, the hope

is that C. elegans can be understood holistically. The same applies for the desire to

model the neural basis of behavior: ultimately, the aim is to model the entire animal,

its complex recurrent neural circuitry and its ability to support complex behaviors. But

we have to take small steps. Hence, to date, most of the modeling work has focused on

specific sensory responses, specific forms of learning, and specific motor outputs. With

increasing knowledge and improving experimental technologies, over the last decade, we
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now have access to crucial data on much more complete sensory-motor pathways, sensory

integration, and more complex behaviors. It is beginning to be possible to dream about

unifying models into a more coherent unified framework, and to take the first concrete

steps in this direction. However, the risk in modeling is that the models produced are

under constrained, contain too many parameters and fail to be predictive. Principled

approaches for model construction are therefore essential. To constrain my model the

following approach was followed:

• creating a modular modeling framework that consists of full sensory-motor

pathways and in-silico replication of experimental assays

• testing the same model (with the same neurons) in different but related assays (e.g.

different experimental set ups)

• testing variants of the model (with some overlapping modules, but other distinct

components, e.g completely different sensory cells)

It is my hope that a model generated through a more unified approach may be better

constrained and, as such, more likely to capture essential cellular and circuit level

mechanisms. In other words, such a model may be more explanatory and more predictive.

By starting with a limited number of neurons, a strong grounding in a large body of

experimental results and adding more neurons and experimental data over time, this model

hopefully will be able to shed light on the cellular and circuit level mechanisms underlying

sensory integration, decision making, and transitions between behaviors. Given the

difficulty of this aim, it is vital that the model be created iteratively, in close collaboration

with experimentalists.

Concretely, in this thesis I attempt to answer two methodological questions:

1. Can one create a generic model of C. elegans decision making, capable of rapid

reproduction and incorporation of new experimental findings as opposed to the
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specialized one off models of today (chapter 1 and 2).

2. Would a generic model be capable of producing testable hypotheses? Or

alternatively, would such a model prove untenable with conflicting experimental

data pushing the model to become either too constrained (i.e. no feasible solution

exists), or too unrealistic (a compromise between conflicting findings that satisfies

has little in common with the actual animal)?

The second of these I answer by looking at several case studies, focused on the following

substantive questions:

1. How well do sensory neurons encode sensory information?

• How is this encoding affected by the animal’s ‘internal state’?

• What other computation is sustained in sensory cells and circuits?

2. How does C. elegans integrate attractive and repulsive stimuli?

To answer the substantive questions, I have arguably used the most well studied sensory

response: chemotaxis to sodium chloride (naive attraction and learned aversion). I have

complemented this with established multi-sensory assays containing either copper or

hyperosmotic fructose as repellent and diacetyl as attractant.

Looking back, I can say it is very much possible to create a highly customizable

computational model with predictive power, which in one case fully reproduced a novel

experiment in as little as a day. This was only possible due to the modular design

of the model and the separation of the simulation from the model specification that

fully described the neuron properties, connectivities, assay and metrics to be measured.

Additionally, the final model is capable of reproducing all experimental results tested,

done in five very different assays, with four different chemicals, changing only the
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environmental parameters, and leaving the remaining simulation parameters (for the

animal itself) unchanged.

When testing the model in close cooperation with several experimentalists, I was surprised

by the extent of sensory-neuron computation. Specifically, multiple forms of sensory

neuron adaptation resulted in neuronal states that were either ‘on’ (responding to stimuli)

or ‘off’ (unresponsive), flipped the valence of stimuli (i.e. from attraction to aversion)

and allowed for memory of prior stimuli in sensory neurons. The experimental and model

results strongly suggest that sensory neurons show activity that correlates with internal

state and behavior, integrating the representation of a stimulus with internal state already

in the sensory layer, to directly determine behavioral states and to control exploratory

behavior.

Being a part of the experimental phase allowed us to rapidly test model predictions,

improving the model with every iteration. Using this approach the model could provide

deep insight into the ramifications of a hypothesis and predict which experimental setup

should provide the clearest evidence to distinguish multiple conflicting hypotheses. For

instance, in chapter 5 the model showed a simpler hypothesis could fully explain the

experimental results, which was then confirmed by further experimental results designed

using the model output.

1.3 Outline

For those unfamiliar with the nematode C. elegans I have included a short introduction

in chapter 2, giving the background to this remarkable animal. Since I have done this

PhD in a computer science department, it should come as no surprise that I am not an

experimentalist, nonetheless I strongly believe that to model an organism you have to

understand the experimental methodology and results. Thus I start with a review of the

experimental field, beginning with the methodology and finally a summary of the key
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experimental findings, followed by an overview of the existing computational models,

their strengths and limitations. One of these models is explored more deeply in chapter

3.

In chapter 4, I describe the computational model of C. elegans that I developed, starting

with the motivation, assumptions and constraints.

The model is used in two case studies. In chapter 5, I use my model to probe contextual

decision making in a fructose-diacetyl decision making assay. Finally, in chapter 6, I

investigate the role of various forms of sensory adaptation in the salt sensing sensory

neurons on decision making. These two case studies were done in collaboration with

the Jansen lab of Erasmus University, Rotterdam and the Nitabach lab of Yale University

respectively. Each of these chapters is written with the experimental results integrated to

show the power of an integrative approach. The order of results reflects for the most part

the actual order of discovery.
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Chapter 2

Why we care about a little worm

“There is no spoon”

– Spoon boy

2.1 For those unfamiliar with Caenorhabditis elegans

Before I started my PhD, I knew very little about the roundworm C. elegans. So for those

readers who are unfamiliar with the mysteries that surround this remarkable animal, let

me start with the story behind the nematode.

2.1.1 Finding the ‘perfect’ species

Sometime around 1965 the biologist Sydney Brenner was seeking to understand how

genes give rise to complex structures such as an eye or a brain [14]. Brenner believed

nervous systems were key in understanding how genes drive development. This was not

just because of the complexity of a nervous system, but also because genetic mutations

that affect the nervous system could be found by looking at the behavior of an animal.
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Figure 2.1: A Caenorhabditis elegans N2 hermaphrodite pictured to scale, to the right of a 50
pence and 50 euro cent coin for comparison. Adults are approximately 1 millimeter long and 0.08
millimeter thick. All hermaphrodites consist of 959 somatic cells (excluding eggs and sperm), of
which 302 are neurons.

At the time the fruit fly had already been established as a model organism but Brenner

felt its nervous system was too large to allow a study of its structure. Then, but also

today, nematodes were primarily studied because they tend to be parasitic, reducing crop

yield and infecting livestock. For instance, the half a meter long nematode Ascaris suum

spends most of its live in the intestines of a pig. In the mid fifties, Ellsworth C. Dougherty

tried to obtain a strain1 of nematodes usable for genetic studies: one that could survive in

culture on only bacteria [77]. By chance, a few years earlier another biologist, Lancelot

N. Staniland, had isolated a C. elegans strain from some mushrooms close to his office in

Bristol, England. It was this strain, dubbed “Bristol N2” or N2 for short, which turned

out to survive very well on a petri dish, with minimal requirements [77]. Traveling from

Bristol via Germany, the N2 strain made it to Dougherty’s lab in California, after which

Brenner took them back to England in 1968 (the MRC lab in Cambridge).

The reason Dougherty and Brenner chose C. elegans as a genetic model organism is

multifaceted: first, the species has a life cycle of only 3 days, second, it has a small

1Individuals of a species (e.g. C. elegans) show a wide variation in their genes (genotype), form and
behavior (phenotype), a strain is defined as a family of individuals who express a particular genetic variation.
For instance, in C. elegans osm-9 are the family of worms (all cloned from the same original animal
that first introduced the mutation) who have a particular developmental defect making them insensitive
to hyperosmolarity. In humans, the word strain is typically not used, instead the term haplogroup is more
common.
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and fixed number of cells, third, it can be kept alive using only very basic ingredients,

and last, C. elegans can reproduce sexually and asexually (making cloning and hybrid

strain creation trivial). From Sydney Brenner’s lab the N2 strain was further distributed

to new labs over the years. First his former group members set out to start their own

labs, later entirely new groups formed. Today there are hundreds of research groups all

over the world studying this one strain and its many mutants. However, one limitation

of using almost exclusively N2 is that it might not be representative for the species and

nematodes in general. This potential limitation is supported by the difficulty Dougherty

had in finding a strain that could survive in laboratory conditions.2 Luckily, this is not a

problem when trying to understand generic principles of genetics, neuroscience, behavior

and their interaction [31], but it does limit the interpretation of behavior (e.g. why a

certain behavior could have evolved).

2.1.2 Experimental techniques

To understand the strengths and limitations of the experimental data referenced in this

work, I will briefly summarize the experimental tools most used in the field. Starting with

a generic description of how behavior is measured and quantified, followed by ways to

measure and influence neuronal activity.

Measuring behavior

For C. elegans when we talk about behavior, we either talk about what happens on the

population level, counting for instance how many animals have moved into a particular

region of space, or we talk about individual animal behavior, for instance when we

compare locomotion trajectories.

2Out of the many strains from several Caenorhabditis species that Dougherty tested, Bristol N2 was the
only strain that could survive in culture. Today several strains have been successfully grown in laboratories,
allowing some comparisons to be made.
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A metric that is often used to measure behavior is the chemotaxis index (CI), which

is redefined for each assay but always measures the response strength to a chemical

gradient (for instance the percentage of animals that are found within a region close to

the peak concentration). Similarly an aversion index measures how strongly animals

are repelled by a noxious stimulus. While population averages can diminish the effect

of noise and increase the visibility of phenotypes, averages can be hard to interpret

without taking individual behavior into account. For this reason, many studies now use

automated tracking of many worms at the same time, storing the trajectory of each animal.

This allows researchers to reuse the same dataset with changing analyses, giving greater

explanatory power. In this thesis I rely on both population and individual metrics.

Measuring neural activity

There are roughly three ways to measure the activity of individual neurons, first stick an

electrode into the neuron, second use a dye whose fluorescence indicates neuronal activity

(calcium concentration or voltage), and last genetically modify the animal such that

specific neurons express a fluorescent calcium indicator. While the intracellular electrode

always measures electrical activity (the voltage across the cell membrane), fluorescence

signals can be used as indicators of electrical activity (in the case of voltage-sensitive

dyes) or of a proxy such as the calcium concentration in the cell. For C. elegans, but other

organisms as well, it is usually not feasible to use electrophysiology on a large number of

animals. C. elegans has the added difficulty that the body is pressurized and puncturing

the animal makes its innards flow out.

While calcium dyes have been used extensively in many larger animals, the short life

span, and great genetic amenability of C. elegans has led to a large number of strains

expressing genetically encoded calcium indicators (GECIs) in individual or groups of

neurons. While some of the earlier GECIs suffered from slowness and poor dynamic

range, over time very fast highly contrasting GECIs have been developed, some even
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matching the generally faster calcium dyes. Though still significantly slower and less

precise than electrophysiology, the benefits are numerous. Most importantly, GECIs allow

a researcher to study neuronal activity in freely behaving [64], and recently even freely

moving animals [25].

Controlling neural activity

There are several ways to test for the function of a neuron in a particular context. The

simplest of these involves ‘disabling’ a neuron, to see the resulting defect, and sometimes

re-enabling the neuron, which should return the behavior to normal as a control. The

targeted silencing of a neuron can be achieved using a brief but powerful focused laser

beam to physically ablate a neuron or using several genetic techniques to prevent a neuron

from developing. For instance, one could activate an apoptosis3 pathway under influence

of a cell specific promoter4, or insert a mutation in a gene known to be involved in the

cell’s development.

There are some caveats to studies using laser or genetic ablations. For instance, some

manipulations only partially silence a neuron, or silence the neuron but have secondary

effects. Conflicting results can be further produced by the strong redundancy and

robustness of neural processing in C. elegans. The effect of disruptions is often masked

and only visible if multiple neurons are ablated simultaneously [41].

Besides ablation it is now possible to change the membrane potential using optogenetics.

Typically animals are genetically modified to express light sensitive ion channels in

specific neurons. By shining light on the animal, the light sensitive ion channels open,

allowing positively or negatively charged ions (depending on the channel type) to rush

into the cell, changing the neuron’s activity in real time. Strongly hyperpolarizing

a neuron can, in simple circumstances, be equivalent to ablation (with some caveats,

3programmed self-destruction of a cell
4a regulatory region in an organism’s DNA that can drive a gene to be expressed
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e.g. electrical connections between neurons cause currents to reverse direction), while

depolarizing a neuron can provide an input directly into the animals’ nervous system.

This has been successfully used to steer animals by presenting them with a changing

virtual chemical gradient inserted directly into the interneurons, or by directly controlling

the motor neurons that drive its muscles [65].

2.1.3 Anatomy

In this work I focus strongly on the nervous system, for the most part treating the body

of the worm as a point in space. Because of this I will only briefly describe the anatomy,

insofar as it is necessary to understand how the animal moves and how the nervous system

drives its behavior.

C. elegans can be found in two sexes, hermaphrodites and males. The vast majority

of work has been done on the hermaphrodite and since I rely heavily on experimental

work, I looked exclusively at hermaphrodites in this study. Adult hermaphrodite are

approximately 1 millimeter long and under 0.1 millimeter thick consisting of 959 cells

of which 302 are neurons [23, 109]. C. elegans suck up their food, bacteria, through their

mouth using the pharynx. Surrounding the pharynx is the nerve ring, where most of the

neuron’s cell bodies are. Next to the mouth are two sensory endings, the amphids, which

the worm uses to taste, smell and to sense several other modalities (further discussed in

2.1.5). The muscles are arranged along the dorsal and ventral side of the body.

2.1.4 Behavior

Perhaps surprisingly given its compact nervous system, C. elegans has a large and diverse

behavioral repertoire. In my PhD I focus on decision making and sensory integration, so

I will not go to deeply into the precise mechanics of C. elegans locomotion. I will present
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the basics as far as they are required for this thesis, and recommend the PhD thesis of

Jordan Boyle [12] for those wishing to dive deeper into the subject.

When moving about C. elegans crawl on their left or right side (switching occasionally)

while bending in the dorsoventral plane to generate thrust. The wavelength and frequency

of the undulations depend on the viscosity of the medium, with long wavelength rapid

thrashing in liquids and slower, snake like, short wavelength crawling on more solid media

[10]. In this study I only use the latter motion as most studies have been done with animals

placed on a high viscosity solidified agar solution in a petri dish.

To find food and maintain suitable environmental conditions, C. elegans uses at least two

strategies to follow or avoid concentration gradients, temperature gradients, brightness

gradients, electromagnetic gradients and pH gradients: random reorientation where the

probability of a reorientation depends on the direction of the gradient sensed over time

(klinokinesis) and gradual reorientation to a gradient by sampling in space (klinotaxis)

[52]. Recently, complex multisensory assays have shown C. elegans capable of dynamic

decision making choosing between attractants [50, 51, 58, 80], whether to cross an

aversive barrier depending on strength of an attractant on the other side [54, 93], or

navigating complex environments.

I will describe the specific behaviors seen in several behavioral assays a bit further down

in the section on behavioral assays (section 2.1.7).

2.1.5 The nervous system

With the publication of ‘The mind of a worm’ in 1986 for the first time ever the full

nervous system of an organism was described down to the synaptic level [109]. This

Herculean task forced the authors to come up with a concise way to group and name the

individual neurons. At the time the function of many neurons was not yet known, so

grouping was done based on morphology and connectivity. This resulted in 118 classes
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of similar neurons, most consisting of two (the left and right neuron). The incredible

quality of this work became evident later on when the function and genetics of neurons

aligned almost perfectly with the handpicked classes. In 2006 the connectome of the

ventral nerve cord was revisited and in 2013 the circuit diagram for the anterior nervous

system was further improved by re-analyzing the old serial section slides [23, 114].

The C. elegans nervous system can be divided into two parts, the pharyngeal and the

somatic nervous system, which are connected by a single gap junction (one or more

porous channels creating an electric coupling between two cells). Out of the 302 neurons,

282 are part of the somatic nervous system and 20 are pharyngeal [109]. In this work

I will only look at (a part of) the somatic nervous system5. The name of each neuron

tends to follow the same general principle. For instance the sensory neuron ASEL, which

primarily senses increases in the sodium concentration, the first two letters indicates the

type of neuron (A for amphid, S for sensory), the third letter is used to differentiate similar

neurons in the same group (this is the fifth amphid sensory neuron pair, thus after A,B,

etc. we have E), and finally the last letter(s) give the position along one or more body axes

(here the L for left).

In contract to mammalian nervous systems, the C. elegans neurons are somewhat odd.

For instance, unlike mammalian nervous systems, neurons can be both excitatory and

inhibitory. Also, most C. elegans neurons do not spike but show graded potentials and

graded synaptic release. People have speculated that this might be because of the small

physical size of the neurons. As the neurons only have space for several tens of ion

channels, thermal fluctuations of individual channels begin to play a role, which would

make all or nothing action potential very unreliable.

For the model I created in this thesis I focus on several sensory neuron classes, interneuron

classes and some abstract motor circuits, the latter of which are based on actual motor

5The 279 connected somatic neurons (CANL/R and VC06 do not make any connections to other
neurons) form a network to each other through 6393 chemical synapses and 890 gap junctions [104]
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motifs but not individual motor neurons. I will describe the key findings on these neurons

and motifs below.

2.1.6 The sensory neurons

I have included three classes of amphid sensory neurons in my model that are involved

in many of the multisensory integration and decision making assays. The main sensory

organs of C. elegans include the amphids in the head, and the phasmid in the tail, though

there are other sensory neurons, both in the head and along the body. In addition, other

neurons (that are not classified as sensory, such as some interneurons and motor neurons

involved in locomotion) may have additional sensory functions, such as stretch receptors

[108]. All amphid sensory neurons have their cell body (soma) in the nerve ring, a dense

ring of neuronal cell bodies and axons in the head of the animal. From there, each amphid

sensory neuron has a cilium that extends to the left or right amphid, where the sensory

endings are exposed to the environment.

To survive, C. elegans has to integrate multiple sensory modalities to gain sufficient

information about its environment. Indeed, C. elegans can taste solubles [106], smell

odorants [67], and sense pressure (touch) [45, 61], temperature [46, 75], nociception [31],

light intensity (blue to ultraviolet) [18], pH [90], osmotic pressure [30], electromagnetic

fields [95, 105] and body shape [71, 108]. Most of these are sensed by one or more

amphids sensory neurons (some are also sensed by other neurons).

C. elegans appears to employ sparse coding: each neuron senses multiple stimuli (some

even sense multiple modalities) and most stimuli are sensed by more than one neuron

class. This introduces redundancy and allows multisensory integration to occur already in

the sensory layer, allowing for a highly compact sensorimotor pathway. In fact, since the

full connectome is known6, a network analysis was done showing that on average it takes
6Varshney et al. estimates the connectome is 90% complete, with the last 10% missing due to ‘missing

data and technical difficulties’ [104].
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2.65 [107] to 4.0 [60] neurons to reach any neuron from any other neuron. For the sensory

neurons I consider in this thesis there are one to three interneurons between the sensory

neuron and the nearest ventral nerve cord motor neuron or neck motor neuron [104].

Clearly, compared to mammals this makes the nervous system very shallow and intuitively

increases the amount of ‘computational work’ each neuron in the short sensorimotor chain

must do.

One of the first studies to systematically identify which chemicals were attractants to

C. elegans was by Ward [106]. Two of the most often used attractants are sodium

chloride (NaCl) and diacetyl (DA). Both chemicals are highly attractive to naive animals.

This is because the tastant sodium chloride (as well as other salts) tend to be present in

higher concentrations around bacteria, the main food source of C. elegans. Similarly, the

attractivity of the odor diacetyl is likely to be due to several diacetyl emitting bacterial

strains.

Interestingly, the response to sodium chloride is plastic and can be reversed upon pre-

exposure. Extensive research has shown that there are at least three different forms

of plasticity in the salt response: gustatory plasticity, starvation enhanced gustatory

plasticity and set point learning. The first occurs over time scales of ten minutes (with

a reversal time of less than 5 minutes) upon pre-exposure to sodium chloride in the

absence of food. Hence this is a form of associative learning [50, 51, 58]. Chemotaxis

plasticity [52, 88, 101], occurs when animals are starved in the presence of NaCl over

much longer timescales of an hour or longer and appears to be similar to starvation

enhanced gustatory plasticity [51]. Finally, set point learning happens over several hours

as well, but only in the presence of food, whereby animals learn to associate a specific

concentration of NaCl with food, and will navigate to that specific concentration [73].

The presence of food makes it clear that a different mechanism must be in play for the

latter. Additionally, all mutants that were defective in gustatory plasticity were normal in

enhanced gustatory plasticity [51], suggesting that all three forms of NaCl adaptation use
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independent pathways.

By ablating different classes of sensory neurons and testing chemotaxis behavior, several

studies showed that NaCl attraction is mediated primarily by the ASE neuron pair, with a

minor contribution from the ADF, ASG and ASI neuron classes [5, 52, 97]. Conversely,

diacetyl is sensed primarily by the AWA sensory neuron pair, with high concentrations

(1:10 dilution in 1µl ethanol) also sensed by the AWC pair [7, 24].

ASE sensory neuron pair

The amphid sensory E (ASE) class of neurons respond to a variety of tastants. Most

importantly for this thesis, they detect sodium chloride (NaCl). In addition, ASE neurons

sense cyclic AMP, biotin [5] and toxins such as cadmium and copper ions [89].

While most left-right neuron pairs in C. elegans are functionally identical, the ASE

sensory neurons are one of the only functionally heterogeneous neuron pairs7 [83, 97]. In

fact bilateral (left-right) symmetry is seen throughout the animal kingdom, with identical

gene expression for cells that are each other’s left-right mirror sibling. For ASEL and

ASER a novel genetic pathway has evolved just to break this symmetry [59], further

suggesting something interesting - rather than chance - is happening here.

The sensory responses of ASEL and ASER neurons to salt differ by at least three

factors: first, ASEL responds primarily to sodium, while ASER responds primarily

to chloride [83]; second, the membrane potential of ASEL depolarizes (becomes less

negative) in response to upsteps in the NaCl concentration, while ASER depolarizes

to downsteps in the NaCl concentration [97]. Also, ASEL does not respond to NaCl

concentration decreases, while ASER hyperpolarizes in response to NaCl concentration

upsteps. Thirdly, upon pre-exposure in the absence of food, ASEL desensitizes, while

7The other functionally assymetric pair is AWC, which has an ON and an OFF cell which respond to
different chemicals but both depolarize to odour removal. The identity of the ON and OFF cell (left or right)
is determined stochastically during development [103]
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ASER sensitizes [80]. Interestingly, there are no obvious distinctions between the

functions of ASE and other amphid sensory neurons to suggest an advantage. Some

hypotheses have been proposed, perhaps the most credible suggests that responding with

opposite polarities increases the dynamic range downstream [3]. The opposite adaptation

was only found recently and its function has not been examined yet. In chapter 6 I will

address this question.

ASH sensory neuron pair

In contrast to the ASE pair, the ASH pair is symmetric. ASHL and ASHR appear

to respond identically [100] and are electrically coupled by a gap junction8 [23, 109].

ASH are also one of the few sensory neurons to be polymodal, responding to multiple

sensory modalities (taste, touch, pH, osmotic shock) [6, 28, 47, 61, 89, 92, 100, 102].

While both ASH neurons respond with depolarizations to increases in nociceptive stimuli,

the response to NaCl appears to be more complex. Specifically, ASH depolarizes

to hyperosmotic increases in concentration [47], but ASH neurons also depolarize to

decreases in NaCl from 40mM to 0 [100]. At first glance it seems odd that ASH would

depolarize to both increases and decreases in the NaCl concentration. But earlier work

comparing nose touch to osmotic shock showed that the ASH sensory neurons can change

which neurotransmitter is released depending on the stimulus [86]. Even though ASH

depolarizes to both nose touch and osmotic shock, the ASH effect on a key pair of

downstream interneurons called RIM9 has a complete opposite polarity, hyperpolarizing

RIM in response to nose touch and depolarizing RIM in response to osmotic shocks.

8Gap junctions are believed to induce synchronization
9The RIM interneuron pair plays a central role in aversive responses, depolarizing RIM inhibits

reversals, though in response to osmotic shock, ASH depolarizes RIM to produce a faster reversal where
head oscillations are suppresed [86]
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AWA sensory neuron pair

The AWA sensory neurons respond to several attractive odorants but it is the only pair

known to respond to diacetyl (with minor contribution from AWC) [7, 24]. Like ASH,

AWA respond with a depolarization to increases in the odor concentration but unlike ASH

no hyperpolarization is seen in response to odor removal [67]. Recent calcium imaging

has shown the extreme dynamic range of AWA to diacetyl [67]. A measurable response

was detected over six orders of magnitude concentration change (0.001µM to 100µM).

Additionally, the response profile to concentration steps changes markedly as the step

size increases, suggesting there are different pathways for low concentration steps and

high concentration steps.

Just like the ASH sensory neurons, it is assumed that the AWA sensory neuron pair are

functionally identical as the left and right neuron are also coupled by a gap junction [23,

109], though to my knowledge no separate AWAL/AWAR calcium imaging has been done

to confirm this.

2.1.7 Decision making assays

To give an overview of the different behavioral responses and assays used, I will list

the key experimental findings in chronological order here. I will only focus on assays that

used stimuli sensed by the ASE, ASH or AWA sensory neurons. Furthermore, I will focus

on the most used stimuli: NaCl (ASE and ASH), copper (ASH), osmotic shock (ASH) and

diacetyl (AWA). Early experimental studies did not include plasticity but instead focused

on naive chemotaxis
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2.1.8 Chemotaxis assay

Chemotaxis, the ability to follow chemical gradients, is tested in C. elegans by placing

animals on an petri dish and measuring the response to a chemical gradient. Petri dishes

invariably contain agar, and are typically prepared by depositing a chemical (attractant

and/or repellent) in localized spots that are then left to diffuse for some time. The

resulting chemical gradient then leads to a stochastic but goal-directed locomotion of the

animals over time, either towards or away from the chemical peak. To assess the strength

of chemotaxis, a region surrounding the chemical peak is defined, and the number of

animals inside this region is counted after a certain duration. A ratio, typically called the

chemotaxis index, can then be calculated in a variety of ways depending on the nature of

the assay.

In the simplest case, the chemotaxis index is simply the ratio of the number of animals

inside the peak concentration region versus the total number of animals put on the plate.

The index set up this way, ranges from 0, no attraction to 1 full attraction. However, there

are several issues with measuring chemotaxis in this way. First, the size of the region

and the distance to the region are not controlled for. This means that the index does

not tell you if the animals simply could not reach the region (too small, too far or not

enough animals), or that animals were strongly repelled. Second, the number of animals

is only counted once, at the end of the experiment. Thus if animals were attracted at

some point but then left, the index would not distinguish this from a situation where no

animal ever entered the region. Third, the chemotaxis index does not control for dead or

non-moving animals. If for some experiments many animals were incapacitated during

transfer or exhibit defective locomotion due to a genetic or other manipulation, this would

incorrectly reduce the chemotaxis index.

Several solutions to the above mentioned issues with the chemotaxis index were found

over the years. The most fundamental, and used in nearly every study, involves a control
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region. Instead of having just a region for the concentration peak, a second region, equal in

size and distance from the worms’ initial location, is set at opposite ends of the plate. The

chemotaxis index is then calculated as the difference in the number of animals between

the control and test regions versus the sum of the number of animals in the two regions.

This solves both the first and the third issue. Now the size of the test region and distance to

the worm’s initial location are taken into account, and non moving animals are excluded.

Additionally, the chemotaxis index now ranges from -1 to 1, with -1 being full repulsion

and 1 full attraction. A chemotaxis index of 0 is still ambiguous though, as it could mean

no animal reached either region (i.e. a ‘bad’ assay), or simply no chemotaxis to the tested

stimulus in question was found. This problem could be easily solved if papers published

not just the chemotaxis index, but also the ratio of animals inside the control and test

region versus all animals on the plate, giving the sensitivity of the assay. Unfortunately, I

have not found any studies that do this.

The remaining issue of counting only at the end of the assay has been solved in two

ways in several studies, but mostly has been taken for granted and even in recent studies

has not been addressed. The first way to solve it is by adding an agent that renders the

animals immobile in the test and control region (usually sodium azide). In doing this the

researchers ensure no animal can enter and then leave the region. An obvious downside

to this is the risk of saturation. Longer duration assays risk all animals getting stuck

in either region. The second solution is better in my view, though requires more effort:

simply count animals multiple times or continuously throughout the assay’s duration.

This way no saturation occurs, and both short term and long term changes in attraction

and repulsion are captured.

Overall, the differences in the way chemotaxis is defined, the assay duration, chemical

gradient and treatment of the animals ensure that great care must be taken when

comparing results from multiple assays or studies. Often, assays look at different behavior

with distinct molecular, cellular and circuit mechanisms.
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NaCl assays

The attractiveness of NaCl was established in a study by Ward [106]. After letting sodium

chloride diffuse on a 4cm plate, Ward placed approximately 100 worms around the edges

and then counted the proportion of animals within 0.8 cm of the gradient peak at the center

after varying times (from ten minutes to one hour). Using this setup the author found that

C. elegans is attracted to solutions of sodium chloride of at least 2mM.

In a groundbreaking study by Iino and Yoshida [52], multiple discoveries regarding NaCl

chemotaxis were made. The authors managed this feat by finding an assay that maximized

the amount of chemotaxis data they could gather in a short amount of time. By using

plates with twelve diffusing spots of NaCl in a grid layout, the animals perceived multiple

gradient directions as they moved about. Also, the gradient slope was rather steep without

the peak concentration becoming too high while ensuring there was a gradient across the

full plate. The main results of the study are twofold: first, C. elegans uses both steering

and biased random turns in NaCl chemotaxis, and second, ASEL and ASER have different

contributions within this assay. Specifically, the authors found that ablating ASEL had no

significant effect on any of their metrics. Additionally, the authors found a nearly linear

relationship between gradient slope and steering strength10.

The Plasterk lab and later the Jansen lab pioneered the use of assays looking at plastic

responses to NaCl [50, 51, 58, 110]. Attraction was measured using a quadrant assay: in

this assay, animals are placed in the center of a plate segmented in four quadrants, with

alternating control and treatment regions containing a uniform stimulus concentration.

The chemotaxis index is then calculated as the difference in the number of animals in

the control and treatment quadrants divided by the total number of animals. Thus, if all

animals go to the treatment quadrant the chemotaxis index has a value of 1 and conversely

10Though the effect is only demonstrated for the shallow end of gradients on the order of mM/cm (in
contrast, in the assay animals were exposed to gradients of the order of mM/mm). This may therefore tell
us more about the minimal salt sensitivity of the animal.
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if all animals go to the control condition the chemotaxis index is -1. Similarly, if the

treatment does not affect the animals’ propensity to enter or leave the treated quadrant, the

chemotaxis index is 0. This definition is consistent with the earlier use by the Bargmann

group [27, 28], except that no sodium azide is used, such that assay can be run for longer

durations while avoiding saturation of the metric. Furthermore, in the quadrant assay,

animals are always either in the control or the treatment condition11.

Using the quadrant assay the Jansen lab went on to discover a novel type of plastic

behavior to NaCl that they called gustatory plasticity [50, 51]. The naive response, strong

attraction to NaCl between 1mM and 200mM was found to turn to repulsion following

a 10 minute pre-exposure in a buffer containing 100mM NaCl. Interestingly, they also

showed that the reversal of the response depends on the concentrations used: pre-exposure

to 10mM did not abolish attraction to 100mM, but did abolish attraction to 200mM.

At the same time the Iino lab studied salt plasticity in a slightly different way [1, 53, 80,

101]. This lab used a similar chemotaxis assay to the Bargmann lab. After letting an NaCl

diffuse into the agar, they added sodium azide to the gradient peak and to a control spot

on the opposite side of the plate. The chemotaxis index was calculated slightly differently

from the Bargmann lab, excluding animals that did not move from their initial position:

CI = (a-b)/(n-c), or the difference between the animals in the treatment (a) and control (b)

regions divided by the number of animals (n-c) that moved from their initial position (c).

In contrast to the Jansen lab, the Iino lab kept animals in a buffer for one hour before

testing the chemotaxis index. To see if the response after one hour of pre-exposure

used the same mechanisms for plasticity the Jansen lab also kept animals in a buffer

and compared several mutants in short and longer pre-exposure setups [51], the latter

they dubbed starvation enhanced gustatory plasticity. Interestingly, while the chemotaxis

indexes were similar between the two learning paradigms, the mutants results were very

11Though in practice the Jansen lab excluded a small region around the edges of the quadrant as some
animals got stuck there.
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different. In fact, none of the mutants that had disruptive learning behavior for gustatory

plasticity showed any defect in starvation enhanced gustatory plasticity. This suggests

that different forms of starvation enhanced NaCl plasticity use one or several separate

molecular pathways. Furthermore, unlike the rapid time scale of gustatory plasticity,

the long duration of the pre-conditioning and assay for starvation enhanced experiments

allows ample time for changes in gene expression, circuit wide synaptic plasticity, etc.

The apparent increased complexity introduced by such mechanisms have led me to focus

on gustatory plasticity for this thesis.

Copper assays

There have been several studies looking at the responses of C. elegans to copper. Since

many of the heavy metals are highly toxic, one would expect C. elegans to be strongly

repelled by them. Indeed, a study by Sambongi et al. [89] found that C. elegans is

aversive to copper and cadmium at low concentrations (0.01mM)12. Interestingly, this

study also showed photographs of the tracks made by animals placed on a plate with a

copper gradient applied to it. These tracks show a razor sharp edge at a specific distanced

from the peak concentration beyond which almost no worms go. Similar photos were

made by the same lab when testing acidic avoidance [90]. In chapter 3 these photos proved

to be key in understanding how C. elegans ensures it does not enter lethal environments.

Around the same time several labs started investigating multisensory integration [54, 93].

Combining copper and diacetyl (as well as other combinations) in a single assay, allowed

the authors to see how animals behaved in more challenging environments compared to

unisensory assays. The assays were set up with a copper barrier across the center of

the plate, the animals on one side and the attractant diacetyl on the other. The difficulty

for the animals is that the conflicting sensory information should not lead to wavering

12Surprisingly, the same study did not find any response to nickel even though the concentration tested
was lethal.
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behavior; the animal must choose between crossing the barrier or not and cannot afford

to show a hybrid of aversive and attractive behavior, lest it get stuck within the toxic area.

Specifically, if the animal decides to go through the copper to reach the diacetyl, it must

do so as quickly as possible otherwise it risks death. Conversely if the animal decides not

go through the copper, it should inhibit its attractive behavior to the attractant on the other

side in as much that there is no benefit to venture partially into the deadly copper.

Following the intuition that animals should not waver when presented with conflicting

stimuli, the authors found that C. elegans appears to bias its behavior to either attraction or

reversals [54, 93]. Specifically, several mutants were found to be identical to wild type in

single stimulus assays but displayed abnormal behavior to assays with both stimuli. Using

ablations, the authors concluded that AIA and AIY are involved in adjusting the balance

between attraction and aversion in multisensory assays only. These results support the

notion that some interneurons are primarily involved in multisensory assays.

Osmotic shock assays

Most osmotic shock assays use droplets containing a high concentration of fructose, NaCl

or another chemical [45, 47, 86]. In some, animals are immobilized (either by gluing or

in a microfluidic device); in others, they move freely, and the droplet is placed in their

path. In addition, there have been two other types of assays, which were most influential

for this thesis. The first, done by the Jansen lab, looked at the balance between NaCl

attraction and repulsion at concentrations above 200mM in the quadrant assay. There, the

authors found that wild type animals showed consistent repulsion to all concentrations

above 200mM. Interestingly, animals with a genetic disruption of ASH (osm-9) showed

attraction to the same concentrations, suggesting that osmotic shock as sensed by ASH

overrides an attractive sensory signal. The second type of assay used in this thesis is

developed by the Nitabach lab, where animals are placed inside a hyperosmotic fructose

ring, with two spots of attractant (diacetyl) on either side of the ring. By counting the



Chapter 2. Why we care about a little worm 32

number of animals crossing the barrier, the Nitabach lab found a novel mechanism that

sets the balance between the attractant and the repellent (unpublished results). These two

assays are described in greater detail in their respective chapters.

Diacetyl assays

The strong attractiveness of diacetyl to C. elegans has led to a variety of assays

investigating the naive and conditioned response to this chemical. Diacetyl was first found

to be attractive in the study by Bargmann et al. [7]. The focus there was to assess the

attractiveness of odorants. The authors had two motivations, first to learn more about

the response of C. elegans to odorants, and second to see if odorants can be used to

perform chemotaxis assays quicker (due to their much faster diffusion). It turned out that

many odorants are highly attractive. Out of the 154 odorants tested, 61 chemicals were

attractants. However, only diacetyl and a few other odorants remained attractive across a

broad range of concentrations (100 µM to 10−3µM). This has no doubt contributed to the

popularity of diacetyl.

In addition to the studies mentioned earlier, there have been two key studies using diacetyl.

The first is the Bargmann et al. [7] paper which adapted the assay developed by Ward

[106]. The key differences between these two are the use of a larger plate and the

introduction of the chemotaxis index as the difference between a treated and a control

condition, as opposed to the unequal area comparison used by Ward. Also to increase the

assay sensitivity, sodium azide was added to both the treatment and the control region.

This chemical paralyzes the animals, ensuring that once an animal gets close to either

region they can no longer leave. Naturally, this increases the sensitivity in short runs,

but adds noise in longer runs, where more and more animals happen to enter one of the

regions by chance.

The second key study was done by Larsch et al. [67]. This study looked at the
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unusually broad range of the diacetyl response. In a microfluidic chamber where the

diacetyl concentration could be very precisely controlled, the calcium activity of the AWA

sensory neurons was measured in freely moving animals. This allowed high-throughput

measuring behavior and AWA activity in response to diacetyl upsteps and downsteps

of varying concentration, duration and slope. Interestingly, the authors found that the

response to diacetyl upsteps was highly stochastic, with no clear correlation between the

presence of a response in AWA and a behavioral response.

2.2 Previous computational models of C. elegans

behavior

There have been several models of C. elegans, some highly detailed, some more abstract.

Initial models focused mostly on locomotion, without any neurons at all, later models

looked at either depending on the questions asked, and some recent models have combined

locomotion with a neuronal model. As the aim of this thesis is to build a neuronal model,

I will only cover the locomotion models superficially. Conversely, the neuronal models

will be described in much greater detail. One of these I reproduced to show additional

properties not available in the original paper.

2.2.1 Locomotion models

Some of the earlier models of C. elegans came from Niebur and Erdös. Their first model

of C. elegans locomotion focused entirely on the method of locomotion [79]. The model

includes a two dimensional body, its muscles and internal pressure. It follows from

earlier work estimating the relevant forces (internal pressure, momentum, viscosity and

friction) for C. elegans (and other microscopic nematodes) locomotion. The model does
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not include a nervous system but instead assumes the head (or tail) follows a sinusoidal

trajectory.

Later Niebur and Erdös extended their model by looking at how motor neurons drive the

muscles to produce a propagating wave along the body [78]. Looking at larger nematodes

they find that an electric waves passes synchronously with the muscle excitation wave.

However, the small size of C. elegans makes the authors conclude this cannot be the

case in C. elegans. They propose stretch receptors could be involved in the waveform

propagation.

Later work by Bryden and Cohen showed stretch receptors could indeed reliably drive

undulatory locomotion in C. elegans [16, 17], though the Bryden and Cohen models

lacked the mechanics of the body and environment.

Building on the hypothesis from Niebur and Erdós [78], Berri et al. set out to test the role

of physics in forward locomotion [10]. They did so by studying the transition between two

very different looking behaviors that can be observed under different physical conditions

- crawling in highly viscous gel and swimming in liquid, and found that these could in

fact be described as extremes of a single gait. Using their positive findings, Boyle et al.

[13] developed an integrated neuromechanical model of a single gait, modulated by the

physics of the environment, that captured the entire range of behaviors (from swimming

to crawling). Later experimental work further strengthened the single gait conjecture:

swimming and crawling transition smoothly as a function the viscosity [10, 35, 68, 99].

The effect of stretch receptors was recently shown in an elegant paper that found motor

neurons respond to exogenous bending of the worm’s body [108]. This study also created

a highly abstract model of the worm’s body which independently confirmed that the

characteristics of the stretch receptors support swimming and crawling as a single gait.
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2.2.2 Chemotaxis models

There have been a wide variety of computational models capturing C. elegans chemotaxis.

I will describe the most important here in detail. Some models I have chosen not to include

in depth because they stray too far from the biology. While these models certainly have

their merit, the predictive power is limited, and comparisons cannot be easily made.

Ferrée and Lockery, 1996

In 1996 a successful first attempt at modeling C. elegans chemotaxis was made.

Recognizing that chemotaxis is about direction of locomotion rather than locomotion

itself, the authors present a model of C. elegans, which in contrast to the earlier work of

Niebur and Erdös, represents the worm’s body as a single point in space moving forward

with fixed speed along a direction θ. In doing this the authors assumed that the body

follows the head. While this is not true [111], the center of mass of the second half

of the body does follow the center of mass of the first half. Additionally, the chemical

gradient is only detected by the nose of the animal, thus with respect to the chemical

gradient, it is reasonable to argue that only the position of the nose is relevant. Finally,

the authors argue for a plausible physical basis for their model transformation from

muscle contraction to change in heading. Their minimal assumptions offer a powerful

but computationally cheap framework for chemotaxis models and have been adopted by a

large number of models since. Specifically, the recent model by Izquierdo and Beer [55]

may offer a framework to validate the muscle-to-heading transformation of point models.

The transformation itself handily comes out as proportional to the contraction difference

between the dorsal and ventral muscles. In their model these dorsal and ventral muscles

are collapsed into single units which are excited by a central pattern generator (CPG)13

13A central pattern generator is an intrinsically oscillating unit or in neuroscience typically a group of
rhythmically firing neurons, for instance the lobster’s stomatogastric ganglion contains CPG circuits that
produce rhythmic activation of the stomach allowing the animal to chew its food.
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and a single linear sensory neuron. The linear response of the sensory neuron poses a

problem. In the absence of physiological recordings at the time, the authors reduced the

computation to a minimal sequence of basic operations. Hence the neuron was taken to

be linear, and to transform the linear response to a motor command that effects a change

in heading, they introduced a derivative, subject to a capacitive filter, that imposes a slow

timescale on the neuronal response. Nonetheless, the model is elegant in its simplicity

of the descriptions and is used as a basis for future models and the model created in this

thesis.

Pierce-Shimomura et al. 1999

This paper investigated the possible mechanism by which C. elegans navigates up a

chemical gradient. They found no evidence for steering but did find that C. elegans

modulates its pirouette probability in response to its bearing relative to the gradient,

also known as tumble and run strategy or klinokinesis. To test their hypothesis the

authors created a highly abstract model which only used klinokinesis and found that the

model’s trajectory characteristics matched the experimental results closely. However, the

real animals produced a higher chemotaxis index than the model. This led the authors

to speculate (rightly) that C. elegans might use a weak form of steering in addition to

pirouette modulation.

The model falls into the class of behavioral models that lack explicit representations

of neurons or neural circuits. In the spirit of minimalism, worms consisted of

points that moved once every second, with a speed and direction sampled randomly

from distributions determined experimentally. The pirouette probability was changed

depending on the angle between the heading of the worm and the gradient, again by

sampling randomly from an experimentally derived distribution. This first model of

C. elegans chemotaxis produced quite realistic trajectories on first approximation, but

naturally the absence of any detail precludes the use of the model beyond their research
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question: whether C. elegans uses pirouette modulation to navigate.

Dunn et al. 2006

This study used simulated annealing to predict the basic network motifs for C. elegans

chemotaxis. The authors explain their motivation to move beyond the sensory neuron

and motor neurons into the then unexplored part of the nervous system: the interneurons.

The work relied on two assumptions, first that the sensory neurons provide the absolute

concentration of the current location, and second that the interneurons connect to a motor

system that regulates the pirouette probability. We now know that the first assumption

does not hold as most sensory neurons respond to changes in concentration [97, 100].

Nonetheless the general idea is interesting as an exercise in functionally analyzing a

neural network. The network used by the authors was held constant, two sensory neurons

(modeled after ASEL and ASER), a single interneuron and an output neuron. The weights

between the neurons, the neuronal time constant and the ‘bias’ (a constant excitation

or equivalently the resting activation) of each neuron were explored with simulated

annealing.

After searching the parameter space, the authors grouped the resulting solutions into

generic motifs using a technique called Neural Dynamic Clustering. This grouping

was done purely based on parameter values, but was finally interpreted by the authors

based on their circuit properties. Two distinct interpreted groups emerged, both with

the same function: differentiation of the concentration over time. The first group used

the interneuron as a slow delayed rectifier, the second motif used one slow and one fast

sensory neuron with opposing polarities and did not use the interneuron. One alternative

motif, dubbed trap and bounce was also found, where one sensory neuron suppressed

pirouettes and the other neuron pushed the pirouette rate to its maximum, but this solution

produced rather unnatural trajectories.
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ON OFF
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Figure 2.2: The neural network used in the study by Izquierdo and Lockery [57]. The network
consist of two sensory neurons (blue triangles), ON and OFF, responding to increases and
decreases respectively; two motor neurons, VMN and DMN (green circles), and an oscillator
in the form of a sine wave (black wave). The difference between the two motor neurons drives the
change in heading µ. Connections are shown with arrowheads, including self-connections for the
two motor neurons.

Interestingly all circuits but the trap and bounce motif performed a derivative like

computation. As mentioned earlier, we now have very clear evidence that this

computation exists across sensory modalities, though not in the circuit but in the sensory

neurons themselves.

Izquierdo and Lockery, 2010

Following up on the earlier steering model of Ferrée and Lockery, the authors extended

the earlier model of ASE sensory neurons, now incorporating new evidence of their

operation as derivative-like operators, to study their role in steering. The year before

an experimental study by Iino and Yoshida [52] showed conclusively that C. elegans used

not just pirouette modulation but also gradual steering. The minimal model structure and

the methodological approach are essentially unchanged: a point body driven by a nervous

system consisting of two opposing sensory neurons and two motor neurons (Figure 2.2),
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where the parameters of the model are set using an evolutionary algorithm. However,

after the work by Suzuki et al. [97] and Thiele et al. [100] the sensory neurons were seen

as approximating derivative operators. To accommodate this, the sensory neurons were

changed to have two opposing components producing a transient response to changes in

concentration. Using this setup, the authors found they could produce highly efficient

steering in a symmetric circuit if the two sensory neurons had opposite polarity and the

motor neurons responded only during half of their duty cycle. The antisymmetry in the

CPG driving the motor neurons then leads to input from the sensory system only affecting

the motor neuron that is currently inactive (or active in another parameter regime).

As the model presented in this thesis is closest to the model by Izquierdo and Lockery,

I will provide the inner workings of their model here in greater detail. The two motor

neurons in the model are modeled using a first order linear ordinary differential equation

(ODE) with a decay, a self-connection with weight ws and a synaptic input I SI
i :

τm
dVi
dt

= −Vi + wsσ(Vi + θ) + I SI
i . (2.1)

Where the sigmoid is defined as

σ(x) = (1 + e−x)−1 , (2.2)

and the synaptic input as the weighted sum over the activity of the presynaptic neurons

I SI
i =

∑
k

wkiVk . (2.3)

The sensory neurons used a time buffer of past concentrations (C(t)) to compute the

instantaneous activation level (VSENSORY). Their activity was set as the difference of the

average concentration over a prior period with the average concentration of the period
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Figure 2.3: The sensory neurons used in the study by Izquierdo and Lockery [57]. The average
concentration in the ‘prior period’ (in green) is compared to the average concentration in the
‘even earlier period’ (in red). This produces a response to a concentration step change (right).
The duration of the increase is set by the ‘rise time’, τr while the relaxation to baseline lasts for
as long as the ‘decay time’, τd.

even before the prior period:

VSENSORY =

∫ τr

0

C −
∫ τr−τd

τr

C . (2.4)

Thus the sensory neurons are governed by two key parameters called ‘rise time’, τr

and ‘decay time’, τd (Figure 2.3). The precise values of these two parameters are very

important as I will explain below.

The animal body is represented as a point in a two dimensional space moving with fixed

speed v = 0.022cm/s along a heading µ. The change in heading depends on the difference

between two sigmoids, and is subject to a further Gaussian noise ζ with a mean 0 and

standard deviation 0.05. Each sigmoid transforms the activation level of one motor neuron

(ventral or dorsal) into the activation of the corresponding (ventral or dorsal) ‘muscle’:

dµ

dt
= wNMJ [σ(Vdmn + θ)− σ(Vvmn + θ)] + ζ . (2.5)
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I have put muscles between quotes as the model does not describe muscles as a separate

component but instead simplifies the muscles activation to a sigmoid over the motor

neuron activation. Additionally a bias term θ is added to determine the sensitivity to

sensory inputs as a function of duty cycle.

The virtual environment consists of a conical concentration gradient. Even though a

Gaussian gradient would be more similar to experimentally used assays, the authors claim

these would lead to unrealistic model worm trajectories. The concentration at (x, y) is

thus simply the euclidean distance from the center or αr where r is the distance to the

center in a radial coordinate system.

Appleby 2012

The model presented in Appleby [3], is similar to the model by Izquierdo and Lockery

[57] but with a different, more detailed and physiological motivated model of the sensory

neurons. Like Izquierdo and Lockery [57], this model included two sensory neurons

(ASEL and ASER), an interneuron and two motor neurons. Additionally, an abstract

pirouette command neuron was added to allow pirouette modulation. The latter was

particularly unique as both the pirouette probability and the final turn angle are modulated.

The aim of this model was somewhat different from the previous, looking not just at

chemotaxis but also at associative learning.

The sensory neurons are modeled with two populations of ion channels driving the

membrane potential (a depolarizing and a hyperpolarizing channel). The depolarizing

channel’s activation rate is proportional to the NaCl concentration with a threshold. The

interneuron and motor neurons on the other hand are just instantaneous linear sums of the

membrane potential of the pre-synaptic neurons.

While steering functions largely as in Izquierdo and Lockery [57], pirouette modulation

is very different from Ferrée and Lockery [37]. First the final turn angle is randomly
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picked from a modified Gaussian centered at π14. The Gaussian is calculated using two

components, one pure Gaussian, and one bias term dragging the final turn angle to 2π. The

balance between the two components is determined by the activity of the abstract pirouette

command neuron. The pirouette probability is calculated using a Poisson process whose

rate is linearly dependent on the same abstract pirouette command neuron.

To add associative learning a binary serotonin signal indicating food presence was

added to model, together with dynamic weights between the sensory neurons and the

interneuron. The weights were updated using a modified Hebb’s rule. Additionally, an

alternative learning rule is devised where the scaling parameters (maximum conductance)

of the sensory neurons become plastic, changing as a function of the NaCl concentration

and the serotonin state.

The author is careful to show agreement between the model sensory neuron’s activity

to up and downsteps and experimentally measured calcium imaging data, though the

same time scales for ASEL and ASER were used (averaging the experimentally obtained

time scales for the two sensory neurons). Also, in agreement with all earlier modeling

work, opposite polarities of the two sensory neuron’s synaptic weights are required for

the model to function. More interestingly, using the highly simplified circuit, the sensory

neurons’ output can drive the pirouette probability, the final turn angle, and steering to

generate successful chemotaxis. The model also finds both sensory neurons and all three

chemotaxis strategies contribute to navigation. Finally, both the Hebbian learning and the

non-Hebbian intracellular learning both reproduce the form of salt learning tested.

14In Appleby [3], on average model animals turn 180 degrees during a pirouette, in reality the average is
likely to be slightly less, around 150 degrees [42].
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Chapter 3

Analysis of the Izquierdo and Lockery

model

3.1 Introduction

In this chapter I will explore the existing computational model by Izquierdo and Lockery

[57], reproducing the original model, and then continuing to do a deeper analysis, looking

at its strengths and its limitations.

As mentioned in the previous chapter, the previously published model by Izquierdo and

Lockery [57] has particularly interesting characteristics (its parsimony, accurate steering

and circuit properties), making it a good starting point to assess what a generic model of

C. elegans chemotaxis should look like.

To understand the limitations and complexities of the computational model of C. elegans

chemotaxis, presented by Izquierdo and Lockery [57], I started my work by reproducing

their model. I had two questions I wanted to answer: first, to see whether their model

could be further simplified (i.e. whether it is the most parsimonious description that can

reproduce their modeling results), and second to further explore their model and see where
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it breaks down. I then used the answers I found to create my own model.

While all equations are given in the Izquierdo and Lockery [57] paper, the same is not

true for the parameter values, since they present a group of high performing solutions

with different parameter values. To choose the missing parameter values I opted to do

a combination of sensitivity analyses and manual tweaking. I starting out by setting

the rise and decay times to low values (all at 0.5 second) to fit the region of values

found by Izquierdo and Lockery [57]. Then, I performed a parameter sweep of the

muscle bias parameter θ to see if the high chemotaxis index (defined by the authors as

the average distance from the concentration peak) of over 0.8 could be achieved. This

first sweep showed my simulation could convincingly reproduce the original strength

of the chemotaxis (Figure 3.1). Doing the parameter sweep also showed that the bias

parameter has an important symmetry breaking function. For bias values of around -2 or

+2, the steering strength is maximized (in opposite directions). This is due to a shift in the

sigmoid as already shown by Izquierdo and Lockery. What was not clear from their work

though, is how this shift in the sigmoid and the rise and decay time relates to steering. A

hint of this relationship can already be seen in Figure 3.1, where the curve is asymmetric

about the 0 chemotaxis index.

To show the effects of the bias parameter on steering I simplified equation 2.5 by leaving

out the Gaussian noise and the neuromuscular weight. These can be safely removed

since neither has a (mean) effect on the relationship between the bias parameter and

steering strength or direction. Expanding Vdmn and Vdmn (omitting the self connection

for simplicity) then gives:

dθ

dt
∝ σ(sin(2π

t

T
) + I(t) + θ)− σ(− sin(2π

t

T
) + I(t) + θ) . (3.1)

Before looking closer at the bias parameter, it is useful to reflect on how the Lockery

system steers. Using the simplified equation above, it is easy to see that the change in
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Figure 3.1: The chemotaxis index (normalized average distance from gradient peak over 500
seconds) as a function of the muscle bias ζ, or the shift in the sigmoid activation function of the
two motor neurons.

heading over time is proportional to the difference between the activation of the dorsal

and ventral motor neurons. Thus, to steer, there must be a net difference between the

activity of these two motor neurons. In the absence of sensory input, the activation of

the two motor neurons are two sine waves in antiphase (Figure 3.2A, bottom left panel).

Because the activity of the two motor neurons are equal and opposite, there is a change

in heading but no steering. After each undulation period the heading returns to the value

of one undulation period earlier. This can be seen in the bottom left panel of Figure

3.2A where the net heading change (area under the curve, colored in purple) over one

undulation period is 0.

Imagine that both motor neurons receive identical sensory input for an entire sine wave

period. In this case both neurons would shift up or down an equal amount, which would

change the shape of the undulations but would not steer the animal. If instead there is

a difference in the sensory input between the two halves of an undulation, the bearing

does not end up in the same point and the animal steers. To show this, a monotonously
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Figure 3.2: The effect of a monotonously changing sensory signal on the change in heading during
a single period of an undulation. A, top left: Three sensory signals corresponding to the three top
panels. A, bottom left: the change in heading in the absence of sensory input is symmetric between
the two half periods causing the virtual worm to end up in the same heading after a full period
as before (no steering occurs). A, top right & bottom right, linearly decreasing and increasing
sensory signal respectively. The shaded area under the curve of the heading change shows the net
change on the heading. If the integral is 0, no steering occurs. B: Steering strength (area under
the curve of the heading change) as a function of the sensory signal slope and the muscle bias.
For muscle bias of 0, the change in heading is identical for positive and negative sensory inputs
(Equation 3.2). For other values steering can occur in both directions though not for all inputs.
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changing sensory signal can be added to the motor neurons. In figure 3.2A the heading

change is shown for sensory inputs changing from 5 to 0 or -5 to 0 over the course of one

undulation. Both inputs produce symmetry breaking shifts in the motor neuron activities,

leading to a strongly weakened heading change in the first half and a slightly weakened

heading change in the second half. Interestingly, the heading change for the decreasing

sensory input is equal to the increasing input, even though the activities of the motor

neurons are different. Indeed, it turns out that, with a bias θ = 0, for all sensory inputs I

and central pattern generator inputs S = sin(2π t
T

), positive and negative sensory inputs

produce identical changes in heading:

1

1 + exp(S + I)
− 1

1 + exp(−S + I)
=

1

1 + exp(S − I)
− 1

1 + exp(−S − I)
. (3.2)

In other words, the polarity of the downstream synaptic weights from ASEL and ASER is

irrelevant for their ability to steer. However, all solutions of the evolutionary algorithm of

Izquierdo and Lockery [57] used opposite polarities for the synaptic weights of ASEL and

ASER. Closer inspection showed this to be due to the fact that their opposing responses

summed cancel each other out (this is particularly true since ASEL and ASER have

identical parameters and thus equal response times).

A more problematic consequence of identical steering resulting from positive and

negative sensory inputs is that the steering system in the Izquierdo and Lockery model

fails to distinguish between attractive and repulsive gradients (responding with similar

orientations of steering to both). The bias term appears to have been added to break this

symmetry and allow correct steering for animals moving up the gradient and down the

gradient. To assess to what extend the bias term can alleviate this issue, I performed a

sweep of the bias term and looked at the change in heading as a function of the slope of

a monotonously changing sensory input (Figure 3.2B). With a bias of 0 (dashed line), we

confirm the symmetric relationship of equation 3.2. With non zero values there is a shift

in the curve which produces correct steering up to a limit. Beyond this limit the steering
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direction reverses again, producing anti steering. Naturally, we expect the biological

worm to steer up attractant gradients and down repellent gradients, and it is reasonable

to assume that it responds robustly across a high range of gradients [67]. Hence, this is

a major flaw in the model description of Izquierdo and Lockery [57], which prevents the

model from showing correct chemotaxis across assays and concentration strengths.

While Izquierdo and Lockery created an elegant and parsimonious model, they did not

set out explicitly to make it minimal (e.g. by penalizing model complexity in their fitness

function). Minimal models may not necessarily offer greater biological realism, but they

can help us tease out minimal system requirements, and to make the model analysis

easier. While ‘minimizing’ the complexity of a model is not trivial to do in practice

within an evolutionary search framework, manual tweaking of the model can often more

easily achieve this aim. I therefore set out to identify the essential components of the

Izquierdo-Lockery model. Interestingly, I quickly found that several features of their

model could be removed without reducing the chemotaxis index (the performance metric

used in Chapter 3). These include: the self-connections of the motor neurons and the

presence of Gaussian noise. The last one is obvious, as the noise was only added to make

the evolutionary algorithm more robust. In the paper, the self-connections are said to have

been added to introduce a time scale as the model neurons themselves are instantaneous.

By removing the self-connections in motor neurons, the motor system inherits the time

scale of sensory neurons (i.e. their rise and decay times) and the undulations period.

To explore this further, I ensured that my implementation of the Lockery model steered

similarly by doing a sensitivity analysis on the rise and decay time. This was inspired

by the pattern that could be seen from the data presented in the original paper. There,

the authors find that all high performing solutions have a rise time less than half the

undulation period, but additionally, a diagonal pattern can be seen, with a diagonal trough

of repulsive chemotaxis and a peak of attractive chemotaxis1 (figure 3.3). The dots show

1Attraction and repulsion, seen here as peaks and troughs respectively, can be flipped by swapping the
sign of the bias parameter
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the high performing values from the original study, the full view shows they all lie in the

same region.

Further simulations for longer rise and decay times show a repeating pattern. From this

figure it seems that the rise time must be synchronized to the undulation period, and to a

lesser extent the decay time too. Changing the undulation period in the model confirms

this hypothesis. In fact, the constraints imposed by the undulation period on sensory

neuron parameters can be seen intuitively by reasoning about how the model steers. First,

the circuit is symmetric. Second, steering can only happen because the motor neuron’s

sigmoid activation function have been shifted to make them amenable to input only half

their duty cycle, in plain language, when one motor neuron is sensitive to input the other

is not and vice-versa. Thus for steering to be effective, the input to the ventral and dorsal

sides must have opposite polarity. Therefore, the sensory output (onto the motor neurons)

must change sign between the half-undulations in which the dorsal and ventral motor

neurons are sensitive to input. This requirement imposes strong constraints on the rise

and (less so) the decay times of the sensory neurons. Specifically, the integral of the input

must be different (i.e. the net increase or decrease in activity) as the activity is proportional

to the change in heading. Now we can see why the sensory neuron’s response must be

synchronized, consistently in phase, or consistently out of phase, to the motor system:

the time delay of the response determines which motor neuron is active (and sensitive or

insensitive depending on the shift in the sigmoid), and thus increasing the delay moves

the peak response away from the moment where the initial motor neuron is most sensitive.

With a delay 1/4th of the undulation period, half way in between the maximum sensitivity

of the two motor neurons no steering occurs. At half the undulation period the other motor

neuron will be most sensitive to sensory input, producing anti steering.

Recently there was a study which seems to support this hypothesis of steering in the

biological worm [62]. In this paper, a mutant was found which had a delayed response

in one of the AWC sensory neurons. When testing the steering response as a function of
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the angle between the heading of animals and the direction of the chemical gradient, the

authors found the mutants anti steered for half the angles. While the authors do not make

the link to the Izquierdo and Lockery model, I interpret their results to suggest that within

the receptive field of the sensory neuron, the slowdown has pushed the sensory signal out

of sync to the motor system, causing anti steering. In fact slowing down ASEL or ASER in

my reproduction of the Izquierdo and Lockery model reproduces the experimental results

strikingly.

Figure 3.3: The chemotaxis index as a function of the rise time and the decay time over a single
undulation period (left), and four undulation periods (right). The gray and black overlaid circles
show the parameter values of high performing solutions found in [57]. All solutions lie within the
same diagonal peak.

To better understand the effect of the self-connections I simulated the original model with

varying strengths of ws. Clearly, self-connections introduce feedback. For low values

of ws the same can be achieved using the neuronal time constant τm (τ in the original

model). For higher values of ws the motor neurons can get ‘stuck’ in high or low levels of

activity, as the self-connection starts a feedback loop pushing the neurons to saturation.

Once saturated, the dynamic range is severely limited (i.e. the change in activity in

response to an input signal). Since the circuit ensures both motor neurons receive identical

sensory input, and since they share a single self-connection strength parameter value, the

ratio between and sum of the oscillating input, the sensory input and the self-connection
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determine whether both motor neurons can become saturated simultaneously, only one,

or none. If the parameter regime is such that both can become saturated, sensory input

has very limited effect, thus severely hurting the chemotaxis index. When only one motor

neuron can be saturated at a time, the chemotaxis index might actually increase. This

is because the difference between the activity of the two motor neurons determines the

change in heading. As both receive identical sensory input, their response to the sensory

input needs to be different for steering to occur. Thus high values should reduce the

chemotaxis index, while low values should increase the chemotaxis index. However, the

careful reader should have noticed that there is another mechanism already capable of

producing different input-output functions for the two motor neurons. The bias parameter

ζ (θ in the original model) for instance can be used to change the sensitivity of the two

motor neurons depending on their point in the their duty cycle.
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Part II

Integrated model
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Chapter 4

Creating my own model

The computational model presented here was built to simulate single worms in a variety of

assays with the aim of studying sensory integration and decision making. Since this does

not directly involve the physical constraints onto the body, and since biophysical models

have a large computational cost [13, 56], I do not model the body. Instead, I assume that

during locomotion, the body follows the head [57]. This allows us to represent animals

as a point with coordinates x(t), y(t) moving with bearing θ and fixed speed v. The

direction of locomotion is driven by a simplified nervous system.

Neuronal properties and parameters of the motor system were constrained by calcium

imaging data from the Jansen lab, previously published calcium imaging data [97, 100]

and behavioral data from choice assays [50, 51, 58]. The motor output consists of steering

and instant turning events, representing pirouettes. The ability to combine steering and

pirouettes in a single model has proved essential in matching behavioral results under

different conditions. Specifically, prior studies have shown that both pirouettes and

steering play a role in navigation [3, 52]. Here we find that the relative contribution

of both navigation strategies is strongly assay dependent, with steering more important in

sharp gradients and pirouettes in shallow or noisy environments.
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I start by describing all the model components and their assumptions. To ensure a solid

grounding in experimental data, I will show the output of each component under different

conditions and compare this to experimental data where possible. Once the full model has

been described I will use several case studies to compare the model worm behavior with

actual animals, and highlight multiple key predictions that helped inform experimental

setups and led to increased understanding of the circuit functioning in unisensory and

multisensory chemotaxis assays.

4.1 Model overview

Our model consists of a point worm moving at fixed speed in a two dimensional space

(the arena). This point worm is controlled by a simplified C. elegans nervous system

that consists of sensory neurons, either one or two interneurons, and an abstract motor

system (Fig 4.1). The motor systems combines steering (superimposed on symmetric

undulations) and stochastic ‘omega’ turns (in which the worm curves into an Omega-like

shape and then proceeds in a new direction).

To create a predictive model of C. elegans chemotaxis we required a strong grounding in

prior experimental data and close collaboration with experimentalists. The latter ensures

we can use an iterative approach, improving the model and our hypotheses for each

iteration. Additionally, we limited our scope to the circuit and cellular level, deliberately

skipping (most) molecular details, as we felt not enough molecular details are known

to create semi-complete molecular pathways. Also, given that most neuronal activity

recorded in C. elegans to date come from calcium imaging data, and our collaborators

used only calcium imaging we decided to model our neurons using abstract conductances

and membrane potentials with arbitrary units. Finally, we assume three key neuronal

properties: neurons are graded leaky integrators, neurons have rectified responses [97] and

neurons respond with transient, derivative like operators [80, 100]. These assumptions
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were done to be close to the biology, but we also felt these assumptions are key to

understanding C. elegans chemotaxis. Specifically, transient responses suggests animals

do not have a representation of absolute stimulus strength (e.g. not knowing the difference

between a concentration increase from 10 to 20mM and 20 to 30mM), while the time

scale of the transient suggests a coupling to the undulation period (as described in the

previous section), and dynamic modulation hints at a Weber-Fechner like relationship

(a relation between the absolute stimulus strength and the effect a given change in the

stimulus strength has on the sensory response). While the first two have been modeled

before, dynamic modulation has never been investigated computationally (though one

study included threshold adaptation as a mechanism for adjusting dynamic range [3]).

As my PhD focuses on unisensory and multisensory integration, and in particular on the

integration of chemical signals (in the context of chemotaxis behaviors), I have chosen

to include sensory neurons that are known to be involved in a variety of multisensory

integration assays. These include the ASE pair (sensing attractive soluble molecules, such

as salt), the AWA pair (sensing attractive odorants, such as diacetyl) and the polymodal

ASH pair (mediating avoidance). With this set of neurons, I will model a number of NaCl

assays, as well as diacetyl-copper and diacetyl-fructose sensory integration assays. As the

sensing of the presence of food (as distinct from chemical stimuli) is more complex and

likely involves many more neurons, it will not be modeled here. The internal state of the

animal (e.g. food deprivation) is likely encoded in a more distributed manner, and will

be modeled more abstractly. The minimal motor system consists of two motor neurons

(VMN and DMN) to support undulations and steering and a motor command unit (Ω)

regulating the frequency of pirouettes (Fig. 4.1).

We model neurons as leaky integrators (with arbitrary units)

τm
dVi
dt

= −Vi + V0,i + σ (Ii) , (4.1)

where Vi is a voltage like variable for neuron i, also referred to here as neuronal activation;
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τm is a neuronal time constant; V0,i is the activation level at rest (set throughout to 0); and

σ(Ii) is a modified sigmoid function over the input (henceforth the index i is dropped for

simplicity of notation)

σ (I) =
1− e−b I

1− e−b I

Imin

, (4.2)

where b is a gain parameter and Imin < 0 is the most hyperpolarized value the neuron

may take (relative to the rest state). The function σ(I) varies smoothly and monotonically

from Imin to 1, crossing 0 at I = 0. Thus, in response to a constant input I , a neuron’s

activation converges to V0,i +σ(I) with a timescale of τm. Applying a sigmoidal function

over the sum of membrane and input currents is borrowed from the simplified rate neuron

models, and naturally leads to thresholding and saturation of activation, as observed in C.

elegans sensory neurons [97, 100]. Parameter values are given in a table in each section

of the supplementary methods.

The input current I sums over all synaptic and sensory contributions I = Isyn(t)+Isens(t),

where, assuming graded synaptic transmission, Isyn =
∑

jWijVj is a weighted sum over

all presynaptic neuron activations (onto neuron j)1 and, in sensory neurons, Isens denotes

the current response to the stimulus. Note that hyperpolarizing a neuron will effectively

reverse the polarity of its synaptic transmission (with hyperpolarizing and depolarizing

postsynaptic effects across excitatory and inhibitory synapses respectively).

Undulations and steering are modeled by a symmetric oscillator motif, consisting of

reciprocal inhibitory and reciprocal delayed excitatory connections (Fig. 4.1F). We used

hidden interneurons to create a delayed connection between motor neurons. Thus, the

delayed excitatory connection from VMN to DMN is implemented as two connections,

one from VMN to the hidden interneuron, and another from the hidden interneuron to

DMN, using the neuronal time constant of the hidden interneuron, τm, as a synaptic delay.

1Where two connections exist from neuron i to j (specifically, between VMN and DMN), the weights
are distinguished by a superscript indicating the polarity of the connection: − for inhibitory and + for
excitatory.
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The reciprocal connection from DMN to VMN is identical.

Neuronal parameters Value Description
τm 0.5 s Neuronal time constant
V0,i 0 Resting potential
Imin -1 Maximum hyperpolarization (relative to rest)
b 4 Neuronal gain

Synaptic weights Value Description
WASEL,m -0.07 ASEL onto DMN and VMN
WASER,m 0.07 ASER onto DMN and VMN
WASH,m 0.07 ASH onto DMN and VMN
WASEL,Ω -0.1 ASEL onto Ω
WASER,Ω 0.1 ASER onto Ω
WASH,Ω 1 ASH onto Ω
W+

D,V 0.8, 0.9 DMN to VMN excitation (to, from hidden neuron)
W+

V,D 0.8, 0.9 VMN to DMN excitation (to, from hidden neuron)
W−

D,V -1.4 DMN to VMN inhibition
W−

V,D -1.4 VMN to DMN inhibition

Table 4.1

4.2 Sensory neurons

For the three sensory neuron classes included in the model, the response profiles have

been characterized relatively well using calcium imaging. Specifically, ASEL responds

with a transient depolarization to an NaCl upstep between 10mM and 80mM [97]. ASER

and ASH respond with a transient depolarization to NaCl decreases (between 1mM and

40mM) and with a transient hyperpolarization to increases in the NaCl concentration.

Finally, AWA responds with a transient depolarization to diacetyl upsteps between 0.01

and 100 µM. All these responses (and likely other sensory neurons as well [20, 100]) can

be viewed as approximations of derivative operators. What should be kept in mind, is

that with few (recent) exceptions, behavioral assays are done on gradients, but calcium

imaging is done in response to rapid concentration steps (increases and decreases) of fixed
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magnitudes. In response to these steps, we see transients responses, above some threshold,

and with smoothly increasing amplitude of response up to some saturation level. For this

reason we have opted to focus on assays with sharp(er) gradients.

In contrast to the model by Izquierdo and Lockery (which uses finite time buffers with

time spans to calculate the difference of the concentration over time), we propose to

use a system with two opposing component. Across nature, two component systems are

ubiquitous in driving excitability, neuronal activity in particular and transient responses

more generally. In particular, neural membrane potentials (including graded potential

neurons and calcium driven action potentials) are driven by opposing conductances with

different time scales acting to depolarize and hyperpolarize the membrane potential. This

is therefore the natural choice and is adopted here. Transient (derivative-like responses)

in C. elegans sensory neurons have been modeled with various approaches, ranging from

low level ion-channel models [3, 57] to minimal functional models using derivative-like

operations [62]. The former are difficult to tune and lack experimental evidence to support

assumptions. The advantage of the Izquierdo-Lockery framework is that it is easy to

construct and tune, but, as shown before, it does not work for all concentration profiles,

and the use of time-buffers is not based in physiologically. The alternative, more natural

approach would be to consider leaky integrators over various gating or activation variables

(here concentration or more generally stimulus intensity). In other words, rather than

time-buffers, this approach uses activation and leak rates for different variables. This was

the approach taken by Kato et al. [62] to model transient ASH responses. The main

additional advantages of the Kato approach is that it is minimal, but as such it also lacks

obvious properties such as thresholding and saturation that biological conductances and

neurons exhibit. Most commonly (e.g. in Appleby [3], Izquierdo and Lockery [57],

and Kato [62]), the opposing forces are both modeled as functions of the same sensory

cue. The model presented here differs in that the delayed rectifying force is actually

driven by the depolarizing force. This is both a strength and a limitation of my model.

My approach for constructing the elementary transient response is in some ways most
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similar to Kato’s, but was derived independently and arose from different considerations.

Namely, I attempted to link the kinetics of C. elegans chemotaxis neurons to processes

in other eukaryotic cells (in uni- and multicellular organisms) that exhibit chemotactic

responses. This has been modeled in detail for single celled amoeboids, where the change

in concentration is calculated during chemotaxis using a fast signal and slow diffusing

delayed rectifier [70]. A similar mechanism will be used here (though without diffusion).

In addition, my model includes nonlinearities to account for thresholding and saturation.

The fast component simply changes proportional to the stimulus effect C:

dF

dt
= −αF + βC . (4.3)

The effect of the stimulus on the sensory neuron, is set either proportional to the stimulus

strength, or alternatively, as the log of the stimulus strength:

Clog(x, y, t) = log

(
C(x, y, t) + Cmin

Cmin

)
. (4.4)

The slow delayed rectifier, responds proportional to the fast signal with rate γ:

dS

dt
= γ(F − S) . (4.5)

The sensory input to the sensory neuron is then the instantaneous difference between the

fast component and the slow delayed rectifier:

Ise = F − S . (4.6)

The activity of the sensory neurons Vi depends upon, similar to the motor neurons of the

Izquierdo and Lockery [57] model, the sigmoid of the input. The input here being only

the sensory input Ise:

τm
dVi
dt

= −Vi + σ(Ise) (4.7)
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The sigmoid function σ is an adapted sigmoid, set to go from -1 to 1 rather than 0 to 1,

and σ(0) = 0:

σ(I) =
1.5

1 + 2 exp(−4x)
− 0.5, . (4.8)

Assuming an instantaneous step change to the concentration, the solution for the fast

signal is then:

F (t) =
βC

−α
(e−αt − 1) , (4.9)

and the slow signal:

S(t) =
βC

−α

(
γ

γ − α
e−αt −

[
γ

γ − α
− 1

]
e−γt − 1

)
. (4.10)

In the model by Izquierdo and Lockery [57] the sensory neuron’s rise and decay time

are defined in terms of the response to a sustained increase or decrease in the stimulus

strength. The time to peak depolarization was said to be the rise time, while the time to

from peak depolarization to return to baseline was called the decay time. Due to the use

of two sets of memories, the rise and decay time were free parameters of their model. In

this model, the rise time can still be defined as the time to peak depolarization, but the

decay time cannot, as the activity will get infinitely close to the baseline but will never

reach it. Instead we use an arbitrary percentage. Thus we define the decay time as the

time from peak depolarization until the activity has relaxed to below 1 percent of the peak

depolarization amplitude. From our solution to the fast and slow components, we find

that in our model, the rise time, tr, is independent of the size of the stimulus increase and

β but depends only on the decay of the fast signal, and the rate of the slow signal:

tr =
log( γ

α
)

γ − α
. (4.11)
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Equation 4.11 also shows that αand γ are coupled in such a way that swapping the values

of α and γ makes no difference.

While the the decay time, td, cannot be expressed in terms of elementary functions, the

following relationship follows from my definition:

e−αtd − eγtd = 0.01
(
e−αtr − e−γtr

)
. (4.12)

Thus like the rise time, the decay time is symmetric in α and γ and independent of the

stimulus and β, but also that tr < td.

4.3 Motor system

The model contains two separate motor outputs: undulations and pirouettes. Both can be

modulated by sensory inputs.

Motor output Value Description
v 0.11 mm s−1 Forward speed
ω 0.8 s−1 Steering strength/angular speed
Vstart 0.001 Activity of oscillator start signal
τstart 0.01 s Duration of oscillator start signal
wΩ 1 s−1 PΩ(VΩ) proportionality constant
V Ω 0.035 Pirouette neuron modulation offset
ε 0.035 Pirouette neuron modulation range

Table 4.2

Undulations: Two motor neurons (VMN, DMN) in a half-center oscillator like

configuration (Fig. 4.1) are shown to be capable of generating and maintaining stable

oscillations as well as to steer the worm. The reciprocal connectivity pattern is reminiscent

of connectivity found in several classes of head motor neurons in C. elegans. Compared

to more compact models, e.g., Izquierdo and Lockery [57], our approach allows for the
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modulation of the undulation frequency as well the amplitude, more closely matching

observed trajectories of worms in the choice assay, especially in the vicinity of the

quadrant boundaries.

In contrast, with a simpler model relying on a master pacemaker (adapted from Izquierdo

and Lockery [57]) I was unable to account for a significant proportion of worm trajectories

without changing the undulation amplitude to unrealistic levels (data not shown).

In the absence of sensory input, the motor circuit will produce stable oscillations,

facilitated by fast reciprocal inhibition that is released by the delayed reciprocal excitation

(Fig. 4.1). Any activity in one of the oscillating neurons will cause fast inhibition of the

other followed by slower excitation and subsequently inhibition of the originally active

neuron. Thus the frequency and amplitude of the oscillations are determined by the time

scales of the neurons (τm), the connection strengths of the reciprocal inhibition, and delay

in the delayed reciprocal connections. In our model, τm remained fixed, leaving the three

pairs of reciprocal connection strengths as parameters to tune the oscillator. The circuit

configuration and neuronal time constants set the minimum undulation period to 4τm.

Since the circuit configuration and all parameters are symmetric, symmetry breaking is

required to set off the oscillations. Indeed, when VMN and DMN are equally active, the

circuit does not oscillate. However, any small difference in activity (or initial conditions)

is amplified by the mutual inhibition. In the model, a start ‘signal’ Vstart is given for a short

duration τstart with opposite polarity to the two motor neurons VMN and DMN, causing

them to diverge in activity. In the biological worm, environmental and physiological

fluctuations will ensure small differences in activity even in a symmetric circuit.

Similar to other point models of C. elegans [16, 17, 57], the direction of locomotion (θ)

changes as a function of the difference in activity of the dorsal and ventral motor neurons:

dθ

dt
= ω (VVMN − VDMN) , (4.13)
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where ω is the steering strength. Model worms move with constant velocity v along the

direction vector θ according to

d(x, y)

dt
= (v sin θ, v cos θ) . (4.14)

Pirouettes. Instant turning events are executed by resetting the orientation of movement

of the point worm. The probability of a pirouette per unit time PΩ is encoded by

the activation of the pirouette command unit VΩ and given by a piecewise linear and

monotonically decreasing function:

PΩ(VΩ) =


wΩ (V Ω + ε), VΩ < −ε

wΩ (V Ω − VΩ), −ε ≤ VΩ < ε

wΩ (V Ω − ε), ε ≤ VΩ ,

(4.15)

where wΩ converts the neuronal activation to a probability rate, such that wΩ V Ω is the

base pirouette rate. The parameters were chosen such the base rate is approximately

2.1 pirouettes per minute, and suppression of pirouettes (for sufficiently hyperpolarized

values of the neuron) is complete.

When a pirouette is executed, the heading, θ, is instantaneously set to a random value

between 0 and 2π drawn from a uniform distribution.

4.4 Assays

The model simulation file supports several types of assay, plates can be bounded circular

or square, or infinite in size. Additionally, virtual worms reaching the edge of a plate

can be handled in three ways: the simulation can be stopped, reflection can be used, or

a random reorientation can be done. The last option was used for all subsequent results
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as it is closest to the real worms behavior2. There is no limit on the number of stimuli

in a simulation, though in this thesis I never use more than two at a time. Stimuli can

be selected by choosing built in options, such as a uniform strength, a linear gradient,

a conical gradient or a Gaussian gradient. Alternatively a function of the coordinate

and time can be specified for each stimulus in the simulation file allowing for more

complex stimulus fields (for instance the hyperosmotic fructose and diacetyl assay used

this option). In the current version of the model, sensory neurons can only respond to a

single stimulus per simulation. While in principle the model could support more than one

stimulus per neuron, more parameters would be needed if the sensory pathways for each

of the stimuli in the sensory neuron had shared components.

Details of each assay used are given in the respective chapters.

4.5 Model framework

The model framework was written in Java, to allow it to run on multiple architectures

(e.g. Windows, Linux, OS X) without compilation, hopefully lowering the hurdle to use

the model.

Simulations are defined in an XML file, which is loaded by the framework. In the

simulation file, end users can define the following:

• The assay

– Plate properties such as size and shape (square or circular).

– Stimuli using predefined settings or custom function of the form S(x, y, t) =

f(x, y, t).

2though worms also tend to get lost over time by escaping the plate, which would be somewhat
equivalent to stopping the simulation when an animal reaches the edge
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– Metric to be measured, such as chemotaxis index, avoidance index, density

plots etc.

– where on the plate to place animals and if a fixed or stochastic placement

should be used

– Procedures, such as washing the worms, then placing them on a plate, or

generally changing any parameter value during a simulation.

– Assay duration, or trigger for ending the simulation (e.g. crossing a barrier)

– Number of worms

• The nervous system

– for every neuron a name, type and additional parameters

– connections between the neurons (chemical synapses, gap junctions, and

extra-synaptical neuropeptide release are supported).

– whether neurons have sigmoidal activation functions, and whether chemical

synapses are rectified (these can both be changed per neuron and connection

as well).

– the global neuronal membrane time constant

– Pirouettes, u-turns and steering parameters

– the speed of the animal

• general settings such as:

– The save folder

– the integration step size (the model uses Euler integration)

– Parameter sweeps

– The seed for the random number generator (each simulation saves the seed

used, allowing users to investigate particular rare stochastic events, by entering

a seed known to produce the event).
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4.5.1 The model code

The code has been separated in clearly defined classes according to a model-view-

controller separation. This allows the isolation of code that deals with data from code

that deals with computation, output files and the user interface.

The structure of the framework is further separated into several packages:

• Model

– environment, includes the current location and heading of the animal as well

as the stimulus fields

– metric, stores the aggregated data for all metrics (e.g. density over time,

chemotaxis index, neuronal traces, position over time, etc.)

– timehandler, stores all processes that need to occur during a simulation (e.g.

washing of an animal moving to a different plate)

• View

– view, handles user interface logic, builds up of output files (transforming

several data structures to csv tables)

• Controller

– circuit, builds up neural circuit, starts and ends simulation, integrates

differential equations, calculates change in heading and new position of

animal, initiates update of metrics

– computation, dynamically builds up equations for stimuli and neuropeptides

– network, handles all client server logic for distribution of work in a high

performance cluster, and low level writing of files
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• Helper, perform various functions, such as generic math functions, matrix

operations, reference frame transformations, and includes a wrapper for the random

number generator

Simulations can be run in a graphical interface, allowing the user to visualize the

model nervous system, the assay, the locomotion trajectories of model animals,

the corresponding neuronal traces, metrics such as the chemotaxis index (both for

single animals, population statistics and parameter sweeps) and the model parameters.

Simulations can also be run from the command line, either in local mode (on the current

machine) or in a server client mode which can be used on high performance clusters

where multiple computing nodes each run a part of the simulation. In this case, runs

are split up over all nodes available. For instance, if a parameter sweep is done with

200 virtual animals per parameter value, and 50 computing nodes are available with four

logical processors each, than all 200 animals are simulated in parallel, creating maximum

speedup equal to the number of animals simulated. I tested this with a maximum of 500

nodes with 2 logical processors each on the University of Leeds high performance cluster,

producing a near 1000 fold speedup over a fully serial simulation of each animal (some

overhead is unavoidable). This shows that the server code scales excellently.

Model results, including trajectories, neuronal traces, metrics and stimulus fields can be

saved in separate files in CSV format, allowing for quick import into Excel, R or Matlab.
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Figure 4.1: An overview of the model components. (A) the body is represented by a point moving
along a vector with fixed speed. (B) the direction of locomotion, θ is modulated by a simplified
nervous system consisting of a motor system directly innervated by several sensory neurons.
The blue feed back connection from RIM onto ASH indicates tyraminergic modulation of ASH
sensitivity by RIM (C) Sensory neuron activity is driven by the balance of a fast component and
a slow delayed rectifier, constraint by a sigmoid function. ASEL has an adaptive baseline, C0,
ASER has a multiplicative gain, D (see chapter 6) (E) An abstract pirouette component sets the
probability of instantaneous reorientations. (F) An oscillator generates undulations and smooth
steering in response to sensory input.
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neurons, VMN and DMN (bottom).
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Figure 4.3: Screenshot of the model framework graphical user interface. The hyperosmotic
fructose barrier is shown in red, diacetyl concentration in green, and the trajectory of a single
worm is shown in black, simulated for 15 minutes of virtual time.
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Chapter 5

Sensory integration 2

5.1 Introduction

For the first case study I looked at the sensory integration of an attractant (diacetyl) and

a repellent (hyperosmotic concentrations of fructose) using unpublished behavioral and

calcium imaging data from the Nitabach lab at Yale University.

Diacetyl is primarily sensed by the AWA sensory neurons [67, 93, 102], while

hyperosmolarity is primarily sensed by the nociceptive sensory neuron pair ASH [6, 47,

61]. Both AWA and ASH connect to several downstream interneurons that integrate

sensory signals from multiple modalities. ASH connects directly to RIM [23, 109],

depolarizing RIM upon detection of hyperosmotic stimuli [86], while AWA connects

indirectly [23, 109], hyperpolarizing RIM upon diacetyl exposure [72]. RIM, together

with several other interneurons, connects to downstream command interneurons and

motor neurons, promoting reversals upon activation [40, 42, 44, 86].

Prior to the start of our collaboration, the Nitabach lab had found several interesting

mutants which showed aberrant behavior when diacetyl and fructose were presented

together, but normal responses to diacetyl and fructose alone. Using a previously
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established assay, where tens of animals are placed inside a hyperosmotic fructose ring

with two diacetyl spots adjacent to the ring, the authors showed that several mutants

exited the ring more readily than wild type. This behavior was found to be caused by

the disruption of an ASH enhancing pathway. This pathway was activated by autocrine

signaling of pigment dispersing factor 2 (PDF-2) in RIM followed by an extrasynaptic

tyraminergic top-down signal to ASH, increasing its sensitivity to hyperosmolarity.

Interestingly, disrupting this pathway only showed a phenotype when both diacetyl and

fructose were present, and only at a fructose concentration of 3M (with no phenotype at

2M and 4M), and with normal chemotaxis to either stimulus on their own (Figure 5.4).

These results led to the initial hypothesis that RIM was functioning as a coincidence

detector of diacetyl and fructose.

Implementing the assay in the computational model, and constraining it using these data,

the model showed an alternative hypothesis: we were looking at an edge cases of a

thresholding mechanism. In the model the 2M fructose did not activate RIM sufficiently

to cross the threshold and activate the aversion enhancing pathway, the 3M and 4M did

but the 4M ring was so aversive no animal exited the ring regardless of the aversion

enhancing pathway (Figure 5.4). In other words, the model suggested that what seemed

like coincidence detection could in fact be a combination of thresholding and saturation

effects. Interestingly, the model provided a testable prediction for this alternative

hypothesis: it predicted that changing the experiment’s parameters (e.g. concentration,

diffusion time, starving the animals) should produce a phenotype even in the unisensory,

fructose only, assay. Additionally, the model predicted that tyramine release and decay

should be orders of magnitude slower than the neurons themselves. In the model, the

slow tyramine induced heightened sense of aversion was shown to prevent animals from

moving too close to the toxic region even if strongly attractive sources were present.

While additional experiments did not show differences in the average distance to the

gradient peak between wild type and mutants lacking the aversion enhancing pathway,

when the Nitabach lab repeated the experiments with starved animals, the results now
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Diameter 1cm

Distance at least 2cm

Figure 5.1: The ring assay used by the Nitabach lab, and the computational model consists of a
1cm diameter fructose ring, left to diffuse for 5 minutes prior to the assay start, and two diacetyl
spots on either side of the ring, at least 2 cm (in the model exactly 2cm) from the center of the
ring, spotted immediately prior to the start of the assay. Animals are left to roam the plate for
15 minutes, after which the number of animals that are outside the 1cm diameter of the ring are
counted.

showed a phenotype in the fructose only assay, confirming the model’s prediction that

RIM uses a threshold rather than a coincidence detection.

5.2 Creating the model

Based on the initial data from the Nitabach lab, I started out by implementing the ring

assay into the computational model (Figure 5.1). The assay consisted of a 1 cm diameter

fructose ring (2, 3 or 4M), left to diffuse for 5 minutes, and two diacetyl spots on either

side of the ring (1 µl of 1:350 dilution in water, 30mM), added immediately prior to the

start of the assay. At the start, several animals are placed in the center of the ring, and left
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to roam for 15 minutes.

The fructose ring, F (x, y, t) was modeled by continuous diffusion from an initial delta

peak ring with a 1cm diameter, placed in the center of the arena. The diffusion equation

approximated the 2D Green’s function:

F (x, y, t) =
tFRCFR

tFR + t
exp

(
−

(
√

(x− xFR)2 + (y − yFR)2 − r)2

4DFR(tFR + t)

)
. (5.1)

Here tFR denotes the time of fructose diffusion prior to the start of the experiment, at

t = 0, when virtual worms are added to the simulation. The fructose concentration and

diffusion coefficient were set to match experimental results with different durations of

fructose diffusion tFR. Visual inspection of experimental worm traces showed animals

moving towards diacetyl peaks even after 15 minutes. This is consistent with continuing

evaporation of diacetyl, leading to a sustained concentration gradient throughout the

assay. To capture this, we approximated the diacetyl concentration profile DA(x, y, t),

by a two phased process: an initial rapid diffusion (to establish the concentration profile

from two initial spots), followed by a static field:

DA(x, y, t) = CDA

2∑
i=1

exp

(
−(x− xDA

i )2 + (y − yDA
i )2

4DDA

tDA

)
, (5.2)

where (xDA
i ,yDA

i ) are the coordinates for the ith diacetyl spot and tDA denotes the time

of diacetyl diffusion. Simulations are prepared as described above. At t = 0 a single

worm is placed at the center of the arena. As in the experimental assay, the balance of

attraction and repulsion was quantified by the percentage of worms outside the ring after

900 seconds.

The diffusion coefficient for the fructose was set to 1e−6 cm2 s−1 [21, 87] while the

diacetyl gradient had to be kept time invariant because the very high rate of diffusion in

air (D ≈ 0.1 cm2 s−1) would create a rapid equalization of the concentration across the
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Figure 5.2: Left bottom, three three second 10mM upsteps are given. Left top, the ASH response
for wild type (solid) and tyra-2 mutants. Right, tyramine concentration the ‘extra cellular space’

plate. As we could not model this accurately, having only the behavioral data, we chose

to use a static gradient. The parameters were chosen such that the gradient extends to

every part of the dish, including inside the ring (Figure 5.3). Once set, we repeated the

experiments with varying gradients to ensure the robustness of the model results, but did

not tweak the gradient to produce correct data.

The model already included the ASH (copper) and AWA (diacetyl) sensory neurons, so

assuming the response to hyperosmolarity was identical to copper, only the the tyra-2

neuropeptide need to be added.

Tyramine was set to increase linearly with the activity of RIM. To explain the absence of

a phenotype in the 2M fructose ring condition, a threshold Vtyr was added:

τtyr
dT

dt
= αtyrH(VRIM − Vtyr)− βtyr , (5.3)

where the function H(x) = x for x ≥ 0 and 0 otherwise. In other words, the tyramine

level T ≥ 0 at all times and increases only above the tyramine accumulation threshold

Vtyr.

The physiological mechanism by which TYRA-2 modulates ASH excitability is
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Figure 5.3: Profiles of the diacetyl and fructose concentration gradients. Left: cross section of
the concentration gradient for diacetyl (top) and fructose (bottom) at different time points during
the simulation. The diacetyl concentration is normalized to the peak concentration. Right full
overview of the concentration profiles of diacetyl and fructose.

unknown. The application of tyramine did not appear to affect the ASH membrane

potential. However, when a hyperosmotic stimulus was applied in the presence of

tyramine, the ASH response seemed enhanced relative to the hyperosmotic stimulus

without added tyramine (Figure 5.3B). Consistent with these observations, here the effect

of TYRA-2 on ASH excitability is modeled as a contribution to the neuronal activation

rate ᾱASH (Figure 5.2)

αASH(t) = ᾱASH + T (t). (5.4)
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5.3 Computational model predicts slow, non-linear

tyramine regulation of threat-reward decision

making

To characterize the interplay between neural activity, neuromodulatory activity, behavior,

and the environment, we modeled each of these dynamic components in silico. Our model

worms contain a highly simplified minimal nervous system sufficient for decision making

(Figure 5.5). Neurons are modeled as “leaky integrators,” such that each neuron integrates

its input over time, while subject to continuous decay (“leak”) of activity. In the absence of

sensory input, the model worm’s dorsoventral undulatory locomotion is driven by stable

oscillations of a simplified central pattern generating circuit consisting of two reciprocally

inhibited virtual motor neurons denoted DMN and VMN, which activate dorsal and

ventral body bends, respectively. AWA and ASH sensory neurons respond with transient

activation to changes in diacetyl or fructose stimuli, respectively. Activation of model

sensory neurons AWA and ASH provides differentially weighted inhibitory and excitatory

inputs onto RIM, respectively (Figure 5.5A). RIM integrates these sensory inputs and

inhibits DMN and VMN to bias dorsal versus ventral bends, thereby inducing gradual

steering of the worm (Figure 5.5A). Additionally, RIM activity positively increases the

likelihood of pirouettes, which are modeled as instantaneous step changes in angular

heading (Figure 5.5A). Importantly, in addition to the above previously established feed

forward sensorimotor pathways, the simulation includes RIM-ASH tyraminergic positive

feedback (Figure 5.5A). Tyraminergic potentiation of ASH in the model is only engaged

above a threshold level of RIM activation as this non-linear relationship was required to

reproduce experimental exiting rates. tyra- 2 null-mutant worms are modeled as lacking

this tyraminergic feedback to ASH.

The virtual decision arena comprises a continuously diffusing fructose gradient ring and
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Figure 5.5: A) Schematic of the nervous system used in the ring assay. RIM releases tyramine
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starvation. Multisensory (left) and unisensory (right) exit percentages for virtual animals (lines)
and experimental starvation (triangle and squares) for wild-type and tyra-2 animals.
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time-invariant diacetyl gradients originating from two spots outside the ring. Modeling

the fructose gradient as dynamically changing was essential, as the Nitabach results

showed that continued diffusion of the fructose ring influences the time and probability

of exit, and static fructose gradients failed to reproduce experimental exiting rates in our

model. Each simulation begins with a single worm in the center of the virtual arena

with a randomly selected initial heading, and the simulation is allowed to proceed for

fifteen virtual minutes. Model parameters were manually calibrated until exiting rates of

simulated wild-type and tyra-2 null-mutant worms matched experimental exiting rates in

multisensory and unisensory contexts for 2 M, 3 M, and 4 M fructose (Figure 5.4).

To illustrate the temporal evolution of the decision process, I plotted the locomotor

trajectories and neural and neuromodulatory activity underlying the behavior of example

simulated wild-type and tyra-2 null-mutant worms (Figure 5.5C and D). This reveals that

oscillatory changes in fructose and diacetyl concentration experienced by the worms as

they undulate within the arena (Figure 5.5C) induces corresponding oscillatory changes

in the activity of AWA, ASH, and RIM that are phase locked to the locomotor DMN-

VMN pattern generator. In both wild-type and tyra-2 null-mutant worms, the magnitude

of RIM and ASH oscillatory activity is larger than the AWA signal, and decreases over

time. However, the magnitude of this oscillatory activity in RIM and ASH is higher

in wild-type worms than in tyra-2 null-mutant worms (Figure 5.5D). Furthermore, in

virtual tyra-2 null-mutant worms, the magnitude of RIM and ASH activity decreases

over the course of the simulation until it matches AWA activity, which permits exiting

of the ring. After exiting, the AWA signal dominates, ASH becomes silent, and RIM

becomes inhibited as the worm continuously ascends the diacetyl gradient (Figure 5.5D).

The model thus predicts that RIM activity above a particular threshold engages the RIM-

ASH feedback loop, thereby decreasing threat tolerance and preventing exiting of the

ring (Figure 5.5D). Importantly, the model also requires slow kinetics of accumulation

and decay of the tyramine signal on a timescale of minutes to preclude exiting of wild-

type worms even as the fructose barrier continues to diffuse and weaken (Figure 5.5D and
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5.3). The reduced activation of ASH and RIM in simulated tyra-2 null-mutant worms,

in which tyraminergic RIM-ASH feedback is absent, encodes increased threat tolerance

underlying increased propensity to exit the ring (Figure 5.5D). Our computational model

thus suggests that the slow, continuous, and self- reinforcing enhancement of RIM and

ASH activity by top-down tyraminergic positive feedback determines threat tolerance that

ultimately controls the decision balance.

5.4 Food deprived model worms now do show a tyra-2

phenotype in the fructose only assay

To further test the hypothesis that food deprivation inhibits RIM, we simulated food

deprivation as duration-dependent tonic inhibition of RIM, keeping all other model

parameters unchanged. We modeled one hour of food deprivation as RIM inhibition

of 0.02 (in arbitrary units), because this level of RIM inhibition increases exiting of

simulated wild-type worms to 50%, the same as real worms food-deprived for one

hour (Figure 5.5F). As RIM inhibition increases from 0 to 0.02, simulated wild-type

worms increase exiting more steeply than tyra-2 null-mutant worms (Figure 5.5F). This

qualitatively recapitulates the experimental results. As RIM inhibition increases to 0.03,

both wild-type and tyra-2 null-mutant simulated worms increase exiting to 75%, the

same as five hour food-deprived real wild-type and tyra-2 null-mutant worms. In the

unisensory fructose-only context, as RIM inhibition increases from 0 to 0.02, simulated

wild- type worms increase exiting less steeply than tyra-2 null-mutant worms (Figure

5.5F). This qualitatively recapitulates the unisensory experimental results (Figure 5.5F).

Model parameters were selected solely to match simulated exiting rates to experimental

exiting rates (Figure 5.4), without any consideration of the effects of food deprivation.

It is thus remarkable that simulating food-deprivation as increasing inhibition of RIM

qualitatively recapitulates the experimental effects of increasing food deprivation on both
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wild-type and tyra-2 null-mutant worms in both multisensory and unisensory contexts.

These computational results reinforce the conclusion supported by genetic manipulations

in both the unisensory and multisensory contexts that food deprivation increases threat

tolerance by inhibiting RIM and thereby suppressing RIM-ASH tyraminergic feedback.

5.5 Discussion

Our model predicts that integration of multisensory inputs in RIM determines the

magnitude of the tyramine feedback signal and rules out a linear relationship between

RIM activity and tyraminergic feedback. Using this model, we simulated the dynamic

changes in neural and neuromodulatory activity that occur in freely moving worms during

decision making, and determined the slow timescale at which RIM-ASH tyraminergic

feedback must act to implement the decision (Figure 5.5). Our computational results

suggest that food deprivation increases threat tolerance through suppression of RIM-

ASH positive feedback (Figure 5.5F). These studies provide an integrated neuroendocrine

circuit architecture for internal state control of multisensory threat-reward decision

making.

I propose that tyraminergic feedback coordinately regulates and thereby links the

excitability of RIM and ASH. Further, this coordinate regulation of RIM and ASH

excitability operates on a time-scale of minutes to reflect internal hunger state. On a

shorter time-scale (sub- seconds to seconds), inherent stochasticity within the network

determines instantaneous activity [40]. Thus I propose that multisensory decision making

depends on two linked mechanisms operating on different time-scales. On a longer

time-scale, RIM excitability is modulated by internal physiological state and activation

of the PDF-2-PDFR-1 autocrine positive feedback loop. This stable, long-term state is

unaffected by instantaneous oscillations in network activity, such as those previously

observed in RIM [40]. The level of RIM excitability then determines via tyraminergic
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feedback the probability of neural processing events occurring on shorter time-scales

during the decision task. These short time-scale events are subject to dynamic, stochastic

changes in network activity but unaffected by changes in internal physiological state.

Functional alteration of either of these mechanisms informs this dynamic, probabilistic

decision making process at each behavioral contingency as the worm evaluates and

explores the multisensory arena. Indeed, though inclusion of other feedback pathways and

interneurons could potentially increase the accuracy of our computational modeling, our

minimal model that incorporated only a single RIM-ASH feedback signal was sufficient

to qualitatively recapitulate all experimental results (Figure 5.4 and 5.5).

Interestingly, this modeling study predicts that the extrasynaptic tyramine signal

accumulates and decays slowly, modulating ASH sensitivity over long time-scales of

multiple minutes (Figure 5.5C and D). The computational model is agnostic to how the

slow kinetics of tyramine signaling are implemented, though there are multiple plausible

biological mechanisms: either through the autocrine PDF-2-PDFR-1 feedback loop that

modulates RIM excitability, or the time taken for tyramine to diffuse extrasynaptically

to bind to TYRA-2 on ASH and then be cleared. Tyraminergic RIM-ASH positive

feedback could determine the worm’s tolerance to a variety of threats, as the ASH

neuron is polymodal and senses multiple noxious cues [6, 47]. We propose that this

slow tyramine signaling functions as a type of memory for the worm by suppressing

sensory adaptation to dangerous stimuli, a feature which could be advantageous for worms

navigating changing environmental conditions.
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Chapter 6

Return of the salt

6.1 Introduction

In this chapter I extend my computational model to answer what mechanisms underlie

gustatory plasticity. We collaborated closely with the Jansen lab who provided us with

calcium imaging data and performed behavioral experiments. The behavioral experiments

were strongly guided by the outcome of the computational model.

Naive C. elegans are attracted to NaCl concentrations up to 200mM and repelled by

higher concentrations [30, 50, 106]. Attraction is primarily mediated by the ASE

sensory neurons [5, 83] while avoidance is mediated by the ASH sensory neuron class

[6]. Interestingly, ASH defective odr-3 mutants remain attracted to NaCl up to 1M

[50], suggesting that the ASE sensory neurons mediate attraction up to much higher

concentrations.

After 15 minutes pre-exposure to 100 mM NaCl in the absence of food, C. elegans

strongly avoids all NaCl concentrations. This response is called gustatory plasticity

[50, 51, 58]. The association of the absence of food with the presence of NaCl is

reversible, lasting less than 5 minutes [58].
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Previous studies have shown that the ASE and ASH neuron classes play a role in gustatory

plasticity [9, 50, 51, 58]. Building on these data the Jansen lab measured the responses

of these sensory neurons to NaCl in naive animals and animals that were pre-exposed to

NaCl of varying concentrations and durations.

The Ca2+ imaging results show several new forms of adaptation (going beyond Oda

et al. [80]): ASEL is desensitized upon pre-exposure to NaCl whereas ASER is initially

insensitive to NaCl changes and sensitizes upon NaCl pre-exposure. In addition, ASH

nociceptive neurons become sensitized to considerably lower (non-toxic) levels of NaCl

upon pre-exposure. Interestingly, all these forms of adaptation occur over similar time

scales as gustatory plasticity (around 10 minutes).

Using these calcium imaging data in my computational model, I show that the different

responses of ASEL and ASER mediate different locomotion strategies. Interestingly,

the model strongly suggests that the primary effects of adaptation in ASEL and ASER

are not related to gustatory plasticity even though they occur over the same time scale

as gustatory plasticity. Conversely, the model suggests that ASH recruitment is the key

driver to gustatory plasticity.

I then show the model requirements that account for the range of observed behaviors

and deduce a number of testable model predictions, including the dominance of ASH-

mediated avoidance over ASE-mediated attraction, the dynamic range of the sensitivities

of the gustatory neurons and that (de)sensitization most likely occurs downstream of the

receptor. The experimental data used to create the model are summarized in Appendix A.

6.2 Extending the model

The model consists of three sensory neurons ASEL, ASER, and ASH (representing ASHL

and ASHR by a single computational unit), a single downstream interneuron and an
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abstract motor system driving a point worm. ASEL was modeled to show desensitization

over the course of 10 minutes to mimic experimental results. Similarly, in our model

ASER becomes sensitized over 10 minutes. Since the nature of the recruitment signal

from ASE to ASH is unknown, I modeled the recruitment of ASH as a two state Markov

chain, with dynamic switching rates dependent on the history of the salt concentration.

Specifically, in the sustained presence of salt, ASH has a high rate of switching on, while

in the absence of salt there is a high rate of switching ASH off. For simplicity, I implement

a ‘drowning’ mechanism whereby the ASH input to the interneuron is taken to be much

stronger than the input from ASE. However, it is easy to see that an alternative “blocking”

mechanism whereby ASH would actively disrupt signaling along the ASE sensorimotor

pathway is equally tenable. In fact, Oda et al. showed a complete loss of activity to NaCl

downsteps in the AIB interneurons (one of the targets of ASER) after pre-exposure to

NaCl in the absence of food [80]. All virtual assays, including pre-exposure, were done

in the absence of food. Neuronal properties and parameters of the motor system were

constrained by unpublished calcium imaging data from the Jansen lab, published calcium

imaging data [97, 100] and behavioral data from choice assays [50, 51, 58].

Simulations are performed on a virtual two dimensional 9 cm plate, which animals cannot

leave. Upon reaching the edge of the plate, virtual animals are reoriented to a random

angle between 0 and 2π drawn from a uniform distribution. Reorientation can occur

multiple times in succession if worms continue to hit the edge.

As in the experimental protocol, the choice of condition was quantified using a chemotaxis

index (CI) by counting the number of worms after 600 seconds in each quadrant

CI =
A−B
A+B

, (6.1)

where A is the number of worms located in quadrants with NaCl and B, the number

of worms located in quadrants without NaCl. In the experiments, worms that remained

stuck near a border between quadrants were excluded, and not counted towards the CI.
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2Bw= w

CH

CH

CL

CL

R

Figure 6.1: View from above of the choice assay used in our simulations. A plate of radius R
is prepared with alternating quadrants of uniform high CH (black) and low, CL (white), NaCl
concentrations. Quadrants are separated by intermediate regions of width 2Bw described by a
linear concentration gradient.

As virtual worms cannot get stuck I do not exclude any region of the plate. To ensure

that this does not alter our results, I verified that excluding a region around the borders

produces statistically identical CIs.

For a coordinate system (x, y) whose origin is at the intersection between the four

quadrants (at the centre of the arena), I approximate the concentration field C(x, y) over

the domain x2+y2 ≤ R2. C(x, y) is uniformly high (CH) or low (CL) within the quadrants

and changes linearly in narrow regions of width 2Bw between the quadrants:

C(x, y) =



CH , xy > 0 and |x|, |y| ≥ Bw

CL , xy < 0 and |x|, |y| ≥ Bw

CH + CL

2
+
CH − CL

2Bw

×

 sgn(x) y , |y| ≤ Bw and |y| ≤ |x|

sgn(y)x , |x| ≤ Bw and |x| ≤ |y| .

Here sgn(x) = ±1 depending on whether x is positive or negative, respectively.

The choice assay was performed with both naive animals and with conditioned animals. In

the experiments, animals were washed in either salt-containing or in salt-free M9 buffer

for 15 minutes before being placed on the assay plate. To mimic pre-exposure in our

model, I simulated animals on a plate with uniform concentration of salt for 15 minutes,
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Initialization Value Description
(naive)
τend 600 s Duration of the assay
∆t 0.01 s Time step of the simulation

θ(0) [0,2π) Initial direction drawn from uniform distribution

Chigh 100 mM NaCl concentration in NaCl quadrants
Clow 0 mM NaCl concentration in control quadrants
Bw 0.2 cm Half width of boundary region with NaCl gradient

Vi 0 Initial activity for all neurons
Fi 0 Initial value for fast component of all sensory neurons
Si 0 Initial value for slow component of all sensory neurons
C0 0 mM Initial value for the baseline of ASEL
D 0 Initial value for fast component of Ihyp in ASER
E 0 Initial value for slow component of Ihyp in ASER

Cwash 100 mM Concentration of NaCl in buffer used for conditioning

Table 6.1

and then virtually transferred them to the center of the quadrant plate.

6.2.1 Model sensory neurons

Ca2+ imaging has shown that many C. elegans sensory neurons, including ASE and ASH,

integrate over time to produce an approximation of the change in stimulus strength

[97, 100]. Such responses are well modeled by two opposing components, F (fast)

and S (slow), with a separation of timescales (Figure 6.2). In our model, ASEL

exhibits a rectified depolarizing response to NaCl concentration increases, whereas

ASER exhibits an unrectified response to NaCl concentration changes, allowing a single

current to capture the depolarizing response to NaCl concentration decreases, and the

hyperpolarizing response to concentration increases. Since ASHL and ASHR appear to

respond identically to NaCl [100] and are gap-junctionally coupled [109] I collapsed them

into a single model neuron (ASH, Figure 4.1).
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To account for our Ca2+ imaging data, I first considered the rise and decay times of the

depolarizing responses of ASEL and ASER. To this end, I focused on fully sensitized

responses, i.e. on the ASEL response in naive animals and on the ASER responses

following 10 minutes of pre-exposure. Analyzing the Jansen lab calcium imaging data,

I found that both the rise and decay of the responses were consistently and significantly

faster in ASEL than in ASER: Peak Ca2+ responses in ASEL were reached on average

after 1.9 seconds, compared to a rise time of 5.7 seconds in ASER (p<0.001). Similar rise

times were observed after exposure to other NaCl concentrations in ASEL or after shorter

pre-exposure times in ASER. The difference between ASEL and ASER Ca2+ response

times is further supported by previous work [97]. In particular, the difference in decay

time between ASEL and ASER seen in the calcium imaging traces by us and others [97] is

much larger than would be expected by a calcium imaging lag alone [19]. To investigate

the consequences of a slow ASER I used the calcium imaging rise and decay times as

upper bounds in our computational model.

6.2.2 Modeling sensory adaptation

In the calcium imaging data from the Jansen lab (supported by Oda et al. [80]) a slow

desensitization of ASEL and a slow sensitization of ASER can be seen. Specifically,

ASEL failed to respond to an increase in [NaCl] after a pre-exposure of 600 s. However,

a response was seen to larger increases in [NaCl]. This response hints at an adaptive

threshold and, together with the wide dynamic range of responses, is reminiscent of

Fechner’s law, typically expressed as r ∝ log s, where r and s denote the response and

signal, respectively. The incremental form of the law ∆r ∝ ∆s/s describes the minimal

stimulus change needed to evoke a reponse, relative to some baseline [26].

Jansen’s Ca2+ imaging data suggest that when ASEL is sensitized, ASER would not

be, and vice versa. Additionally, the consequences of ASEL and ASER adaptation are
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further masked by ASH sensitization, which occurs over similar timescales. To better

understand why ASEL, ASER and ASH have such different but overlapping (in time)

forms of adaptation I modeled each form separately.

ASEL was modeled to show desensitization over the course of 10 minutes to mimic

experimental results. The presence of a response to higher concentrations when

desensitized by pre-exposure, e.g. to 100 mM, led us to model ASEL desensitization

as baseline (or threshold) adaptation 6.2. Accordingly, the slow sensory adaptation of

ASEL to NaCl is implemented with a slowly evolving concentration sensitivity threshold

C0 (Fig. 4.1, 6.2)
dC0

dt
= δON

i Clog − δOFF

i C0 .

In addition, the fast component F integrates over the log of the NaCl concentration field,

capturing the wide dynamic range of behavioral responses to NaCl

Clog = log

(
C(x, y, t) + Cmin

Cmin

)
, (6.2)

where Cmin is a cutoff required to ensure a positive definite value and representing the

cutoff sensitivity of the cell; its value (1 mM) was set conservatively to match behavioral

evidence, in the literature as well as in our own data. Note that in our model, threshold

adaptation only applies to ASEL, thus only for i = {ASEL}: δON
i 6= 0 , δOFF

i 6= 0.

In contrast to the slow desensitization of ASEL, Jansen and Oda et al. [80] have shown that

ASER sensitizes over time: longer NaCl pre-exposure results in a stronger depolarizing

response to downsteps. This sensitization is captured in our model with a multiplicative

gain parameter DASER: a slowly evolving measure of the presence of NaCl such that the

fast component F increases with the pre-exposure duration, as measured experimentally

(Fig 6.2).
dDASER

dt
= −λOFF(DASER +D0

ASER) + λONClog(1−DASER) . (6.3)



Chapter 6. Return of the salt 94

0.0

0.5

1.0
30 s wash

M
em

br
an

e 
po

te
nt

ia
l

−2 0 2 4 6 8 10
Time (s)

30
60
120
300
600

Pre-exposure (s) Wash (s)

0.0

0.5

1.0
600 s pre-exposure

−2 0 2 4 6 8 10
Time (s)

30s

300s

600s

ASEL

0.0

0.5

1.0

−2 0 2 4 6 8 10
Time (s)

ASER

Exp.

M
em

br
an

e 
po

te
nt

ia
l

M
em

br
an

e 
po

te
nt

ia
l

A B

30
60
120
300
600

Pre-exposure (s)

Exp.

C

Figure 6.2: (A) Model ASEL responses to a 3 seconds exposure to 100 mM NaCl (starting at
0 seconds) after pre-exposure of varying durations to 100 mM NaCl and a 30 seconds wash.
A representative calcium imaging trace (30 seconds pre-exposure to 100 mM NaCl, 30 seconds
wash) is overlaid in black with vertical scaling to the amplitude of the corresponding model trace.
(B) ASEL responses to a 3 seconds exposure to 100 mM NaCl after 600 seconds of pre-exposure
to 100 mM NaCl and a wash of varying durations. (C) ASER responses to a decrease in NaCl
from 100 to 0 mM after pre-exposure to 100 mM NaCl of varying durations. A representative
calcium imaging trace (600 seconds pre-exposure to 100 mM NaCl) is overlaid in black with
vertical scaling to the amplitude of the corresponding model trace.
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Sensory neuron parameters Value Description
αASEL 1 s−1 ASEL depolarization rate
βASEL 0.8 s−1 ASEL leak rate
γASEL 1 s−1 ASEL rectification (repolarization) rate

δON
ASEL

0.006 s−1 ASEL desensitization rate

δOFF
ASEL

0.004 s−1 ASEL desensitization relaxation rate
DASEL 1 ASEL gain adaptation factor

αASER 0.3 s−1 ASER activation rate
βASER 1 s−1 ASER leak rate
γASER 0.05 s−1 ASER rectification rate
δON

ASER
, δOFF

ASER
0 s−1 ASER desensitization rate

λOFF 0.01 s−1 ASER gain adaptation relaxation rate
λON 6 · 10−6 s−1 ASER gain adaptation rate

αASH 0.1 s−1 ASH activation rate
βASH 0.60 s−1 ASH leak rate
γASH 0.01 s−1 ASH rectification rate
δON

ASH
, δOFF

ASH
0 s−1 ASH desensitization rate

DASH 1 ASH gain adaptation factor

Cmin 1 mM Stimulus resolution limit

Table 6.2
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6.2.3 In silico animals reproduce neuronal response and behavior of

naive real animals

Before I looked at adaptation, I compared the responses of virtual ASEL and ASER with

our calcium imaging data. Model results showed very close agreement with Ca2+ traces

in ASEL and ASER from naive animals (Figure 6.2). Visual inspection of trajectories of

experimental naive animals showed they predominantly use steering to orient themselves

in the quadrant assay. The model animals exhibited similar motor behavior to those of

actual animals (Figure M4 in Supplemental information).

Next, we tested if the resulting virtual behavior also matched our experimental

data. We simulated 500 wild type naive worms, with ASEL, ASER and ASH

adaptation/recruitment dynamics, for ten minutes of virtual time in the quadrant assay.

This simulation yielded a similar in silico chemotaxis index to experimental naive results

(wild type in Figure 6.3).

6.2.4 ASE (de)sensitization reduces robustness of attraction in our

computational model

Lowered responsiveness of sensory neurons almost invariably implies loss of sensory

information. In fact, the opposite action of ASEL and ASER adaptation suggests only one

of the ASE pair is fully sensitized at any one time. Thus, I expected a particularly severe

performance penalty in our simulations (relative to a model with no adaptation), which

is supported by previous computational models where both ASE neurons were always

fully sensitized [55, 57]. In our simulations, worms with always fully sensitized ASEL

and ASER and unrecruited ASH achieved very similar performance to wild type animals

(Figure 6.3). To understand this unexpected result, I performed a sensitivity analysis

on the key sensory parameters (ASEL/R rise and decay times). This revealed that for
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Figure 6.3: ASEL and ASER drive steering and klinokinesis respectively in our computational
model. Chemotaxis index of model WT versus mutant animals in the simulated quadrant assay.
(A) Our model shows no difference in attraction in the quadrant assay between wild type and
animals with always fully sensitized ASEL and ASER. (B) Ablating the synaptic connection from
ASEL to the steering motor neuron or from ASER to the pirouette neuron significantly reduced
the chemotaxis index. Ablating the connection from ASER to steering very slightly increased the
chemotaxis index. (C) Double mutants with ablated ASEL and no steering, or ablated ASER and
no pirouettes achieved the same chemotaxis index as single mutants. (D) Experimental validation:
animals with genetically ablated ASEL (OH8585) and genetically ablated ASER (OH8593) exhibit
a strong reduction in the chemotaxis index in the quadrant assay. *: p¡0.05, ***: p¡0.0005.

all possible timings of ASE left and right, animals with ASE adaptation had lower or

equal chemotaxis indices, with the vast majority of parameters resulting in a significantly

lower chemotaxis index (data not shown). If this reflects limitations on the physiological

parameters of the biological worm, it hints at selective pressure to recover ASE responses

in the presence of information loss due to ASE adaptation.

6.2.5 Sensitization of ASH is sufficient to reproduce gustatory

plasticity in a computational model

Next, I incorporated stochastic ASH recruitment (and release) into our computational

model and simulations.

Since the nature of the recruitment mechanism of ASH is unknown, it was modeled

as a stochastic switch, with dynamic rates dependent on the history of the salt
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concentration. In its off or unrecruited state, ASH is assumed to respond only to

dangerous concentrations of NaCl (> 300 mM), whereas in its on or recruited state, it

responds to low concentrations of NaCl as well. Specifically, in the recruited state, the

ASH sensory neuron is modeled as identical to ASER, up to a sign reversal.

NaCl avoidance after pre-exposure to NaCl was achieved by setting the synaptic weight

between ASH and the pirouette command neuron significantly higher than the weight

from ASE. Indeed, the strong attraction to 300 or 500 mM in ASH deficient odr-3 animals,

in contrast to the strong avoidance by wild type animals, suggests that ASE-mediated

attraction is overridden by ASH [50]. This is further supported by avoidance of 300 and

500 mM NaCl, despite ASEL showing a strong calcium imaging response in wild type

animals. Thus, in this model, ASH sensitization is likened to a recruitment of ASH into

the (non-hyperosmotic) NaCl sensing circuit.

Let ρ denote the propensity of ASH to be recruited, which varies from 0 (no NaCl) to 1

(saturated exposure to NaCl):

dρ

dt
= κ

(
Clog

Cmax

− ρ
)
. (6.4)

Thus, ρ converges to the ratio of the current concentration and a ‘maximum’

concentration. Let the transition rates αrec and βrec denote the recruitment and

unrecruitment rates respectively, such that

OFF
αrec


βrec

ON

with αrec =
ρ

τα
and βrec =

1− ρ
τβ

.

The steady state probabilities P (on) and P (off) for occupying the on (recruited) and off

(unrecruited) states (Figure 6.4) are then given by
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αrec

βrec

ASH
ON

ASH
OFF

Figure 6.4: Diagram showing the two state Markov chain, used to model ASH recruitment. ASH
switches on with rate αrec and off with rate βrec.

P ∗(on) =
αrec

αrec + βrec

P ∗(off) =
βrec

αrec + βrec
.

For simplicity and parsimony, the above general formulation can be simplified by

collapsing the two time scale parameters into one, such that τα = τβ = 1/κ. In this

case P ∗(on) =
Clog

Cmax
and P ∗(off) = 1− Clog

Cmax
.

ASH recruitment Value Description
Cmax 100 NaCl saturation level for recruitment (ρ→ 1)
κ 0.001 s−1 Integration rate for [NaCl] history

Table 6.3

We first asked whether our model of ASH recruitment is sufficient to account for the

balance of attraction and aversion over time. To ground our model in experimental data

I performed the quadrant assay for a significantly longer time (one hour) and analyzed

the chemotaxis index of naive animals and those pre-exposed to NaCl for 15 minutes.

Interestingly, the chemotaxis index dropped to 0 over the course of 60 minutes for naive

animals as well as for pre-exposed animals with similar but opposite time courses (Figure
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Figure 6.5: Recruitment of ASH drives gustatory plasticity in our computational model.
Chemotaxis index over time in experiments and simulations of the quadrant assay. (A) Chemotaxis
index for naive (0 mM) and pre-exposed (15 minutes, 100 mM NaCl) animals. The behavioral
results (light lines) and the modeling results (dark lines) show a monotonic decay towards a
chemotaxis index of 0, for both naive and pre-exposed animals. (B) Virtual chemotaxis index
for animals with unrecruited ASH (dashed line) and with recruited ASH (solid line). Without ASH
state dynamics the chemotaxis index does not decay to 0. (C) Comparison of chemotaxis index for
model with ASE (de)sensitization (solid lines) and with fully sensitized ASEL and ASER (dashed
lines).

6.5, dashed lines). Chemotaxis indices obtained from simulations of our model for 60

minutes closely reproduced the experimental data (Figure 6.5A, solid lines).

We next asked why the chemotaxis index decayed to 0 over time (indicating roughly

equal numbers of animals in the salt and no salt quadrants). To determine if this may be

due to two sub-populations (with ASH on and off) or to a detailed balance scenario (in

which animals continually and stochastically switch between recruited and unrecruited

ASH states), I disabled changes in ASH recruitment during simulations. This allowed

us to run simulations with two subpopulations of animals, one having ASH completely

disabled and the other fully recruited throughout the simulation. Now the chemotaxis

index decayed only partially, reaching a plateau around 0.5 and -0.3 respectively (Figure

6.5B). These results suggest that the recruitment kinetics obey a law of detailed balance:

Our simulations confirm that ASH becomes recruited in animals that stay within a salt

quadrant for some time, but not in animals that remained in a no-salt quadrant. Stochastic

navigation of animals allows for quadrant-crossing resulting in stochastic switching of

ASH states. This ensures that over time the number of animals with ASH in either state
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will be equal.

To determine whether ASE (de)sensitization plays a role other than in the recruitment of

ASH, I disabled adaptation in the ASE sensory neurons and reran our simulations. When

comparing pre-exposed animals with and without ASE (de)sensitization, I find no change

in the strength or time course of the chemotaxis index (Figure 6.5C).

In summary, our simulations, for both naive and pre-exposed animals, suggest that

the experimental response of animals to NaCl in the quadrant assay requires dynamic

ASH state-switching. Desensitization of ASEL or sensitization of ASER does not seem

to be required, although it is very well possible that these processes play a role in

recruitment of ASH. Unfortunately, it is currently not possible to genetically disable

ASE (de)sensitization. Our results demonstrate how experience dependence (here, of

a spatially heterogeneous environment) can rapidly (here, within one hour) randomize the

internal states of a population of animals with initially identical internal state.

6.2.6 Sensory neuron timing strongly influences navigation strategies

in our computational model

Previous models of salt navigation considered ASEL and ASER as having opposite,

complementary roles during positive chemotaxis, an assumption that relies on these

neurons responding over similar timescales (e.g., Izquierdo and Beer [55], Izquierdo and

Lockery [57]), despite some indications to the contrary in calcium imaging experiments

[80, 97]. Experimental evidence has shown that the relative contributions of ASEL and

ASER to NaCl navigation is assay dependent: some show ASER is sufficient and drives

both steering and pirouette modulation [52], others show that ASEL and ASER contribute

equally [1].

When I ablated the in silico synaptic connection from ASEL to the pirouette motor

program or the in silico synaptic connection from ASER to the steering circuit, the
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chemotaxis index remained unchanged relative to wild type model animals (Figure 6.3B).

Conversely, virtually severing the connection from ASEL to the steering circuit or from

ASER to the pirouette motor program severely reduced the chemotaxis index (Figure

6.3B). These results strongly suggest that in our model, ASEL controls steering, but has

little effect on the modulation of the pirouette rate, whereas ASER modulates pirouettes,

but has little control over steering.

To confirm this interpretation, I disabled steering in wild type and ASEL-ablated animals

in our computational model; as expected, I found that the chemotaxis index was equally

reduced in single (steering) versus double (ASEL and steering) virtual mutants (Figure

6.3C). Together these results show that in our model ASEL almost fully drives steering,

having a negligible effect on pirouette modulation (klinokinesis). Similarly, disabling

pirouette modulation in wild type or ASER ablated double mutants resulted in an equally

reduced chemotaxis index (Figure 6.3C). Finally, ablating ASEL in animals where

pirouette modulation was disabled, or ablating ASER in animals where steering was

disabled almost fully abolished the response to NaCl in our model (Figure 6.3C).

Thus, in our model, both steering and pirouettes contribute to the chemotaxis index in

the quadrant assay, but these distinct motor programs are separately controlled by ASEL

and ASER, respectively. The distinct roles of ASEL and ASER in our computational

model are a direct result of the timescales of their responses. To steer, sensory signals

must be detected on the timescale of a half-undulation: O(1-2 sec) or faster [41, 52, 57]).

The slower rise time in ASER in our model precludes this. The contribution of ASER

to steering in different assays [1, 52] may indicate a faster rise time in ASER. Pirouettes

occur with a mean rate of 2.1 events per minute [83]. Therefore, to effectively modulate

this rate requires a memory of salt exposure over commensurate (or longer) timescales.

The fast decay time of ASEL in our model precludes this. Conversely the slow decay

time of ASER is ideally suited to modulate the pirouette rate effectively. Should ASER

lack this slow timescale, the modulation of pirouettes would appear to require a slow
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integration elsewhere in the circuit.

To rule out any contribution of desensitization of ASEL and sensitization of ASER to the

above analyses, I re-ran our simulations with all forms of adaptation disabled such that

both ASE neurons are fully sensitized and ASH recruitment is disabled. These analyses

gave very similar results as our previous analyses (Figure 6.3C), confirming that in our

model the separate roles of ASEL and ASER can be attributed to the differences in the

time courses of ASEL and ASER responses.

Unfortunately, it is currently not possible to disable either of the two navigation strategies

in C. elegans in vivo. To test whether ASEL and ASER are indeed both required for

successful navigation in the quadrant assay, as predicted by our model (Figure 6.3C), the

Jansen lab genetically ablated either ASEL or ASER, using animals that express Caspase-

3 in either the left (OH8585) or right (OH8593) ASE neuron [82]. These animals showed

a strong reduction in chemotaxis to NaCl (Figure 6.3D), confirming that both ASEL and

ASER contribute to quadrant navigation in this assay.

6.3 Discussion

Based on our results I propose that the response of C. elegans to NaCl is regulated at

multiple levels. Naive chemotaxis to NaCl is mediated by a core NaCl chemosensation

machinery, comprised of the ASE neurons that mediate NaCl attraction and the ASH

neurons that mediate avoidance of hyperosmotic stresses, resulting in a switch between

attraction up to 200 mM NaCl and avoidance of higher concentrations (Figure 6.6). Pre-

exposure to 100 mM NaCl in the absence of food results in an altered dynamic ranges in

both the ASEL and ASH neurons. The ASEL neuron becomes desensitized to salt – up to

the pre-exposure concentrations – whereas ASH become sensitized to low concentrations.

Desensitization of the ASEL neuron is mostly cell-autonomous, but it involves serotonin
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Figure 6.6: Schematic model of the NaCl navigation circuit. Schematic of the different forms
of sensory adaptation and their downstream effects in response to NaCl exposure in the absence
of food. Left: The naive state, in the absence of NaCl and/or the presence of food. ASEL is
fully sensitized, ASER desensitized and ASH only responds to high NaCl concentrations (osmotic
shock). Right: pre-exposed state, after 10-15 minutes of exposure to NaCl in the absence of
food: ASEL becomes desensitized, ASER sensitized and ASH recruited to respond to lower NaCl
concentrations. Recruitment of ASH depends on an absence of food signal and ASE, possibly
via one or more intermediate neurons. ASEL/R mediate attraction to NaCl and ASH mediates
avoidance of NaCl. NaCl dependent adaptation presented in gray dashed arrows. Solid arrows
represent excitation (either via receptors or synapses), solid bars inhibition.

and thus signals from one or more other neurons. ASER also sensitizes following salt-

exposure, exhibiting enhanced responses to concentration decreases.

While other sensory neurons and contributions from the downstream circuitry most

likely contribute to the behavioral response, our simulations demonstrate the feasibility

of a parsimonious model in which recruitment of ASH by a food and an ASE (NaCl)

derived signal underpin gustatory plasticity. While ASER plays a role in NaCl attraction,

counterintuitively, its sensitization timescale hints at a possible contribution to NaCl

avoidance. In our model, ASER mediates attraction only, and its effect is masked when

ASH is recruited. An alternative scenario may be suggested based on a recent study

showing evidence for ASER flipping its synaptic sign to a downstream interneuron [73].

Thus, ASER could mediate avoidance in gustatory plasticity if the synaptic sign flip was

starvation dependent. Future work will need to address what the direct function of ASE

(de)sensitization is, beyond a possible role in ASH recruitment.
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One question that immediately comes to mind when studying the ASE sensory neurons

is why ASEL and ASER exhibit such different responses. These neurons were already

known to exhibit bilaterally asymmetric kinetics, in which ASEL and ASER depolarize

in response to concentration increases and decreases, respectively [97]. One attractive

conjecture is that this functional differentiation, with opposite polarities of responses in

the two neurons, allows the animal to double its dynamic range (from {0,x} to {-x,x}),

thus enhancing its resolution. However, the apparent timescale separation in the (fully

sensitized) responses suggests otherwise.

Our computational modeling results demonstrate how such a separation of timescales in

the processing of sensory inputs leads to distinct pathways for the control of different

motor programs: Fast sensory processing (as observed in ASEL) controls steering

whereas slow sensory processing (potentially in ASER) has the capacity to modulate

motor programs such as pirouettes over tens of seconds or minutes. Therefore, I

conjecture that C. elegans has evolved distinct sensory processing pathways with distinct

characteristic timescales to drive separate navigational strategies: steering and pirouette

modulation. If indeed, such timescale separation is confirmed already at the level of

sensory neurons (in ASEL and ASER response kinetics), it would be, to our knowledge,

the first example of sensory neurons encoding and directly controlling motor actions.

We modeled ASEL desensitization as an adaptive threshold and ASER sensitization as a

multiplicative gain adaptation. While this was mathematically the most natural choice,

and appears biologically plausible, I cannot exclude other forms of adaptation. Future

experiments will have to look closer at the mechanism underlying ASE (de)sensitization

to provide evidence as to the molecular nature of adaptation.

While one would expect some forms of adaptation in sensory neurons (such as photo

receptor adaptation to light intensity levels), our results point to severe information loss,

causing a potentially considerable impediment in salt sensing. The bilaterally asymmetric

responses mean that when ASER is desensitized, for example, the animal’s ability to
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respond to concentration decreases is all but abolished. It is therefore natural to ask

whether these forms of adaptation should be considered purely as limitations (perhaps

resulting from metabolic or other constraints), or whether they may prove beneficial in

the animal’s natural habitat.

Our model predicts a number of behavioral consequences for these distinct forms of

adaptation off food. In our model, naive worms (with sensitized ASEL only) will move

up gradients, but if the salt regions explored are insufficient to sensitize ASER, some

level of dispersion from these regions will occur. Desensitization of ASEL promotes

dispersion from a salt region that has been explored for some time. Conversely, if ASER

is sufficiently sensitized, a downward trajectory will suppress dispersion by promoting

turning (and a return to the salt rich region). Thus, ASER sensitization would ensure

that ASER only responds to sufficiently large salt regions, ignoring small fluctuations.

In summary, salt-adaptation of ASE neurons could serve to balance exploration and

exploitation navigational strategies in complex, heterogeneous environments. In addition,

if ASEL predominantly controls steering towards gradient peaks when navigating up

the gradient, desensitization would reduce steering only after entering a salt region

(promoting broader exploration within the salt-rich region). Conversely if ASER

predominantly modulates pirouettes, then leaving a salt patch will likely induce a

pirouette. In our model, I have not included preferential exit angles from a pirouette,

which may play a further role in such scenarios.

The intuition presented here suggests that, in the case of a neutral signal such as NaCl, the

compactness of the nervous system in C. elegans may benefit from enhanced computation

in sensory neurons at the price of considerable information loss. Taken together, our

computational model and experimental data point to a highly complex set of distinct forms

of plastic sensory computation in the NaCl sensing circuit, indicating that, compared to

higher animals, C. elegans has seen a shift of computation from the inter- to sensory layers

over its evolutionary history.
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The behavioral response of C. elegans is strikingly similar to the responses of mice,

rats and humans to salt, which show attraction to low NaCl concentrations (100-150

mM NaCl and lower) and avoidance of high NaCl concentrations [4, 8, 15]. Recent

analyses of the response of mice to NaCl using genetic and imaging techniques has

revealed that appetitive NaCl taste involves different taste receptor cells than avoidance

of high NaCl concentrations [22, 81]. Interestingly, mice in which avoidance of high

NaCl concentrations is inactivated are strongly attracted to very high NaCl concentrations

[81]. Moreover, in mice, rats and humans, the response to NaCl can be modulated by for

example the internal sodium balance [4, 8, 15]. Whether the response to NaCl can be

manipulated in these mammals to the same extent as in C. elegans remains to be seen.
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Chapter 7

Discussion

The work presented in this thesis explores the role of sensory computation in decision

making. Across the animal kingdom, sensory systems have evolved to encode sensory

inputs. Some of the complexities of sensory systems, including their architectures,

dynamic range adaptation and modulation, can be explained by better understanding the

signals they encode, or by a more introspective examination of their limitations due to

speed-accuracy trade-offs, their limited bandwidth of neural processing and constraints

due to various metabolic costs, to name a few. None of these considerations change the

basic premise that the role of sensory systems is to encode sensory inputs.

This view has been confirmed time and again in C. elegans. In particular, a recent study

by Gordus et al. [40] has specifically asked this question and concluded that whereas

C. elegans sensory neurons encode sensory information, downstream neurons (even first

layer interneurons) encode behavioral decisions or motor behavior. This view is also

consistent with a number of studies that consider switching between different behaviors,

such as forward and backward locomotion [63], roaming and dwelling [38], attraction

and repulsion [54], and more. In all of the above, the decision making occurs downstream

of the sensory layer, or equivalently, the behavior cannot be predicted form looking at

activity in the sensory layer.
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In this thesis, I proposed that the computation performed by sensory systems in C. elegans

is much more extensive. My model of copper-diacetyl integration follows conventional

thinking, by considering a minimal feed forward pathway and assigning the interesting

computation to the postulated site of sensory integration, the AIY interneurons. While

useful in highlighting model requirements, the proposed mechanisms are not surprising.

In fact, these are well understood in the computational neuroscience and adaptive behavior

communities. My study of diacetyl-fructose sensory integration was more powerful as I

had the opportunity to test the model, through iterations of data and modeling. The result

was a model that can be likened to top-down attention modulation in other animals. An

interneuron RIM serves as a slow integrator to modulate the excitability of ASH sensory

neurons. The decision to cross the barrier, or not, is then modulated by the level of ASH

activation.

Turning my attention to salt navigation and gustatory plasticity, my model and simulations

suggest that the sensitization and desensitization of the ASE and ASH sensory neurons

directly encodes the behavioral state of the animal. Furthermore, the modulation of

the sensory neurons, which for ASE appears to be largely cell-autonomous, regulates

the balance of attraction and avoidance, and more subtly – exploration and exploitation

(presumably of food). Thus surprisingly, here, the internal state and animal behavior can

be gleaned from sensory neuron activity alone!

In this chapter, I summarize these findings in turn, and discuss the limitations of my

models. Finally, I briefly mention future directions.

7.1 Preliminary findings

When preparing to create my model, I decided to first do a more detailed investigation

of the computational model proposed in the study by Izquierdo and Lockery [57].

Reproducing their model, I found that a more parsimonious variant could be created
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by removing the self-connections, Gaussian noise, and muscle bias parameter. This last

parameter, I showed to be important for steering. Specifically, the equations used, do not

allow a full symmetry in steering, such that animals cannot steer towards attractants and

away from repellents for all concentrations. This suggests, that for a model capable of

assays with a wider variety of stimuli (attractive and repulsive), a new steering system

is needed. It also shows that two key parameters of the sensory neurons, the rise time

and decay time, or equivalently the time to peak depolarization in response to a step

change, need to be matched to the motor program, and stimulus encoding. For instance,

the model predicts that slowing down a sensory neuron to more than 1/4th of an undulation

period (approximately 1 second) should change an attractive stimulus into an aversive

and vice versa. Interestingly, a result highly reminiscent of this effect was reported in an

experimental study (Kato et al. [62], figure 6F of their publication), where animals with a

slowed down AWC response (odr-3 null mutants) showed anti-steering, or as phrased in

their study: ‘when moving away form the odor source, odr-3 animals curve in the wrong

direction’ [62].

7.2 Iterations of the model

In building a computational model, I wanted to address a number of requirements.

First, to link neural computation with behavior, I required an integrated simulation

framework, including sensory neurons, downstream circuits, motor outputs and physical

environments. Second, I set out to make this framework generic, easily specifiable,

and modular. In so doing I was motivated by three considerations: (i) to allow me

the flexibility to study different neurons, circuits and assays, and to easily modify my

own models; (ii) to be able to constrain my models by testing them under a variety of

conditions and even different assays; and (iii) to provide a friendly and powerful tool for

similar modeling endeavors by the community.
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The aim of my PhD was to create a generic integrated model, capable of capturing several

forms of sensory integration and decision making. Naturally, the model should not

just reproduce experimental findings, but should provide testable predictions and guide

experiments in an iterative approach. The latter being especially important. Indeed,

creating a model that can reproduce several different assays is challenging and risks

becoming under constrained (by including too many features) or over constrained (if

the assays were performed under different conditions that are not accounted for in the

model). I believe the model presented in this thesis has achieved all this, while striking

an appropriate balance between the level of abstraction and biological grounding.

I used a case study based on an assay from the literature – the copper and diacetyl assay

[54, 93] (including a copper only assay [89]) – to build my model framework and to

consider model requirements. This model was in many ways similar to salt chemotaxis

models developed by Izquierdo and Lockery [57], and extended by Izquierdo and Beer

[55, 56]. The model successfully accounted for the results in the literature and made

a number of interesting predictions. First, to quantitatively account for the results,

model sensory neurons had respond to the log of concentration gradients. Additionally,

in the model, copper avoidance triggers reversals with a final turn angle distribution

that is narrower than stochastic reversals, producing something like a u-turn. This

feature, modeled by a distinct motor program in my model prevents model animals from

continuing in the same direction as before a pirouette, when avoiding an immediate threat

in front of them.

In the process of building and iterating the model, several of the assumptions I had made

early on had to be revisited. One such assumption was that the sensory neurons respond

with an (imperfect) approximation of a time derivative of the stimulus strength [57, 100].

While it is clear that many sensory neurons respond to changes in stimulus strength

rather than absolute strength, my model has showed me that it is likely that much more

computation occurs in the sensory layer. First, the time period over which the sensory
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neurons integrate matters. Too slow or too fast and no steering or anti-steering occurs.

Additionally, slower sensory neurons produce better pirouette modulation, while faster

sensory neurons are better for steering.

In a full sensorimotor system, bi-directional constraints are imposed between the sensory

system and motor programs (in particular steering). This was later evident by observations

in the quadrant assay, in which (unlike gradient assays) worms need to choose quadrants

based on sensory information gathered in only a very narrow region of space. My

observations that worms performed successful, very strong steering near the quadrant

interfaces required further adjustment of my steering circuit model. While my model

does not capture the detailed embodiment, or even speed modulation and modulations

of the strength of steering that likely exist in the worm, it does contain a steering circuit

that can modulate both wavelength and amplitude in a way that enhances the sensory

perception during sharp turns, allowing the model worm to more closely match behavioral

observations.

7.3 Model limitations

The price of parsimony is that many aspects are missing or simplified. Only minimal

circuits were considered and embodiment was neglected. Thus the worm was modeled

as a point, moving at fixed speed. While the models of steering appear to capture

C. elegans more realistically than some of the existing published models, it does not

capture the richness of C. elegans actual coordination and movement. Many other motor

programs such as reversals and omega turns were neglected as well (though adding actual

reversals or a duration to our pirouettes was not found to make a difference for any of the

results tested). In addition, the model used average parameters (from calcium imaging

and behavioral metrics) to model a fictional averaged C. elegans. It does not attempt

to capture the details of individual behavior correctly, but only to capture the essential
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features necessary to capture the same high level behavioral metrics (such as various

chemotaxis indices).

At the methodological level, the key limitation of the model is its speed. Speed was

the main consideration in excluding embodiment from the model framework (as this

would substantially slow down the simulations)[13, 56]. However, the situated nature

of experiments, especially when chemical diffusion is included, remains prohibitive.

In many ways, this model is a first step, incorporating a small number of neurons and a

small number of assays. It is hoped that further iterations and extensions of the model,

on the basis of additional studies, will offer validation for the framework, its usability and

the validity of the biological mechanisms proposed.

7.4 Future directions

Two separate branches of follow up work can be distinguished. First, the model

predictions point to specific experiments that can be done to test them. Second, the model

can be further extended in several (non-exclusive) ways.

7.4.1 Testing model predictions

My model makes several testable predictions. First, the model predicts that sensory

neurons’ response lag must be in sync with the motor system, and that ASEL and ASER

steer optimally with different response lags. Second, ASEL, ASER and AWA appear

to respond to a log like function of the change in concentration, thus producing a Weber-

Fechner like response. Third, in the model, naive animals move towards salt spots already

in their path (mediated by naive ASEL) but do not move towards NaCl spots behind them

(mediated only by ASER after pre-exposure to NaCl), this allows model animals to ignore

small salt patches. Fourth, the model predicts that gustatory deficient mutants would have
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reduced exploration of a plate with a grid of salt patches, visiting less patches than wild

type animals. I will briefly describe a possible experimental setup for each prediction.

Other than the odr-3 mutant, there are currently no strains that allows precise control

of sensory neurons’ response lag. Changing the speed of the undulations however is

trivial. Since the sensory neurons response lag must be in sync to the motor system an

increase in the undulation frequency should break steering (the model indeed shows this).

Since, swimming C. elegans have a much higher undulation frequency, one could simply

test if swimming animals use pirouette modulation exclusively. Another interesting

experiment that could be done, but which would be much more challenging and costly,

is to use optogenetics to drive the calcium concentration in ASEL and ASER in real

animals according to model sensory neurons’ activation in a virtual assay. In the study

by Kocabas et al. [65], an animal’s nose was tracked such that the interneuron AIY could

be excited according to the gradient change in a virtual assay. This procedure produced

real world animals that followed virtual gradients. Adapting this study to use my model,

and changing the rates of the sensory neurons (i.e. response lag), you could show that

slower sensory neurons produce anti steering, and that if ASEL and ASER have different

response lags, the chemotaxis index is higher, than if they are the same. Interestingly,

the Kocabas et al. [65] study already noticed that a delay needed to be included in their

activation of the interneuron. Unfortunately, no systematic sweep of delays was reported.

I ended up using a Weber-Fechner like response for ASEL, ASER and AWA in the model

because the model required it to reproduce calcium imaging and behavioral data (calcium

imaging data [67, 97] and (Appendix A, behavioral data [50, 51, 54, 93]). This model

result has been partially tested for AWA by Larsch et al. [67] by systematically changing

the step size, duration and gradient, and measuring the calcium response with GCaMP.

Though longer diacetyl exposures would be needed to exclude a response to the removal

of diacetyl. For ASEL and ASER a similar setup could be used, where the response

of both neurons (for ASEL naively, and ASER pre-exposed) to a variety of step sizes,
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durations and gradients could be measured with a sensitive calcium indicator (Yellow

Cameleon is not sensitive enough to detect responses to low concentration steps).

Testing if C. elegans does not steer towards NaCl spots behind the worm in the first

two minutes of exposure can be done using a linear gradient (see wormbreeder’s gazette

volume 18, number 3, Making linear chemical gradients in agar) and a worm tracker, one

could see if in the first two minutes after placement, animals with an original heading

away from the gradient peak steer less well than those after the first two minutes.

The third prediction, that gustatory plasticity deficient animals will explore more areas,

can be tested using a multi spot assay, as used in Iino and Yoshida [52] and allowing

animals to roam freely for at least an hour (allowing multiple cycles of ASH sensitization

and desensitization). If the model prediction holds up, wild type animals should visit

more spots within the hour than mutants such as gpc-1 and odr-3. Additionally, the model

predicts that the cycle of moving towards an NaCl peak, leaving and then visiting another

peak, should be around 15 minutes (the 10 minutes it takes to sensitize ASH and the 5 to

relax).

7.4.2 Model extensions

I can see several model extensions that follow logically from the current state. First,

the framework of the model allows it to be linked to biophysical models of the worm

body (such as those used in Boyle et al. [13], Xu and Deng [112] and Szigeti et al.

[98]) making it possible to ask more locomotion oriented questions on the role of sensory

processing. Second and more closely related to the questions asked in the case studies of

this thesis, the model can be extended to look closer at the NaCl sensing circuit, adding

the downstream first layer interneurons, AIA, AIB, AIY, AIZ, as well as adding ADL and

ASI, both known to be involved in gustatory plasticity [50].

Other avenues that have not been explored yet, but where a large body of experimental
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work is available are AWC mediated chemotaxis and thermotaxis. The latter of which,

like NaCl chemotaxis, is known to involve several forms of adaptation and conveniently

involves the sensory neuron classes AFD, AWC and ASI [11, 66, 76]. Adding sensory

neurons should also allow the model to look more at multiple modalities overlapping in

one neuron class (e.g. chemotaxis and thermotaxis in AWC, hyperosmolarity and toxicity

in ASH, food and thermotaxis in ASI).

7.5 Reflections

Looking back, I hope I have shown the important contributions that computational models

of C. elegans behavior can make when integrated with experimental work. Additionally, I

hope the model itself will prove its value beyond this work, and that its ease of adaptation

will entice non-computational labs to use it for rapid testing of assays and ablations that

would be too time-intensive or not yet possible in real world experiments. Having a tool

like this can help guide experiments, potentially providing non-trivial hypotheses and

clues as to the function of neuronal and circuit mechanisms.
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[99] Josué Sznitman, Xiaohua. Shen, Prashant K. Purohit, and Paulo E. Arratia. The

effects of fluid viscosity on the kinematics and material properties of C. elegans



BIBLIOGRAPHY 133

swimming at low reynolds number. Experimental Mechanics, 50(9):1303–1311,

2010. doi: 10.1007/s11340-010-9339-1.

[100] Tod R. Thiele, Serge Faumont, and Shawn R. Lockery. The neural network

for chemotaxis to tastants in Caenorhabditis elegans is specialized for temporal

differentiation. The Journal of Neuroscience, 29(38):11904–11911, 2009.

[101] Masahiro Tomioka, Takeshi Adachi, Hiroshi Suzuki, Hirofumi Kunitomo,

William R. Schafer, and Yuichi Iino. The insulin/pi 3-kinase pathway regulates

salt chemotaxis learning in Caenorhabditis elegans. Neuron, 51(5):613–625, 2006.

doi: 10.1016/j.neuron.2006.07.024.

[102] Emily R. Troemel, Joseph H. Chou, Noelle D. Dwyer, Heather A. Colbert, and

Cornelia I. Bargmann. Divergent seven transmembrane receptors are candidate

chemosensory receptors in C. elegans. Cell, 83(2):207–218, 1995. doi:

10.1016/0092-8674(95)90162-0.

[103] Emily R. Troemel, Bruce E. Kimmel, and Cornelia I. Bargmann. Reprogramming

chemotaxis responses: sensory neurons define olfactory preferences in C. elegans.

Cell, 91(2):161–169, 1997. doi: 10.1016/S0092-8674(00)80399-2.

[104] Lav R. Varshney, Beth L. Chen, Eric Paniagua, David H. Hall, and

Dmitri B. Chklovskii. Structural properties of the Caenorhabditis elegans

neuronal network. PLoS Computational Biology, 7(2):e1001066, 2011. doi:

10.1371/journal.pcbi.1001066.

[105] Andrés Vidal-Gadea, Kristi Ward, Celia Beron, Navid Ghorashian, Sertan Gokce,

Joshua Russell, Nicholas Truong, Adhishri Parikh, Otilia Gadea, Adela Ben-

Yakar, and Jonathan Pierce-Shimomura. Magnetosensitive neurons mediate

geomagnetic orientation in Caenorhabditis elegans. eLife, 4:e07493, 2015. doi:

10.7554/eLife.07493.



BIBLIOGRAPHY 134

[106] Samuel Ward. Chemotaxis by the nematode Caenorhabditis elegans: identification

of attractants and analysis of the response by use of mutants. Proceedings of the

National Academy of Sciences of the United States of America, 70:817–821, 1973.

[107] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’

networks. Nature, 393(6684):440–442, 1998. doi: 10.1038/30918.

[108] Quan Wen, Michelle D. Po, Elizabeth Hulme, Sway Chen, Xinyu Liu, Sen W.

Kwok, Marc Gershow, Andrew M. Leifer, Victoria Butler, Christopher Fang-Yen,

Taizo Kawano, William R. Schafer, George Whitesides, Matthieu Wyart, Dmitri B.

Chklovskii, Mei Zhen, and Aravinthan D. T. Samuel. Proprioceptive coupling

within motor neurons drives C. elegans forward locomotion. Neuron, 76(4):750–

761, 2016/02/24 2012. doi: 10.1016/j.neuron.2012.08.039.

[109] John G. White, Erica Southgate, J. Nicole Thomson, and Sydney Brenner. The

structure of the nervous system of the nematode C. elegans. Philosophical

Transactions of the Royal Society London B Biological Sciences, 314(1165):1–340,

1986.

[110] Stephen R. Wicks, Corry J. de Vries, Henri G. A. M. van Luenen, and Ronald

H. A. Plasterk. Che-3, a cytosolic dynein heavy chain, is required for sensory cilia

structure and function in Caenorhabditis elegans. Developmental Biology, 221(2):

295–307, 2000. doi: 10.1006/dbio.2000.9686.

[111] David R. Williamson. Modelling the locomotion nervous system in the nematode

C. elegans: a developmental perspective. Master’s thesis, School of Computing,

University of Leeds, 2012.

[112] Jian-Xin Xu and Xin Deng. Biological neural network based chemotaxis behaviors

modeling of C. elegans. In Neural Networks (IJCNN), The 2010 International Joint

Conference on, pages 1–8, 2010. doi: 10.1109/IJCNN.2010.5596961.



BIBLIOGRAPHY 135

[113] Jian-Xin Xu and Xin Deng. Complex chemotaxis behaviors of C. elegans

with speed regulation achieved by dynamic neural networks. The 2012

International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2012.

doi: 10.1109/IJCNN.2012.6252661.

[114] Meng Xu, Travis A. Jarrell, Yi Wang, Steven J. Cook, David H. Hall, and Scott W.

Emmons. Computer assisted assembly of connectomes from electron micrographs:

Application to Caenorhabditis elegans. PLoS ONE, 8(1):e54050, 2013. doi:

10.1371/journal.pone.0054050.



BIBLIOGRAPHY 136



137

Appendices

A Jansen Lab experimental results

The results below are not my own, and are summarized here only for the convenience of

the reader.

A.1 Prolonged exposure to NaCl sensitizes ASER and desensitizes

ASEL

In contrast to earlier work [80, 97, 100], the Jansen Lab found that the ASER neurons

did not respond to NaCl concentration decreases at low or high concentrations (Figure

A.1A). Additionally, pre-exposure to NaCl sensitized ASER over a time scale of 10

minutes, explaining why prior studies did find a response to NaCl downsteps (Figure

A.1B). For ASEL an opposite adaptation was found, with sensory neurons responding in

naive animals but becoming fully desensitized over 10 minutes of pre-exposure (Figure

A.1C), but returning back to baseline in 5 minutes (Figure A.1D). Interestingly, ASEL

while desensitized to the pre-exposure concentration, continued to respond to higher

concentrations (Figure A.1E). These data suggest that ASEL desensitization involves

threshold modulation, while ASER sensitization appears more like gain modulation.

Finally, several mutants (synaptic, serotonin, dopamine, neuropeptide) had normal ASEL

and ASER adaptation, suggesting they are mostly cell-autonomous (data not shown).
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Figure A.1: Ca2+ Responses of ASER (A,B) and ASEL (C,D,E) neurons. (A) No response is seen
in ASER upon removal of 0.01 to 0.5M NaCl. (B,C,D,E) Average maximum ratio changes (±
SEM). (B) ASER sensitizes upon pre-exposure. (C) ASEL responses were significantly reduced
after pre-exposure. (D) 2 minutes or longer wash with a NaCl-free buffer restored the Ca2+

response of ASEL to 100 mM NaCl. (E) Animals pre-exposed to 100mM NaCl still respond to
higher concentrations. Statistical significance *: p<0.05,***: p<0.005, ****: p<0.001.

A.2 Prolonged exposure sensitizes ASH

In naive animals, ASH does not respond to a 200mM NaCl upstep (Figure A.2B), but does

respond to 300mM and higher concentration (osmotic shock). However, in pre-exposed

animals the Jansen lab found that animals now respond to upsteps from 100mM to 200mM

(Figure A.1A,B) with an amplitude comparable to the naive response to 500mM. Pre-

exposure did not affect Ca2+ transients in ASH neurons upon exposure to 300 or 500 mM

NaCl (Figure A.2A and 2B). In contrast to ASEL and ASER, ASH recruitment is not

cell-autonomous, but depends on ASE (Figure A.2 C,D and E), serotonin, dopamine and

synaptic transmission (data not shown).

B Publications

The following publications, produced from the work in this thesis, are included.
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Figure A.2: Prolonged exposure to NaCl sensitizes ASH. (A) The response of ASH to 200 mM
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NaCl were unchanged. (B) Average maximum ratio changes (± SEM) in ASH after exposure to
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mutant with defective ASE, shows a normal osmotic response, a normal response to 200mM
without pre-exposure (C,E), but a significantly reduced response to 200mM after pre-exposure
(D,E). Statistical significance ns: p>0.05, *: p<0.05, *** p<0.005.
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