131 research outputs found

    Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for Low-power Neuromorphic Hardware

    Full text link
    In recent years the field of neuromorphic low-power systems that consume orders of magnitude less power gained significant momentum. However, their wider use is still hindered by the lack of algorithms that can harness the strengths of such architectures. While neuromorphic adaptations of representation learning algorithms are now emerging, efficient processing of temporal sequences or variable length-inputs remain difficult. Recurrent neural networks (RNN) are widely used in machine learning to solve a variety of sequence learning tasks. In this work we present a train-and-constrain methodology that enables the mapping of machine learned (Elman) RNNs on a substrate of spiking neurons, while being compatible with the capabilities of current and near-future neuromorphic systems. This "train-and-constrain" method consists of first training RNNs using backpropagation through time, then discretizing the weights and finally converting them to spiking RNNs by matching the responses of artificial neurons with those of the spiking neurons. We demonstrate our approach by mapping a natural language processing task (question classification), where we demonstrate the entire mapping process of the recurrent layer of the network on IBM's Neurosynaptic System "TrueNorth", a spike-based digital neuromorphic hardware architecture. TrueNorth imposes specific constraints on connectivity, neural and synaptic parameters. To satisfy these constraints, it was necessary to discretize the synaptic weights and neural activities to 16 levels, and to limit fan-in to 64 inputs. We find that short synaptic delays are sufficient to implement the dynamical (temporal) aspect of the RNN in the question classification task. The hardware-constrained model achieved 74% accuracy in question classification while using less than 0.025% of the cores on one TrueNorth chip, resulting in an estimated power consumption of ~17 uW

    Integer Factorization with a Neuromorphic Sieve

    Full text link
    The bound to factor large integers is dominated by the computational effort to discover numbers that are smooth, typically performed by sieving a polynomial sequence. On a von Neumann architecture, sieving has log-log amortized time complexity to check each value for smoothness. This work presents a neuromorphic sieve that achieves a constant time check for smoothness by exploiting two characteristic properties of neuromorphic architectures: constant time synaptic integration and massively parallel computation. The approach is validated by modifying msieve, one of the fastest publicly available integer factorization implementations, to use the IBM Neurosynaptic System (NS1e) as a coprocessor for the sieving stage.Comment: Fixed typos in equation for modular roots (Section II, par. 6; Section III, par. 2) and phase calculation (Section IV, par 2

    THE ERA OF NEUROSYNAPTICS: NEUROMORPHIC CHIPS AND ARCHITECTURE

    Get PDF
    Since its invention the modern day computer has shown a significant improvement in its performance and storage capacity.However, most of the current processor cores remain sequential in nature which limit the speed of computation. IBM has been consistently working over this and with the launching of neurosynaptic chips, it has opened a new gateway of thought process. This paper aims at reviewing the various stages and researches that have been instrumental in the overall development of neuromorphic architecture which aims at developing flexible brain like structure capable of performing wide range of real time computations while keeping ultra-low power consumption and size factor in mind. Inspired by the human brain, which is capable of performing complex tasks rapidly and accurately without being programmed and utilizing very less energy, TrueNorth chips tends to mimic the human brain so as to perform complex computations at a faster pace. This has inspired a new field of study aimed at development of the cognitive computing systems that could potentially emulate the brain's computing efficiency, size and power.The paper also aims to highlight the inadvertent challenges of neuromorphic architecture as posed by the prevailing technologies which are a major field of research in near future

    Parallel computing for brain simulation

    Get PDF
    [Abstract] Background: The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. Aims: For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. Conclusion: This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2014/049Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    Efficient Implementation of Stochastic Inference on Heterogeneous Clusters and Spiking Neural Networks

    Get PDF
    Neuromorphic computing refers to brain inspired algorithms and architectures. This paradigm of computing can solve complex problems which were not possible with traditional computing methods. This is because such implementations learn to identify the required features and classify them based on its training, akin to how brains function. This task involves performing computation on large quantities of data. With this inspiration, a comprehensive multi-pronged approach is employed to study and efficiently implement neuromorphic inference model using heterogeneous clusters to address the problem using traditional Von Neumann architectures and by developing spiking neural networks (SNN) for native and ultra-low power implementation. In this regard, an extendable high-performance computing (HPC) framework and optimizations are proposed for heterogeneous clusters to modularize complex neuromorphic applications in a distributed manner. To achieve best possible throughput and load balancing for such modularized architectures a set of algorithms are proposed to suggest the optimal mapping of different modules as an asynchronous pipeline to the available cluster resources while considering the complex data dependencies between stages. On the other hand, SNNs are more biologically plausible and can achieve ultra-low power implementation due to its sparse spike based communication, which is possible with emerging non-Von Neumann computing platforms. As a significant progress in this direction, spiking neuron models capable of distributed online learning are proposed. A high performance SNN simulator (SpNSim) is developed for simulation of large scale mixed neuron model networks. An accompanying digital hardware neuron RTL is also proposed for efficient real time implementation of SNNs capable of online learning. Finally, a methodology for mapping probabilistic graphical model to off-the-shelf neurosynaptic processor (IBM TrueNorth) as a stochastic SNN is presented with ultra-low power consumption
    corecore