164 research outputs found

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Verification of temporal-epistemic properties of access control systems

    Get PDF
    Verification of access control systems against vulnerabilities has always been a challenging problem in the world of computer security. The complication of security policies in large- scale multi-agent systems increases the possible existence of vulnerabilities as a result of mistakes in policy definition. This thesis explores automated methods in order to verify temporal and epistemic properties of access control systems. While temporal property verification can reveal a considerable number of security holes, verification of epistemic properties in multi-agent systems enable us to infer about agents' knowledge in the system and hence, to detect unauthorized information flow. This thesis first presents a framework for knowledge-based verification of dynamic access control policies. This framework models a coalition-based system, which evaluates if a property or a goal can be achieved by a coalition of agents restricted by a set of permissions defined in the policy. Knowledge is restricted to the information that agents can acquire by reading system information in order to increase time and memory efficiency. The framework has its own model-checking method and is implemented in Java and released as an open source tool named \char{cmmi10}{0x50}\char{cmmi10}{0x6f}\char{cmmi10}{0x6c}\char{cmmi10}{0x69}\char{cmmi10}{0x56}\char{cmmi10}{0x65}\char{cmmi10}{0x72}. In order to detect information leakage as a result of reasoning, the second part of this thesis presents a complimentary technique that evaluates access control policies over temporal-epistemic properties where the knowledge is gained by reasoning. We will demonstrate several case studies for a subset of properties that deal with reasoning about knowledge. To increase the efficiency, we develop an automated abstraction refinement technique for evaluating temporal-epistemic properties. For the last part of the thesis, we develop a sound and complete algorithm in order to identify information leakage in Datalog-based trust management systems

    Verification of Well-Structured Graph Transformation Systems

    Get PDF
    The aim of this thesis is the definition of a high-level framework for verifying concurrent and distributed systems. Verification in computer science is challenging, since models that are sufficiently expressive to describe real-life case studies suffer from the undecidability of interesting problems. This also holds for the graph transformation systems used in this thesis. To still be able to analyse these system we have to restrict either the class of systems we can model, the class of states we can express or the properties we can verify. In fact, in the framework we will present, all these limitations are possible and each allows to solve different verification problems. For modelling we use graphs as the states of the system and graph transformation rules to model state changes. More precisely, we use hypergraphs, where an edge may be incident to an arbitrary long sequence of nodes. As rule formalism we use the single pushout approach based on category theory. This provides us with a powerful formalisms that allows us to use a finite set of rules to describe an infinite transition system. To obtain decidability results while still maintaining an infinite state space we use the theory of well-structured transition systems (WSTS), the main source of decidability results in the infinite case. We need to equip our state space with a well-quasi-order (wqo) which is a simulation relation for the transition relation (this is also known as compatibility condition or monotonicity requirement). If a system can be seen as a WSTS and some additional conditions are satisfied, one can decide the coverability problem, i.e., the problem of verifying whether, from a given initial state one can reach a state that covers a final state, i.e. is larger than the final state with respect to a chosen order. This problem can be used for verification by giving a finite set of minimal error states that represent an infinite class of erroneous states (i.e. all larger states). By checking whether one of these minimal states is coverable, we verify whether an error is reachable. The theory of WSTS provides us with a generic backwards algorithm to solve this problem. For graphs we will introduce three orders, the minor ordering, the subgraph ordering and the induced subgraph ordering, and investigate which graph transformation systems form WSTS with these orders. Since only the minor ordering is a wqo on all graphs, we will first define so-called Q-restricted WSTS, where we only require that the chosen order is a wqo on the downward-closed class Q. We examine how this affects the decidability of the coverability problem and present appropriate classes Q such that the subgraph ordering and induced subgraph ordering form Q-restricted WSTS. Furthermore, we will prove the computability of the backward algorithm for these Q-restricted WSTS. More precisely, we will do this in the form of a framework and give necessary conditions for orders to be compatible with this framework. For the three mentioned orders we prove that they satisfy these conditions. Being compatible with different orders strengthens the framework in the following way: On the one hand error specifications have to be invariant wrt. the order, meaning that different orders can describe different properties. On the other hand, there is the following trade-off: coarser orders are wqos on larger sets of graphs, but fewer GTS are well-structured wrt. coarse orders (analogously the reverse holds for fine orders). Finally, we will present the tool Uncover which implements most of the theoretical framework defined in this thesis. The practical value of our approach is illustrated by several case studies and runtime results

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science

    Discrete Event Systems: Models and Applications; Proceedings of an IIASA Conference, Sopron, Hungary, August 3-7, 1987

    Get PDF
    Work in discrete event systems has just begun. There is a great deal of activity now, and much enthusiasm. There is considerable diversity reflecting differences in the intellectual formation of workers in the field and in the applications that guide their effort. This diversity is manifested in a proliferation of DEM formalisms. Some of the formalisms are essentially different. Some of the "new" formalisms are reinventions of existing formalisms presented in new terms. These "duplications" reveal both the new domains of intended application as well as the difficulty in keeping up with work that is published in journals on computer science, communications, signal processing, automatic control, and mathematical systems theory - to name the main disciplines with active research programs in discrete event systems. The first eight papers deal with models at the logical level, the next four are at the temporal level and the last six are at the stochastic level. Of these eighteen papers, three focus on manufacturing, four on communication networks, one on digital signal processing, the remaining ten papers address methodological issues ranging from simulation to computational complexity of some synthesis problems. The authors have made good efforts to make their contributions self-contained and to provide a representative bibliography. The volume should therefore be both accessible and useful to those who are just getting interested in discrete event systems

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    corecore