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ABSTRACT 

Neuromorphic computing refers to brain inspired algorithms and architectures. This paradigm 

of computing can solve complex problems which were not possible with traditional computing 

methods. This is because such implementations learn to identify the required features and classify 

them based on its training, akin to how brains function. This task involves performing 

computation on large quantities of data. With this inspiration, a comprehensive multi-pronged 

approach is employed to study and efficiently implement neuromorphic inference model using 

heterogeneous clusters to address the problem using traditional Von Neumann architectures and 

by developing spiking neural networks (SNN) for native and ultra-low power implementation. In 

this regard, an extendable high-performance computing (HPC) framework and optimizations are 

proposed for heterogeneous clusters to modularize complex neuromorphic applications in a 

distributed manner. To achieve best possible throughput and load balancing for such modularized 

architectures a set of algorithms are proposed to suggest the optimal mapping of different 

modules as an asynchronous pipeline to the available cluster resources while considering the 

complex data dependencies between stages. On the other hand, SNNs are more biologically 

plausible and can achieve ultra-low power implementation due to its sparse spike based 

communication, which is possible with emerging non-Von Neumann computing platforms. As a 

significant progress in this direction, spiking neuron models capable of distributed online learning 

are proposed. A high performance SNN simulator (SpNSim) is developed for simulation of large 

scale mixed neuron model networks. An accompanying digital hardware neuron RTL is also 

proposed for efficient real time implementation of SNNs capable of online learning. Finally, a 

methodology for mapping probabilistic graphical model to off-the-shelf neurosynaptic processor 

(IBM TrueNorth) as a stochastic SNN is presented with ultra-low power consumption.  
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1 INTRODUCTION 

The brain has a very efficient and hierarchical architecture to process information [1]. It 

performs inference and decision-making tasks based on pattern matching and sensory association 

in the context of learned knowledge, which is the most important step towards cognition. With 

this motivation, the paradigm of brain inspired computing called neuromorphic computing has 

gained lot of attention recently. This emerging field of computing is offering a possible pathway 

for approaching the brain’s computing performance and energy efficiency for cognitive 

applications such as pattern recognition, speech understanding, natural language processing etc. 

Currently more and more complex problems are being attacked using machine intelligence and 

deep learning concepts which fall under this paradigm. They are being adopted for Industrial 

applications and in research environment for solving problems which are very hard to articulate 

as it requires intuitive reasoning along with analytical abilities. Many strides in this field have 

been made from the inspiration of how the brain solves very complex problems using insights 

from well-established statistical analysis methodologies. These brain-inspired computing models 

have three main aspects to it; 1) the model itself which performs inference based predictions, 2) 

parameters used by the model to enable inference and decision making and 3) training the 

parameters for tuning the model to make better predictions. The ability of the model to learn is 

critical because of the vast parameter space one must explore, which is impossible to handle 

through the traditional programming approach. There are two main components which are the 

driving force behind these kinds of models. Firstly, large amounts of data and secondly, access to 

large amounts of compute resources to process it. 

With the rapid development in high performance computing (HPC) technologies, the research 



2 
 

 
 

in machine intelligence has entered a new era. Meanwhile, modern computing systems are 

increasingly becoming more heterogeneous. This is due to a wide variety of computing 

architectures and accelerators such as multi-core CPU, GPU, FPGA, etc. being used. There are 

many questions which must be addressed for efficient utilization of these resources; how to 

harness the computing power and storage capacity of modern HPC clusters and convert it to 

useful computations that assist or even surpass the human cognition process? Will the 

performance of current neuromorphic computing models scale as the hardware resource 

increases? What is the bottleneck of current HPC architectures when applied to cognitive 

computing and how can this be addressed by future computing tools? This work makes a 

preliminary effort in answering these questions. We propose a framework to implement complex 

applications as pipelined distributed applications which are capable of seamless scaling over 

heterogeneous cluster resources. It is also capable of distributed flow control and dynamic task 

dependency aware scheduling. Next, we address the problem of efficient resource allocation for 

such complex systems. We use a complex neuromorphic application, Intelligent Text 

Recognition System (ITRS) [2], as a case study to validate the framework and discuss the major 

advances along different modalities. The background of such a system along with key algorithms 

will be discussed. Insights into designing modular pipeline stages for complex applications which 

scale with the available compute resources is provided. We do a comparative analysis of our 

framework with existing solution for demonstrating the effectiveness of the proposed approach. 

On the flip side, the exponential growth of data over the past decade has generated a need for 

higher processing capability with low energy consumption and ease of scalability. Limitation of 

the Von Neumann architecture and barriers such as memory capacity, power density etc. in the 

CMOS technology are being highly tested to meet today’s requirements and also to fulfill 
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Moore’s predictions. These limitations have motivated novel research efforts in bio-inspired 

computing, which imitates the structure and function of the brain, the computing engine that is 

able to process massive amounts of real-time information with less than 20 Watts of power 

consumption [3]. The processing capability of brain comes from the collective processing 

abilities of simple processing components i.e., neurons. Interconnected neurons form the basis of 

a neural network. The ability of neural networks to perform pattern recognition, classification and 

associative memory, is essential to applications such as character recognition, speech recognition, 

sensor networks, decision making etc. [4] [5] [6] [7] [8]. SNNs, which use spikes as the basis for 

communication, are the third generation of neural networks inspired by the biological neuron 

models [9]. 

The SNN has the potential to reach very low energy dissipation since each neuron works 

asynchronously in an event-driven manner. Moreover, fully distributed Spike Timing Dependent 

Plasticity (STDP) learning [10] can be achieved on SNNs, which updates synaptic weight based 

only on local information of individual neuron. The emerging field of stochastic SNN that 

generates spikes as a stochastic process is not only more biologically plausible [11] but also 

enhances unsupervised learning and decision making [12] [13]. It further increases the fault 

tolerance and noise (delay) resilience of the SNN system since the results no longer depend on the 

information carried by individual spikes but the statistics of a group of spikes. With this 

inspiration a focused effort is made to present a high-performance SNN simulation framework 

for developing spiking neuron models and simulation of large-scale SNNs. For efficient and 

native implementation, digital hardware is proposed for SNN implementation. Finally, a 

methodology is presented for modelling probabilistic graphical model used in ITRS as SNN is 

presented, which is realized on off-the-shelf neurosynaptic processor for ultra-low power and 
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real-time evaluation of the neural network. 

1.1 CONTRIBUTIONS 

To address the challenges of implementing efficient brain inspired systems different 

approaches have been adopted spanning system level design decisions to low level optimizations. 

The primary contributions of this work are listed below 

1. A Scalable Linear Pipeline (SLP) framework is proposed which integrates the 

optimization techniques for node level system design and cluster level distributed system 

design for a holistic approach using existing computing technologies. 

2. The concept of scalability of a pipeline is introduced. Each stage is made modular with 

uniform communication architecture for flexibility of mixed module designs which allow 

for maximum available resource utilization without the need for expensive application 

redesign for heterogeneous clusters. 

3. Asynchronous pipeline concepts are introduced for such a scalable architecture which 

enables out-of-order computation, hence minimizing idle time i.e. increased throughput. 

4. Novel structure based runtime scheduling is introduced for achieving maximum 

performance for asynchronous workload processing with varying module latencies while 

respecting the data dependencies. 

5. For achieving best possible throughput, a set of algorithms are proposed to suggest the 

mapping of software modules to various hardware resources available on a 

heterogeneous cluster. 

6. For a more efficient and biologically plausible brain inspired implementation, several 

spiking neuron models are proposed which are capable of distributed on-line learning. 
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7. An efficient and high-performance spiking neural network simulator architecture is put 

forward for large-scale SNN simulation involving mixed neuron models and different 

learning rules. 

8. A digital spiking neuron hardware design is proposed which is capable of online learning 

for a comprehensive take on SNN implementations. The architecture is pipelined to 

compute inference and learning task with approximately same throughput compared to 

existing digital spiking neuron model implementations including those which don’t 

implement in hardware learning. 

9. Finally a streamlined approach is presented to map a probabilistic inference model as a 

spiking neural network on existing off-the-shelf neurosynaptic processor  
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2 SCALABLE LINEAR PIPELINE FRAMEWORK 

Today increasingly complex applications are being moved from the end user to the cloud 

infrastructure [14] [15], due to the cost advantage and ease of access to large amounts of 

computing resources. This shift has positively impacted the field of research, scientific 

computing, big data, large scale consumer applications, complex system simulations, 

neuromorphic computing, financial modeling etc. The key enablers for this shift are the reducing 

cost of high performance computing (HPC) resources and the ability to handle large amounts of 

data [16]. Distributed data storage and management techniques have become very popular to 

sieve through large amounts of data efficiently [17] [18]. Tremendous technological 

advancements are being made in terms of computing accelerators, resulting in the rapidly 

increasing popularity of heterogeneous clusters. Since these clusters include processors with 

different basic architectures, they provide unique performance and cost tradeoffs for different 

types of workloads. To achieve peak performance, software running on heterogeneous cluster 

needs to be designed carefully to provide enough flexibility to explore its diversity. With these 

developments in HPC technologies, the design and development of high impact, complex 

applications, especially in the field of machine intelligence have entered a new era. Since these 

clusters include processors with different basic architectures, they provide unique performance 

and cost tradeoffs for different types of workloads. To achieve peak performance, software 

running on heterogeneous cluster needs to be designed carefully to provide enough flexibility to 

explore its diversity. 

These applications are designed as linear pipelines to maximize their throughput as they 

process huge amounts of requests in a streaming manner while requiring access to large amounts 
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of data. They have the ability to hide the overhead of managing communication, processing and 

synchronization which are very beneficial for HPC paradigm [19]. Significant research has been 

made in modeling such applications especially in the context of large-scale platforms. There are 

many challenges including the design of applications, identifying different stages of the pipeline, 

identifying a suitable pipelining model, data partitioning, parallelizing, mapping of pipeline stages 

to different resources etc. Traditionally Linear pipeline models are preferred due to their 

simplicity in design and implementation. For streaming applications, all stages of the pipeline 

must be active and processing requests hence requiring more resources compared to non-

streaming applications where interval based resource allocation is a standard. These linear 

pipeline models are limited in terms of their scalability. To scale these models, it requires a fresh 

look at how the stages can be re-decomposed to improve the performance. In this work, we 

propose a Scalable Linear Pipeline (SLP) framework which overcomes these limitations and 

affords seamless scalability over a heterogeneous cluster while performing dynamic distributed 

load balancing, distributed flow control along with data dependency aware scheduling. In a 

heterogeneous cluster a stage can be mapped to run on only a limited number of nodes, making 

the problem of mapping the pipeline harder. It is a non-trivial task to determine a mapping for 

such a highly-constrained model as in this model we allow simultaneous compute resource 

sharing for stream processing which is more desirable in the real-world applications. 

We build the SLP framework using principles of traditional lineal pipeline model. The task 

dependencies spanning across different stages is modelled as a dependency graph and how their 

behavior scales with the increasing number of resources is outlined. The SLP allows automatic 

load balancing and self-scheduling. These capabilities are explained using the dependency graph 

and a simple analytical performance estimation model is presented. The SLP also allows flexible 
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resource utilization. The algorithm for mapping the SLP to available resources in a heterogeneous 

cluster is discussed.  

Distributed systems are widely used and have been extensively studied. Different kinds of 

distributed pipeline based architectures are proposed. A state based distributed pipeline 

framework is presented in [20]. Here the compute nodes are separated from the pipeline control. 

Instead of message passing the state objects are passed which encapsulate the data. The load 

balancing is achieved through producer/consumer relationship i.e. processing happens 

asynchronously. However, there is an extra overhead in creating and decoding state objects at 

every stage apart from data processing. A distributed pipeline processing architecture composed 

of flow-models, called meta-pipeline is proposed for general-purpose computation [21]. The 

architecture is suitable for stream based processing. This requires input and output streams along 

with the parameters for every flow-model. These details and other properties are encapsulated in 

XML. This kind of modularization enables distributed task based execution. Though this system 

is distributed it requires centralized management to assign and load flow-models. Fully utilizing 

the performance of heterogeneous resources is a challenging task. Design methodology for 

executing applications on heterogeneous platforms, which are specified as synchronous dataflow 

(SDF) graphs is proposed in [22]. The authors try to maximize the end-to-end throughput of an 

application developed in OpenCL by modeling it using SDF graph. Data-intensive workflow 

optimization is presented in [23] which uses task graph partitioning to improve the performance 

of streaming applications on heterogeneous systems. By minimizing the data movement between 

partitions, they reduce the latency and increase the overall throughput, however they allow task 

duplication across partitions. This method is not suitable for applications which have dynamic 

task dependencies. 
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Mapping such pipelined applications to compute resources is a non-trivial task. The work 

presented in [24] discuss the theoretical aspects of a linear pipeline with computation and 

communication overlap. They present models for interval based resource mapping for 

homogeneous and heterogeneous platforms. The ELPC model presented in [25] discusses 

mapping of linear pipeline models over a wide area network. They present a dynamic 

programming approach to solve the mapping problem. A similar approach is demonstrated in 

[26] with a focus on visualization pipeline. In the above works the mapping is done with interval 

based resource sharing. This introduces additional complexities on optimizing buffer sizes which 

is studied in the work presented in [27]. These approaches are not very scalable as the pipeline 

design has to re-worked to improve the performance. These pipeline models are developed for 

distributed applications. They also don’t address the problem of task scheduling for complex 

workloads which is partly because their models don’t scale easily hence having very simple first 

come first serve scheduling. A cuckoo search based scheduler for mapping of workflow tasks on 

heterogeneous cloud resources is presented in [28]. 

Clustering Method based Task Dependency resolution scheme is introduced in [29] to handle 

today’s complex data dependent task scheduling in distributed application environments. In this 

task clustering methodology, they merge fined-grained tasks into coarse-grained jobs. Hence, 

with clustering they try to reduce execution overhead and to improve the computational 

granularity on distributed resources. This approach, requires the detailed knowledge of tasks 

which differ significantly for different applications and also needs a centralized analysis to 

determine the scheduling behavior. Ke Wang et al. [30] present a locality aware load balancing 

scheme for data-intensive workloads many-task computing models. This is a fully distributed task 

scheduling architecture however; this approach requires full connection among compute nodes 



10 
 

 
 

which is not always ideal. A k-means algorithm based initial data placement strategy [31] is 

introduced to have optimized task scheduling for data intensive workloads for distributed 

applications. 

In contrast to the aforementioned related works, the goal of our work is to show how complex 

application with various processing requirements can be converted to scalable, distributed 

applications even for data intensive workloads. The research community has been focusing on 

different aspects of pipeline processing and strategies for scaling applications in distributed 

environments as different problems. This is the first work to our knowledge where we introduce 

the concept of scaling of pipelined application models over distributed resources. We also 

introduce a distributed scheduling strategy for such implementations which enables dynamic load 

balancing and out-of-order execution for higher hardware resource utilization. Compared to a 

traditional linear pipeline optimized using the Efficient Linear Pipeline Configuration (ELPC) 

[25], the SLP and our proposed resource mapping algorithm achieve the resource utilization 

efficiency, which was not possible before. To validate our performance estimation model and to 

demonstrate the potential of the SLP, we implement a neuromorphic application called Intelligent 

Text Recognition System, as a case study. Details of pipeline construction, management, 

scheduling and inter-stage communication are discussed. The experimental results show that our 

performance estimation model achieves 96% accuracy compared to the measured results, and our 

resource mapping algorithm improves resource utilization and is capable of providing linear 

scaling where ELPC failed to address these concepts.  

2.1 PIPELINE MODEL 

For any streaming application, the end-to-end throughput is among the essential factors 



11 
 

 
 

considered during the design phase. Latency of such applications play an important role however, 

it is not critical while determining the sustained throughput. Large applications, requiring heavy 

computation while needing access to large databases are typically implemented as deep pipelines. 

Pipelines are efficient for streaming applications as they have the ability to hide latencies across 

various stages, while trying to optimize for maximum resource utilization. In general, complex 

applications are looked as a linear sequence of distinct stages. Each stage in a linear pipeline 

performs a task in-order, hence they are referred to as first-in-first-out systems.  

 

Various graph based models have been used to capture task dependicies. A workflow graph 

representing linear task dependencies which can be resolved in-order fashion is shown in Fig. 1. 

Each node in this graph represents a computation task and the directed edge represents the data 

dependency. For example, 𝑡2 depends on 𝑡1 and so on until the final task 𝑡𝑥 which depends on its 

previous task 𝑡𝑥−1. It is important to note that the task dependency is known at design time and it 

specifies the task execution order. We assume that ASAP scheduling is adopted, which will start 

the execution of a computing task as soon as all of its inputs are ready and the computing 

resource is available. If multiple tasks are ready for execution, then the earliest one will be 

picked.Fig. 1. Each node in this graph represents a computation task and the directed edge 

represents the data dependency. For example, 𝑡2 depends on 𝑡1 and so on until the final task 𝑡𝑥 

which depends on its previous task 𝑡𝑥−1. It is important to note that the task dependency is 

known at design time and it specifies the task execution order. We assume that ASAP scheduling 

is adopted, which will start the execution of a computing task as soon as all of its inputs are ready 

and the computing resource is available. If multiple tasks are ready for execution, then the earliest 

 

Fig. 1. Typical task dependencies of a linear pipeline 

𝑡2 𝑡1𝑡𝑥
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one will be picked. 

 

The above linear dependency directly corresponds to a Linear Pipeline (LP) model.  Fig. 2 

shows a generic block diagram of such a linear pipeline. It has 𝑙 stages. The output 𝑊𝑘 of any 

stage 𝑚𝑘 where 1 ≤ 𝑘 ≤ 𝑙 is considered as the workload for subsequent stage 𝑚𝑘+1, here 𝑊0 is 

the input to the pipeline and 𝑊𝑙 is the final output of the pipeline. Each workload represents a 

single task for the next stage. Each stage of the pipeline can resolve one task or a sequence of 

consecutive tasks in the workflow graph. After modeling the pipeline, we map each stage to a 

computing resource. To achieve the highest parallelism and maximum resource utilization, it is 

desirable to have similar latency in each stage hence no computing resource is idle during the 

processing.  

We focus our attention towards streaming pipelines as they are more practical in processing 

large datasets by taking advantage of concurrent stages. Especially when it is required to look up 

large distributed databases which is common in today’s applications such as; neuromorphic 

applications, business intelligence, big data, machine learning, deep learning etc. The only way to 

scale such pipelines is to break the tasks at a finer grain and make the pipeline deeper, i.e. add 

more stages to increase the effective parallelism. However, this is limited by the granularity of 

hardware computing resources and the parallelism within a computing task.  

A traditional linear pipeline as shown in Fig. 2 is primarily a first-in-first out system which 

doesn’t scale efficiently. Making the pipeline deep is the only way of scaling which has a 

significant overhead in terms of remodeling the tasks and redesigning the computing stages to 

 

Fig. 2. Linear pipeline model 

𝑚1 𝑚2 𝑚𝑙
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scale such pipelines. To overcome the pipeline scaling issue, we propose a Scalable Linear 

Pipeline (SLP) framework. The SLP looks at the application at the cluster level and treats it as a 

macro pipeline. To achieve best performance every module must be efficient enough to keep this 

macro pipeline busy as much as possible. To achieve this goal, we treat each module as a micro 

pipeline. Each stage is treated as a pipeline for achieving higher throughput but this is not a 

binding requirement by the framework. We employ a modular approach to enable scaling not 

only along the number of stages but we scale at every stage, hence resulting in wider pipeline. A 

typical SLP is shown in Fig. 3. 

 

In contrast with a LP, SLP consists of consecutive layers composing a linear pipeline as each 

layer consists of multiple parallel instances of a stage. Therefore, SLP consists of 𝑙 layers. Each 

layer 𝑘, 1 ≤ 𝑘 ≤ 𝑙 is a set of parallel stage instances 𝑚𝑘𝑖 called as modules, where 𝑖 ≥ 1 is an 

arbitrary number based on the scaling of the 𝑘𝑡ℎ layer. Multiple independent tasks are grouped as 

workload to minimize traffic between modules and reduce the compute resource idle time at the 

destination module. The result 𝑊𝑘𝑖 of any module of a layer 𝑙 is considered as the workload for 

subsequent layer 𝑙 + 1, here 𝑊0𝑖 are the input workloads to the pipeline and 𝑊𝑙 is the final 

output of the pipeline.  

In SLP, tasks in the workflow graph are partitioned such that there are no data dependencies 

across workloads of the same layer. The modules in the same layer operates asynchronously. 

 

Fig. 3. Scalable linear pipeline model 
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There is no guarantee of the order of the task completions. This will not cause problem because 

the task precedence constraints are ensured by the structure of the pipeline and the ASAP 

scheduling of resolved tasks. Due to scaling of a layer a task can have dependencies from 

different modules of previous layer. Any unresolved task is buffered to enable computation of 

resolved tasks in out-of-order manner. Even with such task dependency, this model is a linear 

pipeline as the dependencies are between consecutive layers. The last layer of SLP has only one 

instance, which collects and reorder the out-of-order completed tasks.  

Each module can have a variety of design requirements based on the application hence, it is 

not practical to build a model which suits all the design decisions of distributed applications. 

Instead we outline few strategies which are ideal for SLP based implementation. An input task 

can be further parallelized to sub tasks and scheduled to thread pools or multiple whole tasks can 

be scheduled to thread pools for computation on a CPU based architecture. The computation can 

be vectorized or can be accelerated and optimized based on the hardware platform requirements. 

The key idea behind these suggestions is to keep the hardware resources busy as long as possible 

while maintaining out-of-order computation which perform task resolution based scheduling. For 

these micro pipelines to work together a common communication interface which runs 

independently and in parallel to computation is needed to make the system design modular so as 

to scale seamlessly. Therefore, SLP is a pipeline of pipelines working asynchronously. 

The proposed SLP is flexible as it is agnostic to the nature of computation that happens within 

an instance of a stage as long as the input and output workloads are of same type as in that layer. 

Therefore, the model supports modular design for implementing the pipeline as modules in a 

layer can be implement on different hardware platforms and technologies with different latencies. 

A typical task dependency graph for SLP is shown in Fig. 4 for three consecutive layers. Here 
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task 𝑡1𝑘 of layer 𝑘 has dependence on a set of tasks 𝑡1𝑘−1 up to 𝑡𝑥𝑘−1 of previous layer 𝑘 − 1. 

From the figure, hierarchical task dependency is evident.  

 

Task data dependencies are application and data specific. In some applications where bottom 

up processing is used, the output of multiple computing tasks at fine granularity will be 

assembled as one workload to trigger higher level processing. In other applications where top 

down processing flow is used, the output of one upper level computing task will trigger multiple 

lower level computing tasks. Although both are interesting scenarios in the SLP optimization, the 

latter is more challenging in the SLP, which performs out-of-order-execution, because it consists 

of tasks with multiple dependencies. The number of upper or lower level tasks and their relations 

are often not fixed, but rather data driven.  To support out-of-order computation we allow 

breaking linear tasks to fine grained sub-tasks when compared to LP model. This procedure 

creates dependency as the actual task is resolved only when the sub-tasks are resolved.  The 

number of sub-tasks is dependent on the size of the actual task which is dynamic. These sub-tasks 

are treated as independent tasks in SLP, which are processed by employing fork and converge 

strategy. As the tasks across the layers converge downstream their dependencies get resolved and 

the processing gets done hierarchically. Therefore, actual task dependence graph cannot be 

known at design time. The first layer forks the tasks, the middle layers converge hierarchically to 

resolve the dependencies and the last layer is to re-order the out-of-order resolved tasks. 

 

Fig. 4. Typical task dependencies of a scalable linear pipeline 
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Therefore, SLP requires a minimum of 3 layers to support the fork and converge design 

methodology. The number of upstream layer tasks required to resolve one task in the current 

layer cannot be known at design time. Such information is only available during runtime. 

However, the general fork and converge structure is known at design time. Using this knowledge 

structure based runtime scheduler is proposed to resolve these dynamic task dependencies. We 

discuss this in section 2.5. 

In the proposed design methodology, the communication happens asynchronously and in 

parallel to computation. Therefore, the communication latency is hidden. Let 𝐿𝑠𝑐 represent the 

link delay between a given pair of adjacent layer modules (𝑚𝑠, 𝑚𝑐) where subscript 𝑠 stands for 

source and 𝑐 stands for consumer. Since the latency is hidden 𝐿𝑠𝑐 is not a critical parameter in our 

model. For SLP to guarantee deadlock free operation the input of every module must have input 

buffers large enough to accommodate partial results from previous layers till the task of that layer 

is resolved. It must have output buffers as well to temporarily store the results from the micro 

pipeline till the results can be forwarded to the next downstream module. If the output buffer is 

full then it stalls the micro pipeline, till there is room to store new results. However, it is straight 

forward to compute the minimum size of input and output buffers of a module by accounting for 

the variance in the rate of messages received and the rate of messages processed. In this work, we 

target a computing cluster, more specifically a heterogeneous cluster instead of a wide area 

network of computing resources. Therefore, the latencies 𝐿𝑠𝑐 are small. Our model can be easily 

extended to a wide area network scenario with larger input and output buffers to account for the 

variability of message arrival rates and link latencies. 
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2.2 DYNAMIC DATA DEPENDENCY  

To accommodate scaling at layer level, the modularization strategy was based on breaking 

complex tasks into multilevel data dependencies and creating large number of small independent 

workloads which can be processed parallelly by different modules in a layer. This results in 

dynamic data dependencies which need to be resolved in real time. The first layer creates small 

independent tasks which are forked to the next layer hence, there is one-to-one task dependency 

with the second layer as shown in Fig. 5(a). The dependency is one-to-one because bottom-up 

approach is used and the first layer created the leaf tasks which must be now processed in the next 

layer.  

 

All other consecutive layers have convergent task dependence as shown in Fig. 5(b). A 

workload is a group of tasks which is transmitted as messages from one module to other across 

consecutive layers over point to point links. Since all tasks in a layer are independent, all tasks 

with in any given workload are mutually exclusive. However, those tasks have dependencies 

across layers. Depending on the resources available and the input these tasks complete 

asynchronously. Task 𝑡𝑥 at the 𝑘𝑡ℎ layer is resolved if the set of dependent tasks Γ𝑥𝑘−1 from the 

previous layer in the graph are computed which is denoted as 

𝑋(𝑡𝑥𝑘) =∧∀𝑡𝑖∈Γ𝑥𝑘  
(𝑋(𝑡𝑖)) 

              

(a)                                                                                  (b) 

Fig. 5. (a) Task dependency between 1st and 2nd layer (b) Task dependence between 
consecutive layers except 1st and 2nd layer 
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The results of the subset of tasks belonging to Γ𝑥𝑘−1 which are not yet resolved must be 

buffered at the input of every module until 𝑋(𝑡𝑥𝑘) is resolved. Once 𝑋(𝑡𝑥𝑘) is resolved, task 𝑡𝑥𝑘 

is scheduled for computation. The rate at which 𝑋(𝑡𝑥𝑘) is resolved depends on the input and the 

compute resources available, therefore it is critical to have multiple such tasks queued up to 

increase resource utilization. This condition can be met by having large number of tasks in the 

workloads and having multiple redundant paths of execution in the scaled pipeline which is 

determined by the width of the pipeline at that layer. 

To support such task resolution in a de-centralized manner we apply constraints on the 

connectivity pattern among modules between every consecutive layer. We use point-to-point 

connectivity between modules of consecutive layers to keep the data flow de-centralized. Two 

types of connectivity patterns are used to support the fork and converge model described earlier 

as shown in Fig. 6. 

 

Fig. 6(a) shows the connectivity constraints between the first two layers of the pipeline, it has 

one-to-many connectivity (C1M) pattern. Fig. 6(b) shows the connectivity constraints between all 

consecutive layers except 1st and 2nd layer. This pattern has many-to-one connectivity (CM1). For 

the case of C1M the module 𝑚1𝑥 breaks up its workload into small tasks and schedules it to one 

of its out-going paths thereby performing a fork operation. CM1 on the other hand performs the 

converge operation by reducing the results from several upstream tasks. Since CM1 is present 

              

(a)                                                                 (b) 

Fig. 6. (a) Single fan-in, multi fan-out connectivity (b) Multi fan-in, single fan-out 
connectivity 
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between many layers, the reduction happens hierarchically. Therefore, the connectivity 

constraints which help in determining the number of source and consumer modules is expressed 

as 

C1M constraint: |𝑚𝑠| ≤ |𝑚𝑐| 

CM1 constraint: |𝑚𝑠| ≥ |𝑚𝑐| 

We try to match the performance of each layer by managing the level of parallelism in each 

layer. The the number of modules required in each layer is determined to achieve the required 

performance, we refer to this as scaling. After determining the scaling of each layer, these 

modules are interconnected based on the connectivity constraints. The resulting pipeline graph is 

called as System Topology Graph (STG). Fig. 7 shows an example of a typical STG for the SLP. 

This example has 5 layers with 2,5,3,2,1 scaling in layers 1 through 5 respectively. It is interesting 

to note that SLP is a super-model of LP model. If we restrict one module per layer and restrict 

that each workload is one task then SLP reduces to a LP model. 

 

 

Fig. 7. A typical system topology graph 
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2.3 PERFORMANCE MODEL OF SLP 

Every module of the 𝑘𝑡ℎ layer, 𝑚 ∈ 𝑚𝑘1, 𝑚𝑘2, 𝑚𝑘 , … ,𝑚𝑘𝑖 can run with different 

configurations resulting in different throughput  ∈  𝑘1,  𝑘2,  𝑘 , … ,  𝑘𝑖. Those configurations 

include the number of threads in the software implementation, the assignment of hardware 

platform, or other algorithm based settings. Different binaries can also be developed to run the 

same module on different hardware architecture. These binaries are individual processes 

represented as 𝑝 ∈ 𝑝1, 𝑝2, 𝑝 , … , 𝑝𝑢 where 𝑢 is the maximum number of processes for any 

given module 𝑚. Therefore, 𝑐 ∈ 𝑐1, 𝑐2, 𝑐 , … , 𝑐  represent configurations where, 𝑛 is the 

maximum number of unique set of process-parameters associated with each given process 𝑝 of a 

module 𝑚. In other words, a module 𝑚 can be realized by any of 𝑐1 to 𝑐  configurations. Where 

each configuration represents a process binary for a given hardware architecture along with the 

associated parameters. Each layer can run a mixture of these configurations hence SLP has a 

large design space. 

It is a common practice to model the processing performance of different hardware nodes 

used in the system to be normalized across performance of different modules. This abstraction 

encapsulates the processing speed, memory, bus speed etc. and makes mapping algorithms 

simpler however, this adds an approximation to the model. Instead of modeling the system using 

normalized processing requirements for modules and the available hardware resources, we 

perform dry runs to collect empirical data for reliable performance modeling. However, this is not 

a limiting factor, as the same model can be used with normalized representation of performance 

requirements. For every server 𝑠 ∈ 𝑠1, 𝑠2, 𝑠 , … , 𝑠𝑟 with 𝑟 nodes in the heterogeneous cluster, 

let 𝑇𝑚𝑎𝑥,𝑠 denote the number of logical cores in 𝑠, and 𝑀𝑚𝑎𝑥,𝑠its peak memory bandwidth. This 

gives us the upper limit of the supported compute and memory bandwidth capacity for every 
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server 𝑠. 

Next, we determine the CPU level thread concurrency 𝑇 and the memory bandwidth 𝑀 

needed to run every configuration 𝑐 of each module along with its run time 𝜏. It is necessary to 

measure the CPU level concurrency as each module configuration consists of threads performing 

different tasks which are not always concurrent, this way we obtain the actual impact of the 

configuration on specific compute resource. To enable this data collection, each process along 

with its set of parameters must be analyzed independently i.e. ∀𝑐 ∈ 𝑚. The value of 𝜏 recorded is 

the run time achievable for the given configuration 𝑐. The value of 𝜏 is normalized to the unit task 

the end-to-end pipeline is processing to get per unit work of runtime. 𝑇 and 𝑀 are not normalized 

as they represent the steady state requirements to run a configuration. Rate is computed as  =

1/𝜏 which represents the number of unit work processed per second for every 𝑐 ∈ 𝑚.  

For SLP to run at maximum performance all modules must be processing at maximum 

capacity. This is possible when every module is receiving tasks at maximum input rate. 

Therefore, to determine the performance of such a pipeline we measure the performance of 

individual modules in a standalone manner for maximum input rate. Using the standalone 

performance as building blocks, we determine the SLP performance. In practice, it is not practical 

to assume that all the modules have same performance. The performance of SLP is determined 

by the layer with least throughput, i.e. max runtime. Therefore, we model the throughput  𝑃 of 

SLP as  

 𝑃 = 𝑚𝑖𝑛𝑘=1 𝑡𝑜 𝑙(∑  𝑘𝑖𝑖=|𝑚𝑘| )  

Mapping hardware resources to run different modules and to determine the STG for such 

mapping while optimizing the end-to-end throughput is a non-trivial task. We provide the 

solution for this challenge in section 2.4 based on the performance model discussed here. 
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2.4 RESOURCE MAPPING FOR MAXIMUM THROUGHPUT 

To achieve high performance, all pipeline stages should have the same throughput. However, 

the workloads of different layers differ significantly. A layer with heavy load should be able to 

grab more computing resources and scale accordingly. Each software module which runs on a 

hardware node can employ multi-threading or any hardware platform specific acceleration and 

optimization to achieve maximum efficiency possible. The performance of a module 

(configurations 𝑐) and the number of modules in a layer are parameters that are determined to 

keep a balanced pipeline. To allocate more resources to a particular layer, we simply need to 

instantiate more modules or use different configuration of a module of that layer. In a 

heterogeneous system, their selection not only depend on the layer a module belongs to but also 

the hardware that the modules and its configurations that can run on it. 

The goal of resource mapping is to find the best SLP structure and a mapping between SLP 

modules and hardware computing resources to achieve optimum throughput. During this 

procedure, we add or remove SLP modules to balance the throughput among layers, therefore the 

structure of SLP and the mapping scheme evolve simultaneously. Please note that in a 

heterogeneous system, maximum resource utilization does not necessary mean maximum 

throughput. 

Resource mapping for maximum performance is a hard combinatorial problem. Our heuristic 

algorithm consists of two major steps. First, we find a minimum feasible solution (MFS) such that 

one module from every layer is assigned a compute resource. Then we improve the MFS by 

allocating additional modules to available compute resources to eliminate bottlenecks and 

achieve a desired throughput. The throughput of every module and end-to-end throughput of the 

pipeline is measured in terms of number of unit-work processed per second. 
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Many constrained resource matching problems are solved using dynamic programming, 

which has pseudo-polynomial time complexity. To apply dynamic programming, we must be 

able to construct the optimal solution of the problem based on the optimal solution of its sub-

problems. This requires the solution space to be discretized resulting in re-use of sub-problem 

solutions. The work presented in [25] solves a resource mapping problem for a linear pipeline 

using dynamic programming techniques. They propose an algorithm called Efficient Linear 

Pipeline Configuration (ELPC) with a constraint that a hardware resource is not concurrently 

running multiple modules while optimizing for end-to-end throughput. ELPC however allows 

interval based resource sharing with different modules which is again non-concurrent sharing. In 

the proposed pipeline model each module has multiple configurations who are candidates for 

resource mapping to hardware resource which is already mapped with a configuration which has 

partially utilized that resource. This kind of mapping improves resource utilization efficiency. 

Therefore, the proposed model is more efficient than ELPC as it tries to utilize the hardware 

resources to the maximum extent possible. Since SLP allows simultaneous resource sharing, the 

sub-problems of partial resource allocation can’t be guaranteed to have optimal solution due to 

fractional allocation of resources. The sub-problem solution can’t guarantee optimal sharing of a 

resource till all the configurations of not yet visited sub-problems are analyzed. Therefore, we 

propose a solution based on backtracking methodology.  

For solving the mapping and throughput optimization problem we make use of a resource 

allocation graph with some enhancements to keep track of resource sharing, we call this 

Simultaneous Resource Allocation Graph (SRAG) as shown in Fig. 8. Every edge represents a 

configuration 𝑐 of a module 𝑚. A request edge represents a resource allocation request from a 

module to a hardware resource. The assignment edge represents a mapping between module and 
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hardware. We introduce another type of edge called invalid edge which is represents a 

configuration that was deemed infeasible for mapping based on the available resources. 

Therefore, to run a module there are a set of associated configurations which can be allocated to 

hardware resources based on their availability in the cluster. Each configuration has an associated 

cost in terms of required concurrency, memory bandwidth, number and type of accelerator cards 

etc.  

 

We now introduce the properties and methods of SRAG. The SRAG is used to keep track of 

module assignments. It evolves iteratively till a final solution is obtained. Each iteration consists 

of updating an edge state of SRAG which involve setting an edge type as assignment, request or 

invalid. A request edge of SRAG is transformed to an assignment edge if the hardware has 

enough resources available as required by the cost of the edge, if not than this edge is transformed 

to an invalid edge. Whenever an edge is transformed from request or invalid type to assignment 

type then the edge-cost amount is deducted from the available resources for that server, indicating 

the amount of hardware resource used up for this assignment. Inversely, when an edge is 

transformed from assignment type to request or invalid type then the edge-cost amount is added 

back to the available resources of that server, indicating freeing up of hardware resources. 

An evolution of SRAG is defined as a set of iterations of SRAG which result in assigning 

minimum number of modules which results in an increase of overall throughput. After every 

 

Fig. 8. A typical simultaneous resource allocation graph 
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evolution of SRAG the corresponding STG is computed. It is important to note that a module can 

have only one assignment edge associated with it as it can run on only one server at a time. In 

contrast, STG consists of connections between the modules which represents the actual system 

topology of the modularized distributed application which runs on the heterogeneous cluster. 

2.4.1 MINIMUM FEASIBLE SOLUTION 

Initial SRAG is created with one modules each for a layer. It also has as many resource 

vertices as the number of available servers. The SRAG at this point has only request edges, which 

represent all possible configurations 𝑐 to work with. The MFS algorithm is a recursive function 

based on backtracking principles. Backtracking performs exhaustive recursion which can be 

potentially very expensive. For every recursive call, we make a decision-point for getting a 

feasible assignment and continue further to explore next feasible assignment. If further such 

assignment is not possible then we backtrack to the decision-point and try other alternatives. In 

this way, we backtrack only as far as needed. We apply a heuristic by pre-processing the input to 

the algorithm to reduce the recursion depth for average case.  

A list of request edges is made by selecting one edge per module from the request edges 

belonging to each module. The selected edge has minimum run time among all the request edges 

of that module. While comparing a tie on run time is broken with the edge having minimum 

memory bandwidth and a tie on this is further broken with the layer priority of the module. 

Modules in layer 1 have highest priority and modules of layer 𝑙 have the least priority. This list 

represents the best possible assignment each module can potentially get. It is logical to map 

upstream modules before the downstream ones so that potential bottleneck may appear in lower 

layers hence reducing future optimization effort. For this reason, layer priority is used as a tie 

breaker. These selected edges are now sorted with the same comparison policy but in descending 
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order. Therefore, the edge with highest runtime is on top in the sorted edge list. We now make a 

two-dimensional jagged array (modEdgeLists 𝑚𝑒𝑙) with each row containing all the request 

edges of a module. The order of rows of this array is same as the module order associated with 

the sorted edge list. The row order represents the possible bottleneck layer hence this module will 

be mapped first. Each column of a row in 𝑚𝑒𝑙 represents the possible configurations the module 

represented by that row can have. The elements of every row are sorted in ascending order with 

the comparison policy mentioned above. From this ordering of 𝑚𝑒𝑙 we can say that; potential 

bottleneck layer is assigned its best configuration first. Ordering of 𝑚𝑒𝑙 which is the adjacency 

list of SRAG constitutes the pre-processing of initial conditions to the algorithm. 

 

2.4.2 SLACK BASED TOPOLOGY CREATION 

Each module vertex has 3 parameters; input rate slack (IRS), output rate slack (ORS) and 

maximum output rate (MOR). MOR is the inverse of compute time of the assigned edge to that 

Algorithm 1. Minimum Feasible Solution 
Function MFS 

Input: modEdgeLists 𝑚𝑒𝑙, module index 𝑚𝐼𝑑𝑥 

Output: feasible edge assigned 

for each edge 𝑒 ∈ 𝑚𝑒𝑙[𝑚𝐼𝑑𝑥] do 

 if e=type Request then 

  if assignment of 𝑒 is possible then 

   set 𝑒 type ← Assign 

   edgAssigned ← true 

   if 𝑚𝐼𝑑𝑥 ≠ 𝑙 then 

    𝑚𝐼𝑑𝑥 ←  𝑚𝐼𝑑𝑥 + 1 

    if MFS(𝑚𝑒𝑙, 𝑚𝐼𝑑𝑥)=false then 

     set 𝑒 type ← Invalid 

     edgAssigned ← false 

     𝑚𝐼𝑑𝑥 ←  𝑚𝐼𝑑𝑥 − 1 

   If edgAssigned = true then 

    break 

  else 

   set 𝑒 type ← Invalid 

if edgAssigned = false then 

 for each edge 𝑒 ∈ 𝑚𝑒𝑙[𝑚𝐼𝑑𝑥] do 

  set 𝑒 type ← Request 

 return false 

return true 
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module, which is a constant value for a given configuration, i.e. the hardware platform, process 

and its parameters. These parameters are used to keep track of the rate at which a module can 

process input and generates output.  

We know that the connections between modules can be of type C1M or CM1. Between any 

two consecutive layers, the modules which generate the output are called Source Modules (SM) 

and the downstream modules are called Consumer Modules (CM). For the case of C1M 

connectivity, the number of possible connections is equal to the number of fan in slots possible 

which is equal to the number of CMs. On the other hand, for CM1 connectivity the number of 

connections is equal to number of SMs. Algorithm 2 shows how the connections between 

processes are made. These connections are made between assigned modules of SRAG hence, 

generating an STG which will be used to run the application on the heterogeneous cluster. The 

algorithm uses a max priority queue called sharedConVrtxQ. This queue holds module vertices 

with a parameterized comparison policy to either compare IRS values of member modules or 

ORS. 

In Algorithm 2, the Clear existing topology mapping step not only removes all module to 

module connections it initializes the IRS and ORS values to be equal to MOR. When a 

connection between two processes is made then slack updates are made as follows, where a 

subscript ‘c’ representing consumer module parameter and subscript ‘s’ representing source 

module parameter;  

if 𝐼𝑅𝑆𝑐 ≥ 𝑂𝑅𝑆𝑠then  

𝐼𝑅𝑆𝑐 = 𝐼𝑅𝑆𝑐 − 𝑂𝑅𝑆𝑠 and 𝑂𝑅𝑆𝑠 = 0. 

On the contrary if 𝐼𝑅𝑆𝑐 < 𝑂𝑅𝑆𝑠then  

𝑂𝑅𝑆𝑠 = 𝑂𝑅𝑆𝑠 − 𝐼𝑅𝑆𝑐 and 𝐼𝑅𝑆𝑐 = 0. 
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These module node parameter updates help in keeping track of what is the available slack per 

module based on the connectivity. This information will be used in the throughput optimization 

algorithm to determine the bottleneck layer based on the number of modules in that layer and the 

associated input and output connectivity of modules. 

Once the module parameters, IRS and ORS are computed based on the system topology, the 

effective output rate (EOR) for every assigned module in the topology and the layer effective 

output rate (LEOR) is computed for every layer in the topology. EOR for any given module 𝑚 is 

computed as,  

𝐸𝑂𝑅𝑚 = 𝑀𝑂𝑅𝑚 − 𝑂𝑅𝑆𝑚 

Finally, the LEOR a layer 𝑘 ∈ 𝑙 is computed as,  

𝐿𝐸𝑂𝑅𝑘 = ∑ 𝐸𝑂𝑅𝑚𝑚∈𝑣𝑘
  

Where 𝑣𝑘 ∈ 𝑣𝑚 for the given layer 𝑘. 

Algorithm 2. System Topology Creation 
Input: modVertices 𝑣𝑚 

Output: system topology 

Clear existing topology mapping 

srcLyr←first element ∈ 𝑙 
for each consLyr | consLyr ← ∀ 𝑙 except first element do 

 if (connectivity type(srcLyr, consLyr) ∈ C1M connectivity then 

  set sharedConVrtxQ compare policy ←ORS 

  insert 𝑚 ∈ 𝑣𝑚|𝑚 ∈ srcLyr in sharedConVrtxQ 

  insert 𝑚 ∈ 𝑣𝑚|𝑚 ∈ consLyr in array oneConVrtx 

  sort oneConVrtx in descending order of IRS 

 else 

  set sharedConVrtxQ compare policy ←IRS 

  insert 𝑚 ∈ 𝑣𝑚|𝑚 ∈ consLyr in sharedConVrtxQ 

  insert 𝑚 ∈ 𝑣𝑚|𝑚 ∈ srcLyr in array oneConVrtx 

  sort oneConVrtx in descending order of ORS 

 for each module 𝑚 of oneConVrtx do 

  if sharedConVrtxQ not empty then 

   𝑠𝑐𝑚 ← dequeue sharedConVrtxQ 

  if (connectivity type(srcLyr, consLyr) ∈ C1M connectivity then 

   make connection from 𝑠𝑐𝑚 to 𝑚 

   if ORS of 𝑠𝑐𝑚 ≠ 0 then  

    insert 𝑠𝑐𝑚 in sharedConVrtxQ  

  else 

   make connection from 𝑚 to 𝑠𝑐𝑚 

   if IRS of 𝑠𝑐𝑚 ≠ 0 then  

    insert 𝑠𝑐𝑚 in sharedConVrtxQ  
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2.4.3 THROUGHPUT OPTIMIZATION 

The process of throughput optimization involves identifying bottlenecks and removing them 

layer after layer. If a MFS exists then, STG must be analyzed for bottlenecks. A bottleneck occurs 

if a layer with higher priority has higher throughput compared to its immediate layer with lower 

priority. The end-to-end throughput  𝑃 of the pipeline and the bottleneck 𝐵𝐿 layer is 

 𝑃 = 𝑚𝑖𝑛𝑘=1 𝑡𝑜 𝑙(𝐿𝐸𝑂𝑅𝑘 ) 

𝐵𝐿 = 𝑘 ∈  𝑃 

While comparing 𝐿𝐸𝑂𝑅 values, the layer priority is used as a tie breaker. Therefore, if 

multiple layers have same output rate then the upstream layer is correctly identified as bottleneck 

layer, we call this operation as getBottleneckLyr. 𝐵𝐿 may not be the effective bottleneck layer 

when we are trying to scale the number of modules in a layer as we need to satisfy two kinds of 

constraints; slack and connectivity constraints at the bottleneck layer. Based on these constraints 

the effective bottleneck layer (ebl) is determined. The slack constraints (𝑆𝐿𝐶) are defined as 

𝑆𝐿𝐶 = {
∑ 𝑂𝑅𝑆𝑚𝑚∈𝑣 

= 0     , 𝑖𝑓 𝐵𝐿 = 1

∑ 𝐼𝑅𝑆𝑚𝑚∈𝑣𝐵𝐿+ 
≠ 0, 𝑖𝑓 1 < 𝐵𝐿 < 𝑙

  

If the bottleneck is at the first layer then the aggregate 𝑂𝑅𝑆 must be saturated to warrant a 

scaling of this layer. On the other hand, when the SMs have saturated the input capacity of the 

CMs for 1 < 𝐵𝐿 < 𝑙 while SMs belong to bottleneck layer then, scaling SMs will have no 

increase of overall throughput. Therefore, ebl would be the layer of CMs and this layer must be 

scaled. After ebl is determined the layers that must be scaled to resolve the bottleneck is 

determined based on the C1M and CM1 constraints. A list of these layers is called as affected 

layers (AL). The expression for connectivity constraints (𝐶𝑂𝐶) used in the algorithm to determine 

AL which is based on based on C1M and CM1 is defined as 
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𝐶𝑂𝐶 = {

|𝑚1| + 1 ≤  |𝑚2| , 𝑖𝑓 𝐵𝐿 = 1
|𝑚2| + 1 ≥  |𝑚1| , 𝑖𝑓 𝐵𝐿 = 2
|𝑚𝑐| + 1 ≤  |𝑚𝑠| , 𝑖𝑓 2 < 𝐵𝐿 < 𝑙

 

The candidate layer for scaling is the layer which satisfies 𝑆𝐿𝐶 and 𝐶𝑂𝐶 constraints is the 

effective bottleneck layer. Algorithm 3 shows the details of steps involved in throughput 

optimization. In the algorithm while cloning a vertex we clone its request and assigned edges 

only as these are still viable options for mapping. 

 

If the last layer is the bottleneck layer then and if further scaling is required the (talk about 

Algorithm 3. Throughput Optimization 
Input: modVertices 𝑣𝑚 

Output: optimized SRAG and corrosponding STG 

create STG 

done ← false 

while ¬done do 

 ebl ← getBottleneckLyr 

 for each lyr ← btlnkLyr to 𝑙 do 

  ebl ← lyr 

  if 𝑆𝐿𝐶 for lyr is satisfied then 

   break 

 if ebl = 𝑙 then 

  break 

 

 clear 𝐴𝐿 

 if 𝑒𝑏𝑙 = 1 then 

  insert 𝑒𝑏𝑙 to AL 

  if 𝐶𝑂𝐶 is not satisfied for 𝑒𝑏𝑙 then 

   𝑒𝑏𝑙 ← 𝑒𝑏𝑙 + 1 

 insert lyr to AL| lyr ∈ ebl to 2, until COC is satisfied 

 

 for each lyr ∈ AL do 

  𝑒𝑟 ← edges of type Request or Assign ∀𝑣𝑚 ∈ 𝑙𝑦𝑟 

  if |𝑒𝑟| = 0 then 

   done ← true 

   break 

  else 

   sort 𝑒𝑟 in ascinding order of 𝜏 

   madeAssignment ← false 

   for each edge 𝑒 ∈ 𝑒𝑟 do 

    if assignment of 𝑒 is possible then 

     𝑣′ ←clone process vertex of 𝑒 

     set 𝑒′ type ← Assign | clone of 𝑒, 𝑒′ ∈ 𝑣′ 

     create STG 

     madeAssignment ← true 

     break 

    else 

     set 𝑒 type ← Invalid 

   if madeAssignment = false then 

    done ← true 

    break 
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extension of this work where this problem is treated recursively in a bottom up approach for a 

larger pipeline of SLP pipelines.) 

2.5 STRUCTURE BASED RUNTIME SCHEDULING 

The number of modules in the STG varies based on the available cluster resources and the 

connectivity between the modules is not pre-determined at application design time though the 

connectivity pattern is fixed. Due to these reasons, the STG can vary for the same application 

running on the same cluster for different runs. This poses a challenge for scheduling tasks for 

such a non-deterministic setup. The connections in the STG are point-to-point therefore special 

care must be given to ensure deadlocks at the system level don’t occur due to improperly 

scheduled workloads. We address this problem by employing novel structure based scheduling 

which is capable of both dynamic load balancing and congestion control in a de-centralized way. 

SLP works on fork and converge methodology. This has an advantage that a high-level 

scheduler for the overall pipeline is required only in the first layer. This scheduler has the 

knowledge of the topology graph and makes decisions such that all dependent tasks converge to 

the same downstream module for task resolution so, we call this Structure Based Scheduler 

(SBS). SBS analyzes STG from bottom-to-top to determine the connectivity and creates sets of 

hierarchical groupings of modules present in the second layer as scheduling is done only at the 

first layer. The levels in this hierarchy is defined as 1 ≤ 𝐿 ≤ 𝑙 − 3. SBS is present in every 

module of first layer and while analyzing the STG it looks at paths that are only visible to it. Each 

level of the hierarch represents a reduction (converge) operation of tasks in its corresponding 

layer. The different groups of a level imply number of independent parallel tasks that can be 

scheduled for the layer corresponding to that grouping level. Each group is a contains layer 2 
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modules representing parallel paths for scheduling any given task. The last layer with only one 

module just collects all the results. Hence, we require 𝑙 − 3 levels to determine the appropriate 

scheduling path. 

We create this grouping of modules for every layer 3 ≤ 𝑘 ≤ 𝑙 − 1. A group 𝑔𝐿𝑥 ∈ 𝑆𝐿 where 

1 ≤ 𝑥 ≤ |𝑚𝑘|, 𝐿 = 𝑙 − 𝑘 for the corresponding layer 𝑘, resulting in |𝑚𝑘| groups belonging to 

level 𝐿 in every set 𝑆𝐿. These groups are hierarchical where a group 𝑔𝐿𝑥 contains sub groups 

from level 1 to 𝐿 − 1. We annotate these groups with level numbers and module number 𝑥 as 

subscripts {}𝐿𝑥 to keep track of hierarchy. Each group 𝑔𝐿𝑥 contains only the layer 2 modules 

which are visible from module 𝑚𝑘𝑥 and SBS, we call this the Visibility Condition (VC). This 

grouping is determined as 𝑘 varies from 𝑙 − 1 down to 3. The starting case 𝑘 = 𝑙 − 1 implies 

level-1 set 𝑆1 has all the layer 2 modules visible from 𝑚𝑙1 and SBS with |𝑚𝑙−1| groups, with 

each group containing layer 2 modules which satisfy VC for every module 𝑚𝑙−1𝑥. The grouping 

for level 1 and arbitrary level 𝐿 are; 

𝑆1 = {{𝑚21, 𝑚22, … }11,{… }12, … , {… ,𝑚2|𝑚 |}1|𝑚   |
} 

𝑆𝐿 = {{… {… {𝑚21, 𝑚22, … }𝐿1, … }𝐿−11, … }11,{… }12, … , {… , {… , {… ,𝑚2|𝑚 |}𝐿|𝑚  𝑘|
}
𝐿−11

}
1|𝑚   |

} 

In this way, we determine all the level based grouping. For example, let’s consider the STG 

shown in Fig. 7. After analyzing the topology from the perspective of module 𝑚11 SBS, the level 

based groupings are shown below: 

𝑆1 = {{𝑚21, 𝑚22, 𝑚2 }11, {𝑚2 }12} 

𝑆2 = {{{𝑚21,𝑚22}21, {𝑚2 }22}11, {{𝑚2 }2 }12} 

𝑆𝑙−  is a super set containing the grouping information of all the levels. SBS schedules the 

tasks based on the level based grouping structure of 𝑆𝑙− . Level 1 grouping represents the 
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scheduling options for the most dependent task in the task dependency graph 𝑡𝑙−1𝑖, where 𝑖 is an 

index of task belonging to layer 𝑙 − 1. The modules present in one such group are the possible 

scheduling options for dependent tasks of 𝑡𝑙−1𝑖. SBS picks one group based on a scheduling 

policy (for example round robin) and picks one of the sub-groups from the selected group to 

determine the scheduling options for the next set of dependent tasks of 𝑡𝑙−1𝑖. In this way, SBS 

walk through the grouping hierarchy till the independent base tasks are analyzed, which 

corresponds to grouping for level 𝐿 = 𝑙 − 3. There are no sub groups at this level. All the 

modules in this group can be picked to schedule the base tasks. We call this group as a pool 𝑃 ∈

𝑔𝑙− . SBS now schedules the base tasks to these pools. Any layer 2 module associated with that 

pool gets a task whenever it is ready to process the next one in a dynamic manner. This 

mechanism allows for dynamic load balancing as modules ready for computation get jobs 

asynchronously. If there is a congestion at a module i.e. it is taking too long to finish a job, then it 

doesn’t get new jobs as its input buffer would have filled up in the meantime. Due to this the 

immediate upstream module cannot forward its results thereby filling up its output buffer. Hence 

stalling the immediate upstream modules micro pipeline. This effect cascades upstream 

asynchronously. In this way SBS guaranties that the right path is selected to schedule the base 

tasks along layer 2 modules which eventually leads to dependent tasks of same hierarchy 

converging to the same downstream module asynchronously while dynamically selecting the 

fastest computation path down the topology graph. 

2.6 ANALYTICAL SIMULATION RESULTS 

The SLP framework is implemented using C++ along with ELPC model for comparison. We 

generate a set of experiments to test and compare the analytical models. These experiments are 
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generated by randomly varying parameters such as the number of nodes including the variety of 

heterogeneous computing nodes, the process parameters viz; number of threads, number of 

accelerators needed with their proportionate runtime and memory bandwidth requirements. The 

simulation results are shown in TABLE I.  

 

We can see that SLP is flexible enough to map a pipeline on highly constrained resources i.e. 

when the number of nodes is less than the number of simultaneous modules that need to be 

mapped. We can also see that the proposed model outperforms ELPC in terms of end-to-end 

throughput even when the number of modules is equal to number of available nodes, which is the 

best scenario for ELPC as it cannot scale. Experiments 1 to 8 couldn’t produce any solution using 

ELPC algorithm for the following two reasons. Reason 1; the number of nodes available in 

cluster is less than the number of layers required. Reason2; the experiments run on a 

heterogenous cluster and a module can run on only limited number of nodes hence causing 

resource conflicts which cannot be resolved using ELPC algorithm as it doesn’t support 

TABLE I. Simulation results comparison 

Sl. No. 
Num. 

Layers 

Nodes 

in 

cluster 

SLP ELPC 

Modules 

assigned 

Nodes 

used 
Throughput 

Modules 

assigned 

Nodes 

used 
Throughput 

1 10 12 12 6 0.4292       

2 13 10 13 7 0.3165       

3 16 13 29 12 0.7752       

4 17 15 34 13 0.8522       

5 24 25 46 21 0.7673       

6 25 20 30 15 0.4673       

7 30 27 77 27 1.0817       

8 33 29 65 26 1.1539       

9 6 9 21 9 1.7667 6 6 0.3846 

10 8 12 19 9 1.3553 8 8 0.4184 

11 9 18 53 16 2.9495 9 9 0.4630 

12 10 15 40 12 1.5628 10 10 0.3584 

13 12 13 29 12 0.9738 12 12 0.3401 

14 15 18 42 14 1.0728 15 15 0.3448 

15 16 27 53 24 1.4741 16 16 0.5435 

16 18 20 51 19 1.2207 18 18 0.3135 

17 20 23 64 22 1.5433 20 20 0.5917 

18 21 25 79 25 1.6177 21 21 0.3086 

19 22 23 61 19 1.2219 22 22 0.2381 

20 29 29 83 28 1.1220 29 29 0.2421 
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simultaneous resource sharing. Experiments 1 and 5 failed to produce an ELPC solution due to 

reason 2. Experiments 9 to 20 show the throughput achieved due to scaling introduced by SLP 

over ELPC.  

 

Fig. 9 shows the plot for performance gain normalized to ELPC throughput. We can clearly 

see that SLP outperforms ELPC. Fig. 10 plots the ratio of modules per node for both models to 

show the efficiency of resource utilization.  

 

Experiment 9 undergoes 13 evolutions of STG during the throughput optimization phase 

resulting in a throughput of 1.7667 unit work per second. The intermediate STG results for this 

experiment is shown in Fig. 11 along with its throughput. Each process can run with different 

configurations hence, ELPC algorithm is provided with configurations with best possible run 

time so that it can achieve maximum throughput. 

 
Fig. 9. Throughput gain over ELPC 
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Fig. 10. Resource utilization efficiency 
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(a)  (b)  (c) 

Fig. 11. Intermediate STGs for experiment 9 (a) MFS,  𝑃 = 0.5988 (b) Evolution 1, 
 𝑃 = 0.7042 (c) Evolution 8,  𝑃 = 1.5375 
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3 SLP VALIDATION 

To validate the proposed SLP framework with a real-world application we pick a 

neuromorphic application called Intelligent Text Recognition System (ITRS). We modularize it 

and implement it on a heterogeneous cluster and demonstrate the ability of the application to scale 

with the available resources. We also compare the SLP and ELPC model. 

3.1 INTELLIGENT TEXT RECOGNITION SYSTEM 

The neuromorphic model adopted by the ITRS software is mainly built based on the Brain-

State-in-a-Box (BSB) attractor model [32] [33] [34] and the Cogent Confabulation model [35]. 

The BSB models provide matching patterns for each character image. The cogent confabulation 

algorithms combine information from the BSB model to form more complex objects such as 

words or sentences. During this procedure, it suppresses the inputs that do not have strong 

association with others and enhances the remaining inputs. In other words, the confabulation 

model eliminates those BSB results that do not form meaningful words and sentences. Therefore, 

  

Fig. 12. ITRS cognitive model 

Image Candidates

e, o, a
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ITRS is capable of extracting meaningful text from noisy and occluded document images. The 

salient feature of ITRS is that it provides contextually correct sentence reconstruction even if 

there are illegible characters or words in the document image [2]. The cognitive model of ITRS is 

illustrated by an example in Fig. 12.  

Given a noisy document image, the BSB provides pattern-matching candidates for each 

character image using best effort. Each question mark in the figure represents all 26 possible 

alphabets, numbers and commonly used symbols. The word confabulation layer builds word 

candidates while filtering out any meaningless words and the sentence confabulation layer selects 

the words that form the most meaningful sentence. It is easy to see that, for each sentence, one 

sentence confabulation task and multiple word confabulation tasks must be executed, along with 

even more number of BSB pattern matching tasks. The computation tasks within the same level 

are independent to each other and hence can be implemented in parallel. Based on the discussion 

above there are different distinct stages in the pipeline with different compute requirements. Since 

image processing applies different algorithms for processing different regions of the noisy image, 

it is a thread intensive task where each thread performs small but distinct computation. Therefore, 

each type of computation gets a thread pool for efficient asynchronous computation. BSB is an 

attractor model of auto associative memory, it is compute intensive and best suited for high 

performance accelerators. Word and sentence confabulation tasks perform sparse computation 

and have intensive random memory access. Such variety in workload characteristic and data 

dependencies is common in full-scale neuromorphic applications. 

The ITRS is modularized based on its functional stages as shown in Fig. 13. This 

modularization and parallelization method enable us to separate individual modules and run them 

on most appropriate hardware platform that fits their computation requirement. Hence it is 
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capable of effectively utilizing resources in a heterogeneous cluster. 

 

We adopt the work presented in [36], which talks in more detail about the communication 

module but it doesn’t provide any analytical model for the pipeline or perform any resource 

mapping and optimization. The MPI communicator which runs using one thread is implemented 

as a reusable library. It is designed to interface in a thread safe way with all modules in the 

pipeline. It is a key enabler for reliable and scalable implementation. Each module can only have 

one such communicator as it is able to initiate and keep track of multiple non-blocking 

communication with any MPI rank simultaneously. Apart from data messages which are non-

blocking, it also supports sending and receiving status messages to and from multiple ranks to 

facilitate inter-module synchronization. All status messages are one byte integer messages and 

data messages are given size character messages. Status receive is non-blocking but; blocking 

MPI communication is used for status transmit. In this way we can guarantee that the status is 

sent in order with respect to that modules data messages. In this work, the focus of our attention is 

the analytical model and its validation, therefor we don’t go into implementation details of the 

communicator and the scheduler. 

  

Fig. 13. ITRS pipeline 
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3.2 UNIFORM INTER-MODULE COMMUNICATION  

 

The MPI communication sub-module (MCSM) which is a reusable library, is designed to 

interface in a thread safe way with all modules in the pipeline. It is a key enabler for reliable and 

scalable implementation. MCSM is always attached to a software module, which is also referred 

as its parent module. Each functional module can only have one MCSM.  

MCSM contains only one thread and all messages are funneled through this thread. It can 

send and receive data messages from multiple ranks simultaneously. Apart from data messages, it 

also supports sending and receiving status messages to and from multiple ranks to facilitate inter-

module synchronization. All status messages are one byte integer messages and data messages 

are given size character messages. While non-blocking MPI communication is used for data 

transmission and status receiving; blocking MPI communication is used for status transmit. In 

this way we can guarantee that the status is sent in order. 

The architecture of this sub-module is shown in Fig. 14 MCSM manages five thread safe 

blocking queues. As shown in the figure, they are for data send (Data Tx Q), data receive (Data 

Rx Q), status send (Status Tx Q) and status receive (Status Rx req Q and Status Rx Q). The 

parent module is the producer for Data Tx Q, Status Tx Q, and status Rx req Q. It is the consumer 

 

Fig. 14. MPI communication sub-module architecture 
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of Data Rx Q and Status Rx Q. MCSM doesn’t block on any of these queues to maintain reliable, 

always open communication. However, depending on the computing requirements of the threads 

in the parent module these queues can be used in a thread non-blocking or thread blocking 

manner based on the full and empty flags of the queues. As we mentioned before, each received 

data message specifies a job to be processed. If the parent module consists of multiple threads, all 

threads fetch jobs from Data Rx Q whenever they are free. 

MCSM maintains two types of data objects; Data Transmitters and Data Receivers. It creates 

one data transmitter or data receiver object for each MPI rank it needs to communicate with. Each 

of these objects contains a state machine to manage the communication with that particular rank.  

The data messages generated by the parent module consist of destination rank information 

which are forwarded to MCSM through Data Tx Q. Each Data Transmitter object is interfaced 

with a local queue. These queues are stored in a map container with the destination rank of the 

associated object as the key. Whenever there is data available on the Data Tx Q it is copied on to 

appropriate local queue with the same key. Transmitter pools are created by sharing the local 

queues among select data transmitter objects. The data messages in the local queue can be sent to 

any rank in that pool as long as it is free to receive. Therefore, these transmitter pools enable load 

balancing in a distributed way at module level among the ranks in the pool. The data receiver 

objects en-queue all received data messages to Data Rx Q. It is the responsibility of the consumer 

of this queue to de-queue data messages from them. 

MCSM also maintains one object for the status transmitter and receiver, and it is shared 

among all ranks. As we mentioned before, blocking MPI communication is performed for status 

information. The status communication is only used during initialization and termination. 

The Status Tx Q receives status messages from the parent module along with the destination 
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rank to MCSM. The Status Tx object sends one message at a time by initiating a blocking MPI 

send. To request the status message from a particular module, the parent module sends the rank of 

the target module to Status Rx Req Q. This initiates a non-blocking MPI receive. Another status 

request is not processed until current one is complete. The received status message is en-queued 

to Status Rx Q. We make the receive operation non-blocking and give power to the parent 

module to decide whether to block on an empty Status Rx Q or not. 

The MPI communication thread keeps on polling the TX Q and Status Req Q, hence it is 

always busy from creation to termination. The thread round robins on four functions: data 

receive, status receive, data transmit and status transmit. The detailed communication protocol is 

discussed next. 

3.3 COMMUNICATION PROTOCOL 

All communication is point-to-point and follow a flow control based communication protocol. 

The receiver has a capacity limit, which is the maximum length of Data Rx Q. If there is room for 

data in the queue then the receiver is inferred to be in ready state else it is inferred to be in busy 

state. In this protocol the transmitter sends a request message to the receiver. Based on the state of 

the receiver there can be two cases as shown in Fig. 15. If the receiver is ready, then it sends a 

positive acknowledgement to the transmitter, otherwise it sends a negative acknowledgement . 

Once the receiver becomes ready, it will again send a positive acknowledgement message. The 

transmitter sends data only after receiving a positive acknowledgement. If a negative 

acknowledge is received, it will yield its turn to other transmitter objects, in this way load balance 

is achieved. These protocols are implemented as state machines on transmitter side and receiver 

side. The description of the state machines is given below.  
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The Transmitter State Machine (TSM) has six states as shown in Fig. 15 (a). The TSM starts 

in send request state (SEND_REQ) where, a request message is sent to the receiver and the state 

transitions to wait request acknowledgement (WAIT_REQ_ACK) state. TSM now waits for 

acknowledgement message from the receiver. If it receives a positive acknowledgement, then it 

transitions to initiate send message (INIT_SEND_MSG) state else it transitions to initiate ready 

acknowledgement state (INIT_READY_ACK) where a non-blocking MPI receive is called and 

the state transitions to wait ready acknowledgement (WAIT_READY_ACK). After receiving an 

acknowledgement, the TSM transitions to INIT_SEND_MSG where a non-blocking MPI send is 

called and the state transitions to wait send message (WAIT_SEND_MSG) where it waits till the 

MPI message is sent. Then it transitions to SEND_REQ and the process starts all over.  

The receiver state machine (RSM) also has 6 states as shown in Fig. 15 (b). The RSM starts in 

initiate receive request state (INIT_REC_REQ) where, a MPI non-blocking receive is called and 

the state transitions to wait request (WAIT_REQ) state. RSM now waits for a request from the 

transmitter. Upon receiving the request, it transitions to send acknowledgement (SEND_ACK) 

state. In SEND_ACK state the RSM checks if Data Rx Q is full and sends a positive 

acknowledgement if there is room for data then the state transitions to initiate message receive 

(INIT_MSG_REC) state. Otherwise, if the queue is full then a negative acknowledgement is sent 

and the RSM transitions to check status (CHECK_STATUS) state. In this state the RSM 

 

(a)                                              (b) 
Fig. 15. Flow Control Protocol. (a) Receiver is ready (b) receiver is busy 

Rx ready
Rx busy
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monitors the Data Rx Q size, as soon as the parent module de-queues a data message the RSM 

sends a positive acknowledgement and the state transitions to INIT_MSG_REC state. In 

INIT_MSG_REC state a non-blocking MPI receive is called and state transitions to wait message 

(WAIT_MSG) where RSM waits till message is received. After receiving the message, state 

transitions to INIT_REC_REQ and the process starts over.  

 

The TSM (RSM) will make one transition according to the diagram when the MCSM enters 

the data transmit (data receive) function in the round robin process. 

3.4 ITRS MICRO PIPELINES 

Each module in the ITRS pipeline can have different internal architecture based on its 

implementation platform. In this section, we discuss only the high-level design details for 

different stages of ITRS processing without going into details of algorithm design and 

optimizations for different hardware platforms. 

 

(a) Transmitter State Machine               (b) Receiver State Machine 
Fig. 16. Communication protocol state machines 
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3.4.1 IMAGE PROCESSING LAYER 

The image processing layer works on extracting individual characters from noisy images. This 

layer works on partial regions of the image hence not suitable for vectorization. Therefor this 

layer can be parallelized using thread pools dedicated to handle different tasks. The preferred 

hardware platform to run image processing module would be a Xeon processor platform as it 

supports multiple threads and has ideal resources to handle small workloads. For effective 

character extraction various settings are provided to tune image processing which can vary over 

different runs based on the type of images and the noise present in them. We make very few 

assumptions on the input quality of the image, hence a robust image processing is implemented. 

To achieve high throughput this module is implemented as a pipeline with 6 stages as shown in 

Fig. 17. Every stage is designed to run as an independent thread. To improve performance each 

stage is a configurable thread pool, except for the first stage which always runs with a single 

thread. The pool size for each stage is configured so that there is optimal load balancing among 

the stages with minimum thread idle time. For efficient implementation, OpenCV is used to 

develop this algorithm. 

 

Fig. 17. Image processing pipeline 
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The interface between the pipeline stages is a blocking queue. This method of communication 

is thread safe and also optimizes resource utilization as a thread is blocked till data is available. 

The functionality of each stage is described below: 

3.4.1.1 REGION EXTRACTION 

This is the first stage in image processing and operates at the page level. In this stage multiple 

pages processed in parallel and are broken down to paragraphs. It performs basic image filtering 

to reduce noise in the images and to prep them for Black and White conversion. A 2D gradient of 

image is computed to extract blob boundaries and removes any illumination gradient usually 

present if the document image is captured using camera with flash. Every blob is picked up one at 

a time and converted to black and white using Otsu’s method. High fidelity conversion is possible 

due to dynamic threshold computation for every blob, rather than one threshold for entire image 

which often leads to poor results. 

Morphological erosion is performed on the white background of the image with a rectangular 

structuring element. The size of the rectangle is chosen such that the height is larger than the text 

line spacing and width is lower than the column gap in the document image. This operation 

results in a hole for each paragraph location in the background. Using this as a mask the 

paragraphs are extracted and labeled. Each paragraph is a workload for the next stage in the 

pipeline. These workloads can now be processed in parallel to extract text lines from the 

paragraphs. 

3.4.1.2 LINE EXTRACTION 

This stage operates at paragraph level and the text lines from paragraph are extracted. To 

begin with, connected components in the paragraph are identified and labeled. The bounding 

boxes for these blobs are also determined. Now the paragraph image is scanned from top to down 
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and left to right order. Once a connected component is encountered, it is labeled as an initial blob 

for the line. The region to the right of the initial blob is scanned to search for a neighboring blobs. 

The width of the search region is large enough to at least include a text space and few characters 

of the next word. The height is based on the height of the bounding box of the previous character, 

in this case the initial blob. Few extra buffer rows are included on the top and bottom of the 

search region to include blobs from disjoint characters like ‘i’, ‘j’, ‘%’ etc. Any blob in this search 

space is picked up and marked as current line. The bounding box for the disjoint character is 

updated to reflect the actual character height. This new found character/blob height and position 

is used as starting point for next search. The searching and labeling process continues until the 

page boundary is reached or until the search space is empty. At his point the same process is 

repeated starting from the initial blob but in left direction until the page boundary is reached or 

until the search space turns out empty. In this way a text line is labeled and extracted from the 

paragraph image. Each extracted line is treated as workload for the Line Correction stage. 

3.4.1.3 LINE CORRECTION 

This stage operates at line level. In this stage any deformations due to warping and rotation are 

corrected. The mid points of all the blobs in the line are used to build a polynomial regression 

model. The degree of the polynomial is chosen to be 3 as it is sufficient to model the 

nonlinearities present in the above mentioned distortions. Once the polynomial is computed, the 

values of the coefficients are analyzed and the degree of the polynomial is reduced to avoid over 

estimation. This ensures a smooth and proper polynomial fitting model. After the model is 

computed the polynomial curve is used as a reference line. This reference line is scanned from 

top to bottom of the extracted line. All pixels along the scan curve are saved as a flat line thus 

eliminating warping. At this stage the characters will be tilted if there was rotation. The y-offset of 
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the starting point and the end point of the reference line is computed. This offset is the indication 

of angle of rotation as shown in Fig. 18. 

 

The angle 𝜃 is computed using the relation 𝜃 =  tan−1 (
  𝑜𝑓𝑓𝑠𝑒𝑡

𝐿𝑖 𝑒 𝑙𝑒 𝑔𝑡ℎ
). Fig. 19 represents the 

flattened scan lines with the gray region representing the actual text region and solid horizontal 

lines representing each pixel row. The tilt can now be corrected by offsetting the starting points 

(P1, P2 … Pn) of these lines. The angle 𝜙 is computed using the relation 𝜙 =
𝜋

2
− 𝜃 and the shift 

distance for each point is given by the equation 𝑥𝑜𝑓𝑓𝑠𝑒𝑡 =
𝑟𝑜𝑤

tan (𝜙)
. This operation corrects the tilt 

introduced due to rotation. If the line is tilted with an angle “− 𝜃" then the points are shifted in the 

opposite direction. The corrected lines forms the workload for character extraction stage.  

 

3.4.1.4 CHARACTER EXTRACTION 

This stage operates at the line level. Here the characters are extracted and scaled resulting in 

removal of perspective distortion. The first step in this stage is to morphologically group 

connected component blobs into individual characters. Now the blobs are sorted in column order 

and each blob is treated as individual character. These are extracted and labeled with page ID, 

paragraph ID, sentence ID, word ID and character ID. The sentence ID is incremented when a ‘,’ 

 

Fig. 18. Angle computation 
 

 

Fig. 19. Tilt correction 
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or ‘.’ character image is encountered. These two characters are identified based on the dimensions 

and position statistics of the character image in the line. The word ID is incremented when a 

space width threshold is met between the characters. The characters are labeled as though they are 

the first line. As the only information available at this stage is about current text line. This stage 

also splits any connected characters or occlusions based on the configuration specified. Once the 

characters are labeled they are scaled to either 15x15 or 30x30 resolution. This scaling to a fixed 

size eliminates perspective distortions introduced in camera captured images.  

Each paragraph workload from Region Extraction stage is assigned a thread safe counter 

called Line Counter. After character extraction is finished it increments this counter. Hence this 

counter keeps track of the number of lines processed in the paragraph. If all lines are processed 

then the parent paragraph of the current line is scheduled to Line Ordering stage. 

3.4.1.5 LINE ORDERING 

This stage operates at the paragraph level. This stage determines the correct order of text lines 

in the paragraph region. To begin with, it computes the average angle of tilt of all the lines in the 

paragraph. This information gives the angle of rotation of the image (here paragraph). The 

starting point of each text line is rotated back by the angle computed. The rotation is performed 

using the equation 

[
𝑅𝑃𝑥1

𝑅𝑃 1

𝑅𝑃𝑥1

𝑅𝑃 2
 . . .

𝑅𝑃𝑥 

𝑅𝑃  
] = 𝐻 ∗ [

𝐿𝑃𝑥1

𝐿𝑃 1

𝐿𝑃𝑥1

𝐿𝑃 2
 . . .

𝐿𝑃𝑥 

𝐿𝑃  
] 

Where  𝐻 = is the rotation matrix [
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
], 𝜃 =  

𝜋

2
− 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑛𝑔𝑙𝑒, 𝐿𝑃 = Line 

point 𝑅𝑃 = Rotated point. By doing this the y co-ordinates of these points correctly represent the 

line order. This process has now sorted the lines in order. Using this information the sentence ID 

and word ID of all the extracted characters in this paragraph are updated. The result at the end of 
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this stage reflects correct sentence ID, word ID and character ID at the paragraph level. 

Each page workload generated for Region Extraction stage is assigned a thread safe counter 

called Para Counter. After line ordering is finished it increments this counter. Hence this counter 

keeps track of the number of paragraphs processed in the page. If all paragraphs are processed 

then the parent page of the current paragraph is scheduled to Para Ordering stage. 

3.4.1.6 PARA ORDERING  

This stage operates at the page level. In this stage final ordering and result generation is 

performed. All the paragraph starting points are rotated similar to Line Ordering stage. Based on 

the average angles of the paragraphs. This point positions are used to group the paragraphs into 

text columns and the paragraph order in each column. 

The points are sorted based on column position. The first paragraph starting position is used as 

reference and any paragraph whose starting position falls within a threshold of column positions 

is grouped as one column. This process is repeated till all the paragraphs are grouped into 

columns. After this grouping each column group is sorted row wise to get the proper order. Based 

on this order the sentence ID and word ID of all the extracted characters are updated to reflect the 

correct order. After ordering is completed the results are scheduled to the pattern matching layer. 

The intermediate results of image processing are shown in Fig. 20. 

3.4.2 PATTERN MATCHING LAYER 

The pattern recognition layer is based on BSB attractor model. In this section, we describe the 

“racing” mechanism that we use to implement the multi-answer character recognition process. 

Let S denote the set of characters that we want to recognize. Without loss of generality, 

assume the size of S is 52, which is the number of upper and lower case characters in the English 
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alphabet. We also assume that for each character, there are M typical variations in terms of 

different fonts, styles and sizes. In terms of pattern recognition, there is a total of 52*M patterns to 

remember during training and to recognize during recall. Sometimes, the number of patterns is 

higher if digits and commonly used symbols are considered. 

One 256-dimensional BSB model is trained for each character in S. Therefore, there will be a 

set of 52 BSB models. Each BSB model is trained for all variations of a character. The multi-

answer implementation utilizes the BSB model’s convergence speed to represent the similarity 

between an input image and the stored pattern. An input image is compared against each one of 

 

(a) Original page              (b) Page image after morphological 
erosion 

 
(c) Intermediate image after 

region extraction 

 

 

 
(d) Intermediate image after line extraction 

 

 
(e) Intermediate image after line correction 

 

Fig. 20. Intermediate results during image processing 
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the 52 BSB models; therefore, it triggers 52 recall processes. The number of iterations that each 

recall process takes to converge is recorded. Then we pick up to K “closest” candidates to work 

with high-level language models to determine the final output. Fig. 21 gives an example of how 

the racing mechanism works. Different hardware architecture specific optimizations can be made 

for this module, one such optimization is discussed in [37]. 

 

3.4.3 WORD CONFABULATION LAYER 

This module interfaces between BSB and Sentence confabulation. Its role is to collect 

ambiguous character inputs from BSB layer and generate valid combinations to form meaningful 

words. The architecture of word confab is shown in Fig. 22. The MPI communication module is 

integrated with word confabulation thread for MPI communication from-BSB and to-Sentence 

confabulation modules. All inter thread communication is achieved through the thread safe 

blocking queue. A word scheduler thread communicates with the MPI Communicator, and 

groups the results into words. These words are scheduled to Confabulation threads using the 

Scheduling queue. The number of confabulation threads created is user specified. These threads 

pick tasks from the Scheduling Q whenever they are free. If data is not available then that 

 

Fig. 21. Candidates are selected based on speed of convergence 
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particular thread is blocked till data is available as the Scheduling Q is a blocking queue. The 

results of word confabulation are converted to character messages and en-queued on to a 

common Result Q which are intern sent to sentence confabulation. 

 

The scheduler thread uses a map data structure to keep track of what all characters it has 

received which is called as word pool. From every received character a unique word level string 

key is built. The key is concatenation of [Page-ID]_[Sentence-ID]_[Word-ID]. The word pool 

consists of word lexicons as its data members. If a key is used for the first time then a new word 

lexicon is created and the received character candidates are added to it. If a word lexicon already 

exists then these letter candidates are added to the existing one. After adding the candidates it is 

checked if all are received for that word lexicon. After receiving all, the word lexicon is en-

queued on the Scheduling Q and the map entry is erased. 

The confabulation threads use the ambiguous letter candidates and creates valid word 

combinations. To accomplish this a dictionary database is loaded as trie data structure during 

initialization of module. This trie is shared between all threads which read this data structure to 

validate word combinations. An example of trie data structure is shown in Fig. 23. 

 

Fig. 22. Word confabulation architecture 
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Each node holds following members a) Address to parent, b) Address of children, c) Content 

and, d) Word Marker. For example let’s consider a word “dog”. Its candidates for each letter 

position are [d o b] [o a g] [g a y]. Word confab will traverse through the trie using these 

candidates to search for the valid words present in the trie. In the above example, first it will find 

if ‘d’ exists as 1st letter, if it does, then it will go down that branch and look for ‘o’ as 2nd letter 

and so on until it hits the last letter which will be ‘g’ in this case. Then it will see if the work 

marker is 1 for that, it mean it’s a valid word, otherwise it will go up 1 branch and check for the 

next letter. Once one branch is complete, it will move to the next branch until it has covered all 

the candidates. The valid words will be pushed onto a stack. In this example, the valid words 

would be: dog, day, boy and bag. 

Since the letters candidates were passed with their relative confidence level, the confidence 

level for each word will be the product of the confidence levels of letters it contains. These results 

are converted to packed message. If the size of this message is large than the configured 

communication buffer, then they are split into multiple messages. These are now sent to sentence 

confabulation module. 

 
Fig. 23. Trie data structure 
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3.4.4 SENTENCE CONFABULATION LAYER 

Sentence level confabulation model defines three levels of lexicons. The first and second level 

lexicons represent single words and pairs of adjacent words; while the third level of lexicons 

represent the parts-of-speech (POS) tags of the corresponding word. During recall, those word 

and word-pair symbols corresponding to the outputs from word level confabulation are set as 

active, and all POS tag symbols are also set as active. If a lexicon has more than one active 

symbol, it is said to have ambiguity. The goal of sentence confabulation is to resolve the 

ambiguity iteratively through a recall procedure similar to belief propagation and finally form a 

meaningful sentence. The general confabulation recall algorithm can is described as follows in 

Algorithm 4. 

As Algorithm 4 shows, for each lexicon that has multiple symbols activated, we calculate the 

excitation level of each activated symbol. The N highest excited symbols in this lexicon are kept 

active. These symbols will further excite the symbols in other ambiguous lexicons. This 

procedure will continue until the activated symbols in all lexicons do not change anymore. If the 

convergence cannot be reached after a given number of iterations, then we will force the 

procedure to converge. Then value of N will be reduced by 1 and we repeat the above procedure. 

In the end, N is reduced to 0 which means there is only one active symbol in each lexicon. Then 

ambiguity is eliminated in all lexicons. 

In sentence confabulation, the excitation level of a candidate is the weighted sum of excitation 

levels of active symbols in other lexicons. Intuitively, however, different source lexicons do not 

contribute equally to a target lexicon. For example, the lexicon right next to an unknown word 

obviously gives more information in determining the unknown word than the lexicon that is five 

words away. Thus the significance of a KL can be measured by weight and quantified by the 
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mutual information(MI) [38] Mutual information of two random variables is a measure of 

variables’ mutual independence, calculated as 

𝐼(𝐴; 𝐵) = ∑ ∑ 𝑝(𝑎, 𝑏)𝑙𝑜𝑔

𝑎∈𝐴𝑏∈𝐵

(
𝑝(𝑎, 𝑏)

𝑝(𝑎)𝑝(𝑏)
) 

where A is the source lexicon and a represents symbols in A; B is the target lexicon and b 

represents symbols in B. 𝑝(𝑎, 𝑏) is the joint probability of symbol a and b; 𝑝(𝑎) and 𝑝(𝑏) are 

the margin probability of symbol a and b respectively. 𝐼(𝐴; 𝐵) is nonnegative. The value of 

𝐼(𝐴; 𝐵) will increase when the correlation of symbols in lexicon A and B get stronger. We 

defined the weight of KL (i.e. 𝑤𝑘𝑙) from A to B as positive linear function of MI of A and B. 

The sentence confabulation model in Algorithm 4 considers all initial symbols equally 

Algorithm 4. Baseline sentence confabulation recall algorithm 
Input: an ambiguous sentence 𝒮, predefined maxAmbiguity, maxIteration 

Output: a confabulated sentence 𝒮′ 

for each known lexicon* 𝑙𝑘 ∈ 𝒮 do 

set symbol 𝑠 ∈ 𝑙𝑘  active 

end for 

N  ← maxAmbiguity 

while N > 1do 

converged ← false 

iterationCount ← 0; 

while ¬converged do 

    for each unknown lexicon 𝑙𝑢  ∈ 𝒮 do 

        for each symbol 𝑠 ∈ 𝑙𝑢 do 

            calculate el(s) 

        end for 

        sort(𝑙𝑢) 

        for i ← [0,N-1] do 

            set symbol 𝑠𝑖 ∈ 𝑙𝑢  active 

        end for 

    end for 

iterationCount  ← iterationCount +1 

if active symbol set 𝒞 unchanged 

        or iterationCount ≥ maxIteration then 

        converged ← true 

    end if 

end while 

N  ← N - 1 

end for 

update lexicons to 𝒮′ 

output 𝒮′ 

*lexicons who has only one symbol candidate are denoted as known lexicons, others are 

unknown lexicons. 
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possible. In reality, we know that some words are more likely than others from the given image. 

To incorporate the image information with sentence confabulation, we consider the BSB 

convergence speed during the confabulation process, and modify the excitation level calculation 

of a word symbol t as follows, 

𝑒𝑙(𝑡) = 𝛼𝑃𝐵𝑆𝐵(𝑡) + 𝛽 ∑ [𝑤𝑘𝑙 ∑ 𝑒𝑙(𝑠)

𝑠∈𝑆𝑘

ln (
𝑃(𝑠|𝑡)

𝑝0
) + 𝐵]

𝑘∈𝐹 

 

In above equation, variable  𝑃𝐵𝑆𝐵(𝑡) is the excitation to t from the BSB layer, which is 

calculated as: 

𝑃𝐵𝑆𝐵(𝑡) =
1 (𝑁𝐵𝑆𝐵(𝑡)⁄ − 𝑁𝑚𝑖 )

∑ 1 (𝑁𝐵𝑆𝐵(𝑡)⁄ − 𝑁𝑚𝑖 )𝑡
 

where 𝑁𝐵𝑆𝐵(𝑡) is the BSB convergence speed of t, 𝑁𝑚𝑖  is the minimum convergence 

number that is possible for BSB engines,  and  are coefficients that adjust the weight of BSB 

(i.e. image) information and confabulation (i.e. language) information,  +  = 1. In general, we 

should increase the value of  and decrease the value of  when the image has high quality and 

vice versa. 

As Fig. 24 shows, the idea of designing sentence confabulation layer is the same as that for 

word confabulation layer. The sentence scheduler will collect word candidates to reassemble a 

sentence from the MPI communicator when receiving any words. Once any completed sentence 

is collected, the sentence will enter the scheduling queue. The confab threads will de-queue the 

sentences to run Algorithm 4. The sentences will be confabulated to remove their ambiguity and 

sent to Result queue. MPI communicator will send the result to the next layer. Various different 

optimizations of this module are presented in [39]. 



58 
 

 
 

3.4.5 RESULT GATHER LAYER 

Finally, the result gather module collects the out of order results from all sentence modules 

and saves them to files in sentence order. 

This configurable ITRS pipeline provides the flexibility to maximize resource utilization and 

maintain a constant throughput in a heterogeneous cluster. 

3.5 ITRS PERFORMANCE MODEL 

This configurable ITRS pipeline provides the flexibility to maximize resource utilization and 

maintain a constant throughput in a heterogeneous cluster. To build an analytical model, we 

collect the CPU level thread concurrency 𝑇 and the memory bandwidth 𝑀 needed to run every 

configuration 𝑐 of each module along with its run time 𝜏. To enable this data collection, each 

process along with its set of parameters must be analyzed independently i.e. ∀𝑐 ∈ 𝑚. The data is 

collected after the modules have been initialized as this kind of behavior is not recurrent while the 

application is processing inputs. For the case of ITRS, we select a set of input images which are a 

 

Fig. 24 . Sentence confabulation architecture 
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representative of the type of inputs that will be processed then, we configure ITRS with one 

module in each layer to tap all MPI messages to a file. After this run, all communication between 

layers is recorded to files enabling each module to run independently as standalone modules. 

During a standalone run of any module  𝑚 the saved messages from file are used as input to the 

module. In a standalone run all input is available beforehand for every module therefore, the 

module operates at maximum input capacity. The value of  𝜏 recorded is the minimum run time 

achievable for the given configuration 𝑐. The messages saved to the file consists of workloads to 

every module 𝑚 while processing multiple number of pages. Therefore, the values of 𝑇,𝑀 and 𝜏 

are normalized to number of pages to get per page concurrency, memory bandwidth and runtime. 

We run each configuration 𝑐 in 3 modes, once to collect the runtime of the configuration 𝜏, for 

the next two modes the modules are launched with Intel VTune Amplifier analysis tool to record 

the CPU level thread concurrency 𝑇 and the memory bandwidth 𝑀. Each of these configurations 

in every mode is executed 3 times to collect the average values. Therefore 𝑇,𝑀 and 𝜏 represent 

the average per page values. 

3.6 EXPERIMENTS AND RESULTS 

We run the experiments on Intel Xeon and Nvidia GPU cluster and another cluster with Intel 

Xeon and Intel Xeon Phi (KNC and KNL architectures) machines. To show the effect of micro 

pipelining, each module is analyzed individually for different configurations and for different 

number of inputs. We can see the effects of pipelining in Fig. 25, as the input increases the run 

time decreases. Different configurations correspond to increasing number of threads in these 

experiments. BSB plot, Fig. 25 (b) is showing comparison based on hardware platform instead of 

configurations because it is optimized for fully utilizing the given amount of accelerator resources 
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allocated all the time. In Fig. 25 (a), cnfg_1 to cnfg_3 corresponds to a total of 6, 7, 13 threads 

across all thread pools respectively. For Fig. 25 (c) and (d), cnfg_1 to cnfg_4 correspond to 1, 2, 

4, 8 confab threads respectively. From these plots, we can clearly see that BSB requires the most 

compute resources. 

 

We run several experiments to demonstrate the effectiveness of scaling and macro pipelining. 

Fig. 26 shows STGs for a cluster with one Xeon node and one KNL node, all the modules are 

mapped to the Xeon node except BSB which is mapped to KNL node. We run these STG for a 

character resolution of 15x15 for pattern matching. For this resolution only partial resources on 

the accelerator is utilized, therefore a second instance of BSB can be mapped. The results for both 

the STGs is shown in Fig. 26 (c). We can see the macro pipelining effect for STG (a) however for 

STG (b) the resources are saturated, even though there is significant performance gain the 

 
(a) (b) 

 
(c)     (d) 

Fig. 25. Micro pipeline performance (a) Image processing, (b) BSB, (c) word 
confabulation, (d) Sentence confabulation 
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pipelining effect is not visible as BSB is still the bottleneck. To see significant performance gain 

due to pipelining enough BSB modules must be instantiated such that the bottleneck is 

eliminated. 

 

To demonstrate the effect of distributed load balancing we obtain a STG using SLP as shown 

in Fig. 27 (a) for a cluster with 2 Xeon nodes, with one node having a GPU. This experiment is 

run with dynamic load balancing enabled and once with it being disabled. The table in Fig. 27 

shows the runtime per page including pipeline fill time for both the cases. Due dynamic load 

balancing using a slower BSB module provides an improvement over not using the slower 

module at all. In this case BSB Xeon module is 7.48 times slower than BSB GPU module. We 

found that the experiments with flow control disabled resulted in poor reliability as the 

downstream modules were prone to buffer overflow errors as in this case the upstream forwards 

its messages irrespective of congestion in downstream modules. Due to structure based 

scheduling no extra effort was required to maintain accuracy of results with changing topology 

across various configurations. However, as the input resolution for BSB increased for 15x15 to 

22x22 to 30x30 pixels per character the overall result accuracy increased but with an overhead of 

 

(a)                  (b) 

 

 

 
 

 

   

Num 

Pages 

STG – (a) 

Runtime  

(sec/pg) 

STG – (b) 

Runtime  

(sec/pg) 

Performance 

gain 

1 5.4490 2.8420 1.92 

8 5.0365 2.9999 1.68 

16 4.9609 3.0158 1.64 

32 4.9841 3.0087 1.66 
 

(c) 

 

Fig. 26. (a) & (b) Accelerator sharing (c) Results demonstrating macro 
pipelining effect 
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extra compute time. 

 

To validate the proposed SLP framework we use a GPU cluster. Using SLP we generate 

several STGs and their corresponding throughput predictions. Then we run those STGs on the 

cluster and measure the throughput achieved on the cluster. These validation results are tabulated 

in TABLE II along with the ELPC results for comparison. We use the empirical performance 

data of modules for ELPC instead of normalized values as proposed by the authors for better 

comparison with SLP. We can clearly see that the predicted and achieved throughput are very 

well matching. The % error in prediction is also tabulated. The experiments 1 to 5 are running 

with character resolution of 15x15. Experiments 6 and 7 are running with character resolution of 

22x22 and 30x30 resolution. Also, the number of nodes progressively increase in experiments 1 

through 4. For these experiments BSB Xeon configurations are not included. 

 

(a) 

 

 

 

 

 

 

 

   

Load 

balancing 

% load shared Runtime 

(sec) BSB GPU BSB Xeon 

Enabled 84.6 15.4 17.46 

Disabled 50 50 53.11 

 

(b) 

 

Fig. 27. Dynamic load balancing (a) STG, (b) Results 

ImgProc

BSB GPU BSB Xeon

Word

Sentence

Result

TABLE II. Validation results 

Sl. 

No. 

Nodes 

in 

cluster 

SLP ELPC 

Modules 

assigned 

Nodes 

used 

Predicted 

throughput 

Throughput 

on cluster 
%error 

Modules 

assigned 

Nodes 

used 

Predicted 

throughput 

Throughput 

on cluster 
%error 

1 1 5 1 0.0281 0.0277 1.5849      

2 2 6 2 0.0562 0.0554 1.4188      

3 3 7 3 0.0843 0.0836 0.8045      

4 4 8 4 0.1124 0.1122 0.1449      

5 5 9 5 0.1405 0.1439 2.3941 5 5 0.0281 0.0276 1.6285 

6 5 9 5 0.0792 0.0826 4.2712 5 5 0.0158 0.0157 0.7198 

7 5 9 5 0.0400 0.0413 3.4158 5 5 0.0080 0.0080 0.0629 
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For experiments 1 to 4 ELPC cannot produce a solution as it doesn’t model simultaneous 

resource sharing for stream processing. Fig. 28 shows the resource utilization and throughput gain 

as the application scales on the GPU cluster. Since ITRS has a bottleneck at the BSB layer, SLP 

rightly adds more modules to the bottleneck layer as more resources are available. We see that 

only BSB GPU modules are added to STG as additional resources are available this can be 

inferred by looking at curves SLP Avg. modules per node and SLP Avg. modules per layer. 

Since ELPC doesn’t scale the, average modules per layer and average modules per node is 

always 1. Fig. 28 also shows the throughput gain achieved by SLP over ELPC model.  

 

Fig. 29 shows the scaling achieved through SLP as available resources increase along with the 

throughput gain of final evolution over the MFS solution. 

 

 
Fig. 28. Resource utilization efficiency and throughput gain of SLP over ELPC 

0

1

2

3

4

5

6

1 2 3 4 5 6 7
Experiment number

SLP Avg. modules
per layer
ELPC Avg. modules
per layer
SLP Avg. modules
per node
SLP gain over ELPC

 
Fig. 29. Scaling with SLP  
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Fig. 30 compares the % error across different experiments. The average error of SLP 

prediction is 2% and ELPC prediction is 0.8%. The variance in error is due to the dynamic load 

balancing of the application and as the application scales, the messages between first 3 layers of 

ITRS increase due to quantized message sizes between them. This can be easily overcome by 

having dynamic message sizes like the rest of the layers, however at the same time this is not a 

significant issue. 

 

Till now we discussed ways of implementing complex applications, especially brain inspired 

algorithms on heterogeneous HPC framework in a large scale distributed manner. From this point 

forward we focus our attention towards achieving the same goals of implementing brain inspired 

inference models on very efficient and ultra-low power paradigm of biologically plausible 

spiking neural networks.  

 
Fig. 30. Experimental vs analytical throughput prediction error 
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4 SPIKING NEURAL NETWORKS WITH 

DISTRIBUTED ONLINE LEARNING 

HPC setup for implementing brain inspired algorithms have the benefit of utilizing todays 

readily available computing infrastructure. However, they are very inefficient compared to the 

biological brain. The brain is very efficient in terms of computation and power utilization. This is 

possible due to massively parallel computation being performed by the vast number of neurons 

while consuming very little energy due to the spiking nature of communication between them. 

However, the ability of neural networks to perform pattern recognition, classification and 

associative memory, is essential to applications such as image and speech recognition, natural 

language understanding, decision making etc. This is the inspiration behind spiking neural 

networks (SNNs). In SNNs, information is encoded as sparsely distributed train of spikes, which 

allows learning through the spike-timing dependent plasticity (STDP) property. SNNs can 

potentially achieve very large scale implementation and distributed learning due to the inherent 

asynchronous and sparse inter-neuron communications. SNNs are capable of representing much 

richer information as it incorporates relative spike timing along with the neuron state and the 

synaptic weights for computation. 

There are many kinds of neural network architectures and learning algorithms proposed. For 

example Auto encoder, multilayer perceptron, deep learning, convolutional neural network etc., 

these are all computationally intensive when compared to SNN. The SNN has the potential to be 

very efficient as each neuron works asynchronously in an event-driven manner and with sparse 

spiking pattern. Moreover, fully distributed STDP learning [10] can only be achieved on SNNs, 

which updates synaptic weight based only on local information of individual neuron. The 

emerging stochastic SNN that generates spikes as a stochastic process is not only more 
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biologically plausible [11] but also enhances unsupervised learning and decision making [12] 

[13]. It further increases the fault tolerance and noise (delay) resilience of the SNN system since 

the results no longer depend on the information carried by individual spike but the statistics of a 

group of spikes. 

Majority of the neuron models used in existing SNNs are not stochastic. Active dendrite and 

dynamic synapse with an integrate and fire neuron model is proposed for character recognition 

[4]. Spiking self-organizing maps using leaky integrate and fire neurons for phoneme 

classification is presented in [5]. They use this model to account for temporal information in the 

spike stream. Work presented in [7] uses Siegert approximation for integrate and fire neurons to 

map an offline trained deep belief network onto an event-driven spiking neural network suitable 

for hardware implementation. They demonstrate that the system is able to recognize digits in the 

presence of distractions and noise. 

A large-scale model of a hierarchical SNN that integrates a low-level memory encoding 

mechanism with a higher-level decision process to perform visual classification task in real-time 

is implemented [8]. They model Izhikevich neurons with conductance-based synapses and use 

STDP for memory encoding. Stochastic nature in spike patterns has already been found in lateral 

geniculate nucleus (LGN) and primary visual cortex (V1) [11]. Ignoring the randomness in 

neuron model not only limits its effectiveness in sampling and probabilistic inference related 

applications [40] [41], but also reduces its resilience and robustness. This paper presents a STDP 

learning-enabled stochastic SNN for high noise tolerance. 

In order to apply large scale SNN to machine learning applications, simple neuron models 

should be adopted, which are biologically inspired but not biologically realistic. The model 

should support efficient learning and recall while at the same time facilitate parallel and 
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distributed implementation. The neuron models are presented in this chapter which will be used 

in rest of the work to build complex networks. 

4.1 BAYESIAN NEURON MODEL 

 

We extend the generic Bayesian neuron model proposed in [42] for scalable and distributed 

computing purpose. This model supports recall and online learning using STDP. We use this 

Bayesian neuron model for building inference networks. This section discusses key background 

details of this model along with online STDP Learning. The details of a generic neuron model are 

shown in Fig. 31. In the neuron model, the membrane potential  𝑢(𝑡) of neuron 𝑍 is computed 

as. 

𝑢(𝑡) = 𝑤0 + ∑𝑤𝑖 ∙ 𝑦𝑖(𝑡)

 

𝑖=1

 
(1) 

where 𝑤𝑖 is the weight of the synapse connecting 𝑍 to its ith presynaptic neuron 𝑦𝑖, 𝑦𝑖(𝑡) is 1 

if 𝑦𝑖 issues a spike at time 𝑡, and 𝑤0 models the intrinsic excitability of the neuron 𝑍. The 

stochastic firing model for 𝑍, in which the firing probability depends exponentially on the 

membrane potential, is expressed as 

𝑝𝑟𝑜𝑏(𝑍 𝑓𝑖𝑟𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) ∝ exp (𝑢(𝑡)) (2) 

In Eqn.(1), small variations of 𝑢(𝑡) resulting from the synaptic weight changes will have an 

 

Fig. 31. Generic neuron model 
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exponential impact on the firing probability, which is not desirable. To mitigate this effect a range 

mapping function is adopted. This function is a parameterized sigmoid function for representing 

more flexible S-shaped curves: 

𝑢′(𝑡) = 𝐴 + 𝐵/(1 + exp (−(𝑢(𝑡) − 𝐶) ∙ 𝐷)) 
(3) 

The above equation has four parameters for shape tuning. Parameter: A provides Y-axis offset, 

B performs scaling along Y-axis, C provides X-axis offset and finally D performs scaling along 

X-axis. It maps a range of 𝑢(𝑡) to a different range 𝑢′(𝑡)and the Out-of-range 𝑢(𝑡) to 

asymptotic values of the function. This makes sure that the membrane potential always lies 

within the dynamic range of the neuron. After mapping, 𝑢(𝑡) in Eqn.(1), should be replaced by 

𝑢′(𝑡). 

Two examples for Eqn. (3) are shown in Fig. 32. Curve (a) expands the input range (10, 20) to 

the output range (-10, 50). Any input value outside (10, 20) is asymptotically mapped to -10 or 

50. Curve (b) compresses the input range (10, 60) to an output range (-10, 10) with asymptotic 

values for out-of-range inputs. For specific applications, the network topology is given and so is 

the possible range of the synaptic weights. Therefore, it is not difficult to have a rough estimation 

of the maximum and minimum values of the accumulated inputs of a particular neuron and a 

range mapping function can be chosen accordingly. 

 

 

Fig. 32. Range modifier behavior  
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Learning involves updating the weight 𝑤𝑖 of ith synapse and the intrinsic excitation 𝑤0 of the 

neuron. Their changes are calculated as below. 

∆𝑤𝑖 = {
𝑐𝑒−𝑤𝑖 − 1,    𝑖𝑓 𝑠𝑝𝑖𝑘𝑒 𝑜𝑐𝑐𝑢𝑟𝑒𝑑 𝑖𝑛 𝑆𝑇𝐷𝑃 𝑤𝑖𝑛𝑑𝑜𝑤
−1,        𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑠𝑝𝑖𝑘𝑒 𝑖𝑛 𝑆𝑇𝐷𝑃 𝑤𝑖𝑛𝑑𝑜𝑤

 (4) 

∆𝑤0 = 𝑒−𝑤 ∙ 𝑧 − 1 (5) 

The above delta changes are scaled with a constant learning rate to perform the final update. It 

can be proved [42] that based on this learning rule the wi converges to the log of the probability 

that the presynaptic neuron yi fired within the STDP window before neuron Z fires, and the firing 

probability of Z calculated by Eqn. (2) is the Bayesian probability of Z given the condition of its 

input neurons 𝑦1, 𝑦2, … 𝑦  (i.e 𝑃(𝑍|𝑦1, 𝑦2, … 𝑦 ). 

To obtain Poisson spiking behavior, the method presented in [43] is adopted. The spike rate 

𝜆(𝑡) is an exponential function of the inputs, which is represented by Eqn.(4). To generate a 

Poisson process with time-varying rate 𝜆(𝑡), the Time-Rescaling Theorem is used. According to 

this theorem, when spike arrival times 𝑣𝑘 follow a Poisson process of instantaneous  rate 𝜆(𝑡), 

the time-scaled random variable Λ𝑘 = ∫ 𝜆(𝑣)𝑑𝑣
𝑣𝑘

0
 follows a homogeneous Poisson process 

with unit rate. Then the inter-arrival time 𝜏𝑘 satisfies exponential distribution with unit rate. 

𝜏𝑘 =Λ𝑘 −Λ𝑘−1 = ∫ 𝜆(𝑣)𝑑𝑣
𝑣𝑘

𝑣𝑘  

 
(6) 

To find the next spiking time 𝑣𝑘, a random variable is generated satisfying exponential 

distribution with unit rate, which represents 𝜏𝑘. The integral in Eqn.(6) cumulates the 

instantaneous rates from Eqn. (2) over time until the integral value is greater than or equal to 𝜏𝑘. 

Once this happens it implies that the inter-spike interval has passed and a spike is generated 

accordingly. In this way Poisson spiking behavior is generated based on the state of the neuron. 
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4.2 SPIKING RECTIFIED LINEAR UNIT NEURON MODEL 

(RELU) 

From theory behind the Bayesian neuron model it is clear that the neuron is memory less and 

computation happens based on instantaneous rates. So, when this neuron is used in a network any 

weighted spike received by this neuron will have small effect on the overall firing rate. Hence the 

net effect of the weighted spike must be spread over time. This conversion mechanism is 

achieved by using a spiking Rectified Linear Unit (ReLU) neuron. 

The ReLU function is defined as 𝑍 = 𝑚𝑎𝑥 (𝑈𝑡ℎ, 𝑢(𝑡)) where 𝑍 is the number of output 

spikes, 𝑈𝑡ℎ is a constant threshold, and  𝑢(𝑡) is the membrane potential of this neuron calculated 

as 𝑢(𝑡) =  𝑢(𝑡 − 1) + ∑ 𝑤𝑖 ∙ 𝑦
𝑖
(𝑡) −𝑛

𝑖=1 𝑈𝑡ℎ. In other words, the membrane potential of a ReLU 

neuron accumulates every weighted input spike and discharges it over time resembling a burst 

firing pattern. In our implementation, the spiking threshold 𝑈𝑡ℎ is set to 1, and after each spike 

generation, the membrane potential is reduced by the threshold value. This makes sure that 

accumulated membrane potential is discharged faithfully over time. 

4.3 WINNER TAKES ALL 

 

Fig. 33 shows a neural circuit to laterally inhibit a group of Bayesian neurons in a winner take 

 

Fig. 33. Winner take all circuit 
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all (WTA) manner. WTA circuit is a recurrent network where a set of neurons compete with each 

other for activation. Each Bayesian neuron has an associated ReLU neuron, which collects and 

integrates input from other Bayesian neurons within this competing set and convert the 

accumulated signal into a sequence of inhibition spikes. Hard or soft WTA behavior can be 

achieved based on the degree of inhibition delivered. Hard WTA happens when the inhibition is 

strong such that it brings down the firing rate of the non-preferred Bayesian neurons to zero, 

resulting in only one neuron with highest excitation being active. On the other hand, if plural 

voting action is required within the set, the degree of inhibition is tuned to be moderate. This 

makes Bayesian neurons fire with different stable rates which is, soft WTA behavior where firing 

rate is proportional to their relative excitation levels. 
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5 HIGH PERFORMANCE SIMULATOR FOR SPIKING 

NEURAL NETWORKS 

Several studies have been performed to confirm that most of the perceptual and motor tasks 

performed by the central nervous system are stochastic in nature, which can be modeled in a 

Bayesian framework [44] [45] [46] [42]. The decision-making process involves combining the 

priors with noisy information to compute predictions. SNNs built using these models have shown 

to perform inference based decision making. The emergent behavior of the model is not derived 

by mimicking the biological process in the neuron, but instead model the observed computational 

behavior. Hence these models are non-biologically realistic. There are several spiking neural 

network simulators available which support biologically realistic neuron models for large scale 

networks [40] [41] [47] [48]. However, there are no simulation tools available which can handle 

large scale SNNs with non-biologically realistic and mixed neuron models in an efficient manner. 

In this chapter, we propose a simulation tool architecture to enable development of SNNs with 

non-standard network topologies and neuron models. The network topology can be developed in 

traditional fashion with stacks of neuron layers or with any arbitrary topology including 

simulation of complex networks consisting of sub networks with arbitrary recurrent connections. 

We address the limitation while modeling these networks by enabling functionality to support 

stochastic behavior, making synapse modeling uniform so the neural computation is similar for 

inhibitory and excitatory case and enabling non-centralized control for neuron behavior. 

Majority of available SNN simulators focus on biologically realistic neuron models, 

performing operational simulations and behavior characterizations. The NEURON simulation 

environment is primarily based on biologically realistic empirical models of neurons [40]. The 

GENESIS neural simulation system is another tool developed for computational neuroscience 
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[41]. It also implements biologically realistic neuron models for understanding biological 

networks and artificial neural networks. Brian is a Python based simulator [47], which supports 

rapid development of single-compartment neuron models and other complex models by defining 

the underlying behavior using differential equations. This to an extent supports non-standard 

neuron models for simulation by providing functionality to model non biologically realistic 

operations. NEST is another simulator for spiking neural network which focusses on dynamics 

and scale of the network rather than the exact morphology of the individual neuron [48]. This tool 

is efficient for scalable simulation of biologically realistic neuron models. In general these 

simulation tools compute differential equations in the neuron models which is computationally 

expensive. An event-driven simulator which exploits the sparse nature of neuron spikes to pre-

compute look-up tables for characterizing synaptic and neuronal dynamics is implemented which 

improves simulation speed [49]. SpikeNET, usually runs very fast simulations but does not allow 

the simulation of very complex or biologically-realistic neural models, however this project is no 

longer supported [50]. 

These popular tools model the biological mechanisms and behaviors in detail, hence are bulky 

and complicated. It is not feasible to use them to simulate large-scale SNNs in a reasonable time 

frame. More computationally-efficient simulation tools and neuron models have been developed 

for large-scale SNN operation simulations. SpiNNaker, which is a low-power and parallel 

neuromorphic computing platform, can be used to simulate various types of neural networks with 

different kinds of neurons and connectivity patterns [51]. 

The bottleneck in wide spread adoption of SNNs is the lack of simulation tools to handle 

large-scale networks. Our proposed neuron model has features, such as uniform synapse 

connection and distributed learning, which facilitate large scale parallel implementation. In this 
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work, we develop Spiking Neural network Simulator (SpNSim), a flexible, multithreaded and 

vectorized spiking neural network simulator using C++. SpNSim has the ability to 

simultaneously simulate and train heterogeneous neural networks, i.e., networks consisting of 

different spiking neuron models with different behaviors including activation functions and 

STDP rules. This is a key feature in implementing complex neural networks with distinct 

subnetworks. The function of the simulator is validated using two networks representing two 

different applications from unsupervised feature extraction to inference based sentence 

construction. 

5.1 ARCHITECTURE 

 

The SpNSim is designed to be modular and extendable. Its overall architecture is shown in 

 

Fig. 34. SpNSim architecture 
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Fig. 34. There are three main layers in the design. First layer is Network layer where network 

definitions are read from user-provided XML files and neural networks are created. It also writes 

the trained networks back to XML files. Internally the network representation is maintained as a 

3D graph in a Cartesian coordinate system, with vertices representing neurons and edges 

representing connections. The second layer is the simulation engine, which takes care of 

simulating the network in a multi-threaded environment. Finally, the visualizer layer helps in 

debugging and rendering the complex SNNs in 3D. All the subcomponents of SpNSim are 

described in detail in the following sections. The simulation treats time in discrete time steps 

called ticks. 

5.2 EVALUATION ROUTINES FOR NEURON MODEL 

SIMULATION 

We use interface class to make developing neuron models flexible so that any kind of 

behavior can be integrated. Neuron models are represented as evaluation routines (ER). ER 

provides platform for multi-threaded execution and thread synchronization. By default only one 

thread per ER is assigned, but based on the model requirement it is scalable. Each instance of ER 

is capable of holding data for any number of neurons of its type. The key advantage of this 

approach is that all data including weights and neuron parameters for numerous neurons of the 

same type are stored in arrays. These arrays are dynamically created and memory aligned to the 

processors vectorization boundary during initialization. The functions for the compute logic is 

developed such that there are no data dependencies across iterations of loops (i.e. no inter neuron 

data dependency), which is a prerequisite for enabling vectorization of code. The spike 

propagation is handled using pointers for quick communication. To avoid data dependency while 

computing current spike status we use two arrays, one is called current spike and the other is 
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called pending spike. For any given tick the status of the neuron is computed using current spike 

and the results are stored in pending spike to avoid data corruption as all the neurons are being 

evaluated in parallel. Later the pending spike will be copied to current spike. This constitutes to 

spike communication in a hazardless manner. Since all the compute logic and data is available in 

the ER, it is straightforward to optimize them for use with accelerators like GPGPU or Intel Xeon 

Phi. Though this kind of acceleration is possible, it not tested for current implementation. 

5.3 RUNTIME POLICY 

Runtime policy (RP) is a feature defined in the network definition file. This specifies dynamic 

behavior of the network, such as the starting and ending time of training and recall phases. Also at 

run time certain neuron parameters can be overridden for debug purposes or for modeling certain 

biological behaviors where the presence of neurotransmitters modulates the behavior of neurons 

for example providing reward and penalty behavior to neurons. The run time policies are defined 

as operations to be performed on the specified set of neurons. These operations are associated 

with triggers, which can be activated by certain conditions. Triggers can be of different types. 

Currently we have only implemented time triggers, with room for expansion to other kinds of 

triggers in the future. Time triggers are defined with activation expression, which always resolves 

to absolute simulation time. The expression can also be constructed based on other triggers plus 

relative time. Time triggers can also be defined as sequences or patterns, which resolve to a list of 

time steps. This rich way of defining triggers allows complex dynamic behavior of the network.  

5.4 SIMULATION ENGINE 

This module is core of the simulator. Once the network is created, a list of ER instances is 
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registered with the simulation engine (SE). This process links up every thread from all the ERs 

with thread-safe blocking queues for two-way communication. Using blocking queue allows a 

thread to go to sleep while the queue is empty, thus freeing up resources for other operations. SE 

communicates with ER threads using command and response messages. Simulation engine 

implements a state machine with three states; Compute, Deliver and Done. Transition to next 

state is done only after a Sync operation where the responses of all the threads is received. The 

Sync operation enables the discretization of simulation time and also enables the computation of 

all neurons asynchronously with in each state. 

The basic control flow is shown in Fig. 35. Simulation time is advanced in compute state and 

compute command is broadcast to all threads. After receiving their responses, the state transitions 

to deliver state. Here the output spike status generated during this tick is delivered as inputs to 

downstream neurons, which will be used for computation during next tick. This task primarily 

boils down to copying data from pending spike array to current spike array. Once the simulation 

time reaches the user-defined limit, it sends termination commands to all the threads. After 

receiving all responses, the simulation terminates. This ensures that all threads have safely 

 

Fig. 35. Simulation engine control flow 
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terminated and released all the resources back to the system.  

The runtime policies including their triggers, operations and the set of associated neurons are 

resolved before the start of simulation. This information is registered with the SE. During the 

compute state SE checks for any triggered events. If any one of them are activated then the 

actions associated with the corresponding operations are included in the command messages to 

ERs, which encapsulates the list of specific neurons affected by that operation. 

5.5 NETWORK SPECIFICATION AND CREATION 

In biological nervous system, the neurons form well defined circuits performing specific tasks. 

To accommodate such complex neural circuits in SpNSim we define templates, which is a 

subnetwork comprising several neurons of any type with their associated connectivity. Instances 

of those templates can be placed at any given location in 3D space. Each neuron in that instance is 

referred hierarchically, using a concatenation of the instance name and its relative 3D location 

within the template. The intention of using template is to have a library of frequently used sub-

networks and also to save trained networks, which can be reused as sub-circuits in more complex 

designs. 

Two types of templates can be defined to realize neurons; group template and column 

template. Group template has a 2D structure, it defines placement of neurons in the X-Y plane. A 

column template has a 3D structure which is built by instantiating group templates along X, Y 

and Z directions. A column template also defines the connectivity among the instantiated group 

templates, hence creating a template of connected sub network. Since group instances in a 

column template results in building the column template, no physical neuron is realized until this 

column template is instantiated in the network. Like column templates the group templated can 
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be instantiated directly in the network to realize physical neurons. 

The input of the simulator consists of one network definition file and any number of template 

definition files. All of them are specified in XML format. The template definitions can be 

included in the network definition file however, the use of template definition files provide the 

power of modularity and re-usability by lending support for developing a library of trained/re-

usable sub-networks. The network definition file is responsible for instantiating all neurons within 

templates to build a network. The runtime policy is also specified in the network definition file for 

controlling the dynamic behavior of the network.  

The connectivity among neurons can be specified as explicit connection or as a group. Explicit 

connectivity specifies connections from multiple source neurons to only one target neuron, 

whereas group specification makes multiple connections from specified list of source neurons to 

a list of target neurons. Depending on the requirement different patterns of connectivity can be 

assigned for example, full connectivity where all sources are connected to all targets or one-is-to-

one connectivity where one source neuron only connects to corresponding target neuron in the 

list. Apart from this, probability values can be associated to the connectivity specification, so that 

links are established randomly. Weight patterns, including specific and random weight 

assignments, are defined for these connections as well. For example, a given weight is applied to 

all the connections or random weights with in the specified range are applied. Other connection 

parameters can be defined for example, an incoming connection to a neuron can have its learning 

mode enabled or disabled. 

After running the simulation the learned network can be saved back to XML format. The 

network can be saved as network definition file or template definition file. The network definition 

file can be loaded back and run at a later time from the previous state. This allows snapshots of 
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simulation to be saved. If the network was saved as template definition file then it can be 

imported by any other network definition file and be used as trained sub-network. 

SpNSim creates the network in a three-step process. In the first step we read all the definition 

files. These XML files are parsed and a XML tree structure is created. In the next step, using this 

tree a compact network representation is created. The reason behind creating this is to determine 

the total amount of memory required to build the SNN. The total memory requirement is not 

directly evident from the XML tree as templates can overlap in certain situations resulting in 

fewer neurons for such cases. Knowing the exact amount of memory is critical as this memory 

must be dynamically allocated such that it is memory aligned to the processors vectorization 

requirement. Finally, the actual spiking neural network is created. During the network creation 

process, first all the neurons are created then the connections are made, hence avoiding complex 

network graph traversals. To resolve name conflicts across network and template definition files, 

all file names in the project are required to be unique. In the internal representation of data 

elements all items are renamed with respect to their scope including file scope, hence making all 

names across files unique and a name resolution lookup is maintained to identify the right 

element. 

Neuron types defined in the XML file result in ERs being created. These ERs behave as 

containers for neurons as described earlier. A neuron factory is used to create neurons in the 

appropriate ER based on the neuron type. If there are a large number of neurons of the same type, 

then extra instances of ERs can be created to increase the number of threads to evaluate them 

without modifying the underlying ER code. 
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5.6 3D VISUALIZER 

Developing and debugging complex SNNs is a non-trivial task, especially when one must 

creatively imagine the network in 3D and provide the specification through XML. To facilitate 

this process, we use an open source 3D data visualizer called ANTz [52] to visualize the network 

and its spiking activities. SpNSim creates CSV files in the required format to represent the 

inferred SNN from the XML files. These CSV files are loaded on to ANTz for rendering the 

inferred network in 3D. All neurons are displayed as spheres and directed connections as cones 

with the base at the source neuron and the tip at the target neuron. Each neuron type is displayed 

with a different color for better understanding. SpNSim also records details of spiking activities in 

another CSV file, which can be used by the ANTz to animate spike generation and delivery. 

5.7 PLOTTING UTILITY 

SpNSim outputs spikes and neuron parameter data in CSV file format for the specified 

neurons. These can be analyzed using Microsoft Excel or using a rich plotting utility we have 

developed in MATLAB. This utility has the capability of showing raster plots for spikes and 

perform post processing like window analysis and signal to noise ratio analysis on these plots to 

determine the statistical behavior among the spikes. The neuron parameter variations can also be 

plotted for debugging and analysis purpose. The plotting utility is capable of displaying a set of 

weights over consecutive time steps resulting in an animated view of weight evolution during 

learning phase. This feature is particularly helpful in understanding the learning behavior of the 

network with respect to change in parameters. 
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5.8 UNSUPERVISED FEATURE LEARNING AND 

EXTRACTION 

The stochastic firing and STDP learning enables unsupervised feature learning and extraction, 

which is the function of the base layer in every convolutional network for image recognition. The 

MNIST dataset is used for this experiment to learn features of handwritten digits ranging from ‘0’ 

to ‘9’. We use 2000 randomly selected samples from the training set to learn the features and 

tested against 2000 images randomly picked from the testing set. For all the experiments, we use 

binary MNIST images. 

A convolutional neural network is constructed using the Bayesian neurons. Two different 

kernel sizes are used for the experiments, 5x5 and 7x7. For both kernels we set a stride of 2 pixels 

along X and Y directions. Each kernel is mapped to 9 features, implemented by 9 Bayesian 

neurons in the output layer. Each neuron of the Bayesian output layer is connected to all input 

neurons in its kernel. The input neurons perform population coding of input pixels, with two 

neurons representing black and white value of each input pixel. The neurons in the input layer 

fire, facilitating the Bayesian neurons to fire. Based on their relative spike-timing, the weight of 

the synapse is updated. A ReLU neuron based inhibition layer is attached to the output layer 

which realizes hard WTA function to ensure that only one feature will be activated for each 

kernel so that each Bayesian neuron learns a unique feature. The network setup of a 5x5 kernel 

size is shown in Fig. 36. The input layer consist of 50 neurons, the output and inhibition layers 

both have 9 neurons each. When an input neuron is active, it fires at 10% probability. The 

learning rate is fixed at 0.01, and the STDP period is 30 ticks for the experiments. The duration of 

STDP window is in the range of 10ms in a biological system. 
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The stochastic SNN performs learning and feature extraction similar to Convolutional 

Restricted Boltzmann Machine (CRBM) [53]. The same set of training and testing images is 

applied to an open source software implementation of CRBM. We found that they give 

comparable feature maps and filtered images as shown in Fig. 37. The support vector machine 

(SVM) classifier is used to check the effectiveness of the learnt features. Two different SVMs are 

trained and tested using features extracted from stochastic SNN and CRBM. The results show 

that the features extracted by stochastic SNN and CRBM can be used to classify with an accuracy 

of 94.4% and 94.45% respectively using 5x5 kernel, and 92.6% and 91.4% accuracy using 7x7 

kernel, demonstrating the effectiveness of stochastic Bayesian neuron model with the results as 

shown in TABLE III. This accuracy is lower than the state-of-the-art results, which is 94% for 

SNN [7] and 99.18% for CRBM [53] as we are using the black-and-white images instead of 

greyscale images. We also observed that losing 50% of the connection will not cause notable 

performance degradation for large kernel. However, accuracy loss starts at 50% connections for 

small kernel. Finally, we expedite training by reducing the time that the training image is exposed 

to the system, and observe marginal impact. 

 

Fig. 36. Network structure (50x9x9) 
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The 3D visualization of the network learning 9 features from a 5x5 kernel is shown in Fig. 38. 

The bottom layer of green neurons are input pixel neurons, they fire only if a bright pixel of the 

 
Fig. 37. Nine 5x5 extracted features and corresponding 

filter responses from our SNN and CRBM 
 

TABLE III. Classification results 
5x5 kernel (NW Size: 50x9x9) 7x7 kernel (NW Size: 98x9x9) 

Learning Time (ticks) Learning Time (ticks) 

100 300 500 100 300 500 

93.25 94.05 94.4 91.2 92.6 92.5 

Connectivity % Connectivity % 

50 70 100 50 70 100 

91.7 92.35 93.25 91.2 90.25 91.2 

 

 

Fig. 38. 3D NW visualization of 9 feature learning of 5x5 kernel 
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image is exposed to the neuron. The next two layers of blue neurons correspond to input layers. 

One layer consists of neurons preferring black pixels and the other white pixels. The next layer 

with turquoise neurons are the Bayesian neurons and finally the orange neurons provide 

inhibition. 

5.9 CONFABULATION THEORY BASED INFERENCE 

An inference network for sentence construction is created using Bayesian neurons. It consists 

of lexicons representing words and phrases. As shown in Fig. 33, a lexicon is a WTA subnetwork 

with Bayesian neurons for excitation and ReLU neurons for inhibition. Each Bayesian neuron 

represents a symbol, which in this case is a potential word or phrase at certain location of 

sentence. The synapses between neurons across lexicons are created based on the log conditional 

probability of the two connected words (phrases). All neurons are initialized with the same 

intrinsic potential (i.e. the same initial firing rate). The most strongly connected neurons resonate 

and enhance each other and at the same time inhibit the other neurons in the same lexicon. The 

network settles on contextually correct behavior and neurons with the highest firing rate in each 

lexicon marking the sentence that is grammatically correct and semantically meaningful. In this 

 

Fig. 39. Sentence confabulation network 
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application, the inhibition layer performs soft WTA. It has an advantage over hard WTA because 

symbols with lower excitation are not discarded, thus more information is retained during 

inference. Fig. 39 shows the network topology. 

We randomly picked 45 sentences from document images. Fuzzy character recognition is 

performed on these images which results in multiple possible words for each word position as 

described in [2]. For example, given input candidates [{we, wo, fe, fo, ne, no, ns, us} {must, 

musk, oust, onst, ahab, bust, chat} {now, noa, non, new, how, hew, hen, heu} {find, rind, tina} 

{the, fac, fro, kho} {other, ether}], the SNN settles at a grammatically correct sentence as [we 

 

Fig. 40. Confabulation results raster plot 
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must now find the other]. The raster plot for this example is shown in Fig. 40. The labels along Y-

axis are grouped by lexicon in the following format; the lexicon number, symbol represented by 

the neuron and the 3D (x y z) co-ordinate of the neuron in the network. The spike count for 

winning symbols is highest in the Lexicon, which is shown along the secondary Y-axis. The X-

axis represents the simulation ticks. Lexicon-0 and lexicon-7 in the figure mark the beginning and 

end of the sentence. The average SNR across all lexicons is 2.57. Overall, the stochastic SNNs 

are able to construct correct sentences for 83.8% of the test cases. 
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6 LOW POWER NEURON MODEL FOR DIGITAL 

HARDWARE 

SNNs can achieve ultra-low power consumption due to their sparsity and distributed nature. 

Several inroads have been made in SNN implementations; however, there is still a lack of 

computational models that lead to hardware implementation of large scale SNN with STDP 

capabilities. In this work, we present a set of neuron models and neural circuit motifs that form 

SNNs capable of in-hardware fully-distributed STDP learning and spiking based probabilistic 

inference. In this chapter, a highly scalable and flexible digital hardware implementation of the 

neuron model is presented. Functions such as Bayesian inference and unsupervised Hebbian 

learning are implemented on the proposed hardware SNN system to demonstrate the design’s 

effectiveness in learning and inference. 

The potential benefits of the SNN cannot be fully realized without dedicated hardware 

because full software implementations have high coordination overheads and are limited by the 

allowable degree of parallelism. Many traditional computational models of SNN are not designed 

to facilitate hardware implementation [2] [54]. They either consist of excessive physiological 

details [40] [41] or rely on centralized control to coordinate neurons [42]. Some recent research 

works on SNNs have been carried out from the hardware design perspective [7] [55] [51]. Novel 

hardware systems such as IBM’s TrueNorth neurosynaptic processor has enabled breakthrough 

in design and applications of SNN. However, STDP learning has not been an integral part of the 

neuron model in these hardware systems. As a result, they do not support real-time in-hardware 

learning, which is critical when being applied to a dynamic environment or to satisfy the 

requirement to run multiple applications. Although hardware implementation of STDP learning 

has been discussed in several previous publications [56] [57], these works focus more on circuit 
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and device level analysis on how variable synaptic plasticity is achieved. They either did not 

demonstrate the ability of learning [57] or were applied only to small scale problems with linearly 

separable classes [56]. Furthermore, these implementations are either in analog domain or rely on 

certain non-linear properties of the device while no specific computational model was provided. 

A dedicated hardware implementation of the SNN is a very attractive option for a large variety 

of applications due to its significant potential in energy efficiency. The biological neuron models 

are bulky and complicated, thus not suitable for large-scale implementations. Neurogrid, 

developed at Stanford University for simulation of biological brains [58], uses analog circuits to 

emulate the ion channel activity and uses digital logic for spike communication. BrainScaleS is 

another hardware implementation that utilizes analog neuron models to emulate biological 

behavior [59]. These implementations have been focusing on biologically realistic neuron models 

and are not optimized for large-scale computation. IBM has come up with the TrueNorth 

architecture which is digital and optimized for large-scale applications and contains 4096 cores 

with 256 neurons in each core [60]. None of the above hardware systems support real-time in 

hardware STDP learning. Several existing efforts address hardware implementation of the STDP 

function [56] [57]. Their main focus is how to use nonlinear property of resistive RAM or analog 

circuit to realize variable synaptic weights. [56] applies a ReRAM array to memorize the EEG 

signal of three vowels and [57] does not provide experimental data to demonstrate the circuit’s 

ability to learn. Neither of them give details of their computational model. 

In this chapter, we focus on a large scale digital hardware implementation of the stochastic 

SNN with biologically plausible in-hardware learning. An improved computational model of the 

stochastic SNN is presented. The model describes neuron behavior, STDP learning rules and 

network topology. A reference digital implementation of the neuron model is also provided, 
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which is highly scalable and flexible. 

6.1 RECAP OF BAYESIAN NEURON MODEL  

As described in chapter 4, in our model the excitatory and inhibitory inputs are treated in a 

uniform way since both are spiking based. Synapses with a positive weight induce excitation and 

synapses with negative weight provide inhibition. A range mapping function as described in Eqn 

(3) is used to maintain the neurons dynamic range. To sum up, the proposed neuron model 

handles all synaptic inputs uniformly, and its membrane potential can be constrained within a 

fixed range. Such regularity reduces the hardware implementation complexity. The range-

mapping function also provides the means to adjust the membrane potential and consequently the 

firing rate across neurons without retraining the entire network. To obtain Poisson spiking 

behavior we adopt the method introduced in [43] as described in chapter 4.1.  

6.2 EFFICIENT WINNER-TAKE-ALL CIRCUIT 

 

Fig. 41 shows an enhanced WTA neural circuit to laterally inhibit a group of Bayesian 

neurons. In this circuit the ReLU neurons inhibit only their corresponding Bayesian neuron. This 

contrasts with the earlier proposed design shown in Fig. 33 where, the ReLU neurons inhibit all 

the lateral Bayesian neurons except their corresponding Bayesian neuron. The Bayesian neuron is 

 

Fig. 41. Efficient winner-take-all circuit 
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memoryless by design and computes instantaneous probabilities. Therefore, in the former case all 

the inhibition which is delivered in the same instant will have a small impact as there is limited 

cumulative effect over time. This drawback is overcome in the latter circuit where all the 

accumulated inhibition is delivered faithfully over time hence more accurate inference is possible. 

The model avoids centralized generation of the inhibition signal, therefore there is no need to 

synchronize neuron activities. This makes hardware implementation simple and distributed. 

Henceforth, we refer the enhanced WTA circuit as WTA circuit for simplicity. 

As described earlier, Hard or soft WTA behavior can be achieved based on the degree of 

inhibition delivered. Hard WTA happens when the inhibition is strong such that it brings down 

the firing rate of the non-preferred Bayesian neurons to zero, resulting in only one neuron with 

the highest excitation being active. Hard WTA can be used for unsupervised feature extraction 

for enabling each neuron to learn a unique feature. On the other hand, if plural voting action is 

required within the set, the degree of inhibition is tuned to be moderate. This makes Bayesian 

neurons fire with different stable rates which is the soft WTA behavior where firing rates are 

proportional to their relative excitation levels. Soft WTA helps to retain more information in 

probabilistic inference. The WTA circuit is the basic building block for our SNN. 

6.3 HARDWARE ARCHITECTURE OF DIGITAL NEURON 

MODEL 

Keeping reliability, scalability and flexibility as the primary focus we choose digital 

implementation over analog. This section presents a reference design of a hardware neuron. Two 

functions are supported by the hardware, (1) membrane potential update and spike generation, 

also referred as the “recall” function, (2) synapse weight update based on STDP rule, also referred 
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as the “learning” function. For lower hardware cost and power consumption, each set of hardware 

is used to evaluate the recall and learning function of multiple neurons in the SNN in a pipelined 

manner. We refer to the hardware implementation as physical neurons, and the neurons in the 

computational model as logical neurons. A core based architecture is employed where each core 

has a physical neuron which is time multiplexed to handle 256 logical neurons. Each core is also 

associated with a network on chip router which interfaces with other cores. Each core also has a 

crossbar whose inputs are axons receiving spikes from the router. The output of the crossbar are 

the dendrites feeding the logical neurons. This core based architecture is similar to the one 

employed by the TrueNorth chip [60]. In this chapter, only the physical neuron design which 

supports online learning is discussed. 

Approximation and resource sharing techniques are adopted in the proposed design to reduce 

hardware complexity. Instead of directly implementing Eqn.(3), we approximate it using a 

piecewise linear function. The asymptotic regions of the curve are approximated with constant 

values, while the rest of the curve is approximated with a straight line represented as 𝑢′(𝑡) = 𝑚 ∙

𝑢(𝑡) + 𝑐 where 𝑚 is the slope of the line and 𝑐 is the Y-axis intercept. In this way, the range 

mapping function can be implemented using a multiplier and an adder. The exponential relation 

between the firing rate and membrane potential (i.e. Eqn. (2)) is realized with an exponential 

lookup table, which reduces the compute and area requirement. 

 

 

Fig. 42. Bistable 6-T random number 
generator design. 
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To generate the Poisson firing pattern as described by Eqn. (6), we use a geometric 

distribution instead of an exponential distribution as discrete values are required. A random 

number is drawn whenever a spike is generated. The traditional shift register based pseudo 

random number generator will require a significant amount of area and power with a limited 

degree of randomness. Motivated by the Intel’s design for Ivy Bridge [61], we adopt a 6-

transistor (6-T) random number generator as shown in Fig. 42, which comprises a bistable 

structure and two pull-up transistors. When the clock signal is in the low phase, both Node A and 

Node B are pulled up (close) to Vdd. When the clock signal is in the high-phase, both pull-up 

transistors are cut-off and the bistable begins evaluation phase. During evaluation, any noise or 

disturbance will drive the bistable out of the unstable equilibrium point (Node A = Node B = 

Vdd/2) and make one of them logic 1. Nodes A and B will become logic 1 with equal probability 

because the noise will incur equal probability of positive and negative effects on the node voltage. 

Extensive experiments have been conducted on this design, demonstrating its effectiveness and 

5% tolerance level on process variations. 

This random number generator is used to compute the geometric distribution which represents 

the next spike generation time. The significant values in a geometric distribution lie within a 

small range, hence the random number is directly used with a programmable mask for fine 

tuning. The exponential lookup table along with multiplier and an additional adder is used to 

realize Eqn. (4) and (5). 

Two memory banks are needed in the hardware implementation. The first one is a 

configuration memory, which stores the parameters such as learning rate and the coefficients of 

the range mapping function. The second is the neuron status memory. It stores the weight and the 

accumulated inter-spike time (as calculated by Eqn. (6)) for each synapse and STDP window 
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status. Each neuron requires 806 bytes of neuron status memory and 13 bytes of configuration 

memory. 

6.4 DATAFLOW GRAPH AND DATA PATH ARCHITECTURE  

 

Fig. 43 shows the data flow graph (DFG) of the learning and recall functions of a Bayesian 

neuron. The operations in blue are required for both learning and recall functions. They calculate 

the membrane potential and evaluate spike firing conditions. The weight of each input synapse is 

read from status memory and accumulated according to Eqn. (1). We assume that each neuron 

has a maximum of 256 input synapses. For simplicity, the DFG groups 256 memory read 

operations into one 256-cycle memory read, and 256 addition operations into one 256-cycle 

addition. Due to data dependency, the addition starts one cycle later than the memory read. The 

calculation of membrane potential 𝑢(𝑡) will then go through range mapping, spiking rate 

 

Fig. 43. Dataflow graph for pipelined recall and learning  
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generation and Poisson firing steps as indicated in the DFG.  

The operations in orange are required only for the learning function. They will be executed 

only when learning is enabled and either a spike is issued within the STDP window or the STDP 

window has expired. In both cases, the original synaptic weight will be read out and the updated 

synaptic weight will be written back. If a spike is issued within the STDP window, the 

exponential LUT lookup and multiplication will be executed to calculate the ∆𝑤𝑖 according to the 

first part of Eqn. (4). Otherwise, if the STDP window expires, the Exp update block will be 

skipped and a constant negative ∆𝑤𝑖 will be used to update the synaptic weight according to the 

second part of Eqn. (4). No action will be taken in all other cases. Our simulation shows that these 

learning related operations are only executed with less than 17% probability during the learning 

stage. The fact that online learning is performed much less frequently compared to recall leads to 

lower total power consumption. Again, the operations performed on 256 synaptic weights (𝑤𝑖) 

plus one intrinsic weight (𝑤𝑜) is chained into a 257-cycle operation. To achieve high throughput, a 

4-stage pipelined multiplier is used. As a result, it takes 260 cycles to process 257 multiplications 

in the data flow graph. Because the synaptic weight can only be updated after the condition for 

firing is evaluated, the learning function of the (i-1)th logical neuron can overlap with the recall 

function of the ith logical neuron.  

An analysis on the data flow graph shows that two adders and one multiplier are needed as 

computational resources. It also shows that the neuron status memory must have two read ports 

and one write port. With these resources the overall latency to evaluate the recall and learning 

functions of a logical neuron is 526 cycles and the throughput is 267 cycles per logical neuron. 

We define the time to evaluate all 256 neurons in a core as the neuron evaluation cycle (NEC). 

One NEC consists of 267*256 + 259 = 68,611 clock cycles. 
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Based on the above analysis, we developed a digital architecture with 16-bit fixed-point 

precision for the neuron model encompassing both recall and learning circuits. Fig. 44 shows the 

datapath of our design. The controller is divided into two state machines, one for recall and the 

other for learning. By disabling the learning module and stochastic firing function, the same 

design can be used to implement integrate and fire as well as the ReLU neurons. 

To validate its functionality, we applied the neuron model on two different applications. In the 

first experiment, the neuron model is used to perform unsupervised feature learning and 

extraction of hand written digits. With this experiment, we will demonstrate the in-hardware 

learning capability of the neuron model. The potential tradeoff between hardware complexity 

using fixed point arithmetic and detection quality will be discussed. The second experiment 

demonstrates the model’s capability of performing Bayesian inference, where it is applied for 

sentence construction with a learned natural language model. Function accurate C++ neuron 

model was developed and simulations were performed on networks using SpNSim to cross 

validate the hardware. 

 

Fig. 44. Neuron datapath 
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6.5 UNSUPERVISED FEATURE LEARNING AND 

EXTRACTION 

 

The stochastic firing and STDP learning enables unsupervised feature learning and extraction, 

which is the function of the base layer in every convolutional network for image recognition. The 

MNIST dataset is used for the proposed model to learn features of handwritten digits ranging 

from ‘0’ to ‘9’. We use 2000 randomly selected samples from the training set to learn the features 

and tested against 2000 images randomly picked from the testing set. For all the experiments, we 

use binary MNIST images. 

A convolutional neural network was constructed using the Bayesian neurons. Kernels with 

two different sizes are tested, 5x5 and 7x7. For both kernel sizes we set the X and Y strides to be 

2 pixels. Each kernel is mapped to 9 features, implemented by 9 Bayesian neurons in the output 

layer. Each neuron of the Bayesian output layer is connected to all input neurons of the kernel. 

The input neurons perform population coding of input pixels, with two neurons representing 

black and white value of each input pixel. The neurons in the input layer fire, facilitating the 

Bayesian neurons to fire. Based on their relative spike-timings, the weight of the synapse is 

updated. A ReLU neuron based inhibition layer is attached to the output layer and implements the 

  

(a)                                                                                       (b) 
Fig. 45. Network structure for (a) training and (b) testing 
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hard WTA function to ensure that only one feature will be activated for each kernel and each 

Bayesian neuron learns a unique feature. The setup for learning and testing a 5x5 kernel is shown 

in Fig. 45. The input layer consist of 50 neurons, and the output and inhibition layers both have 9 

neurons. When an input neuron is active, it fires at a 10% probability. The learning rate is fixed at 

0.01, and the STDP period is 30 neuron evaluation cycles for the experiments. 

 

The stochastic SNN performs learning and feature extraction functions similar to a 

Convolutional Restricted Boltzmann Machine (CRBM) [53]. The same set of training and testing 

images is applied to an open source software implementation of CRBM. We found that they 

produce comparable feature maps and filtered images as shown in Fig. 45. A support vector 

machine (SVM) classifier is used to check the effectiveness of the learnt features. Two different 

SVMs are trained and tested using features extracted from our stochastic SNN and CRBM. The 

results show that the features extracted by stochastic SNN and CRBM can be used to classify 

with 94.4% and 94.45% accuracy respectively using the 5x5 kernel, and 92.6% and 91.4% 

accuracy respectively with the 7x7 kernel. Please note that, although the state-of-the-art technique 

can recognize MNIST data with 99.2% accuracy [53], this is achieved using a multi-layer deep 

belief network with 60,000 training images. While ours has only one layer and trained using 2000 

images. It is our next step to develop a multi-layer network using the stochastic SNN. The 

TABLE IV. Classification results 

5x5 kernel (Network Size: 50x9x9) 7x7 kernel (Network Size: 98x9x9) 

Learning Time (NEC) Learning Time (NEC) 

100 300 500 100 300 500 

93.25 94.05 94.4 91.2 92.6 92.5 

Fixed Point Precision (bits) Fixed Point Precision (bits) 

8(4,4) 16 (8,8) 32 (16,16) 8(4,4) 16 (8,8) 32 (16,16) 

90.3 91.35 93.25 89.85 87.45 91.2 

Connectivity % Connectivity % 

50 70 100 50 70 100 

91.7 92.35 93.25 91.2 90.25 91.2 
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accuracy of our SNN is close to the best results in [62], which is 95%. However, they use 6,400 

excitatory neurons, which is 5 times more than ours. Furthermore, it memorizes the whole image, 

therefore it is hard to improve its accuracy by adding further layers; while ours is a convolutional 

network, which can be extended to a deep neural network. 

Functional simulation of the hardware design was carried out to explore the tradeoff between 

cost and performance. TABLE IV compares the accuracy of pattern classification when different 

fixed point data precisions and different connection ratio between the input and Bayesian layers 

are used. As we can see, the quality of learned features (i.e. the classification accuracy) drops 

marginally when the data precision is reduced from 32 bit to 8 bit. We also observed that losing 

50% of the connection will not cause notable performance degradation for the 7x7 kernel. 

However, accuracy loss starts at 50% connections for the 5x5 kernel. Finally, we expedite 

training by reducing the time that the training image is exposed to the system, with only marginal 

impacts. 

6.6 INFERENCE BASED SENTENCE CONSTRUCTION 

An inference network for sentence construction is created using the Bayesian neurons and 

stochastic SNN. It consists of lexicons representing words and phrases. As shown in Fig. 41, a 

lexicon is a subnetwork of Bayesian neurons for excitatory and ReLU neurons for inhibitory 

functions. Each Bayesian neuron represents a symbol, which in this case is a potential word or 

phrase at a certain location of sentence. The synapses between neurons across lexicons are 

created based on the log conditional probability of the two connected words (phrases). All 

neurons are initialized with the same intrinsic potential (i.e. the same initial firing rate). The most 

strongly connected neurons resonate and enhance each other and at the same time inhibit the 
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other neurons in the same lexicons they belong to. The entire network settles on contextually 

correct associations and neurons with the highest firing rate in each lexicon marking the sentence 

that is grammatically correct and semantically meaningful. In this application, the inhibition layer 

performs the soft WTA function. It has an advantage over the hard WTA because symbols with 

lower excitation are not discarded, thus more information is retained during the inference. Fig. 39 

shows the network topology except that it uses the efficient WTA sub-networks 

 

We randomly picked 45 sentences from document images. Fuzzy character recognition is 

performed on these images which results in multiple possible words for each word position as 

described in [2]. For example, given input candidates [{he, ho, be, bo, re, ro, ne, no} {soon} 

{found, round} {the, kho, une, unc} {place, placed}], the SNN settles at a grammatically correct 

sentence as [he soon found the place]. Fig. 46 shows the raster plot for one of the sentences. The 

  

Fig. 46. Confabulation results raster plot 
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spike count for winning symbols is identified as “Max” in a lexicon. The stochastic SNNs are 

able to construct correct sentences for 83.8% of the test cases. 

6.7 HARDWARE IMPLEMENTATION ANALYSIS 

An RTL design of the neuron model was developed and verified through functional 

simulation. The design is synthesized using 45nm, 1.1V CMOS technology. Our primary focus is 

to minimize power and area. The RTL design is synthesized with these constraints and we use the 

CACTI tool to estimate the access time and power consumption of the memory blocks with high 

threshold devices (for low leakage power.) In order to achieve similar speed as a biological neural 

system, our target is to complete one NEC in 0.5ms. This converts to a maximum clock period of 

7.3ns. Synthesis results show that the minimum clock period is 3.15ns, hence we are well within 

the target margin with an area of 4460 m2 for digital logic and 209KB memory for 16-bit data 

path. Details of these result can be found in [63]. 

Not all resources are used every clock cycle. In our experiments, typically the learning circuits 

are used 17% of time with sparse spiking pattern. Out of this, the multiplier is used for 3% of the 

time and the rest is spent on the adder for weight update. For recall operation, the multiplier is 

utilized for 1.5% of the time. Overall the multiplier is utilized for only 2% of the time, therefore 

consuming little dynamic power.  
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7 PROBABILISTIC GRAPHICAL MODEL MAPPING 

AS A SPIKING NEURAL NETWORK 

Bayesian inference and belief networks are powerful tools for many applications, such as error 

correction, speech recognition, and image recognition. Recently deep belief networks have 

demonstrated amazing results in unsupervised feature extraction [64] and image recognition [53]. 

A stochastic SNN naturally implements Bayesian learning and belief propagation. In [42], the 

authors present a Bayesian neuron model and the STDP learning rule. It can be proven that based 

on given STDP learning rules the synaptic weight of a neuron converges to the log of the 

probability that the presynaptic neuron fired within the STDP window before post synaptic 

neuron fires, and the firing probability of the post synaptic neuron is its Bayesian probability 

given the condition of its input neurons. 

Despite the simplicity of the SNN, it is not efficient when implemented on traditional 

processors with the Von Neumann architecture, due to the performance gap between memory 

and processor. The IBM Neurosynaptic System provides a highly flexible, scalable and low-

power digital platform [60] that supports large scale SNN implementation. IBM’s neurosynaptic 

processor called TrueNorth has 4096 cores and each core features 256 neurons and axons. The 

synaptic connections and their weights between axons and neurons are captured by a crossbar 

matrix at an abstract level. This abstraction is in the form of the programming paradigm for 

TrueNorth called Corelet [65]. Corelets represent a network on the TrueNorth cores by 

encapsulating all details except external inputs and outputs. The creating, composing and 

decomposing of corelets is done in an object-oriented Corelet Language in Matlab. 

While the TrueNorth chip is a flexible platform, it does pose several constraints. To maintain 
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extremely low cost and high energy efficiency, each column in the crossbar only supports 4 

different synaptic weights [66] and all the synaptic weights in the crossbar are associated to axon 

types which are shared by all other neurons of the core. Hence all neurons using a row are 

required to use the same weight rank i.e. the crossbar supports 256x256 weights but can have 

only 4x256 unique weights. Also because of the 256x256 crossbar, the fan-in and fan-out per 

neuron is limited to only 256. These constraints limit the direct mapping from a given SNN to its 

TrueNorth implementation. To the best of our knowledge, there has not been any public domain 

tool that converts an arbitrary SNN to the TrueNorth implementation. Though, several 

applications have been developed on TrueNorth by following design approaches, “train-then-

constrain” [67] [68] or “constrain-then-train” [66], which include the methods of constructing and 

training the network on libraries such as Pylearn2/Theano or Caffe and mapping them onto 

TrueNorth as per their network. 

IBM’s TrueNorth processor is very low-power, highly scalable, and optimized for large-scale 

computing [66]. However, harnessing the strengths of TrueNorth demands algorithms which are 

adept to its constraints. Recent developments suggests an emergence of neuromorphic 

adaptations of machine learning algorithms. It has been shown that a “train-and-constrain” 

approach can be taken to map a Recurrent Neural Network (RNN) based natural language 

processing task (question classification) to a TrueNorth chip [67] by matching artificial neuron’s 

responses with those of spiking neurons with promising results (74% question classification 

accuracy, less than 0.025% of cores used and an estimated power consumption of ≈17µW). The 

same “train-and-constrain” approach is used to map a Deep Neural Network (DNN) on to a 

TrueNorth chip [68] for a sentiment analysis task. Here, the mapping is possible through 

substitution of the ReLU neurons in the DNN with integrate-and-fire neurons and adjusting their 
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neuron thresholds and discretizing the weights using a quantization strategy. Few recognition 

tasks have also been implemented in other promising neuromorphic hardwares [69] [70]. In this 

work we also take a “train-and-constrain” approach to implement inference-based Bayesian 

spiking neural networks on the TrueNorth chip. 

In this chapter, we aim at implementing a trained probabilistic inference network which 

represents a probabilistic graphical model on TrueNorth. It involves two steps: at first the 

inference network is transformed into a stochastic SNN; and secondly the stochastic SNN is 

converted into a TrueNorth implementation. Using inference-based sentence construction as a 

case study, we discuss algorithms that transform an inference network to a spiking neural 

network, and a spiking neural network to TrueNorth corelet designs. In our experiments, the 

TrueNorth spiking neural network constructed sentences have a matching accuracy of 88% while 

consuming an average power of 0.205 mW. 

7.1 NORMALIZED WINNER-TAKE-ALL  

 

The original inference model described in the confabulation process requires that the belief 

value of all symbols in each lexicon must add up to 1. In a stochastic SNN, this means the total 

firing activities of neurons in each lexicon must be approximately the same. To achieve this, we 

introduce normalized winner-take-all (NWTA) network. Three neurons, upper limiter (UL), lower 

 

Fig. 47. Normalized winner-take-all NW 
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limiter (LL), and exciter (Ex), are added to the previously discussed WTA circuit as shown in Fig. 

47. Both the UL and LL are regular integrate and fire neurons, which have input links from all 

symbol neurons (these links are omitted in the figure for the sake of simplicity). The links to UL 

have positive weights while the links to LL have negative weights. On the other hand, the UL has 

negative leakage and LL has positive leakage. The leak values are adjusted in proportion to the 

number of symbols in the NWTA network. The threshold of these neurons is adjusted for a 

desired range of firing rates for the network. With this configuration, the UL neuron builds up 

membrane potential every time it receives spikes from symbols which leak away at a constant 

rate. If the symbols are firing at a higher rate than the rate of leak, then the UL neuron fires 

indicating the symbols need to be inhibited. The UL neuron drives all the inhibitors with equal 

weights, hence suppressing all the symbol neurons equally without disturbing their relative 

excitation levels. On the other hand, the LL neuron builds up the membrane potential due to leak. 

The membrane potential drops only if the symbol neurons fire. If this firing rate is lower than 

required, then LL neuron fires indicating that the symbol neurons are firing at a lower rate than 

desired. One Ex neuron, which is driven by the LL neuron, provides equal excitation for all the 

symbol neurons. Similar to the inhibitor neurons the exciter neuron is also of type ReLU and it 

spreads amplitude of excitation over time, again without disturbing the relative excitation levels 

of the symbol neurons. Hence this recurrent behavior obtained from the controlled feedback 

through inhibition and excitation forces the symbol neurons to cumulatively fire in the desired 

rate-range.  

7.2 OVERALL NETWORK CREATION 

To build the overall stochastic SNN, each lexicon in the original inference model is 
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implemented using the above mentioned NWTA network. Excitatory links that connect symbol 

neurons are established across different lexicons. This network will be referred to as reference 

network in the rest of the paper. Another network will be derived from it and be mapped to the 

TrueNorth processor, which will be discussed in the next section. 

As a case study, we built a small scale SNN based on the trained weights extracted from the 

intelligent text recognition system (ITRS) [2]. ITRS is trained on a huge corpus of English text. 

Its knowledge base consists of conditional probabilities between neighboring words and phrases. 

The number of unique symbols in the knowledge base is about 974,000, which includes words 

and phrases. Based on this knowledge, it forms anticipations of the word at sentence level 

context. Given an observation consisting of a fuzzy list of likely word candidates at each word 

position, familiar information with high relevancy will be recalled resulting in a meaningful and 

semantically correct sentence. This model has an overall sentence accuracy of 94%. 

We extract details only pertaining to few example sentence images to build simple inference 

networks for evaluating the feasibility of its implementation in stochastic SNN. Each symbol is a 

potential word or phrase at every word or phrase position of the sentence. All symbol neurons are 

initialized with the same intrinsic potential (i.e. the same initial firing rate). The most strongly 

connected neurons resonate and enhance each other across lexicons and at the same time inhibit 

other neurons in the same lexicon. When network activity settles, neurons with the highest firing 

rate in each lexicon marks the sentence that is grammatically correct and semantically 

meaningful. 

We randomly picked a set of sentences from document images. Fuzzy character recognition is 

performed on these images which results in multiple possible words for each word position as 

described in [2]. For example, given input candidates [{he, ho, be, bo, re, ro, ne, no} {soon} 
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{found, round} {the, kho, une, unc} {place, placed}], the SNN settles at a grammatically correct 

sentence as [he soon found the place]. Fig. 48 shows the raster plot for one of the sentences. The 

labels along Y-axis are grouped by lexicon in the following format; the lexicon number, symbol 

represented by the neuron and the 3D (x y z) co-ordinate of the neuron in the reference network. 

The spike count for winning symbols is highest in the Lexicon, which is shown along the 

secondary Y-axis. The X-axis represents the simulation ticks. 

 

7.3 BACKGROUND OF TRUENORTH NEUROSYNAPTIC 

PROCESSOR 

TrueNorth is a neurosynaptic processor created by IBM. It is based on the brain’s parallel 

processing architecture and is highly efficient, scalable and flexible. It implements general 

purpose programmable spiking neurons. The digital architecture of a TrueNorth chip consists 

 

Fig. 48. Reference network results 
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4096 cores [65] each with 256 neurons and 256 axons connected via 256x256 directed synaptic 

connections, thus providing 1 million programmable neurons and 268 million configurable 

synapses. TrueNorth uses an efficient event-driven architecture. Address event representation 

(AER) is adopted for spike representation and communication between neurons. These spike 

events are sparse in time and active power is proportional to firing activity thus making it highly 

efficient. The core architecture is as shown in Fig. 49. 

 

Each neuron is independently configurable with a wide variety of neuron models including 

stochastic ones. Corelets are used as design language for creating networks. Using the Corelet 

Programming Environment (CPE) these corelets can be programmed to the chip and evaluated or 

can be simulated using their 1:1 hardware simulator called Compass [71]. The corelet 

environment is shown in Fig. 50. 

The TrueNorth chip is a low power platform. It uses low leakage transistors for minimizing 

passive power consumption. Active power is minimized due to the event-driven architecture of 

the logic where computation is performed only when required [72]. 

 

Fig. 49. TrueNorth core fabric 
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7.4 DESIGN FLOW 

Our second step is to transform the reference network to the TrueNorth implementation. This 

involves 3 more steps as shown in Fig. 51. Based on the reference network, whose construction is 

described in the previous section, corresponding shadow networks are created, which comply 

with the physical constraints posed by the TrueNorth hardware. The shadow network is further 

flattened to corelets where corelet level details are added. The flattening process results in one 

corelet per lexicon. These corelets are now connected with each other to build the physical 

network. The connected corelets are finally simulated using the compass simulator and the 

TrueNorth chip is programmed for evaluation in real-time. 

 

Fig. 50. Corelet programming environment 

 

Fig. 51. Design flow 
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7.5 SHADOW NETWORK CREATION 

For every reference network, we generate an equivalent TrueNorth compatible shadow 

network. This network complies with the restrictions imposed by the platform. Due to the 

hardware restrictions of TrueNorth, some simplifications of the Bayesian neuron must be 

adopted. For TrueNorth implementation, we replace the Bayesian neuron with a stochastic 

integrate and fire neuron to obtain similar characteristics. From the model described above we 

infer that there are two computational stages which are unique to the Bayesian model in contrast 

to the regular integrate and fire neuron model. The first being the exponent function and the other 

being the Poisson firing. We suggest skipping the exponent computation and using the 

accumulation of weighted spikes to directly compute the membrane potential. The Bayesian 

neuron must operate over a small region of the exponential to maintain its dynamic range. This 

can be approximated with a linear function, which is inherent to the accumulation of membrane 

potential in an integrate and fire neuron. For Poisson spike generation, we suggest randomly 

varying the threshold after every spike generation. The Bayesian neuron’s output firing rate is 

exponentially proportional to the cumulative rate of input weighted spikes. By limiting the range 

of threshold change to a small interval which satisfies the exponential distribution with unit rate, 

we achieve a firing pattern similar to Poisson spiking behavior as described in the model. The 

 

(a) Reference network  (b) Shadow network 
Fig. 52. Comparing reference network and shadow network 
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general behavior of neuron is still similar to the Bayesian neuron model even with these 

simplifications. The TrueNorth neuron is configured with this behavior for symbol neurons to 

obtain a stochastic neuron. The rest of the neurons used in the network can be directly configured 

to TrueNorth neurons. 

Another hardware limitation of TrueNorth is that, although a neuron may receive connections 

from many axons, the weights of these synaptic links can have only a combination of four 

different values. Consider a symbol neuron in Fig. 52 (a), it has connections from the inhibitor, 

the exciter and numerous excitatory links from symbol neurons in other lexicons. All these links 

have different weights. Hence it cannot be directly implemented as a TrueNorth neuron. Our 

solution is to decompose a symbol neuron into multiple sub-symbol (SS) neurons and a symbol 

aggregator (SA). For each symbol neuron in the reference network, first, we scale the weight of 

 

(a)                                                              (b) 
Fig. 53. SpNSim 3D NW visualization a) Reference NW with Bayesian 

neurons b) TrueNorth equivalent shadow NW 
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its incoming links to an integer range. After scaling, these weights are binned for quantization, 

based on user specified bin width. Different binning strategies can be used. All links falling into 

the same bin will be assigned the same weight, which is the rounded average of their original 

weight. For every 4 bins, a sub-symbol neuron is created as the receptor of all links falling into 

these bins. The sub-symbol neurons are of type ReLU and connect to a symbol aggregator 

neuron via link with unit weight. Hence, their function is to collect and accumulate input spikes 

and relay the results to the aggregator over time. The symbol aggregator is a stochastic integrate 

and fire neuron as previously discussed. It aggregates inputs and generates spikes that will be sent 

to inhibitors, UL, LL neurons, as well as sub-symbol neurons in other lexicons. 

An example of SA and SS neurons is given in Fig. 52 (b). In the figure, the symbol in the 

reference network has 7 incoming connections falling into 6 bins. In the shadow network, 2 SS 

neurons are created. The first one receives 5 incoming connections distributed over 4 different 

bins, while the second one receives the rest of the incoming links originally connecting to the 

symbol neuron. Both SS neurons connect to an SA neuron, which also receives input from the 

inhibitor and exciter. Since all SS neurons connect to the SA neuron with unit weight, there is no 

limitation of the number of SS neurons that can be created, as long as there are enough hardware 

neuron resources. The above procedure is not necessary for neurons other than the symbol 

neuron, i.e. inhibitor, Ex, LL and UL neurons. They can directly be implemented as a TrueNorth 

neuron, because their incoming links have the same weight, in other words, they all fall into the 

same bin. The visualizations for the case of reference network and its equivalent TrueNorth 

compatible shadow network is shown in Fig. 53. Different type of neurons are shown in different 

colors as illustrated in the legend. Compared to the reference network in Fig. 53. (a), the shadow 

network in Fig. 53. (b) has the added SS neurons (in orange) and their links. These networks are 
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for the same sentence as shown in Fig. 48. The left and right sub-network represent the word and 

phrase lexicons respectively. The symbols in each lexicon are shown along X-axis. 

7.6 FLATTENING THE SHADOW NETWORK 

We have developed a parameterized lexicon corelet in CPE. The parameters are the number of 

symbols, their associated weights, input connectivity and output connectivity. The corelet has one 

input connector that receives incoming signals from other corelets and two output connectors, one 

of them is the internal connector that sends the output to the input connector of other corelets; and 

the other is an external connector that sends the output to the I/O pins. In the TrueNorth 

architecture, a neuron can only drive a single axon which has a fan out of 256 within a single 

 

Fig. 54. Crossbar connections for lexicon 1 
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core. In cases where a neuron must send spikes to downstream neurons in multiple cores then the 

upstream neuron must undergo splitting. To achieve this the splitting neuron is configured with 

weight equal to 1 and threshold equal to 1. 

Fig. 54 shows a flattened network for lexicon 1 of the example sentence given in Fig. 48, 

which is the crossbar of a core. The rows of the crossbar are the axons and the columns are 

dendrites. The neurons are placed along the bottom of the crossbar. A dot in the crossbar 

represents a synapse. The figure shows wiring for only loopback connections. The dendrites, 

axons, loopback connections and the neurons are depicted based on the color legend given in the 

figure. From the crossbar, we can see that UL (i.e. dark blue) and LL (i.e. green) neurons have 

synapses from all magenta axons looped back from SA neurons. Those magenta colored axons 

also generate splits for inter-corelet and external connectivity, and connect to all inhibitor (i.e. 

cyan) neurons. Most SA (i.e. magenta colored) neurons have 3 synapses, coming from orange 

(i.e. SS), blue (i.e. Ex) and cyan (i.e. inhibitor) axons. All SS (i.e. orange colored) neurons have 

synapses from axons that are not colored, which means links from other corelets (i.e. lexicons). 

With these connections, we flatten the NWTA network. The pseudo code to setup cores and 

neurons is given below. For convenience, the SA, I and SS neurons associated with a symbol is 

referred to as symbol group (SG). 

The core and neuron setup process involves making crossbar connections and configuring 

neurons. The first step in this process as shown in the pseudo code is to determine the number of 

axons which must be reserved in a core. These axons will be shared among all neurons of the 

core. Then a neuron list is prepared which involves all neurons in the lexicon including the splits 

for connectors. Neurons from this list are sequentially added to cores and appropriate synapses 

are configured. If a neuron cannot be accommodated due to a lack of enough neurons for making 
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splits or due to not enough axons for all other neuron types, then an additional core is added and 

the process continues. Once all the neurons are assigned then the number of splits required to 

support the reserved axons in each core is computed and these additional inter-core split neurons 

are assigned using the same method as described above. The resulting core allocation is as shown 

in Fig. 55. Hence the number of cores and neurons instantiated are based on the network 

topology. 

After the core and neuron configuration is done the connectivity inside cores is now 

established. This involves linking the neuron outputs to axons. The connectivity between input 

connector and axons is established followed by connectivity between neurons and output 

connectors. Any unused neurons in all cores are configured to be disconnected. This completes 

the corelet creation process, which is repeated till all the lexicons are flattened. In this way, we 

map the network in a compact manor to TrueNorth. 

7.7 CREATING CONNECTED CORELETS 

After creating all the corelets they are connected based on the connectivity information 

between lexicons which represents KLs, resulting in a fully formed stochastic SNN. This list of 

corelets is compiled and run on both the compass simulator and on the TrueNorth chip.  

 

Fig. 55. Core and neuron allocation 
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The example sentence utilizes 13 cores with the above algorithm. In general, the number of 

corelets generated will be equal to the number of lexicons in the sentence and each corelet will 

use as many cores required to map all the symbols in the lexicon. 

 

7.8 DESIGN ENVIRONMENT 

In this section we briefly describe the tools used and the design environment details which is 

as shown in Fig. 56. The input of the design environment is the confabulation model and the 

trained knowledge base, which provides lexicon details and knowledge link information. The 

network creator generates the reference network and the shadow network. 

The reference network is sent to an in-house spiking neural network simulator, SpNSim for 

Algorithm 5. Setup Cores and Neurons 
numReserveAxons  (2 + number of SA neurons) 
NurnLst  All neurons in lexicon //UL,LL,Ex,ConSplits,SG1-n 
NurnLst_itr  begin(NurnLst) // initialize iterator 
splitsDone  false 
done  false 
while not done 

ADD Core 
RESERVE axons for SA, UL, LL and EX in the core 
for i  1 to 256 

curNurn  NurnLst(NurnLst_itr) 
DETERMINE resources required, numNeurons for splits, numAxons 
for all other neurons 
if resource available in core then 

ASSIGN neuron type 
if (curNurn = UL or LL) then 

CREATE crossbar connection from the SA axon to UL and LL 
else if (curNurn = Ex) then 

CREATE crossbar connection from the LL axon to Ex 
else if(curNurn = SS) then 

CREATE crossbar connection from the corelet input axons to SS 
else if(curNurn = SA) then 

CREATE crossbar connection from SS, I, Ex to SA 
else if(curNurn = I) then 

CREATE crossbar connection from SA, UL to I 
else if(curNurn = split) then 

CREATE crossbar connections from given axon. 
INCREMENT NurnLst_itr 
if (end(NurnLst) = NurnLst_itr) then //check for end of list 

if splitsDone then 
done  true 
Break 

else 
splitsDone  true 
COMPUTE number of splits required for UL, Ex and SA 
neurons to support number of cores created 
NurnLst split neurons to feed reserved axons 
NurnLst_itr  begin(NurnLst) // initialize iterator 

else 
Break 
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functional verification [73]. SpNSim is a multithreaded and scalable simulation platform built 

using C++. It is flexible and vectorized for efficient evaluation and capable of handling large-

scale networks of mixed neuron models. It is also capable of training stochastic SNNs using 

STDP. In SpNSim, the network topology along with the network parameters are specified 

through a XML input file. The XML input file also includes definition of runtime parameters to 

specify the dynamic behavior (e.g. the starting and ending of learning phase, test phase, etc.) of 

the network. SpNSim is capable of generating visualization data which is used to render 3D 

neural networks using an open source 3D data visualization tool called ANTz. This is a very 

helpful feature for debugging and analyzing complex neural networks. There is an accompanying 

plotting utility developed in MATLAB for plotting and analyzing spikes. It is also capable of 

analyzing neuron parameters and visualizing weight evolution for debug purpose.  

The tools that convert the reference network to the shadow network are developed in C++. 

The shadow network is sent to CPE where it is flattened and corelets are generated. Since CPE is 

a MATLAB based tool, the shadow network is saved as a MAT file, which contains the neuron 

details, weights, connectivity and network topology information required for creating corelets. 

Finally, the connected corelets are simulated using the IBM compass simulator or executed on the 

TrueNorth processor. After evaluating the neural network, we convert the TrueNorth spike files 

to SpNSim spike file format and create raster plots and signal to noise ratio (SNR) plots using the 

 

Fig. 56. Design Environment 
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plotting utility of SpNSim. 

7.9 EXPERIMENTS AND RESULTS 

Experiments have been carried out to validate the functionality of the TrueNorth 

implementations generated from the above design flow. Multiple networks are built, each capable 

of confabulating one sentence from a set of possible words. These networks do not have inputs, 

the stochastic firing gets amplified due to resonance and produce meaningful sentences as 

outputs. 

A random set of 100 sentences from “Ali Baba and Forty Thieves” were picked from noisy 

document images as our test cases. This text was not used for training. The reference networks 

were simulated using SpNSim and the results are compared to the output of the SNN running on 

TrueNorth. For 85% of the test cases, TrueNorth generated the same sentence as the simulated 

reference network with a sentence accuracy of 70%. Fig. 57 shows the raster plot for results 

 

Fig. 57. TrueNorth sentence results 
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obtained from TrueNorth. The labels and axes represent the same information as in Fig. 48 except 

that the Y-axis labels show the corelet connector pin numbers. 

There is no timing control on the neurons to reset its operation over window intervals. These 

are free running neurons that amplify or suppress the excitation inherently. Therefore, window 

analysis is performed as post processing on the collected spikes to determine a feasible window 

over which the spikes must be accumulated to get statistically significant results. It is important to 

note that, these are resonant networks without external stimulus resulting in sparse spiking 

patterns. When stimulated by external inputs, corresponding neurons and their downstream 

neighbors will increase the spiking density. Also, the spiking density can be tuned by varying the 

thresholds of UL and LL neurons, based on the application requirement. For window analysis, 

the number of spikes is counted for each window and plotted. The gap between the desired curve 

and rest of the curves represents the signal to noise ratio (SNR). The larger the gap, the higher is 

the SNR for detection. The effects of sampling the output for different window sizes is shown in 

Fig. 58 for lexicon 1. From the figure, it is evident that a window size of about 500 ticks is 

enough to reliably determine the confabulated result, which is used in all the experiments. 

 

 

Fig. 58. Effect of window size on lexicon 1 
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While making the network compatible to TrueNorth, we had to scale and quantize the 

weights. By increasing the bin width, more connections will share the same weight and will result 

in lower performance. This effect is shown in Fig. 59 for different bin widths. Since these 

networks are small the effect is small but the trend is visible. As a rule of thumb, reducing bin 

width increases precision but at the cost of additional resources. 

 

After programming the TrueNorth chip we measure the power consumption to run the 

network as characterized in [72]. To find the actual power consumption just for the resources 

utilized on the chip, first the leakage power Pleak is measured when the system is idle then another 

power measurement Ptotal is made with the network running. The active power is computed as 

Pactive = Ptotal - Pleak . The leakage power is scaled to get the leakage power for only the cores 

utilized out of 4096 cores, Pleak_s = Pleak* NumCores / 4096. Finally, the total scaled power is 

computed as Ptotal_s = Pactive + Pleak_s. Power measurements were made for four sentences, each for 

all the four bin widths. Hence 16 networks were used to measure power. As presented in [74], on 

average the total scaled power is 0.205mW when running the chip at 0.8V and 0.442mW when 

running the chip at 1.0V. 

  

 

Fig. 59. Effect of bin width on SNR. 
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8 CONCLUSION 

Through this work a comprehensive approach is presented to address the issue of effectively 

designing complex neuromorphic applications which have heavy requirements for computing 

large amounts of data. We have presented a HPC design methodology for complex data 

dependent neuromorphic applications for heterogeneous clusters involving data strong 

dependencies with variety of different workload processing requirements. A scalable architecture 

is presented to implement such applications as pipelined and distributed systems on a 

heterogeneous cluster. We also proposed a structure based scheduling scheme to enable seamless 

scaling and provide module level load balancing in a non-centralized way. Hence achieving 

maximum resource utilization and providing best throughput for available hardware resources. 

The proposed architecture is efficient as it performs computation in out-of-order fashion through 

asynchronous pipelines. Resource mapping algorithms are also presented to efficiently map such 

complex pipelines to any given heterogeneous cluster for achieving best possible throughput. 

This is validated by implementing a neuromorphic application and every aspect of the framework 

is demonstrated. Resource mapping results are compared against existing implementations to 

show the soundness of results. 

For efficient and low power implementation of brain inspired computing applications an entire 

framework is developed using biologically inspired SNN. Spiking neuron models were presented 

to enable development of large scale SNNs capable of distributed online learning. To enable such 

research, a flexible, scalable and high performance simulation platform SpNSim is developed and 

its architecture is presented. The simulator has the ability to model biologically inspired but non-

biologically realistic neuron models which enable efficient computation. We also demonstrate the 
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functionality of the simulator for learning through STDP and evaluation of inference networks. 

These network results were validated based on other existing platforms. 

A general-purpose, efficient and scalable Bayesian neuron model along with a digital logic 

design for pipelined implementation which is capable of in-hardware learning is proposed. The 

proposed model is simulated and validated using two different SNNs applications and compared 

with existing implementations. 

This work also demonstrated that a stochastic integrate and fire neuron model can be used 

instead of more complex Bayesian neuron model for inference related tasks in spiking neural 

networks. To achieve this, we have proposed a normalized winner-take-all network topology. We 

have implemented several examples to verify that both kinds of networks, ones with Bayesian 

neuron model and another with a stochastic integrate and fire neuron model which produce 

similar results. The stochastic integrate and fire neuron model based network has been 

successfully programmed to the IBM TrueNorth neurosynaptic chip and evaluated the network in 

real-time. We have shown that Bayesian inference computation can be performed in very low 

power and efficient manner by performing a sentence confabulation task using spiking neural 

networks. 
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