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FOREWORD

A major objective of the Systems and Decision Sciences (SDS) Program of II ASA is to
further t.he st.udy of new mathematical approaches to the modeling, analysis and con
trol of real syst.ems. SUS sponsored the conference on Discret.e I';vcnt Systems in the
belief that these systems will demand increasing attention. These proceedings should
therefore prove to be extremely timely.

Alexander B. I<urzhanksi
Chairrnitn
System and Decision Sciences Program



PREFACE

The purpmw or t1WS(~ remarks is t.o int.roduce di::icrete event. syst.(~ms and to pro
vide a rralllework t.o the contribut.ions t.o this volullIe.

WHAT IS A DISCRETE EVENT MODEL <{

Mathematical syst.ems theory traditionally has been concerned with syst.ems or
continuous variables modeled by dirrerence or dirrerential equations, possibly includ
ing random clements. However, there is a growing need ror dynamical models or sys
t.ems whosl' st.at.es have logical or symbolic, rat.her than numerical, values which
change wit.h the occurrl'nce or events which inay also he describl'd in non-numerifal
terms. We call such models discrete (!vellt models or DEMs.

The need ror DI~Ms stems rroln the crfort t.o extend the Sfope or mathematical
syst.ems thl'ory to include manuracl.uring systems, conllllllnication networks and oth('r
systerlls whose hl'havior is naturally descrihed hy a record or t.race or the OCfurrencc or
certain discrete, qualitative changes in the system and by ignoring continuously occur
ring micro-changes.

For example, the behavior or a data communications n('t.work Illay adequately he
descrihed by sent.ences such as "At time la user A sent. a packet or data t.o user 11 who
received it at time lb'" The building blocks or such sentences arc phrases 
packet_sent, packel_received - that indicate the occurrence or certain discrete
I'vents. These event.s mark various qualitat.ive changes in network opNat.ions and t.he
sl'nt.('nce ignores micro-changes such as the actual propagat.ion or signals oVl'r t.he net
work.

Similarly, it is easy to imagine that the 1I0w and processing or parts in a manurac
turing plant with several machines may userully be descrihed hy sent.ences huilt rrolll
phrases such as slarl._ processing_ part, jinish__ processiTllj part, machine jailed,
buffer__ empty, etc. while the sentence ignores continuous changes in the 'amount or
metal Cllt' or in the 'rraction or part processing task completed'.

These examples suggest that as a first. approximat.ion we may think or IH:Ms as
follows. The "real" syst.em hehavior involvl's changes in variahll's t.hat. on:nr continu
ously over time; J)~Ms abstract rrom this behavior by recording only the occurrenCl~

or certain discrete events. We will call such a record a trace. We can t.hen say that a
discrete event model is a mathematical model or procedure ror descrihing the set or
t.races that a system can generate. In most syst.ems the set or traces is irdinite
(because or dirferent initial conditions, control policies or random crrects), whereas a
model must be finite. Thus a [)~M is a finite mathematical model representing the
infinite set of traces or a discrete event system.

TRACE AllSTRACTIONS AND DEM FORMALISMS

Traces can be mat.hematically represented at three levels of abstraction which we
call t.he logical, temporal, and stochastic levels. At the most. abst.ract or logical level, a
trace is simply a sequence of events listed in their order or occurrence. For example,
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the trace

might signify the behavior

packet_sent packet_lost timeout~expired...

At the temporal level, a trace is a sequence of pairs

s = (a,. ttl (172' t2) (173' t3 ) .••

where 17,172173' •• is a logical trace and t i is the time at which event ai is executed.
Finally, at the stochastic level, the system behavior is modeled by a sequence of pairs
of random variables

(a" ttl (172. t2) (173. t:l) ...

where the a, are event-valued and the ti are real-valued random variables such that
for each sam pic w

is a temporal trace.

Thus a DEM gives a finite mathematical description for an infinite set of traces
representing system behavior at a particular level of abstraction.' A DI~M formalism
is a body 01" mathematical and computational methods for forlllulatiug aud answering
questions about a family of related discrete event models. There are several formal
isms at the logical level including those based on finite state machines, Pelri nets, cal
culus of communicating systems, and communicating sequential processes.

Despite considerable practical interest, there is relatively little progress ill
research on IJli;M formalisms at the temporal level. There is work on timed J)etri nets,
and on several related formalisms such as data flow graphs motivated hy problems in
synchronous digital signal processing.

On the other hand, DI~M formalisms at the stochastic level have been built on
the strong foundatious of the theory of stochastic processes and statistical decisiou
theory. Of particular importance here are models of networks of queues and the family
of mathematical and computational methods invented for the analysis and optimiza
tion of these models.

COMPARISONS OF DEMS AND THEIR USES

As noted, formalisms can work at different levels of abstraet.ion and at each level
there are several competing formalisms. Are there ways of comparing different for
malisms either intrinsically or in terms of their use?

By definition trace descriptions given by logical level models are less complex
than temporal level model descriptions which, in turn, are less complex than stocha.<;
tic descriptions. It is therefore tempting to say that stochastic models are intrinsically
more powerful (i.e. they can describe more complex phenomena) than temporal
models. However, in trying to represent more a.<;pects of trace behavior, formalisms
simplify the description of each individual a.<;pecl. Thus, the logical aspect of traces of
temporal models has a simpler structure than that permitted by logical level models;

I We distinguish "mong nP:Ms hy how "bstr"et their tr"ce descriptions "rp.. This is " (ocus on modeling.
One could propose lIlore technical distinctions among DBMs such as finite VB infinite sta.le, etelermiuistic: vs
lion-deterministic, etc:.
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similarly, the temporal aspect of traces of stochastic models has a simpler structure
than that permitted by temporal models. For these reasons, one usually cannot com
pare formalisms at different levels in terms of their descriptive power.

Such comparisons may be possible between formalisms at the same level. Let us
say that two models are equivalent if they describe the same set of traces. We can
then borrow an idea from the 'formal theory of languages' and say that a IH;M for
malism A has more descriptive power than a formalism 11 if every 13-modcl has an
equivalent A-model. In this sense one can assert for example that the Petri net for
malism has more descriptive power t.han the finite state machine formalism.

Descriptive power provides an intrinsic means of comparing formalisms. It. may,
however, be more interesting t.o base comparisons on how much useful work they can
do. We brieOy discuss one basis - algebraic complexity.

When we t.ry to analyze or t.o build a system, we t.end t.o t.hink of it. as a collection
of subsyst.ems whose operat.ions (events) arc coordinat.ed in several ways. Similarly,
every DI.;M formalism is an 'algebra' in the sense that it contains several 'operators'
which can be used to combine one or more models ill t.he formalism to obtain a more
cOlllplex model.2 We can t.hen say t.hat. a IH;M formalism has greater algel>raic com
plexit.y, relat.ive t.o a part.icular applicat.ion domain, if its algebraic 0l)('fators
correspond more nat.urally to the ways in which real systems arc coordinated. The
notion of algebraic com plexity is not formal like the notion of descriptive power, but it
has heuristic value since it. points to an import.ant aspect of modeling.

Ilow arc discrete event. models used t.o formulate and address int.erest.ing qnes
tions ahout manufacturing systems, communication networks, etc? In t.he first place,
by abst.racting from the real system behavior ill terms of traces, models can exhibit.
t.he structural similarity between very different systems (e.g. a manufacturing system
and a digital signal processing syst.em). Allalysis of the model then permits predicl.ion
of cert.ain properties of SystClI1 behavior. For instance, a logical level model may
reveal that the system is free of 'deadlock', or it may show the possibility of incorrect
transmission of data. A temporal level model may be analyzed to determine the
'throughput.' of a manufacturing system, i.e. the maximum rate of production.
Finally, a st.ochastic rnodelmay show the distribution of the build-up of inventories of
work-in-progress in a mannfactllrillg system.

The preceding examples illustrate the usc of DEMs for purposes of analysis.
DEMs may also serve the need for synthesis. For example, logical models have been
used t.o propose, synthesize, and verify control algorit.hms (protocols) that guarant.ee
error-free transmission of data packets in communicat.ion networks; temporal models
can suggest how t.o speed up computation in digital signal processing algorithms; sto
chastic lIIodels call be lIsed to determine optimal buffer si"'es ill manufacturing sys
tems.

CONTRIIlUTIONS TO THIS VOLUME

Work ill discret.e evellt syst.ems has just begun. Tbere is a great deal of activity
now, and much enthusiasm. Thcre is considerable diversity reflecting differences in
the intellectual formation of workers in the field and in the applications that guide
their effort. This diversity is manifested in a proliferation of DEM formalisllls. SOIllC
of t.he formalisllls arc essentially dilferent. Some of the 'new' formalisms arc

2 I"or example, linear lime-inva.riant syst.ems may be modeled hy transfer functions. The operations or ~Ulll
and product of lwo transfer functions then corrcspond respcctively to the parallcl and cascade conncction of
two systems.
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reinventions of existing formalisms presented in new t.erms. These 'duplications'
reveal both t.he new domains of intended application as well as t.he dilIlcult.y ill keep
ing up wit.h work t.hat. is published in journals on comput.er science, communications,
signal processing, aut.omat.ic cont.rol, and mathematical systems theory - to nalIle the
main disciplines with active research programs in discrete event syst.ems.

The first eight papers deal with models at the logical level, the next four are at
the temporal level and the last six are at the stochastic level. Of these eighteen
papers, t.hree focus on manufactllfing, fOIH on communication networks, one on digi
tal sigllal processing, the remailling tcn papers address methodological issues ranging
from simulation to computational complexity of some synthesis problems. The
authors have made good efforts to make their contributions self-contained and to pro
vide a representative bibliography. The volume should therefore be both accessible
and useful to those who are just getting interested in discrete event systems.
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FINITELY RECURSIVE PROCESSES

Kemal Inan and Pravin Varaiya
Department of Electrical Engineering & Computer Sciences
University of California
Uerkeley, CA 91720, USA

ADSTRACT

We present a new class of discrete event models called Finitely Recursive
Processes WR!'). These models are proposed to help in the specification, implementa
t.ion and simulation of communication protocols and supervisory control strategies.
We helieve that the 'algebra' of FlU's offers certain advantages over models based on
stat.e machines. The formal structure of FlU's builds on Iloare's COlllmunicating
Sequential Processes (CR!'). The main differences with CR!' are: (1) a FlU' is
specified via recursion equations which clearly bring out the dynamic evolution of a
process, (2) some additional operators for combining FlU's are introduced, (:J) the
structure of the 'algebra' of FlU's is exploited to suggest methods for simulating them.

INTRODUCTION

The hehavior of a discrete event system is described by the sequences of events or
traces that it generates. Let A be the finite set of events and A' the set of all finite
sequences of events in A, including the empty trace <>. A' represents the universe of
all possible behaviors, whereas the behavior of a particular system is given by a subset
LeA '. The set L will usually be infinite. A discrete event model (OEM) is a finite
mathematical description of this infinite set L.

To say that 8 = a1 a2 • •• is a trace of the system means only that in this behavior
the event ai II occurs some time after event ai' but the trace gives us no information
about the real time at which the event occurs. We may say that the trace only refiects
the precedence constraints of the system but not its real time constraints. Second, an
event is atomic. In the 'real' system each atomic event may be subdivided into several
operations; however, this finer granularity is not re/lected in the model.

Our aim is to present a family of OEMs which we call Finitely Recursive
Processes WIU'). For pnrposes of exposition it is convenient to contrast FlU's with
Finite State Machines (FSM), in part because FSMs are more familiar. Formally, a
FSM M is a 4-tuple

M -= (Q, A, f, 90)

where Q is the finite set of states, 90 E Q is the initial state, A is the finite set of
events, and f: Q x A -+ Q is a partial function called the state transition function. f is
partial means that f( 9, a) is on Iy defined for a su bset of pairs (9, a). f can be extended
to a partial function on Q x A • by induction:
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J(q,<»:= q

s A a '= { undefined if either J,( q, s) or JU( q, s), a) is undefined
J( q, ). JU( q, s), a), otherwise

Here rAI is the concatenation of two strings r and I in A'. The traces of M is the set

lrM:= {s EA' I J(qo,s) is defined),

It is known that lrM is a regular subset of A'. Conversely, if LeA' is closed'
and regular, then there is an FSM M such that lrM = L; see, e.g. lIopcroft and Ullman
(197!)). Thus, for example, the closure of the set

L:= {an bn I n ~ 0)

is not regular and so it cannot be described by any FSM.

In a state machine (wlwther finite or infinit.e) the notions of state and state trilll
sition are fundament.al while the notion of trace is derivative. By contrast, in a pro
cess (defined below) the notion of trace is primary while state is a derived notion.

PROCESSES AND RECURSIONS

A proccss l' is a triple (IrP,ol',rP), where lrP CA' is the set of traces of 1',
01': lrP ---> 2A is the evcnt fUllction, and rP: lrP ---> {o, I} is the termination func
t.ion. lrl' is t.he sel. of traces that, I' can execute, op(s) is the set of next event.s t.hat I'
can engage in, i.e. execute or block, after it executes s, and rl'(s) specilies whether I'
t.erminates or continues after executing s. This interpretation explains why a process
I' must satisfy the following conditions:

(I) < > E lrl'

(2) s'l E lrl' =} s E lrl'

(3) SA a E lrl' =} a E oP(s)

(1) rl'(s) = 1 =} sAL rf lrP unless I = <>

Two trivial but useful processes are:

STopn := ({ <>), oSTOpn (<» = 0, rSTOPn (<» = 0) ,

SKJI)n:= ({<>), oSKJPn «» = J), rSKlJ)n«» = 1).

The only difference between them is that STOP never terminates, while SKIP ter
minates immediately.

A process Q = (Irq, aQ, rQ) is a suhprocess of 1', denoted Q C P, if Irq C lrP,
and if oQ, rQ agree with the functions 01', rl' restricted to the domain Irq. Thus, for
example, STOpn is a subprocess of every process l' with rP( < » = 0 and 01'«» = n.
For each integer n let Pin be the subprocess of l' which contains all traces of I' with
lengt.h at lIIost n.

A fundarnentalnotion is that of the post-proccss I'/s defined for s E lrl' by

lr(P/s) := {I I sAL E lrl'} ,

o(p/S)(l) := op(s'l) ,

r(l'/s)(l) := rl'(sA l ) ,

I L is closed means that if r
A I E L then r E L,
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Thus P / s is the process that follows P after it has execu ted s. Since
(P/s)/a = P/(.~·a), we may associate with P a (possibly infinite) state machine Mp ,

Mp = ({J'/s I S E trP}, A, I, P/<> = P),

where the transition function is defined by

{
I'/(s'a) if s'a E tr/'

I(P/s, a):= undefined if s'a 1:- trP

Mp is 'equivalent' to P in the sense that trMp = trP.

Let II be the set of all processes (with the saJllc set A of cvents). A function
f: II -, 11 is continuous if for every increasing sequence of processes I'l C P2 C· ..

l(uP j ) = u/(Pj ) •
, I

A function I: lin -. II is continuous if it is continuous in each argulTlent with the oth
ers held fixed, and 1= (fI,' . -.1m): fin ---+ 11 m is continuous if each Ii is continuous.

In order to propose a recursive construction of a process whose traces unfold step
by st.cp in timc, Iloare (1985) introduccd the following notions of non-anticipative
functions.

Definition

f: II -. II is constructive or con if for X E [[ and n > 0

I(Xl n)jn = I(X)tn+t ;

I is non-destructive or ndes if

I(Xl n)jn = I(X)tn ;

I is strictly non-destructive or sndes if it is ndes but not con.

Thus I is con if the (n+1)st event executed by the process I(X) is determined by
t.he first n events executcd by X. If I is a function of several arguJTlents these
definitions apply if they apply to each argulTlcnt with the others held fixed.

Theorenil

Consider the equation

X = I(X) (1)

(2)

where f: nn ---+ fIn. For any set of initial conditions

X;10=ZOi, i=I,"',n

that is consistent, i.e.

ZOi=/i(ZOI,"',ZOn)tO, i=l,"',n

cquat.ion (I) has a unique solution X E lin t.hat satisfies the initial conditions (2), pro
vided I satisfies the following two conditions:

(el) Each Ij is continuous and ndes;

(C2) I contains no sndes loop, i.e. there is no sequence of indexes {iJ ,' • " im = i I } such
that Ii is sndes in X, .

k ktl

These basic definitions and Theorem 1 (for the one-dimensional case) are from
Hoare (1985). The multi-dimensional extension and other results given below are
from Jnan and Varaiya (1987).
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Theorem 1 allows a recursive definition of processes in a way that is analogous to
defining trajectories in Il n via the difference equation

x(t) == f(x(t-l) = ... = ftl(x(O» , t = 1,2",'

This analogy becomes clearer in the one-dimensional version of (1), n = 1. In this case
(C2) implies that f is con and thcn thc uniqne solution is givcn by

X = I~O ft)(Zo)

where ft) = fa fa . .. of (t times).

THE SPACE nn

Our strategy is to use Theorem 1 to propose a class of DEMs. To do this we
must provide a finite procedure for constructing a class of functions f that satisfy con
ditions (CI) and (C2). To be useful for the intended application this class of functions
should have good 'algebraic' properties in the sense that it must be possible to com
bine functions in ways that reflect coordination of real systems. This class of functions
nn is constructed out of five operators that serve as building blocks.

Deterministic choice

Given Ao C A, distinct elements al"", an from Ao' and ToE {O,I}, this operator
maps (1'1'" ·,I'n) E lin into Q E 11 denoted by

Q = [al --+ ?I I· .. , an --+ ?n]AO''il .

(By convention, if Ao, TO is omitted, then Ao = {aI"", an} and TO = 0.) Q is defined by:

H TO = 1, then Q == SKI/'A
o

•

If TO = 0, then

trQ:= {<>}UU{ajAs 1s E tr?j},
I

u(J«»:= Ao ' and U(J(ajAs ):= u?,(s) for s E tr?j,

T(J«»:= 0, and T(J(ajA s ):= T?j(S) for s E tr?j'

Thus if TO II so that Q does not terminate immediately, then (J executes an event aj
and then follows the corresponding process /'j'

Example

Deterministic choice and recursion can he c:ombined to obtain a process 'equivalent' to
any finite state machine M. We associate with each state i = 1,.· ',n of M the process
X j and the equation

X j = [a'i -, Xjl 1···1 ajk --+ X jk ] ,

which iucludes the 'choice' a --+ X j if and only if in M the event a leads to a transition
from state i to state j. Dy Theorem 1 these n equations uniquely define processes
Xl'···, X n· H is easy to sec that if the initial state of Mis i, then trM = trX j •
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SynchrollOUS cOInposition

First define by induction the projection of sEA • on a process 1', denoted slp:
<>lp:== <>, and

1

undefined if sl 1'1'- trP
s"al P:== (sl pra if a E aP(81 1')

(sl P) if a r/:- aP(slP)

P II Q denotes the synchronous composition of I' and Q. Its traces are defined induc
tively by: <> E tr(P II Q), and

If s E tr(P II Q), then s"a E tr(P II Q) if and only if
s"a1 PEtrI', s"a1Q E trQ ,and a E aP(sl 1') uaQ(slQ).

Next,

a(PII Q)(s) :==aP(slP)LJaQ(slQ) ,

and,

1
rP(slP) == 1, and rQ(slQ) = 1 ; or

T(P II Q)(s) == 1 <=> Tp(slP) == 1, and aQ(slQ) c aP(.91 1') ; or
TQ(slQ) == 1, and aP(slP) C aQ(slQ)

T(P II Q)(.9) == 0, otherwise.

In essence, I'll Q can execute event a if I' and Q simultaneously execute a, or if one of
these processes, say P, executes a and it is not blocked by the other (i.e. it is not in
the event function of Q). Similarly I'll Q terminates after executing s if both I' and Q
terminate, or if onc process, say 1', terminates and subordinates the other, i.e.
aQ(s) ( (}J'(s).

It is not dillicult to see that the binary operator' II ' is associative and commjJta
tive.

SClllll(!lltial composition

The sequential composition of I' and Q is the process P;Q which first follows I'
and, once P terminates, it follows Q. Formally,

tr(P;Q) :== trPu{s"trQ Is E trP and TP(S) == I}

{
aP(s) if s E trP and TP(S) == 0

a(P;Q)(s):== aQ(t) if 8 == rOt, r E trP and TP(r) == 1

{
I if s == rOt, r E trP, TP(T) == TQ(t) == 1

T(P;Q)(S):== 0 otherwise

It is trivial that' ; , is associative.

Example

The two-dimensional recursion

Y == [a -+ Y;X I d -+ SK1PO]
A,O

X == [b -+ SKII)O]
A,O
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gives

trY={<>}U{andbn I n2:0}

which is not regular and hence Y is not 'equivalent' to any finite state machine.

Examplc

Take A = {a,b,c} and

X = [a -> X; (a -> SKIPO) I b -> X; (b -> SKIPO) I c -> SKIPO]

Then

trX = {s'c'sT I s E {a, b} '},

where s T is the same as s written in reverse order. This example is in teresting
because trX cannot be generated by a Petri net; see Theorem 6-9 in Peterson (1981).

Local and global changc of evcnt set

The previous four operat.ors were introduced by /loare. The following unary
operators were introduced by Inan and Vamiya; t.hey change the event function or a
process and eliminate traces if necessary t.o conform to the definition of a process. Let
lJ, C be subsets of A. The local change operat.or corresponding to /J, C maps Pinto
the process pl-B+GI where

trp[-IJ I (:1 := {s E trl' I bE lJ => b is not the /irst entry o[ s}

apl-B+C1{<»:= {aP{<»\/J}UC, and apl-B+CI{s):= aP{s)' for s I' <>

rpl-B+CI{s) := rP{s)' for s E trpl-/J+Cj

The global change operator corresponding to lJ, C maps I' into I,ll 1/ I Gil where

trplI-B~cll:={s E trP I bE /J => b is not an entry of s}

al'll-B+cll{s) := {aP{s) \ /J} U C

rpll-IJ-t CII{s) := rP{s)' for s E trl'll-lI+cll

Example

ln combination with synchronous composition, the event change operators can be used
to block the occurrence of certain events. For example, in the recursion

Y=[a->XIIY]

X = [b -> SKIPO]

Y can execute event a arbitrarily often before X can execute event band generat.e a
trace of the form

However, if t.he equation for Y is changed to

Y= [a -, xl t alii Y] ,
(where xl'"I:= xl- IJI CJ witll LJ=¢ and C= {a}), then xll"l hlocks repeated execu
tions of a by Y and so the traces of Yare restricted to be of t.he form

ababab··· .
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The introuuction of these event change operators was partly motivated hy the 'super
visory control' problem formulation of Rama<lgc anu Wonllam (1987). On this prob
Icm, also see Uochmann and Merlin (1978), ltamadge and Wonharn (1986), Lin anu
Wohman (1986), Cieslak et al (1986) and Cho and Marcus (1987).

The space on

Let nn be the smallest class of formulas I of n variables Xl" . " Xn that satisfy the
rules (1)-(4):

(I) For every DE2 A, the 'constants' STOPn and SKIPD are formulas.

(2) For each i, Xi is a formula.

(3) If /is a formula, .ti- B +G) and .ti1- 8 +Gil are formulas for all D, C in 2A •

(4) If I, 9 are formulas, (/ II 9) and (/;9) are formulas.

To each formula I E on we associat.e a function (also denoteu by I) which maps
lin into II: its value at the vector process (Xl" . " Xn ) E lin is obtained by 'substitut
ing' these for the variables (xI"'" xn ) and then evalualing each of the rules (1)-(4)
used in construc:ling the formula I as the corresponding operat.or described earlier.
Thus, for example, if thc formula is 1= ((xl;x2) II x2) II X3, and 1', Q, Il are processes,
then 1(1', Q, Il) is the process ((I';Q) II Q) II R which is thc same as t.he process
(P;Q) II Q II R since' II ' is associative. It. is not difficult to show that all these func
tions are ndes.

Two different formulas may yield the same function. For example, XI II SKII'A
and SKII'A yield the same constant function 1-= SKII'A; similarly, thc formulas Xl II XI
and XI give the function I(Xd -= XI'

FINITELY RECURSIVE PROCESSES

The next definition is fundamental to the construc:lion of FIU)s.
(XI"'" X n) c= lin is mutually recursive if for every i and trace s E lrXi , the post
process Xi/s has a representation

Xi/s = I(X I,' . " X n)

for some IE nn.

Example

Reconsider the recursion

Y = [a -t Y;X I d --> SKII)O]
A,D

X = [b --> SK1PO]
A,D

for which lrY is the closure of {andb n I n ~ a}, and lrX = {<>,b}. Since

Y/a n = Y;X;· . ·;X (n times),

l'/and = X;·· ·;X (n times),

Y/andb m = X;·· ·;X (n-m times),

it follows that (Y, X, SK1PO) is mutually recursive.
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The notion of mutually recursive processes brings us closer to our aim of finding
an 'algebraically rich' class of processes having a finite represcntation. In the last
example the state machine 'equivalent' to Y has infinitely many states (the post
processes of Y) because X, XiX, XjX;X, ... are all different processes. Ncvertheless,
~ince each state is a process of the form I(X, Y) for some IE 0 2, one can say that we
have a finite representation, especially in light of Theorem~ 2 and :1 which show that
the representation can be calculated recursively as the process unfolds over time.

Theorem 2

X = (Xl" . " Xn ) is mutually recursive if and only if X is the unique solution of the
recursion equation

Y = I( V), YilO = XilO, i = 1,' . " n ,

where each component Ii of I has the form

I.(X) = [ail -> l'I(X) I ... I ail; -> !;l,(X) ]A;,T, '

and each Iii E Un.

Definition

YEll is a finitely recursive process (FRr) if it can be represented as

X = I(X)

Y = g(X)

where I is in the form of Theorem 2 and g Eon.

Theorem 3

Fix I as in Theorem 2. There is an effectively calculable partial function
4>{ A x on -. Un such that (a,g) is in the domain of 4>, if and only if

Y:= g(X) -=> a E trY.

Furthermore, if ga := 4>,(a, g), then we have the representation

Yla = ga(X) .

FRP simulator

Theorem 3 suggests how to simulate any FRr Y. The simulator is an interactive
program that takes as initial data the pair I, g. The user enters a sequence of events
al a2" . one at a time. After each event is entered, the simulator either returns reject
to indicate that Y cannot execute that event, or it returns accept and changes its
in ternal state accordingly. More precisely, suppose the user has successfully entered
trace s. The ~tate of the simulator is then given by (the formula) gs such that
gs(X) = YIs. If the user now enters event a, the simulator will return

reject, if 4>,( a, g.) is undefined; or return

accept and replace g. by gs'a:= 4>Aa,gs)' if 4>,(a,gs) is defined.
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USES OF FRP FORMALISM

From a formal viewpoint FlU's have strictly greater descriptive power than Petri
nets. This follows from an example given above and a result in Inan and Varaiya
(1987) showing how to construct an FRP with the same traces as a given Petri net.

Ilowever, t.he real test of a DI~M formalism must corne from its usefulness in
modeling, simulation and performance evaluation of discrete event systems. 2 The
preceding section outlined one approach to simulation of FRPs. In this section and
the next we olfer some observations on modeling and performance evaluation.

Modeling

The FlU) operators can be used in a "exible way to model or design systems in a
'top down' manner following the precepts of structured programming. As a simple
exercise let us model a job shop with two machines. There are J( types of jobs, each
job must be processed by both machines in either order. A machine can process only
one job at a time, and once it starts work on a job it cannot be interrupted until that
job is finished. The shop has a capacity of one job of each type, counting the jobs
being processed. To create a F RP model of shop operations from this informal
description we define the following events:

ak := admission of new type k job

bf := beginning of job k on machine i

h := finishing of job on machine i

Then the following K-13 recursion equations form a possible FitI' model.

Y:= [al -, (X!+a,1 ;SKIl'O) II Y I ... I aK --> (X~ aK 1;8KII'O) II Y]

Xk = [b1--+ (81 ;b1 --+ 82) I b1 --+ (S2;b1--+ 51)], k:= 1," ·,K

8' = [r --> 8KIl'ob;,J'J,o ' i = 1,2

wllCre Ii := {bL· . " bk}.

To understand these equations think of Yas the 'master' process which never ter
minates. Its ta."k is to admit new jobs (execute events ak) while maintaining the capa
city constraint. Thus, after Y executes ak, we get the post-process

Y/ ak = (Xl+ aA
]; 8KIPO) II Y.

Y can no longer admit another job of type k until xl+ aA' terminates. However, Y can

execute any event a
J

:J ak since ai is not blocked by xl +aAI. If it does this we get the
post-process

l+aAI I+al
Y/akai= (Xk ;8KIPO) II (Xi J ; 8KJPO) II Y.

The process xl+ aA' guarantees the processing of job k by both machines in either
order. Finally, once 8 i starts, it executes r (i.e. machine i finishes its job) before
another event b1 is executed, thereby ensuring uninterrupted processing of a job.

2 Other aspects that should be considered are verification and testing.
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One can give an 'equivalent' finite state machine description. However, the FlU)
description has several advanta~es. first, it is more compac!.. The state machine
description can be given in a 'modular' fashion using K ~2 sub-machines, one for each
job type and each processing machine. The job sub-machine will have eight stales,
and each processor sub-machine will have KI-I states, giving a total of 8 K x (/<+1)2
states.

Second, each of the K 1-3 processes introduced in the FRP description can be
interpreted as a 'task': Y admils jobs without exceeding capacity, Xl guarantees
correct processing of type k job, etc. Since one often thinks of a system in terms of the
tasks that must be performed, the FltP formalism offers a natural language for
describing such systems. The deterministic choice, event set change, synchronous and
sequential composition operators provide Ilexible ways of describing t.ask coordination,
including precedence constraints, mutual exclusion, ele. Moreover, this task decompo
sition orientation makes it quite ea.'iy to alter or to add new tasks. For example, sup
pose we want t.o admit the possibility that when machine 1 is processing a job, it may
have a failure (denoted by the event e l ), and then processing on this machine should
stop, processing on the other machine should continue, no more jobs should be admit
ted, and the master process Y should 'switch' to an emergency process Z not yet
described. These changes can easily be accommodated by changing the description of
V and Sl as follows.

Y = [a l

SI ~ [fl
--4 (x[+a,1 ;SKiP{j) II Y I ... I aK --4 (xJrK1 ;Si<JP{j) II Y I e' --4 z]

• SKiP () I e I -. SKil'{j ](Ip,f-el},a

Coordination through shared memory

Il'ollowing Iloare (1985) one can use the synchronous composition operator to
construct a 'communication channel' as a device for coordinating two FRI's. Here we
introduce the notion of a 'shared memory' for coordination.

in addition to the event set A we assume given a finite sci. V and a mapping
T A • F, where F is the set of all partial functions from V into V. Let 5(a) c V
denote the domain of the partial function ,(a). V will serve as the possible values
(assignments) of the shared memory. It is used in the following way. Suppose the
current value of the memory is u, and suppose a FRP can execute an event a. Then

(I) The event a can be executed only if u E 8(a); and

(2) After a is executed the value of the memory changes to ,(a)(u).

Thus the memory serves only to restrict the possible traces of a process. in par
ticular, if l' is a process without memory, then the process with memory whose initial
value is v is the su bprocess PI.

V
consisting of those traces 8 E tr P for wh icll ,(8)( v) is

deli ned.

Example

We illust.rate the use of shared memory t.o describe a buffer of size K. New arrivals
can occur only if there is space in the buffer; if the buffer is full, arrivals will be
blocked. Similarly, a departure can occur only if the buffer is not empty. Take
A = {a, d} representing arrivals and departures. Let V = {O,' . " K} and

5(a) CO- {v I v < K} , ,(a)(v) = v I I,

8(d) = {v I v> O}. ,(d)(v) = v-I.

Thus v represents number in the huffer. Now consider the recursion
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X= YIIZ, Y=[a--> Yj, Z=[d-->Z].

Take initial value v. Then

lrX={a,d}',

but al" 'am E lrX.."v if and only if

o ~ v+- "E,1(aj=a) - "E,1(aj=d) ~ K, for all j,
1 I

(3)

as required.

Of course, we can do without the memory. For instance, take the recursion with
K processes

(4)

ThclI it is easy to see that X.."v = 1'v' However, the description using shared memory
is more compact and convenient.

In this example Y is the arrival process and Z is the server proccss. Suppose now
we have t.wo parallel servcrs ZI and Z2 and the same buffcr. Thcn in (;~) we should
replace the equation for Z by

Z = ZIII Z2'

whcre each Z, is a server, i.e.

Zj = [dj --> Zj], 8(dj) = {v > O}, ,( dj)( v) = v - I .

We can do a similar modification using (1) and dispense with the shared memory.

Now let us suppose we have a job shop with capacity K and two machincs. I~ach

job must Iw scrved by both machincs in either order. (This is the same example as
before, except that there is only onc job type.) Then in (3) we should define Z by
Z =: ZI211 Z21> and

ZI2 = [d l -. 51; b2 --> 52; Zl2k,o

51 = [Ii --> 5KJPO]{dl,bJ.fd,O

Z21 =: [d 2 --> 5 2 ;b l -, 5 1;Z21]"1'O

52 = [/2 --> 5KJPO]{d1,b1,f1}'O

Moreover, ,(d,)(v) ""' v-I, whereas ,(J;) = ,(b j ) are idcntity functions on V. The
memory serves to enforce the following coordination constraint between Y and Z

o ~ v +- No. of Y cycles (arrivals) - No. of Z cycles (departures) ~ K.

It is more difficult now to represcnt the process X.."v without using shared memory.

The introduction of this sharcd memory is simply a modeling convenience, since
it docs not incrcase the descriptive power of FLU's as shown by thc next result.

Theorem 4

If X is a FliP, so is X.."v'
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INCORPORATING REAL TIME IN FRP

We brielly discuss one way of enriching the concept of an FRP X so that to each
s E trX we can associate a number tX(s) which represents the 'real time' needed by X
to execute s.

Let us start with the simplest example,

X=[a---.XI,

whose traces are an, n ? O. Suppose X models Hoare's candy machine which responds
to a coin inserted in it by releasing a piece of candy. Suppose that if the coin is
inserted at time t, the candy is released at time t -I t(a), so that we can say that t(a) is
the time needed by the machine to respond to the command a. This suggests the fol
lowing command-response model: If coins are inserted at times

then the machine responds at times

t, + t(a), t2+ t(a), .... (5)

But this is not quite right. Suppose t2 < t, f t(a), i.e. the second command is issued
before the first one is executed. Assume, moreover, that the machine is insensitive or
blinded to a new command issued while it is executing the previous command. Then
we must impose the restriction

t2 ? t, t t(a), . . . , tat, ? t, t t (a), ...

on the times at which commands can be issued so that (5) gives the correct machine
response times. It seems reasonable to summarize this by defining tX( s) to be the
minimum time needed by the candy machine to execute s, i.e.

tX(a n) = n t(a) .

Suppose now that the machine issues candy or gum in response to the command
a or b respectively,

X = la -, X I b -. X], (6)

and the corresponding single event response times are t(a), t(b). If the sequence of
commands is aI, a2' ... issued at times tl> t2, ... , then the constraint on these times
should be

t2 ? t, +t(al ), •• " tj+J ? t j+- t( aj), ...

aud the corresponding response times are

t,H(ad, t2+ t(a2), ... ;

and the minimum time needed by the machine to execute a trace s is

tX(s) = n(a,s) t(a) + n(b, s) t(b) ,

where n(aj,s) is the number of times aj occurs in s.

Suppose now that the machine has two independent mechanisms - one dispens
ing candy, the other dispensing gum - that can operate concurrently. This machine
can be represented by the process Y,

Y = I'll Q, P = Ia --> p], Q = Ib ---. Q], (7)

and suppose t(a), t(b) are as before. Let s = a" a2" .. be the sequence of commands
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issued at times tl' t z,' ". To obtain the constraint imposed on these tillles by the
machines, let

st P = ai, ai2' . " st Q = aj, aj2' ...

Then the constraint is

t i2 ~ t i , + t(a), t iJ ~ t i2 + t(a), ... ti, ~ ti. + t(b), ti, ~ Ii, + t(b), ...

and when this constraint is met, the V-machine response times are

t l + tea), tz+t(az},'"

As hdore, let tY(s) be the minimum time needed to respond to s E trY. For example,
if tea) = t(b) = I, then

tX(aaabbb) = 6, tY(aaabbb) = 5, tX(ababab) = 6, tY(ababab) = 3.

From this simple example we see that although IrX = tr Y (X given by (6) and Y
given by (7)), the response times of the two machines, tX and tV, are quite dilrerent.
Thus the response time of a process X is not reducible to its logical behavior trX.
This raises the question:

QI Suppose we are given the 'elementary' execution times tea), a E A; how do we
model the response time of a process X?

From the example it seems that the response time tX should depend upon the
actual implementation of X, i.e. the recursion equations used to implement X. Thus
(6) and (7) are different implementations of the same process. In the example the
implementation (7) has a greater degree of concurrency than (6), and it is sensible to
say that (7) is a faster implementation than (6) since tY(s) ~ IX(s) for all s. U we can
answer Q1 satisfactorily then one can ask a follow-up question:

Q2 Consider all possible implementations of a process X. Does there always exist a
fastest one?

Iu the remainder of this section we outline one possible approach to an answer to Q1.

ImpIcmcn ting F RP

The approach rests on an 'execution model' of FRI's. We assume that a user
issues a sequence of commands, one at a time, to a machine that implements a FitI'
Y. Assume that the sequence is a trace of Y. Each command is first received by a
scheduler which can either accept or block the command. If the command is accepted,
the user may issue another command; if the command is blocked, another command
may not be issued until it is unblocked (accepted). Thus the scheduler may bulTer
(hlock) at mos!. one command. (This is simply the generalization of the constraints on
the command times we had in the preceding example.)

To discuss the scheduler further we need to propose the execution model of an
implementation. We assume given formulas I,i and 9 in On. Interpreted as functious
these are IJsed to specify Yand the MltP X:

Xi = [ail ---> iiI I ... lain. ---> /;n.]A ,1:S; i :s; n, (8)
I I i,Tj

Y = g(XI , "', X n ). (9)

Thus an implementation of a process is the set of formulas {lij' g}. Recall that the
same process can have several implementations.
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We assume that in all the formulas of an interpretation there is only one
occurrence of each variable. Repcated occurrence of the same variablc is accommo
dated simply by adding another subscript. Thus Xi., Xi2 ,' . " Xii will all be considered
as instances of the same variable Xi' For example,

XI=[a-.X11 b-->X1j, Y=X1;X1

would be replaced by

XI=[a-->XIII b-->XI2 j, Y=X I3 ;X14 "

Becausc X'i = Xi' the process Y given by (9) is unchanged by this procedure.

Now suppose (8), (9) is an implementation of Y (with the understanding that
each variable occurs only once in the Iii and g). To simplify the discussion below, it is
assumed that the event change operators do not occur in the implcmentation.

We will associate with 9 three items:

1. The set o:g of enabled events of g;

2. The set fJg of executable next events of g;

:I. I·'or each a (= ~g, a subset ,.-g( a) of the set of proccsses that occur in the formula g;
these are the processes that must execute a.

These items are constructed as follows by induction on the number of steps needed to
construct 9 as a formula in nn.
J. Jf 9 is STOPJ) or SKll'J) , then o:g = fl, fJg =~.

2. If g(X) = Xii' then (see (8))
o:g = Ai, fJg = {ail " . " a,n), and ,.-g(a) = {Xi)' a E fJg·

Now suppose we know how to define 0:1, ~/,,.-I for formulas I c= 9 and 1= h.

3. Suppose I(X) == g(X) II h(X). Then

0:1 = o:guo:h,

and

a E fJI if and only if either a E fJg and a fc ah (I)

or a ¢: fJg and a E o:h (2)

or a E fJg and a E fJh (:1)

To define ,.-1 in case (1) take ,.-/(a) = ,.-g(a)j in case (2) take "-/(a) = "-h(a); in case
(3) take "-/(a) = ,.-g(a)U,.-h(a).

1. Suppose I(X) = g(X); h(X). We assume the formula reduction

SKIPB ;!= I,

so that we may assume 9 t SKIP[J. Then, take

o:l=o:g, ~/=fJg, ,.-/=,.-g·

Lernma 1

(1) o:g = o:Y«», and

(2) ~g = {a I <a> E trY}; moreover,

(3) if Xii E ,.-g(a), then a E trXi .
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lJpda tillg proccdure

Now let a Co (jg. Let gla he the formula obtaincd from 9 by thc following two-step
procedure which we caIlI'roc(a).

Step 1. In 9 replace each variable Xij E 1rg(a) hy the variable Xi'

Step 2. By Lemma 1(3), a = aik which appears on the right hand side of (8). Now
I

replace each occurrence of Xi hy the formula Ii"" After all occurrences of Xi are

replaced, make sure that in the formula gl a each variable has a single occurrence by
replacing repeated occurrences with new instances.

Lmllllla 2

Proc(a) computes the correct formula in the sense that

Yla = gla(X).

Lcuulla 3

Suppose a,b,c,'" are in (3g and 1rg(a),1rg(b),1rg(c), ... are all disjoint. Then applying
I'roc( a), Proc (b), Proc( e)' . .. at most once to 9 leads to the same formula independen t
of the order in which these procedures are applied.3 As a consefjuence, any sCfjllence s
with at most one occurrence of a, b, e,' .. is in tr Y; moreover, if sand r are two such
sequences that consist of the same event (hut in different order), then

Yis = Ylr

We say that. a subset {a,b,e,"'} c (jg is non-interfering (in state g) if 1I"g(a),
1rg( b)· .. are disjoint. Non-interference provides faster response because the imple
men tation call exec ute these even ts concurren t1y.

The scheduler

We can now describc the operation of the scheduler. We start at time t = O. The
'stat.e' of tlte scheduler at this time is denoted 5(0),

S(lJ)_' (g; ag, (jg, 19, 8g, 1I"g), 1I"g: a -. 1rg(a), a E {3g I ( 10)

where form ula 9 is t he curren t configuration of the implemen tat ion ; o.g, {3g, 1r 9 are as
before; 19,8g are subsets of (jg and at time t = 0, 19 = 8g =~. We will see that 19 is
the set. of commands being exccut.ed and 8g (which cont.ains at most. one event) is the
sct of blockcd commarll!s.

Suppose the user issues command al at time t l . The scheduler responds to this
request as follows:

I. If al E (jg, the scheduler accepts the command, and asks every process in 1rg(ad to
cxecute cvent a l and assigns

2. If aleO. Y\(j Y, then the sched u!er blocks for ever and gives t.he response STOI'.

3. If a I rf 0. Y, then the schedu ler rejects the command.

More generally, suppose at time t the situation is as follows. The user has issued
the seljuence of commands sAr; tile sequence s has been executed (by the implementa
tion). Suppose r = al" . a... TIICre are two possible cases .

•J Two formulas are conElidcred t.o be t.he Bame modulo a I-I mapping of inst.ances of the same variable.
Thus, e.g. X I2 11 X 23 and XII II X 22 are the same formulas.
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Case 1

The scheduler has accepted all the commands in r, in which case its state is

5(1) = (h = g/s; crh, (3h, ,h = {al'···' an}, ~h =~, 7fh). (11 )

In this case the sched uler's state will change either because

(I) the processes executing t.he commands in ,h are all finished at some future time
1+ before the user issues another command and then the state changes to

and the scheduler reports executed r to the user; or because

(2) the user issues another command, say a, at time 1+ before the commands in ,h
are all executed; the scheduler then tests whether a interferes with any command
being executed, i.e. whether

11"h(a)n { U 11"h(b)} = ~?
bE1h

If it is empty, the scheduler accepts the user's command a, and its state changes
to (compare (II))

5(1,) = (h = g/Sj crh, (3h, ,h f---,hU{a}, ~h = 0, 11"h),

which has the same form as (11). If it is not empty, the scheduler blocks the
user's command a, and its state changes to

8(1,) ~- (h = g/s; o:h, (3h, ,h, ~h = {a}, 11"h)

which has the same form as in Case 2.

Case 2

The scheduler has accepted commands a l ,"', an-l (the lirst n-l commands in r) and
it has blocked the last command an' In this case its state is (compare (11))

8(1) = (h = g/s; crll, (3h, ,h = {a,,' .. , an-d, ~h = {a,.}, 11"h). (J 2)

Since the schednler has blocked the user, it will not accept any more commands until
all the commands in ,h have been executed. Suppose this happens at time 1+. The
scheduler's state then becomes

and the scheduler returns an accepted to the user who may then issue another com
mand.

Real tillIe 1)(!rformaIU:e

With this detour we can define as follows the real time needed to execute a
sequence 8 of commands by a particular implementation, i.e. a particular set of formu
las 1= {fi}' g} that realizes a process Y (see (8), (9)). Let s E lrY,

s = a,· . ·an .

Find integers k l , k2 ,' •• such that

satislies the following property:



11

For each i = 0,' . " m, the set of events A(i):= {aki+I" . " ak,,) is a non

interfering set for the state g/ al' .. ak j however, a. II interferes with A (i).
I '''HI

Thus each of the sets A(O),.··, A(m) can be executed concurrently. Moreover, in the
implementation f this is the maximum amount of concurrency. Hence we propose to
define the time taken by the implementation [ to execute s as

m
tJ(s) := E max {t(a) I a E A(i)}.

;=0

Example

Within the framework provided by this definition the fastest implementation of a pro
cess with traces {a, b} • is given by

X = P II Q, P = [a -'>I'l. Q = [b --4 Ql·
To see this we simply note that the largest possible non-interfering set is {a, b} and
the implementation always achieves this maximum. Hence it has maximum con
currency.

CONCLUSION

We have introduced a new class of discrete event models called finitely recursive
processes (FlU'). Most of the discussioll concerned properties of FHI' at the logical
level. In our opinion, FlU's have certain advanLages over state machines and Petri
nets in terms of (I) compactness of descriptions, (2) descriptive power, and (3) the
kinds of system coordination that can modeled by the operators of the FRP 'algebra'.
We briefly discussed how the FitI' formalism lends itself Lo simulation, and we indi
cated one approach to enriching this formalism to model real-time aspects of system
bchavior.
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REDUCIBILITY IN ANALYSIS OF COORDINATION

R. P. Kurshan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The use of automata to model non-terminating processes such as communication protocols and
complex Integrated hardware systems Is conceptually attractive because It alTords a well.understood
mathematical model with an established literature. However, It has long been recognized that a
serious limitation of the automaton model In this context Is the size of the automaton state-space,
which grows exponentially with the number of coordinating components In the protocol or system.
Since most protocols or hardware systems of Interest have many coordinating components, the pure
automaton model has been all but dismissed from serious consideration In thIs context; the enormous
size of the ensuing state-space has been thought to render Its analysis Intractable.

The purpose of this paper Is to show that this Is not necessarily so. It Is shown that through
exploitation of symmetries and modularity commonly designed Into large coordinating systems, an
apparently Intractable state space may be tested for a regular-language property or "task" through
examination of a smaller associated state space. The smaller state space is a "reducl!on" relal!ve to
the given task, with the property that the origInal system performs the given task If and only If the
reduced system performs a reduced task.

Checking the task-performance of the reduced system amounts to testing whether the w
regular language associated with the reduced system Is contained In the language defining the
reduced task. For a new class of automata defined here, such testing can be performed In time
linear in the number of edges of the automaton defining each reduced language. (For Buehl
automata, testing language containment Is P-SPACE complete.) All w-regular languages may be
expressed by this new class of automata.

1. Introduction

Finite state automata which accept sequences (rather than strings) define the w-regular
languages. This class of automata is established as a model in logic, topology, game theory
and computer science [Bu62, Ra69, Ran, Ch74, Ku85a, SVW85, etc.]. In computer science,
such automata are used to model non-terminating processes such as communication protocols
and complex integrated hardware systems [CE81, MP81, AKS83, MW84, Ku85, etc.].

In the context of modelling non-terminating processes, one is given two automata, A
and [. The automaton A models the process under study (the protocol or hardware system,
for example), whereas the automaton [ models the task which the process is intended to
perform; although the state-space of A may be too large to permit it to be constructed
explicitly, it may be defined implicitly in terms of a tensor product of components [AKS83,
Ku85]. Likewise, the task.defining automaton [ (defining a property for which A is to be
tested) also may be defined implicitly, in terms of components. Determination of whether or
not the process performs the specified task is ascertained by checking whether or not the
language 7(A) defined by A is contained in the language 7(f) defined by [.

In Ihis paper conditions are given under which the test: 7(A) C 7(f), may be replaced
by the test: 7(A ') C 7(['), for smaller automata A I and [', which smaller test may then be
conducted in time linear in the number of edges of A' and of ['. The automata A' and ['
are derived from A and [ through co-linear automaton homomorphisms, maps which are graph
homomorphisms, "preserve" the transition structure of the respective automaton, and agree
on a Boolean algebra associated with the underlying alphabet. These homomorphisms may be
constructed implicitly from (explicit) homomorphisms on components defining each of A and
[, thus avoiding construction of the product spaces A and [themselves. Component
homomorphisms may be generated through an 0 (n log n) algorithm for each n-state
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component. together with a user-designated Boolean-algebra homomorphism. While there is
no guarantee that a particular intractably large problem can be thus rendered tractable.
experience [HK86] has demonstrated the utility of this approach.

This program is conducted in the context of a newly defined class of automata. termed
L-automata (where L is the Boolean algebra associated with the underlying alphabet). Three
issues germane to these automata are complexity. expressiveness and syntax. Classically.
given autom.ata A and f. in order to test whether T(A) C T(f). one first constructs an
automaton f wl!ich defines the c0I1!Plementary lagguage T(f)'. then one constructs an
autom.!!ton A .. f satisfying T(A .. f) = T(A) n T(f) and finally one ~ests whether
T(A" f) = 0. This entire procedure is at least as complicated as constructing f. and since A
may be taken to define all sequences (ove! the given alphabet). testing language containment
is at least as hard as testing whether T(f) '== 0. the so-called "emptiness of complement"
problem. This problem is PSPACE-complete in the number of states for Buchi automata
[SVW85]. For L-automata. as already mentioned. the language-containment test is linear in
the size of A and in the size of f.

In the context of testing task-performance. it is often natural to take the task-defining
automaton f to be deterministic. The reason for this is that properties of physical systems are
often portrayed in' deterministic terms. with conditional branches described causally. While it
is logically possible to define a task requirement nondeterministically so that each
nondeterministic branch corresponds implicitly to some behavior. it is more customary to
condition each branch on some causal event. For example. if a task for a communication
protocol has a conditional branch associated with whether or not a message is lost. it is
customary to define the "event" message-lost and condition the branch upon its truth-value.
thereby rendering the branch deterministic. Alternative acceptable behaviors are expressible
in a deterministic automaton through alternative acceptance structures.

The process under study, on the other hand, represented by the automaton A, is often
nondeterministic. represented in terms of incompletely defined information (e.g .• whether the
channel loses or passes the message may be represented as a nondeterministic choice).

Given an w-regular language T, a nondeterministic L-automaton A may be found such
that T = T(A), while a finite number of deterministic L-automata f I, ... , f" may be found such

"that T= n T(f,). In order to test T(A) C nT(f,). one tests T(A) C T(f,) for i= l ..... n.
I~I ,

Each test T(A) C T(f,) may be completed in time linear in the number of edges of A and
linear in the number of edges of f,. The several individual tests T(A) C T(f,). i = I, ... , n
defined by the task decomposition T = n T (f,), provide a greater potential for reduction than,
an un decomposed representation T = T(f); each test may be separately reducible to a test
T(A') C T(fj). with each A' different for different i.

Every homomorphism <1> can be decomposed as <1> = <1>1 0<1>2 where <1>1 is trivial on the
underlying Boolean algebra and <1>2 is trivial on the underlying graph. Hence, in order to
explicitly construct homomorphisms, it is enough to construct separately <1>1 and <1>2' It turns
out that for deterministic automata there exist unique maximally reducing <1>1 and <1>2. The
maximally reducing <1>] corresponds to minimal reduction of string-accepting automata (in the
Huffman-Moore sense), and Hopcroft's 0 (n log n) algorithm [Ho?l] for state minimization (n
states) serves to construct <1>1' Construction of the optimal <1>2 is less fortuitous. being
equivalent to the NP-complete "set-basis" problem. However, as a practical matter, one will
guess (suboptimal) candidates for <1>2 through knowledge of the modularity and symmetry in a
given process, and this guess is verified in time linear in the size of the graph and the
underlying Boolean algebra.

In this report the central ideas are developed; a complete report, including proofs, is
available from the au thor.
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2. Preliminaries

Conventionally, an automaton is viewed as a set of states and a successor relation which
takes a "current" state and "current" input and returns a "next" state (for deterministic
automata) or a set of "next" states, in general. I prefer to view an automaton as a directed
graph whose vertices are the automaton states. and each edge of which is labelled with the set
of inputs which enables that state transition (cf. [Ts59]). The labelled graph is defined in
terms of its adjacency matrix. It is convenient to give the set of all subsets of inputs the
structure of a Boolean algebra. Then an automaton over a given alphabet of inputs may be
described as a matrix over the Boolean algebra whose atoms are those inputs. (A definition
of automaton initial states and acceptance conditions must also be given.)

2.1 Boolean Algebra

Let L be an atomic Boolean algebra, the set of whose atoms is denoted by S(L), with
meet (product) "', join (sum) +. complement - (placed to the left of or over an element).
multiplicative identity I and additive identity 0 [Ha74]. For the purposes of this paper. little
is lost if one thinks of L as 25 • the power field over S. which is the set of all subsets of a finite
set S (the "alphabet") where 1 = S, 0 = 0, '" is set intersection. + is set union and.,.. is set
complementation in S; the atoms of L in this case are the (singleton sets comprised of) the
elements of S. A Boolean algebra admits of a partial order ~ defined by x ~ y iff x'" y = x.
If x ~ y and x "* y. write x < y. Atoms are minimal elements with respect to this order. A
homomorphism of Boolean algebras is a map which is linear with respect to "', + and - (i.e .•
<!>(x '" y) = <!>(x) '" <!>(y), <!>(x + y) = <!>(x) + <!>(y) and <!>( - x) = - <!>(x». Any homomorphism is
order-preserving (x < y =:> <!>(x) < <!>(y». If Boolean algebras Land M are isomorphic, this
wi1l be denoted by writing L ;; M. Every Boolean algebra contains as a subalgebra the trivial
Boolean algebra ill = {O, I}. A sum or product indexed over the empty set is 0, I
respectively.

2.2 L·Malrixj Graph

Let L be a Boolean algebra, let V be a nonempty set and let M be a map

M: V2 _L

(where V 2 = V X V is the cartesian product). Then M is said to be an L-matrix with state
space V(M) = V. The elements of V(M) are said to be states or vertices of M. An edge of an
L-matrix M is an element e EV(M)2 for which M(e) "* O. (M(e) is the "label" on the edge
e.) The set of edges of M is denoted by E(M). If e = (v. w) EE(M). let e- = v and e+ = w.
If M is an L-matrix and L C L' then surely M is an L' -matrix as well.

If G is an L-matrix and W C V (G), then G Iw, the restriction of G to W, is the L-matrix
defined by V(G Iw) = Wand G Iw(e) = G(e) for all e EW2.

A graph is a ill-matrix. The graph of the L-matrix M is the graph M with state space
V(M) = V(M), defined by

_ {I
M(e) = 0

if M(e) "* 0
otherwise.

A path in a graph G of length n is an (n + I)-tuple v = (vQ ..... VII) EV(G)" +1 such that
G (Vi. VI+ I) = 1 for all 0 ~ i < n; the path v is a cycle if VII = VQ' The path v is said to be from
VQ to VII' The path v contains the edge (v, w) EE(G) if for some i. O~ i < n, Vi = v and
v,+1 = w. If C C V(G) and each VI EC, then v is in C. A cycle (v, v) of length 1 is called a
self-loop (at v). A vertex v EV(G) is reachable from I C V(G) if for some VQ EI, there is a
path in G from vJl to v. Any statement about a "path" in a L-matrix M is to be construed as a
statement about M.
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Let G be a graph. A set C C V(G) containing more than one element is said to be
strongly connected provided for each pair of distinct elements v, wEe there is a path from v to
w. A singleton set {v} C V(G) is strongly connected if (v, v) E£(G). A maximal strongly
connected set is called a strongly connected component (of G). Clearly, for every graph G.
V(G) is uniquely partitioned into strongly connected components and a non-strongly
connected set. each vertex of which has no self-loop. (The requirement that a single vertex
have a self-loop in order to be strongly connected. at some variance with the customary
definition. is important to the theory developed here.)

Let G, H be graphs and let <I>: V (G) - V (H) be a map which satisfies
(v. w) E£(G) =;> (<I>(v) , <I>(IV» E£(H). Then <I> extends to a map <I>: £(G) - £(H) and we
say <I> is a homomorphism from G to H, and write

<I>:G-H.

We say <I> is I-lor onto according to the behavior of <I> on V (G), and call <I> a monomorphism
or epimorphism accordingly. If<I>: £(G) -£(H) is onto we say <I> is full. The inclusion map
of a restriction is a full monomorphism. A homomorphism which is I-I, onto and full is said
to be an isomorphism. The image of G under <I> is the graph <I>(G) with V (<I>G) = <I>V(G) and
£ (<I>G) = <I>£(G).

Let M and N be L-matrices. Their direct sum is the L-matrix M (f)N with
V(M (f)N) = V(M) U V(N), defined by

{

M(V' w)

(M (f)N)(v, IV) = ~(v. IV)

if v, w EV(M) •

if v, IV EV(N) •

otherwise;

their tensor product is the L-matrix M@Nwith V(M@N) = V(M) x V(N), defined by

(M @N) « v, IV), (v', w'» = M (v, v') * N (w. w') .

The direct sum and tensor product can be extended to a commutative, associative sum and an
associative product, respectively. of any finite number of L-matrices. If L is complete (i.e .•
closed under infinite sums and products), the direct sum and tensor product can be extended
to infinite sums and products as well.

Let G, H be graphs. The projection

no: V(G @H) - V(G)

induces a (not necessarily onto) projection

no: £(G@H) - £(G).

If G and H are matrices, no will denote the projection on the underlying graph G. Given G 1.

G2 ..... the projections no, may be written as nl , for convenience.
An L-matrix M is lockupjree if for all v E V(M) the sum 2: M(v. IV) = I. An L-

wEV(M)

matrix M is deterministic if for all u, v ,IV EV(M), v '* w =;> M(u, v) * M(u, IV) = O.

Lemma 1: The tensor product of deterministic L-matrices is deterministic. The tensor product of
lockupjree L-matrices is lockupjree.

2.3 L·Automata

An L-automaton is a 4-tuple

r = (Mr, l(r), R(r), Z(r»
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where Mr, the transition matrix of r, is a lockup-free L-matrix, 0 *" [(f) C V(Mr), the
initial states of r, R (f) C E (M r), the recurring edges of rand Z(r) C 2V(Mr) • the cycle sets
of r, is a (possibly empty) set of non-empty subsets of V(Mr). Set V(f) = V(Mr),
E(r) = E(Mr) and nv, w) = Mr(v, w) for all v, w_E V(!). Let R-(f) = {e- Ie ER(f)}
andR+(f) = {e+ leER(f)}. Define the graph ofr,r = Mr.

Suppose A, rare L-automata satisfying V(A) C V(f), M A = M r IV(A), [(A) C [(f),
R (A) C R (f) and Z (A) C Z(f). Then A is said to be a subautomaton of r, denoted A Cr.

Given an L-automaton r, the reachable subautomaton of r is the L-automaton r*
defined as follows: V (r*) is the set of states reachable from [(f), M r o = M r Iv(rO).
[(r*) = [(f), R(r*) = R(f) nE(r*) and Z(r*) = {C n V(r*) IC EZ(r)}.

An L-automaton r is finite-state if V(f) is finite. (No general assumption is made on
the finiteness of L, except that L is assumed atomic - guaranteed, if finite -, and in
discussions of complexity, it is assumed that for any x EL, the question of whether x = 0, can
be settled in constant time.) Let Ir I = cardV (f).

A sequence of states v = (vo, VI' ••• ) EV(f)w is r-cyclic if for some integer Nand
some CEZ(f), v/EC for all i>N, while v is r-recurring if {il(v/,v/+dER(f)} is
unbounded.

A sequence c = (co, CI, ••• ) E(V(f) x S(L))w with elements c/ = (cP). el2») (where
cP) EV (f) and cF) ES (L)) is a chain of r if (cP») is either r -cyclic or r -recurring and

(I) c&l) El(f),

(2) el2) * r(cp) , C!~d *" 0 for all i ~ 0;

c is said to be r -cyclic or r -recurring according to the behavior of (c!l)). The set of chains of
r is denoted by '<6(f). A sequence xES (L)W is an L-tape (or tape when L is understood).
Given a chain c E'<6(f), the tape T(C) = (cF») is the tape represented by c. (Sometimes it is
said, conversely, that (cP») is a "run" in r of the tape x.) The set T'<6(f) of tapes
represented by chains of r is denoted by T(f) and called the set of tapes accepted by r, or the
language defined by r. Clearly, '<6(r*) = '<6(f), T(r*) = T(f) and A C r ¢ T(A) C T(f). If
A and rare L-automata satisfying T(A) = T(f), then they are said to be equivalent.

The L-automaton r is said to be deterministic if M ro is deterministic; if r is
deterministic and card[(f) = 1 then r is said to be strongly deterministic. (Customarily.
"deterministic" has been used in the literature to mean what is here called "strongly
deterministic"; however, this leads to unnecessary restriction, for example, in automata
complementation and minimization, where strong determinism is not required.)

Lemma 2: A tape accepted by a strongly deterministic L-automaton is represented by a unique
chain.

For any Boolean algebra L and any n > 0, a string (in L, of length n) is an n-tuple of
atoms x = (xo, '''0n -d ES(L)n. Given an L-automaton r, a string x in L of length n and a
path (cycle) v in Mr. also of length n. then v is said to be a path (cycle) ofx provided for all
i=O, ... ,n-1

For simplicity, we will say that v is a path of x "in r". Since the transition matrix of an L
automaton is lock-up free, for any v EV(f) and any string x in L, there is at least one path of
x in r, from v. When r is deterministic, this path is unique. In this case, if the path is to
wE V(f), we denote w as V X e w. In this context, it is notationally convenient to admit
among the strings in L the string x "of length 0" with the property that V X = v. (This simply
provides a short-cut wherein any assertion about V

X for an arbitrary string x includes the case
in which V

X is replaced by v. It has nothing to do with "silent" or "e -" transitions
considered by some authors, and except for the convenience it affords, it could be dropped
with no effect to the theory.)
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If L is a Boolean algebra and x EL. let x n denote the set of strings of atoms in x of
length n. let yW denote the set of sequences of atoms in y, let x n yW denote the set of
sequences formed by concatenation of each string of the first set by each sequence of the

second. and let x + = Ux n. (There should be no confusion here, since there is no call for
n=1

writing the n-fold product of x as an element of L. inasmuch as that product is just x.)

3. Expressiveness of L·automata

Let S be a nonempty set. An w-regular language T over S is an element of the Boolean
n

algebra 25" of the form T = ~ AiBf where Ai and BI are regular sets over S [HU79] and
I-I

juxtaposition denotes concatination.
An L-automaton f is said to be pseudo-Biichi (pseudo-Muller) provided Z(f) = 0

(respectively. R (f) =0). If B is an n-state Buchi automaton [Ch74] (respectively.
deterministic Buchi automaton {which by definition has a unique initial state}) which defines
the language T over S. then there exists a pseudo-Buchi (respectively. strongly deterministic
pseudo-Buchi) 25-automaton f satisfying T(f) = T and If I = n; if f is a (strongly
deterministic) pseudo-Buchi L-automaton. there exists a (deterministic {with unique initial
state}) Buchi automaton B with n states which defines the language T(f). satisfying n S 21f I
([Ku85a; (2.3)]). Since every w-regular language is defined by some (nondeterministic) Buchi
automaton [Ch74; thm. 6.16]. the following is immediate.

Theorem 1: The w-regular languages over a nonempty finite set S are exactly the respective sets
of languages defi'l.ed by the finite-state pseudo-Biichi 25 -automata.

Let fl. f 2 .... be L-automata. Define their direct sum to be the L-automaton EBf l
defined by

Proposition 1: Let fl. f 2, ... be L-automata. Then

1. T(EBf/) = UT(f/);

2. IEBft! = ~ 1ft! ..

3. (EE>f /)'" = EE>f/"' ..

4. EE>f l is deterministic if each f l is.

Notice that the direct sum of two or more strongly deterministic L-automata fails to be
strongly deterministic. This can be rectified. at the cost of a state space which grows
exponentially with the number of summands. Define the weak product of L-automata fl.
f 2 , ••. to be the L-automaton

Vfl = (!8>Mr,. X l(f/). U niIR(f/). U niIZ(f/».

Proposition 2: Let f I, f 2, ... be L-automata. Then

1. T(Vf/) = UT(f/),'

2. IVftl = nlft!;

3. (Vf/)'" C Vfi "' ..

4. Vfl is (strongly) deterministic if each f l is.

Corollary: Let f be a deterministic L·automaton. Then there exists an equivalent strongly
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deterministic L-automaton f' satisfying

If' I = If Icardl(f) ,

cardR(f') :s cardR(f) . card/(f) ,

cardZ(f') :s cardZ(f) . card/(f).

Things become more complicated with "product". There can be no general
determinism-preserving definition of a "product" of L-automata with the property that the set
of tapes of the "product" is the intersection of the respective sets of tapes of the factors.
Nonetheless, one may define such a product in two special cases.

Suppose f \, f 2, •.• are L-automata. Define their tensor product to be the pseudo-Muller
L-automaton

"Tensor product" properly applies only to pseudo-Muller automata; it is defined for general
L-automata in order to provide a simple notational device to describe, for L-automata A and
f, the "subgraph" of MAQ!,)Mr reachable from /(A) x/(f), namely (AQ!,)f)'" (which has
nothing to do with acceptance of tapes; see Theorem 4 below). Define the projection
fIr, : V(Q!,)fJ) - V(f/) to be the canonical map; as usual, this extends to a map
fIr, : E(Q!,)fJ) - E(f/).

Proposition 3: Let f \' f 2, •.. be pseudo-Muller L-automata. Then

1. T(Q!,)f/) = nT(f/);

2. lQ!,)fd = fIlf/l;

3. (Q!,)f/)'" C Q!,)f/"';

4. Q!,) f/ is (strongly) deterministic if each f/ is.

Let L' be a Boolean algebra containing independent subalgebras L, MeL' with
L' = L . M. For any L' -matrix H, define the L-matrix fILH by

V(fILH) = V(H) ,

for all e EE (H).

Note: Clearly, fILH deterministic =:> H deterministic. (One may readily see that the converse
of this fails.)

Lemma 1: Suppose Hand K are L' -matrices and L' = L . M for independent subalgebras L, M.
Then

1. K lockupjree =:> fIL K lockupjree,'

2. fILH, K lockupjree =:> fIdH Q!,)K) lockupjree,'

3. fILH, K deterministic, fIMH(e) ES(M) for all e EE(H) =:> fIdH Q!,)K) deterministic.

Proposition 4: Let f \ , ... , f k be pseudo-Buchi L-automata. Then there exists a pseudo-Buchi L
automaton f satisfying
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k

2. Iflsk n If;l;
/-1

3. f is (strongly) deterministic if each f/ is.

Theorem 2: Let fl •...• f k be L-automata. Then there exists an L-automaton f satisfying

1. T(f) = nT(f;);

2. If I S (k + 2) (.0 Ifli) (0 (cardZ(f/) + 1»).,-I I-I

Given an L-automaton f. define T(f)' = §(L)w \T(f). _ The problem of
"complementing" f, that is. finding an L-automaton f satisfying T(f) = T(f)', is rather
different than the same problem for automata accepting strings, for which one usually
produces a complement by first determinizing the given automaton via the Rabin-Scott
"subset" construction [RS59]. This approach does not work for L-automata, since it does not
work for pseudo-Biichi L-automata [Ku85a; (3.12.2)]. Nonetheless, the following proposition,
together with Theorem's 2 and 3, does give a decomposition construction for complement.

Say that an L-automaton f is node-recurring if (v, w) ER (f) and (v', w) EE(f) imply
that (v'. w) ER(f). From [Ku85a; (2.2), (2.3)] it easily follows that for any (deterministic)
L-automaton f one may construct an equivalent (deterministic) node-recurring L-automaton
f' satisfying cardl(f') = card/(f). cardR(f') = cardR(f), cardZ(f') = cardZ(f) and
If'l S If 1 + cardR+(f). Obviously, in a node-recurring L-automaton f, a chain eE<€(f)
is f -recurring iff {i Icp> ER + (f)} is unbounded.

Lemma 2: If f is a strongly deterministic pseudo-Biichi (respectively, pseudo-Muller) L
automaton, th_en there exists a strongly deterministic pseudo-Muller (respectively, pseudo-Biichi)
L-automaton f such that

I. T(f) = T(f)';

2. If I S ifl + cardR+(f) (respectively, ,fl s Iflmax{2, cardZ(f)}).

Proposition 5: Given a deterministic L-automaton f, there exist strongly deterministic L-automata
f Band f M. pseudo-Biichi and pseudo-Muller respectively, such that for r = card I(f).

1. T(fB) n T(fM) = T(f)','

2. IfMI s ifl' + r'cardR+(f),
IfBI s If I' max{2, r·cardZ(f)}.

Let f be an L-automaton. For each chain e E<€ef). define
lJ.(e) = {v EV(f) Icard{i IcP> = v} = l'\o}, the Muller set of e (cl [Ch74]). Obviously, if f is
finite-state. lJ.(e) *" 0. For any tape x, let IJ.rCx) = {1J.(e) IcE <€ef), T(e) = x}. Clearly.
IJ.rCx) *" 0 iff x ET(f). If f is strongly deterministic then IJ.r(x) = 0 or IJ.r(x) = {C} for
some C C V(f). In this case, when f is finite-state, write IJ.rCx) = C; then IJ.rCx) *" 0 iff
x ET(f).

The Muller tapes accepted by an L-automaton f are the tapes
T",(f) = {x ET(f) IlJ.r(x) nZ(f) *" 0}. For any w-regular language T over a nonempty finite
set S, there exists a finite-state strongly deterministic 25-automaton f such that T",(f) = T
[Ch74].

Theorem 3: For every w-regular language T over a nonempty finite set S. there exist deterministic
n

finite-state 25 -automata flo ... , f n such that n T(f/) = T.
/-1
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4. Testing Containment

For a graph G and a set R C E(G), let GIR denote the graph with V(GIR) = V(G),

{

G(e) if e EV(G)2\R
(GIR)(e) = 0 otherwise.

(GIR is the result of removing the edges R from G.) It is convenient to extend the definition
to an arbitrary set R, defining GIR = G/(R nE(G».

Theorem 4: Let A, f be finite-state L-automata and let ':Ie be the set of strongly connected
components of the graph

(A@f)'" fOrI R(f).

If for each K E'X. either

J. for some C EZ(f). nr(K) C C.

or

2. for each e EK2• nA(e) t. R(A). and for each C EZ(A) and each strongly
connected component k of

(A@f) InA1(ClnX

there exists a DE Z(f) such that nr(k) CD.

then'T(A) C'T(f). Furthermore. iff is strongly deterministic. then the converse holds as well.

S. Complexity

Theorem 4 may be translated into an algorithm for testing the containment 'T(A) C 'T(f),
based upon a procedure NEXTSO which takes a state v and generates all the "next states":
NEXTS(v)={wEV(A@f)1 (v,w)EE(A@f)}. The procedure NEXTSO makes its
computation as follows. If v = (VA, vr>, NEXTS(v) computes NEXTS(v A), NEXTS(vr>
through local manipulations in the respective definitions of A and f. For each
w = (WA, wr) ENEXTS(VA) x NEXTS(vr), NEXTS(v) tests

(1) (A @f)(v, w) ¢ 0

and includes wE NEXTS(v) when (1) is true. There are a variety of means to test (1). One
is to test

for each pair (WA, wr> for which A(VA, WA) ¢ 0 and f(vr, wr> ¢ O. Testing (2) could be
done symbolically, or exhaustively through expansion to a sum of atoms (disjunctive normal
form). Another way to test (1) is to test, for each atom t ES(L).

t'" A(VA, WA) ¢ 0

for all WA EV(A) such that A(vA, WA) ¢ 0 and then for the same atom t, make the
analogous test in f. Since t is an atom,

(3) t'" A(VA, WA) ¢ 0 and t '" f(vr, wr> ¢ 0

implies (2) and hence (1). Conversely, if (3) fails for every atom t, then (1) fails. Hence, to
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compute NEXTS(v). one may find

(4) RA(vA. t) = {WI. EV(A) It'" A(vA, WI.) *" O}

and Rr(vr. t) defined analogously. for each t. and then set

(5) NEXTS(VA. vr) = U (RA(VA.t) xRr(vr. t».
I ES(L)

In the general worst general case, to test (2). one must parse each of A(vA. WI.) and
f(vr. wr) into a disjunctive normal form and compare the two forms. If the two forms
contain n atoms and n atoms respectively, then testing (2). as a practical matter (e/. [Kn73;
p. 391]). consists of nm comparisons. If there are r edges in A outgoing from VA whose edge
labels contain. respectively. a 1.... , a, atoms, s edges in f from vr whose edge labels contain,
respectively, b 1•••• , bs atoms, and n atoms in S. then the total cost of computing NEXTS(v)
via (2) can be as much as

comparisons. with equality when both A and f are deterministic (~ai. ~bi 2: n since an
automaton by definition is lockup-free). In addition to that is the cost of transforming each
edge label into normal form. On the other hand. in order to compute (5), one computes
RA(vA.t) and Rr(vr.t) and then forms the product. This appears a bit more costly. as to
compute (4) for each atom t involves ~ai 2: n comparisons, and this is repeated n times. once
for each atom, resulting in at least 2n 2 comparisons for (5). However, using an efficient
internal computer representation for an edge label can reduce the cost of each test of the form
(3) to that of one comparison. In this case, the cost of (5) reduces to n (r + s) which could be
substantially less than n2 .

This procedure is incorporated into a depth-first traversal of (A @ f) oj< / Or 1R (f). which
is used in conjunction with Tarjan's algorithm [Tan] to compute the set 'JC of strongly
connected components of this graph, by traversing each edge exactly once. In the course of
this traversal. prior to its completion, strongly connected components may be found. As each
component is found, first property I. of Theorem 4 is tested, and failing that, the same
algorithm is applied to find the strongly connected components of the graph defined in
property 2.

In summary, the cost of checking T(A) C T(f) using the algorithm outlined above is
linear in each of the size of E(A). E(f), Z(n and Z(A). It is assumed that the size of Z is
constant. The next section shows how the basis of this cost may be reduced through
exploitation of "regularities" and symmetries in the definitions of A and f.

6. Homomorphism

Let f be an L-automaton and let f' be an L' -automaton. A homomorphism

l1>: f - f'

is a pair of maps l1> = (<jJ. <jJ') where

<jJ: r -f'

is a graph homomorphism satisfying
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(1)

(2)

(3)
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<l>I(f) = I(f') ,

<l>R(f) = R(f') ,

Z(f') = {<I>(C) IC EZ(f)}

<1>': L'-L

is a Boolean algebra homomorphism such that for each (v, w) EV(f)2, <I> and <1>' jointly
satisfy

(4) f(v, w) :s <1>' f'(<I>(v), <I>(w».

We say <t> is a monomorphism or an epimorphism or full according to the behavior of <1>. The
homomorphism <t> is level if <1>' is an isomorphism and is flat if <1>' is the identity map; if
<1>: V(f) - V(f') is onto and

(2°) R(f) = {e EE(f) I<I>(e) ER(f')}

and

then <t> is said to be exact. We say <t> is an isomorphism if <I> is an isomorphism, <t> is level and
exact, and (4) is an equality. If <t>: f - f' is an isomorphism, write f == f'. If <t> is an
isomorphism and f' = f, we say <t> is an automorphism. We may denote both <I> and <1>' by <t>.

Note that in view of (4), it was not necessary to require that <I> be a homomorphism (it
is a consequence of (4».

Theorem 5: If <t>: f - f' is a homomorphism then ~ f(r, s) :s <t> f' (<t>(v) , <t>(w», with
4>(r) • 4>(v)
4>(s) - 4>(w)

equality holding when f' is deterministic.

Lemma 1: Let <t>: f - f' be a homomorphism. If f' is deterministic then <t> is a full
epimorphism.

Let f be an L-automaton, let f' be an L' -automaton and let <t>: f - f' be a
homomorphism. An L' automaton <t>(f), the image of f under <t>, is defined in terms of
S (L ') as follows:

V(<t>(f» = <t>(V(f» ,

(<t>(f» (<t>v, <t>w) = ~ t
IEQ(v,w)

where for v,wEV(f), Q(v,w) = {tES(L') I
<t>(r) = <t>(v) , <t>(s) = <t>(w) and f(r, s) .<t>(t) *" O};

I(<t>(f» = <t>I(f) ,

R(<t>(f» = <t>R(f) ,

Z(<t>(f» = <t>Z(f)

for some r, s EV(f),

(which are, respectively, I(f'), R(f') and Z(f'), by definition).

Lemma 2: <t>(f) is an L '-automaton, and <t>: f - <t>(f) is onto and full.
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Note: Simple examples show that it is possible for f to be deterministic while I1>f is not
deterministic, as well as for I1>f to be deterministic while f is not deterministic.

Corollary: If 11>: f - f' and f' is deterministic, then 11>(f) = f'.
Let <1>': L' - L be a homomorphism of Boolean algebras and let x' be a tape in L'.

Define <I>'(x') "" {xES(L)w IXI.<I>'(x") ;CO}. Thus, for any tape x' in L', <I>'(x') is a set of
tapes in L.

Theorem 6: If f is an L-automaton, f' is an L' -automaton and 11>: f - f' is a homomorphism,
then T(f) C U I1>T(f'), with equality holding when f' is deterministic and 11> is exact.

Note: Containment in Theorem 6 may be proper even when f' = 11>(f) and 11> is exact (but
f' is not deterministic).

Corollary: If f, f' are L-automata, f' deterministic and if 11>: f - f' is exact and flat, then
T(f) = T(f').

Lemma J: If 11> = (<I>. <1>') and'J1 = (1jI.1jI') are homomorphisms, 11>: f - f' and 'J1: f' - f",
then 'J1 011> !!!! (1jI 0 <I> , <1>' 0 1jI') is a homomorphism f - f".. if 11> and 'J1 are exact then so is
'J1 011>.

6.1 Lifting

Let f l , f 2•... be a family of L-automata, let fi, n, ... be a family of L'-automata
and for i = 1,2, ... let

be a family of homomorphisms. Then 11>1, 11>2' ... are said to be co-linear provided they agree
on L' and either the family is finite, or they are complete on L'. In this case, for f = ~ f l or
Vf l , and f' =~f; or Vf; respectively, define the lifting

11> == ~ 11> I: f - f'

to be the common homomorphism on L' - L and for all v EV (f) ,

l1>(v) = (11) /(VI))'

Lemma 4: A lifting 11> =~ 11> I: f =~ f I - f' =~f; is an automata homomorphism.

Lemma 5: A lifting of exact homomorphisms is exact.

Lemma 6: Suppose L I , L 2, ... ,Lk are independent subalgebras of a Boolean algebra L = nLI ,
I

L i . L2, ...• L; are independent subalgebras of a Boolean algebra L' = nLj and <I> j : L; - LI is a
I

homomorphism, for all i = 1,2, .... k. Then <I> =n<I> I defined by <I>(x) = <1>1 (x) • ... • <l>k(X) is
I

a homomorphism, <1>: L' - L.

6.2 Reduction

Theorem 7: Let 11>: A - A', 'J1: f - f' be co-linear homomorphisms. If T(A) = U I1>T(A')
then T(A) C T(f) => T(A') C T(f'),' ifT(f) = U'J1T(f') then T(A') C T(f') => T(A) C T(f).

Corollary: Let 11>: A - A', 'J1: f - f' be exact, co-linear homomorphisms and suppose A' and
f' are deterministic. Then

T(A) C T(f) <=> T(A') C T(f').

Note: If in Theorem 7 11> and 'J1 are flat, then the theorem follows trivial1y from the corollary
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to Theorem 6.
Let A, A', f and f' be as in Theorem 7, with 7(A) = U<t>7(A') and 7(f) = U'I'7(f').

Then the pair (A', f') is called a homomorphic co-reduction of the pair (A, f). By
Theorem 7, if (A', f') is a homomorphic co-reduction of (A, f), then
7(A) C 7(0 <=:> 7(A') C 7(f'). The homomorphic co-reduction (A' , f') is exact if <t> and
'I' are exact, is deterministic if A' and f' are both deterministic, and is minimal state if
cardV(A' @f') (= cardV(A') . card V(f'» is minimal among all homomorphic co
reductions. (The benefit of a co-reduction, as measured by the saving associated with using
Theorem 4, was shown in section 5 to be a function not only of the size of the reduced state
space, but also the sizes of R, Z and, perhaps most importantly, S(L'). However, as
discussed below, many facets of co-reduction, of which state space reduction is just one,
remain unresolved.)

For a single L-automaton f, a homomorphic reduction (exact homomorphic reduction) of f
is an equivalent L-automaton f' = <t>(f) , for some flat (exact) epimorphism <t>: f - f' .
(Recall, f' is equivalent to f if 7(f') = 7(f).) A homomorphic minimization (exact
homomorphic minimization) of f is a homomorphic reduction (exact homomorphic reduction)
of f with fewest states.

Little is known in general about exact homomorphic (co-)reduction of a pair (A. f) or a
single automaton f. In the class of deterministic L-automata, life is easier: the Corollary to
Theorem 7 proves that any pair of exact co-linear homomorphisms <t>, 'I' give rise to a
homomorphic co-reduction of (A,O; likewise, by the Corollary to Theorem 6, any exact
homomorphism of f produces a homomorphic reduction of f. In Theorem 8 below it is
shown that the problem of homomorphic co-reduction of a pair (A, 0 can be reduced to the
problem of homomorphic reduction of A and f separately. In section 6.3 an algorithm will be
presented for finding the (unique up to isomorphism) exact homomorphic minimization of a
deterministic L-automaton.

Theorem 8: Let f be an L-automaton, f' be an L' -automaton and <t>: f - f' a homomorphism.
Then <t> = <t>l O<t>2 where <t>2: f - f" isflat and <t>1: f" - f' is the identity on V(f").

Corollary: Let A. f be L-automata. Then (A', f') is a minimal-state deterministic homomorphic
co-reduction of (A, f) iff for homomorphic minimizations A" of A and f" of f,
cardV(A') = cardV(A") and cardV(f') = cardV(f").

Let A, f be L-automata and <p': L' - L a homomorphism of Boolean algebras. If
(idA, <p'), (idr, <p') are homomorphisms on A and f respectively, then <p' is said to be co
linear for A and f.

6.3 Reducing

Let A and f be L-automata for which we wish to prove or disprove that 7(A) C 7(f).
The theme of this paper is to "reduce" that problem to a simpler equivalent problem of
showing 7(A') C 7(f') for some respectively smaller automata A' and f'. If the relationship
between the pair (A, 0 and its "co-reduction" (A', f') is undefined, then the problem of
finding a "minimal state co-reduction" of (A, f) is meaningless. (Let 7(A') = S(L)W (for
which one state suffices) and let f' = A' if 7(A) C 7(0, while otherwise 7(f') = 0 (also
realizable with one state).) One may meaningfully define a co-reduction of (A, f) to be a
pair of L' -automata (A', f') derived from (A, 0 through replacement of A and f by any
other L-automata A". f" which accept the same respective sets of tapes and for which
(A', f') is a homomorphic reduction of (A", f") having the property that the complexity, as
described in section 5, of proving or disproving 7(A') C 7(f') using Theorem 4, is less than
the associated complexity for (A, f). With this definition one may seek a co-reduction of
(A, 0, minimal with respect to that complexity measure. Almost nothing is known about this
problem in such generality. For example, it is only conjectured that such a minimal co
reduction (A' , f') of (A, 0 must satisfy
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card V(A' ~ f')· :s card V(A ~f)

as, conceivably, the size of R, Z, S (L') or even E (A' ~ f') may be considerably reduced by
slightly increasing the size of the state space. Furthermore, even if simply minimizing the size
of the state space were found to be desirable, it is not known how to do this, short of an
exhaustive search.

Things do not improve even if one restricts to the class of deterministic finite-state L
automata. Unlike deterministic finite-state automata which accept strings, for arbitrary w
regular languages there is no analogue to the Myhill-Nerode right-invariant equivalence
relation [RS59J, and a minimal-state deterministic finite-state L-automaton which accepts a
given w-regular language need not be unique up to isomorphism [St83].

On the other hand, finding a minimal state exact homomorphic reduction in the class of
deterministic L-processes, will be shown to be tractable.

It should be emphasized that, in view of the forgoing, there exist equivalent
deterministic f, f' such that the homomorphic minimization of f has fewer states than the
homomorphic minimization of f' (see the examples below). It is also true that there are
reductions which are better than any homomorphic reduction.

In the case of general co-reductions, it was already observed that whether or not
(A' , f') is a co-reduction of (A, f) may depend upon the complexity measure associated with
testing containment. In the case of homomorphic co-reduction this problem does not arise, as
a homomorphic co-reduction reduces (or leaves unchanged) the size of each parameter which
enters into the complexity measure (see section 5). Hence (assuming the complexity measure
is monotone), every homomorphic co-reduction is a co-reduction.

The temptation to reduce the size of the state space of f through an equivalence relation
on V(f) which is analogous with the equivalence relation defined in association with the
Huffman-Moore minimization algorithm for automata accepting strings [HU79J, does not
appear to work. Let f l be f except that l(f l ) = V(f). An equivalence relation for an L
automaton f analogous to the Huffman-Moore equivalence relation is: v:::: w if for every tape
x in L, x is represented by a chain c E'f6(f1) with cbl

) = v iff x is represented by a chain
dE 'f6(f l ) with dbl ) = w. Clearly,:::: is an equivalence relation on V(f). Letting [v] denote
the equivalence class of v EV(f), we would be tempted to defir.e the "minimization" of f to
be the L-automaton [f] defined by

V([f]) = ([v] Iv EV(f)} ,

[f]([v], [w]) = L f(r, s),
,:::::::y

s==w

l([f]) = ([v] /[v] nl(f) '* 0},

R([f]) = {([vJ, [w]) I for some (v'. w') ER(f), v':::: v and w':::: w},

Z([f]) = {{[v] I [v] n c '* 0} ICE Z(f)}.

(It should be clear that [f] is indeed an L-automaton.)

Lemma 7: The map <1>: V(f) - V([f]) defined by <I>(v) = [v] defines a flat epimorphism
<1>: f - [f] and thus T(f) C T([f]).

The reason that [f] may not be a homomorphic reduction of f is that <I> may not be
exact. This may cause what appears to be an irreconcilable problem (that T(f) C T([f]), as

'*the next example shows.

Examples: 1, Let f be defined by
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where the states of f are the indices of the rows of M r, with I (f) any nonempty subset of
V(f), R (f) = 0 and Z(f) = HI}, {2}, {3}}. It is easy to show that T(f) = l'I' x lll

• There
are several pairwise non-isomorphic minimal state automata defining the same w-language
(see [St83; ex. 2]) of which one is A with

and Z(A) = HI}, {2}}. While it is easily shown that there are flat homomorphisms f - A,
none can be exact. In fact, f is homomorphically minimal. It follows from this example that
for any monotone complexity measure, there are minimal reductions less complex than any
minimal homomorphic reduction. On the other hand, it is easily shown that the respective
states of f and of A are equivalent, and hence [f] and [Aj are both isomorphic to the one
state automaton which defines I"', properly containing T(f) = T(A).

2. There seems little hope, even for special cases, that T(f) = T([f]), as the next
example shows. If A is as in the first example, except with Z(A) = 0 and R (A) = {(l, 2)},
then T(A) = (X·Xx·X)lll. Clearly, [Aj has a single state and T([A]) = Iw. Things are much
the same if the two examples are combined, with R (A) = {(l, 2)} and Z(A) = HI}, {2}}.
Then T(A) = (X·Xx·X)lll + I·x lll while [Aj again has one state and T([A]) = I III •

In the case of a finite-state deterministic L-automaton f for which R (f) = 0, and Z (f)
has, "essentially", a single element (i.e., C, DE Z(f) =:> any cycle in CUD is in C or D) then
T( [f]) = T(f). However, this is an uninteresting generalization of a homomorphic
minimization: if each C EZ(f) is a union of strongly connected components (which one may
as well assume, by discarding the complement of the union of the strongly connected
components of C, an operation which leaves T(f) unaltered), then f - [f] is exact, so
T(f) = T([f]) by the corollary to Theorem 6.

Likewise, an analogous uninteresting generalization of homomorphic minimization is to
add to R (f) any set of edges contained in no cycle of f. Clearly, this has no effect upon
T(f).

While the Huffman-Moore minimization algorithm does not generalize directly to L
automata (as just shown), it can be adapted to homomorphic minimization of L-automata,
which is unique up to isomorphism. Because of this, one may consider that minimization of
deterministic automata which accept strings corresponds to homomorphic minimization of
automata which define w-regular languages, rather than the more general unqualified
minimization. (Homomorphic minimization of string acceptors can be defined analogously to
the definition given here, in which case for deterministic string acceptors, "minimization" and
"homomorphic minimization" coincide.)

For a node-recurring deterministic L-automaton f with v,wEV(f). write v~w

provided for every string x in L,

1. V X ER + (f) <=:> W X ER + (f), and

2. for every C EZ(f), V
X EC <=:> W

X EC.

Clearly, "" is an equivalence relation on V(f). Let the equivalence class of v be denoted by
[v], and let [f] be defined as before but relative to ~ rather than"" (from here on, there is
no further mention of "", and "[]" refers only to a).

Lemma '0: For any node-recurring deterministic L-automaton f, the map 4>: V(f) - V([f])
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defined by lI>(v) = [v] defines a flat exact epimorphism 11>: f - [r].

Example 3. One could be tempted to try to weaken the above definition of :!! by allowing
general (non-node-recurring) automata and replacing condition I. with the condition

(V X , v(x,r» ER(f) iff (wx, w(x,r» ER(f)

for all atoms tES(L). However. with this definition II> is not necessarily exact, as the
following example shows. Let f be defined by

0 x 0 x

0 0 x 0
Mr=

0 0x x

x 0 0 0

where the states of f are the indices of the rows of Mr. with I(f) = {I}.
R(f) = W,4). (3.2)} and Z(f) = 0. It is easily seen that T(f) = «(lX)*X

2
)1ll. However.

with this suggested weaker definition of !2. 1!2 3 and 2!2 4, as may be easily checked. Thus.

M[fl = (~ ~)

with R ([f]) = {( I. 2)}. so T(f) C T([fJ) = (lX)lll and by the corollary to Theorem 6. the flat

*epimorphism 11>: f - [r] (weaker !!!!) cannot be exact.

Lemma 8: [r] is deterministic.

Theorem 9: Let f be a deterministic node-recurring L-automaton. Then Tar]) = T(f).

Lemma 9: If f is node-recurring and II> is exact then 1I>(f) is node-recurring.

Theorem 10: Let 'l': f - f' be a flat. exact epimorphism of deterministic L-automata, f node
recurring. Then

a) 'l'(v)!!! 'l'(w) <:;> V!!!! w, for all v. w EV(f*);

b) [r] == [f'].

Corollary: The exact homomorphic minimization of a deterministic node-recurring L-automaton is
unique up to isomorphism.

If card V(f*) = n. an 0 (n logn) algorithm for computing the exact homomorphic
minimization [r] of a deterministic node-recurring L-automaton f is given by the Hopcroft
algorithm [Ho?I]. The Hopcroft algorithm applies by partitioning into separate blocks states
v. w EV(f*) which. for some string x, give rise to respective values vX

, W
X which violate

either condition 1. or 2. above for v ... w.
Returning to Theorem 8, in the context of a homomorphic minimization. it remains to

minimize the Boolean algebra which underlies the image of a homomorphism. Theorem 8
tells us that we may assume for this purpose that the graph of the image is fixed. Suppose
that the L-automaton f is that image. The problem then can be posed thus: find a smallest
subalgebra L' C L such that f is an L' -automaton. Clearly. L' is the (unique) subalgebra
generated by

A 5: {r(e) Ie EE(f*)}.

Since L' is determined by its atoms S (L ') and each atom in S (L ') is a union of atoms of L.
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the problem of finding L' reduces to the problem of finding the coarsest partition of S (L)
such that every element of A is a sum of partition elements. This problem is equivalent to the
following problem. for n = card S (L) and m = card A. Given sets AI ..... Am C {I ..... n}. find
a minimal partition b I U ... U b, = {I ..... n} (bt's pairwise disjoint) such that each AI is a
union of b/s. Unfortunately. this problem. known as the "set basis" problem. is NP-complete
[St75]. A solution is given by the following proposition. Denote All == {I ..... n}\AI. Al 5! AI

m

and for A E(2{1·····n})m. a E{-l. l}m. define AlI
!5! n Af'. Say that {b l •...• b,} (above) is a

I-I
basis for AI ..... Am.

Proposition 6: Distinct sets AI •...• Am C {I •...• n} admit of a unique basis. namely
{All Ia E{::t l}m}\{0}.

Corollary: Let f be an L-automaton. To find the smallest L' such that f is an L' -automaton is
NP-complete in card E(f).

7. Analysis of Coordination

It is now described how the results of the previous sections may be applied to reduce the
complexity of analysis of a system of coordination components. (For example. computer
software and hardware often can be represented as such a system [AKS83. Ku85. KK86.
GK87].) The system is defined in terms of its coordinating components AI ..... Ak as a
product A = A I @ ... @Ak (all of this is defined below). It is required to know whether the
system A possesses a certain given behavioral trait. This is determined through formal
analysis. formulated in terms of testing A for its "performance" of a task defined by an L
automaton f. where L is a Boolean algebra associated with A.

The components A I ..... Ak as well as A are Moore-like [HU79] state machines called L
processes. An L-process A induces an L-automaton A * which characterizes the behavior of A.
Testing A for performance of the task defined by f amounts to testing whether or not
T(A*) C T(f).

The cardinality of the state space of A is the product of that of each component
A I ..... Ak • Thus. simply the size of A may preclude testing language containment directly as
above (it may be impossible to construct A explicitly). In this case. one seeks to find co-linear
homomorphisms 4>: A -B and 'V: f - f'. thereby reducing the complexity of testing task
performance to that of the test T(B*) C T(f'). The homomorphism 4> may be defined as a
lifting (cf. §6.1) 4> = @4>I. where 4>1: AI-BI and B = @BI . In this way. one avoids
constructing A (or 4» explicitly. Determination of whether or not T(B*) C T(f') may be
accomplished using the test of Theorem 4.

7.1 L·Process

Let L be a Boolean algebra. Although the theory holds in greater generality. assume
now that L is finite. An L-process is a triple A == (MA• SA .l(A». where M A is an L-matrix (the
transition matrix of A. with the associated notation V(A) 5!! V(MA), E(A) "" E(MA) and for all
v. w EV(A). A(v. w) ==MA(v. w». leA) C V(A) (the set of initial states of A) satisfies
leA) = 0. and SA: V(A) _2L (the selector of A) satisfies SA(V) '" 0 for each v EV(A); for
SeA) == U SA(V). the set of selections of A. it is required that each selection x ESeA) is an

v EV(A)
atom in the Boolean algebra generated by SeA); finally. it is required that for all v. w EV(A).

A (v. w):S ~ x .
.r ES...(v)

If in fact equality holds for all v. w then A is said to be lockupjree.
The interpretation of L-process is similar to that of L-automaton. Given an L-process A.

for each v EV(A) the selections x ESA(V) are the "outputs" possible from v. If A is
interpreted as a Moore-like state machine, then while A is "in" state v. the selection of A is a
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nondeterministically chosen element of SA(V); as long as A "stays" in v. this selection may
repeatedly change to any other element of SA(v). For any e EE(A), the "edge label" A(e) is
an enabling predicate, expressed in terms of selections. for the transition along the edge e.
The selection x ESA(V) "enables" the transition (v. w) provided x.A (v, w) "" O. A is lockup
free if and only if every selection x ESA(v) enables some transition (v, w). Nondeterminism in
selection facilitates modelling incompletely specified actions (e.g.• from one state a process
may select to "send message ml". for i = 1.2•...• the procedure for such selection remaining
unspecified). In keeping with the classical theory of finite state machines, process state
models unobservable (private) memory, and a processes "behavior" is defined in terms of its
selections (output) alone.

Given L-processes A I •... , Ak define their (tensor) product to be

k (k k k )
~ AI = ~ MA" n SA" X I (AI)
I-I I-I I-I J-I

where (~SA') (vI' , vk) ={XI •••. • x lI IXI ESA,(VI). i = I, .... k}.

Lemma 1: If A], Ak are L-processes, then their product ~AI is an L-process.
The L-processes A I ..... Ak are said to be independent provided XI ES (AI),

i= 1•...• k=:>xI • ... • Xk""O.

Proposition 7: If A I, .... Ak are independent, lockupjree L-processes, then their product ~AI is
lockupjree.

The discrete-event behavior of a system modelled by an L-process A = A I ~ ... ~Ak is
interpreted in terms of the coordination among its independent. lockup-free components
A I .... , Ak as follows. At each time, in each process A" a selection XI possible at the "current"
state VI (i.e .• XI ESA,(VI» is chosen non-deterministically. The product X = XI •••. • xk
defines a "current global selection", i.e.• a selection of the product A at the state (vI' .... vk).
At each time, in each process. the current global selection determines a set of possible "next"
states, namely those states to which the transition from the current state is enabled by the
current global selection. In AI the transition from state VI to state WI is enabled by X iff
x.Aj(v" Wj) "" O. Each process resolves the current global selection by choosing (non
deterministically) one of these possible next states.

A system progresses in time by repeatedly "selecting" and "resolving". This
interpretation correctly describes the behavior of the product since by the atomicity assumption
on each S(A j) it follows that for v = (vI, .... vk) and W= (wI ..... wk).

x.A,(v" WI) ",,0 for Isisk_x.A(v.w) ",,0.

This same interpretation may be used to model systems of processes coordinating
asynchronously in continuous time [Ku86. GKR86].

7.2 Task Performance

Note that if A I •...• Ak are independent L-processes and k> 1 then the selections of each
AI are not atoms of L, i.e.• S(AI) n S(L) = 0. If. on the other hand. A is an L-process and
S (A) = S (L) then A is said to be autonomous (its behavior depends upon no other independent
L-process) .

Now, suppose A is an autonomous. lockup-free L-process. Let A * denote the pseudo
Muller L-automaton defined as follows:

V(A *) = V(A) U {#}

where # is a symbol not in V(A);
A*(v.#)= ~ x. A*(#.#)=1

" ES(A)\SA(V)

for v. W EV(A). A *(v. w) = A (v. w)
and A*(#,v)=O; I(A*)=I(A)

while
and



37

Z(A III) = {V(A)}. Thus. '€(A III) is the set of sequences c = (co. c ) where CI = (VI. XI) with
VI EV(A), XI ESA/(VI). Vo E/(A) and xI*A(v" vI+d *" 0 for i = 0.1 A task for A is a set

'!J C 2(V(A) x S(A))W

i.e., a set of sets of sequences of (state, selection) pairs of A. It is said that A performs the
task '!J if '€(A III) E'!J. ('!J defines "acceptable behavior" of A by defining all "acceptable
versions" of A.)

This paper focuses upon testing task performance for a particular class of tasks: the
regular language tasks relative to L. those being the tasks of the form '!J = 2T for some Ill

regular language T over S (L). Thus. if '!J is such as task and T = T(f) for some L-automaton
f, then A performs '!J iff T(A III) C T(f).

7.3 Reduction

Let A be an L-process and B be an L' -process. In a manner strictly analogous to the
development of §6. a homomorphism <1>: A -B is defined. All the details of this definition are
as in §6. with the exception of (2) and (3) which pertain to automaton acceptance structures,
and the following treatment of selections, which is added: for each v EV(A) and X ESA(V) , it
is required that there be some y ESB(<I>V) such that x:s <I>(y).

Proposition 8: Let A be a lockupjree L-process, let B be an L' -process and let <1>: A -B be a
epimorphism. Then B is lockupjree. Furthermore, for each v EV(A) and y ESB (<I>v) , setting
Y = {x ESA(V) Ix:s <I>(y)},

~ x = <I>(y).
xEY

Thus, one effect of a process homomorphism is to associate to each selection of B. a nonempty
set of selections of A.

If A and B as above are both autonomous and lockup-free. then the process
homomorphism <1>: A -B extends naturally to an automaton homomorphism <1>: A III -B III with
<1>(#) = #. Furthermore. if AI •...• Ak are independent, lockup-free L-processes and
<1>1: AI -BI are co-linear process homomorphisms then the "lifting" results of §6.1 for
automata carryover to here as well. and

is a process homomorphism. If A = ~AI and B = ~BI are autonomous. one thus may reduce
the test of whether for some L-automaton f. T(A III) C T(f) to a test of whether T(B III) C T(f).
If furthermore each <1>1 is co-linear with an automaton homomorphism '1': f - f'. the latter
test may be reduced further to the test T(B III) C T(f'). Specifically, the results of
Theorems 7. 8. 10 and their respective corollaries pertain.

These results suggest several techniques for reduction. The most obvious (and easiest to
automate) is state reduction via an exact homomorphic minimization applied to several AI at
once, replacing each remaining A) with a free version: a single-state process Aj such that
S(Aj) = SeAl)' (The freeing of the several A/s renders the exact homomorphic minimization
algorithm tractable.) This procedure can be continued, applying exact homomorphic
minimization to the reduced At's together with several of the (unreduced) A/s, freeing the
remaining A/s. If this procedure is continued until it has been applied to all of A I .... , Ab
then the result is the exact homomorphic minimization of ~AI (this having been obtained
without computing ~AI explicitly).

Another reduction technique. which may be used in conjunction with the above, is to
guess a Boolean algebra homomorphism which induces full co-linear maps <1>1: AI -BI . The
correctness of such a guess may be checked using Theorem 4. Such "guessing" is often
facilitated by inherent symmetry or modularity among the At's; for example. see [OK87].
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Finally, if the structure of the At's is sufficiently simple and regular, one may apply a
mathematical argument to demonstrate the existence of a homomorphism @A/-B, as in
[Ku85].

8. Conclusions

The overriding motive behind this paper has been to provide a theoretical basis for
machinery with which to perform formal analysis of large systems of coordinating processes.
A measure of the success of this approach can be taken from the derivative software system
[HK86] which performs formal analysis of systems with trillions or more states through
applications of Theorems 4, 7, 8 and 10 above.

The machinery developed here might be considered in the context of automated
theorem-proving [BL84]. Classically, theorem-proving algorithms consist of inference rules
applied to axiomatic systems. Because of the typically very general nature of these rules, it
may be hard to classify the tractably provable theorems. However, since the tractable
theorems are all characterized as provable in a (relatively) small number of steps from a fixed
reportoire of instructions, they may be considered to be those theorems reducible to small
regular-language assertions. The approach presented in this paper proceeds in the opposite
direction: the class of small regular-language assertions is extended to the class of
homomorphically reducible assertions.
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ABSTRACT

A topic of importance in the area of distributed algorithms is the
efficient implementation of formal verification techniques. Many such
techniques are based on coupled finite state machine models, and
reachability analysis is central to their implementation. SPANNER is
an environment developed at AT&T Bell Laboratories, and is based on
the selection/resolution model (SIR) of coupled finite state machines.
It can be used for the formal specification and verification of computer
communication protocols. In SPANNER, protocols are specified as
coupled finite state machines, and analyzed by proving properties of
the joint behavior of these machines. In this last step, reachability
analysis is used in order to generate the "product" machine from its
components, and constitutes the most time consuming part of the verif
ication process. In this paper we investigate aspects of distributing
reachability over a local area network of workstations, in order to
reduce the time needed to complete the calculation. A key property
which we exploit in our proposed design is that the two basic opera
tions performed during reachability, the new state generation, and the
state tabulation, can be performed asynchronously, and to some degree
independently. Furthermore, each of these operations can be decom
posed into concurrent subtasks. We provide a description of the distri
buted reachability algorithm we are currently in the process of imple
menting in SPANNER, and an investigation of the scheduling prob
lems we face.
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1. Introduction

Designing reliable distributed software such as computer communication proto
cols is extremely difficult and challenging. Informal specifications of such software
are often imprecise and incomplete, and are not sufficient to ensure correctness of
many simple distributed algorithms. One reason is that the concurrent execution of
components typically results in an exploding number of execution histories. This
makes the prediction of all possible erroneous behavior of such systems prohibitively
complex for the human mind, and as a result the designer must rely on formal
methods for specifying and analyzing the software. There is an increasingly extensive
literature on such formal methods and tools; for example, see [B087] for a survey.

Among the formal specification methods, finite state models are one of the most
popular. In these models, the system is described as a set of coupled finite state
machines (FSMs), each machine modeling a concurrently executing component. The
reason FSMs are widely used to describe complex systems is that it is conceptually
easier to describe such a system in terms of a large number of small components, and
then derive the complete system by taking the "product" of these components. In
addition to this, in many cases, FSM descriptions can be directly translated to imple
mentable code or implemented in hardware, see [AC85, AK84, OK87].

There are many existing tools for the analysis of finite state models, for example
see [ABM86, An86, F187, C086]. The way these tools work can be summarized in
the following steps. First, they provide an environment in which the designer speci
fies the FSMs by describing the components of the system. Usually, the designer also
specifies the task that must be satisfied by the system in order to ensure correct exe
cution. In the second step, the system uses the description of the components to con
struct the "product" FSM which models the complete system. This step constitutes
the reachability analysis of the system, during which a database of all the reachable
states and transitions of the product FSM is constructed from the specifications of the
component FSMs. The last step consists of checking the validity of the task formula
on the product FSM. This can be accomplished in a "partial" way by assigning pro
babilities to the FSM and checking correctness on some finite set of most probable
histories, obtained by simulation, or in a complete way by doing model checking of
the FSM and the task formula, see [CE82, QS82]. In some systems, the last step is
embedded in the second step, and corresponds to doing reachability analysis on a
larger number of FSMs, some of which model the task requirements, see [ACW86].
One can also use various reduction techniques depending on the underlying model, so
that the product FSM is substituted by a smaller one. Further details about these
techniques can be found in the literature, and are beyond the scope of this paper.

From the previous discussion, it follows that a limiting factor for the practical
application of the FSM methods is the time it takes to perform the reachability
analysis. With the current technology, graphs of 104 to 106 states can be analyzed in
times on the order of minutes or hours, by running the tools on single dedicated
workstations. In this paper we focus on how to move this limit substantially further
by performing the reachability analysis in parallel. Note that an important issue in
favor of distributing the reachability analysis is the size of the table of the explored
states. For large graphs, this table cannot fit in the main memory of a single works
tation and the tabulation becomes increasingly slower as the number of explored
states grows. We describe a parallel reachability algorithm and its implementation
aspects, for the already existing tool SPANNER [ABM87], in a local area network of
SUN workstations. We should emphasize that the design we propose is general
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enough to be used for parallelizing the reachability analysis in most of the existing
FSM tools.

We will elaborate now further on the ideas presented in the paper. A "central
ized" reachability analysis is performed as follows. The input consists of the descrip
tion of N FSMs. A "global" state is a state of the product FSM, and consists of a
vector of N local states, one per component machine. The underlying model provides
a way to compute for each global state, the set of all possible successor global states.
The reachability analysis starts with some initial global state, and completes when all
global states reachable (in any number of steps) from this initial state, are found.
While doing this, there are two basic operations involved: the state generation, which
given a global state, computes its successor global states, and the state tabulation.
which given a global state, checks if it has been already found by keeping an updated
table of the global states visited so far. The distributed reachability analysis we pro
pose is basically performed as follows. There are n state generators and m state tabu
lators. Each state generator receives (global) states from the tabulators, computes
their successor states, and sends them to the tabulators. A state whose successor
states have been computed is considered to be "explored". The tabulators receives
newly generated states from the generators, filter out the states that have already be
found, and send unexplored new states to the generators. The key issues we address
in our design is how to distribute the newly found state information among the tabu
lators, and the scheduling of the work requests among the tabulators and the genera
tors, so that the workload of different processors remains balanced. As it turns out,
the scheduling problem involved is non trivial, and has many generic aspects. This is
due to the large number of messages, and the comparable magnitude of the time
involved in processing the work carried by a message, with the message delay of the
network.

The paper is organized as follows. In section 2, we briefly describe the
SPANNER system and the model of FSMs on which SPANNER is based. In section
3 we describe the design of the distributed software, and its implementation environ
ment. In section 4 we examine the underlying scheduling problem, and we provide a
queuing model for the system. This model can be used as a basis for simulating the
performance of the system, with different scheduling parameters. We also mention
two open scheduling problems which abstract different parts of the original problem
and seem interesting for further research. At the end of section 4, we investigate
performance issues related with the gain in speed of the reachability analysis due to
parallelism. In section 5 are the conclusions of this work.

2. The Selection/Resolution model and the SPANNER system

2.1. The Selection/Resolution model

For completeness, we review the selection/resolution model and the SPANNER
system. For simplicity we discuss the model in terms of its operational semantics.
Further details are available in [GK82, AKS83, ABM87]. The selection/resolution
model is a formal method of describing a complex system as a finite set of coupled
FSMs. Each component FSM (called a process) is specified as an edge labelled
directed graph, see figure 2.1.
The vertices of the graph are states of the process, and the directed edges describe a
state transition that is possible in one time step. A state encapsulates the past history
of the process and is private to that process. That is, no component FSM can know
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Figure 2.1
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about this state directly. In each state, a process can nondeterministically choose
from a set of selections (enclosed in braces next to the state). The selections are sig
nals processes use to coordinate. They can be viewed as indicating the "intention" of
the process. The component FSMs use these selections to determine their transitions.

The directed edges of the component FSMs are labelled by elements of a
Boolean algebra generated by the selections of the processes. We use'" to indicate
the multiplication operator (Boolean and), and we use + to indicate the addition
operator (Boolean or). We use - for the Boolean negation.

After each process has made its selection, each process decides on a transition to
a new state. This resolution is done as follows. First, calculate the global selection
of the processes. This is done by multiplying together the current selections of all the
processes. Note that, by definition, this product is the and of all the current
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selections. Next, each component FSM independently determines which transitions
out of the current state are enabled. It determines if a transition is enabled by the
global selection by multiplying the edge label by the global selection and checking if
the result is 0 in the Boolean algebra. If the product is 0, the transition is not
enabled. Otherwise, it is enabled (a valid transition). Finally, each process chooses
one of the enabled transitions and transitions along that edge to its new state.

Consider the case of k processes Pl • .•• ,Pk and let the selection of Pi be Si at
time step t. Then the global selection S = SIS 2 ••. Sk is the AND (in the Boolean alge
bra) of the individual selections. If process Pi is in state v at time step t, and the
label on the edge from v to w is e, then w is a possible state at time t + 1 if S • e '* o.

A chain of a process is a sequence of state-selection pairs consistent with the
dynamics described above. Intuitively, a chain is a sample path of the behavior or
possible history of the process, where at each time step we record the state and selec
tion of the process.

2.2. The Spanner System

SPANNER is an environment consisting of a set of modules for specifying and
analyzing protocols. The underlying formal model is the selection/resolution model
discussed above. SPANNER allows the user to specify a protocol as a set of coupled
FSMs using the SPANNER specification language. The parser module checks the
specification for syntactic correctness, and produces an intermediate description used
by other modules.

The basic construct of the specification language is a process; this corresponds to
a labelled directed graph of the sir model. The initial declaration of the process sim
ply describe the ranges of states and selections and gives the user the option (using
the keyword valnm) of providing descriptive names for the states and selections. The
import declaration describes which processes' selections are visible in that process.
The init declaration declares the initial state of that process. The trans section is the
transitions section and consists of blocks that define transitions from sets of states.
The format of a block is shown in figure 2.2.

current state {selection list}

> next state : condition;

> next state : condition;

Figure 2.2

Figure 2.3 shows the processes of a simple producer-consumer problem in the specifi
cation language.
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constants N = 3

process P /"'the producer"'/
import C
states 0..2 valnm [PRODUCE:O, AB:l, TRY:2]
selections 0..5 valnm [idle:0,write:l,writing:2, done:3, head:4,tail:5]
init PRODUCE
trans

PRODUCE {idle, write}
> TRY :write);
> $ :otherwise;

TRY {head,tail}
> AB :(C:idle,read,done) + (P:head)"'(C:head) + (P:tail)"'(C:tail);
> $ :otherwise;

AB {writing, done}
> PRODUCE:(P:done);
> $ :otherwise;

end

process C /"'the consumer"'/
import P
states 0..2 valnm [CONSUME:O, AB:l, TRY:2]
selections 0..5 valnm [idle:O, read: 1, reading:2, done:3, head:4, tail:5]
init CO NSUME
trans

CONSUME {idle, read}
> TRY :(X.# > 0) '" (C:read);
> $ :otherwise;

TRY {head ,tail}
> AB :(P:idle,write,done) + (P:head)"'(C:tail) + (P:tail)"'(C:head);
> $ :otherwise;

AB {reading, done}
> CONSUME:(C:done);
> $ :otherwlse;

end

process X /"'the counter"'/
states O..N+ 1 valnm [ERROR:N + 1]
selections O.. N+ 1 valnm [error:N + 1]
inlt 0
trans

$ {$}
>($ + 1)%(N+2): (P:done);
>($ - 1)%(N+2): (C:done);
> $ : otherwise;

end

Figure 2.3
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SPANNER provides a variety of other constructs that make it easier to specify
large systems. This includes the notion of cluster, to facilitate hierarchical develop
ment, and the notion of process type as a template for the instantiation of similar
processes. These constructs are discussed in the references.

The SPANNER system allows the user to experiment with and study the system
of coupled FSMs in two ways. First, the system can be studied using the reachability
graph. The reachability graph is a graph whose vertices are global states (vectors of
local states), and whose directed edges are valid transitions between global states.

The latest version of SPANNER is actually based on an extension of the sir
model which allows reasoning about infinite paths (chains) [ACW86]. It turns out
that many questions about protocols such as deadlocks, livelocks, and liveness can be
answered solely by proper investigation of the reachability graph. The general
mechanism that we use is to add monitor processes that either check for or ensure
certain properties of interest. For example, to an existing protocol, we could add a
process that ensures that a particular component always makes progress and does not
pause forever (a liveness property). Similarly, we could add a process that checks
that a particular task such as receiving messages in the order sent was met. In this
approach, proving the validity of arbitrary temporal logic formulas is done by check
ing properties of a reachability graph.

In order to make it convenient to study the reachability graph, SPANNER pro
duces a database that consists of three tables (relations). The global reachable states
table (table r) has as attributes index (the number of the global state), and the local
state for each process identified by the name of the process. In addition, each global
state has the attribute cc that identifies to which strongly connected component that
state belongs. The transitions table (table t) has as attributes to-state and from-state
that specify the global state numbers for the one step transitions. Using a set of com
mands, the user can query the relations to determine those table entries that satisfy a
particular condition. For example, in the producer-consumer protocol of figure 2.1,
we could ask if there is a global reachable state with process P in state AB and process
C in state AB, corresponding to both processes accessing a common buffer at the same
time, and we would find that the answer is no. In addition, the database has a third
relation called table c that is used in checking for liveness properties. For details, see
[ABM88].

Another way of studying the system of coupled FSMs is through simulation.
This is particularly useful for very complex protocols, since interesting constraints can
be imposed on the simulation. For example, it is possible to assign probabilities to
the selection choices and it is also possible to force a selection to be held for a partic
ular number of time steps. SPANNER allows the creation of a database of sample
runs using a set of simulation modules. These modules allow a simulation to be
setup, using the constraints mentioned, then simulated, and finally analyzed. The
user can analyze the results of the simulation by querying the generated database
using an interactive query language, similar to querying the reachability database.

Reachability

Reachability in SPANNER is done in a fairly standard way. Given, a global
state of the system (a vector of local states of components), the first step is to gen
erate potential new global states. The is done by checking for all possible transitions
that are enabled in each component for that given global state, and then looking at

'.1II
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the new local states that result. These new local states are combined to form the next
set of global states. This is the generator function of reachability. Next, the poten
tial new states are checked to see if they truly are new states. This is done by keep
ing the reached states in a hash table. This is the tabulator function of reachability.
Unexplored states are kept on a list of states to be investigated, and they can be
explored by either breadth-first or depth-first search.

In this paper, we essentially discuss various ramifications of parallelizing this
reachability algorithm. As noted in the introduction, states can be generated in
parallel, since the generation of next states from two different initial states can be
done independently. Thus, the generator function can be done in parallel. Further,
by being careful to handle only parts of the hash table, the tabulator function could
also be done in parallel. It should also be noted that the generation of new states
from a given initial state can also be made parallel to some extent, since each com
ponent process can independently determine the enabled transitions from its initial
local state.

3. Implementation

In this section we provide some of the details of our proposed implementation.
First, we describe the particular environment in which we intend to construct the
parallel version of SPANNER. We then outline the distributed reachability algo
rithm. The details of the scheduling policy implemented are discussed in section 4.

3.1. Implementation Environment

The system will be implemented on a network of SUN workstations in the Dis
tributed Computing Laboratory of Princeton University. We will use SUN models 2
and 3, which will provide us with some heterogeneity with respect to processor speeds
(the model 3 processor is significantly faster than that of the model 2). The
machines are connected via a dedicated Ethernet network, which ensures that during
our experiments the network is not loaded by extraneous messages.

The machines will be running SUN UNIX version 3.3, which supports a variety
of networking protocols [Sun86]. The currently implemented protocols are either
stream or datagram oriented. Stream protocols provide a bidirectional, reliable,
sequenced communication channel between processes. The stream protocol imple
mented by SUN is the TCP protocol defined by DARPA [P080a]. Datagrams also
allow bidirectional communication, but make no delivery guarantees. Datagram
packets may be lost, duplicated, etc. SUN's datagram implementation is based on the
IP protocol standard [P080b]. Either type of protocol can support a message rate of
somewhat less than 1 megabit per second between two SUN workstations on an oth
erwise idle Ethernet.

At first glance it would seem that choosing a stream protocol might be the obvi
ous course of action for our work. After all, users of stream protocols do not have
to concern themselves with the details of packet formation, dealing with duplicates,
ensuring that messages are not lost, etc. However, this functionality comes at the
cost of lessened control over the transmission of data. The user view of a communi
cation stream is that of a boundary-less flow of data. That is, users think of streams
as if they were inter-processor versions of UNIX pipes [RT78], and are not aware of
the details of the underlying communication layers. Typically however, a stream
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protocol is implemented on top of a datagram protocol (as is the case for our net
work). System designers who are primarily concerned with efficiency and perfor
mance may need to have access to these underlying layers. For example, it may be
desirable to control the amount of data in a datagram packet and the time of its
transmission.

In practice, communication systems (Le., the combination of network hardware,
protocols and operating system support) have certain packet sizes that they deliver
most efficiently; for example, if the networking code in the operating system kernel
needs to move the user's data out of the user's address space before shipping it across
the network, a packet size equal to the operating system's page size will usually result
in the largest throughput. Another fact that must be taken into account in the imple
mentation of a parallel application is that it is usually more efficient to send one large
message than many small ones because there is normally an overhead per packet sent.

In light of the above comments, it seems clear that our choice of networking
protocol is not an obvious one. Our present approach is to develop the initial code
using a stream protocol. Once the debugging stage is complete, we will start using
the datagram facility, in order to obtain the maximum performance from our system.

3.2. Software architecture
We have already provided some details of the reachability analysis carried out by

SPANNER. The distributed version consists of n generators and m tabulators. Each
generator stores the complete description of all component FSMs but keeps no infor
mation about the set of reachable states. The "global" hashtable (which would be
used by SPANNER in its non-distributed version) is now split into m equal nonover
lapping hashtables to be used by each of the m tabulators. Each tabulator has no
information about the FSMs, and will only store the global states which hash in its
local hashtable. This implies that each global state can be stored in only one among
the m tabulators. One can easily define the function h which maps any global state v
to the appropriate tabulator hey) as follows. Compute the hashvalue of v, and check
to which of the local hashtables it corresponds. The index of the corresponding tabu
lator is the value h (v).

A generator is described in terms of three concurrent processes: a receiver pro
cess, which feeds the input queue with unexplored states by unpacking the arriving
messages; a next state generator, which given a state produces its successor states;
and a sender process, which controls the sending of the resulting states through the
network. A tabulator is similarly defined in terms of a receiver, a state tabulator, and
a sender process. A more precise description follows:

Generator i, 1=1,... ,n.
Process Receiver
do until (end of reachability analysis) {

receive message from network;
break it into states;
append the states to the generator input queue
}

Process NexcState_Generator
do until (end of reachability analysis) {

get next state v from the generator input queue;
compute the set next(v);
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for each v· in next(v) do{
compute j=h(v,>;
append <v' .v.i> to the generator
output queue with destination Tabulator j
}

}
Process Sender
do until (end of reachability analysis) {

for each output queue with destination Tabulator j. j = 1, ....m, do{
use the heuristic scheduling policy of section 4
to pack states into messages sent to Tabulator j

}
}
Tabulator j, j=l,...m.
Process Receiver
do until (end of reachability analysis) {

receive message from network;
break it into states;
append these states to the tabulator input queue

}
Process State_Tabulator
variables: U/ is the list of the unacknowledged states

sent to generator i (in the order sent), i = 1... .n.
do until (end of reachability analysis) {

get next element <v' ,v,i> from the tabulator input queue;
if v is in Uk for some k =1•. ..n, then

update Uk=:Uk-(v.Vl,""V.),
where VI ••••• v. are all states in Uk
prior to v;

insert v' in the hash table;
if v' is a new state, append it to the tabulator output queue

}
Process Sender
do until (end of reachability analysis) {

Use the heuristic scheduling policy of section 4
to pack states from the tabulator output queue into messages
sent to the generators

}

What we have not specified yet is how the end of reachability condition will be
detected by the processes. A simple way to do this is the following. When any pro
cessor remains idle for more than time t, it triggers a round where all processors
respond about their work status. If all of them have empty input queues, then the
above condition is satisfied.

A final point to be made is that at the end of the reachability analysis phase
each tabulator will have only a portion of the reachability graph and a final coalesc
ing step will be required in which all the sub-graphs are merged. This coalescing step
could also be done in parallel with the tabulation.
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4. Scheduling aspects
In this section we examine the scheduling problems which must be addressed by

the distributed software described in the previous section. There is a plethora of
parameters which are important for the efficient execution of the system. The meas
ure of performance we consider is the total finishing time, i.e., the time at which all
the reachable states have been found. Intuitively, this can be minimized if we can
keep the work balanced among the various computing resources in the system.
Achieving such a balance among the tabulators and the generators constitutes a non
trivial scheduling problem which needs some novel heuristic solution.

We start by examining a simpler system consisting of a single tabulator and n
generators. The basic controller of the load of the processors in our system is the
tabulator. It is the tabulator's responsibility, once an unexplored (new) state has
been found, to ship it to the most appropriate generator among the n available. The
following reasons make such a decision very complex. In most LAN's, a message has
essentially the same cost (delay) if it contains up to some maximum number of bytes.
This implies that sending a message containing one state or some system dependent
mmax number of states, can be achieved for the same cost. This motivates the batch
ing of a large number of states in the same message. In order to make this possible,
states ready to be shipped must be kept in a queue until enough of them accumulate
to be batched in a message. The negative side-effect of such a decision is that this
can produce idle time for the processors waiting to process these states. On the other
hand, if a small number of states per message is sent, this will result in flooding the
network with messages and will increase their delay. The reader should be reminded
of the size of the problem being on the order of lOs to 106 states, which makes batch
ing unavoidable. The optimal size of the batch is a crucial parameter to be deter
mined. Note that batching needs to be done from the generator's side as well.

Another consideration is the following. At the beginning of the computation,
the number of unexplored states for most problems will grow exponentially fast, and
towards the end it will rapidly decrease to zero. If the tabulator ships exceedingly
large amounts of work to the generators towards the last phase of the computation, it
is likely that during this last phase the workload of the generators will be unbalanced,
since there are not enough new unexplored states generated which the tabulator can
appropriately distribute to even things out in the generators. A sensible policy
should, in the initial phase of the computation, send large amounts of work to the
generators to reduce the probability of them staying idle. Towards the end the policy
should keep a store of unfinished work in the tabulator's output buffer, from which
increasingly smaller batches of work are to be send to the generators in an attempt to
keep their outstanding workload balanced, and to reduce the workload uniformly to
zero. Such a policy will minimize the total completion time. A key factor in our sys
tem that makes such a policy difficult to implement is the random delay with which
observations concerning the workload of the generators are made. The tabulator can
only estimate the outstanding work in the generator sites from the information in the
messages it receives (the newly generated states arrive together with the identity of
their generator site). An important characteristic of our system is that the delay of a
message through the network is of comparable magnitude to its processing time (time
that the destination processor takes to complete the work associated with the states
stored in the message). Finding optimal policies with delayed information is in gen
eral outside the scope of any realistic analysis; hence, a heuristic solution to the prob
lem is the most for which one can hope.
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Following the ideas in the previous discussion, a scheduling policy should define
the following decisions for the tabulator: when to send a message to a generator, to
which generator to send it, and how much work the message should contain. The
available information for such a decision is an estimate of the amount of outstanding
work of each generator, its processing rate (estimated), the amount of work stored in
the tabulator's queue, and the average delay of messages in the network.

The Queueing Model.

For modeling the system we make the following assumptions. First, the graph
constructed by the reachability analysis is characterized by a distribution function fa
of the outdegree of its states, and by some upper bound Na of its number of states.
In our model we assume that each state has d next states, where d is distributed with
fa and is independent for different states. We also assume that each newly generated
state at time t has probability r(t) of being already visited. There are many ways to
describe r(t) as a function of x(t) and Na, where x(t) is the number of states found up
to time t. Different such functions correspond to different types of graphs. One such
choice is r(t) = x(t)INa , which corresponds to graphs with small diameter.

The model describes n generators and a tabulator connected through a LAN, see
Figure 4.1.

LAN

Figure 4.1

There are two types of customers in the system: the "simple" customers (single states)
and the "batched" customers (many states batched into one message). Simple custo
mers belong to different classes. Each class describes the origin-destination of the cus
tomer (for example, T-G,) and whether or not the customer serves as an ack
nowledgement (discussed below). The class of a batched customer is the description
of the class of each simple customer it contains. Each generator Glo i = I, ... ,n, has
an input queue q?', an output queue qg" and a server with rate IJ.a,. There are two
network queues interfacing to the generator, the network output queue q~:o, and the
network input queue q~:l' Customers arriving in the network output queue are of the
batched type. Upon arrival, they are automatically "unpacked" (a message containing
k states is broken into k single state messages), and the resulting simple customers are
placed in the generator input queue. The server serves simple customers from the
generator input queue in a FCFS basis, and after each service completion it appends a
random number d of simple customers with destination the tabulator, in its output
queue. The first among them is tagged as an acknowledgement. As mentioned
before, d is distributed with distribution function fa. A sender processes connects the
output queue of the generator to the input queue of the network. Its function
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consists of making batched customers out of simple customers, and append them at
appropriate times in the network queue. Its available information consists of the
state of the generator queues, and of some local timer.

The tabulator has an input queue qT, and an output queue qb. These queues
interface in a similar fashion to the generators case with a network output queue qko
through an receiver process, and with the network input queue q~,/ through a sender
processes respectively. A batched customer arriving in the network output queue is
immediately unpacked, and the resulting simple customers are placed in the tabulator
input queue. A server of rate fJ.T serves this queue in a FCFS basis. When a custo
mer finishes service at time t, it leaves the network with probability r(t), and with
probability l-r(t) it joins the output queue. In this event, the state counter x is
incremented by one, to denote that a new state has been found. If a customer finish
ing service is an acknowledgment and G1 was its origin (class information of the cus
tomer), the variable z/ denoting the outstanding work (number of states to be
explored) of generator GI> is decremented by one. The sender process does the pack
ing of simple customers, assigns the destination of the resulting batched customers,
and places them at appropriate times in the network input queue. Its available infor
mation consists of the values of x, Zl' •.. 'Z'" and the state of the tabulator queues.

We are now left with the description of the network. There are n +1 input
queues and n + 1 output queues already mentioned before. The model we choose
better describes LAN's of the Ethernet type, such as the one in our implementation.
Each non-empty input queue is served with rate min[fJ.max • fJ.1O/Q/1 #0/ non 0 queues l.
To model congestion we choose fJ.IO,al«n + 1) fJ.max' In this model, fJ.max corresponds to
the maximum service rate allocated to any network queue. This implies that the
minimum delay of a message being in the front of a network input queue, is on the
average I/fJ.max' If the number of transmitting stations increases, Le., the number of
non-empty network input queues grows, the service rate allocated to a queue
decreases as the total network service rate fJ.,olal is being shared equally among the
competing queues.

Heuristic Scheduling Policies.

A scheduling policy is defined in terms of the algorithms used by the n +1 sender
processes of the system. We propose a scheduling policy of the following form:

Generator i: The sender process has a timer of duration T. While the generator
output queue has more than Bo customers, it forms batches of Bo simple customers
and delivers them to the network. If there are less than Bo customers, it sets the
timer. If the timer times out, and there are still less than Bo customers, it batches
them into a message and sends them to the network.

This policy reduces the probability that the tabulator stays idle, while there is
work for the tabulator at the generators. It also reduces the number of messages
needed.

Tabulator: The sender algorithm uses the following heuristic. The size of the
batch is an increasing function of the number of customers in the tabulator output
queue qb, starting from zero if the queue is empty, and bounded by some BT• There
is a threshold k· in the number of customers in qb which affects the operation as fol
lows. If there are more customers than k·, it continuously makes batches and sends
them to the generators, keeping the outstanding work indices WI = z,/fJ.G, as close as
possible, until an "upper watermark" WmIX for each WI is reached. Then it stops
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sending, until some WI drops below. in which case it resumes the sending of work. If
the number of customers in qb drops below kO, it stops sending until for some genera
tor wl<Wmin' where W min corresponds to some "low watermark". Then it resumes
sending to this particular generator, until W/2:Wmin' The Readers can convince them
selves that in order to achieve an even distribution of customers in the queues of the
system, Wmax and W min have to be increasing functions of the number of customers in
qb. Choosing W max to grow appropriately with qb ensures that the tabulator queues
do not grow faster than the generator queues. Choosing Wmin to decrease as qb
decreases provides that in the termination phase all queues will decrease uniformly to
zero. The appropriate selection of Wmax and W min remains an open research topic.
(A simple queueing theory argument indicates that Wmin should be proportional to
(qb)2.

We can simply define a policy for the general case of m tabulators by having
each tabulator use Iud, as defined in the previous section, in place of ZI'

Some Open Scheduling Problems.

There are two simple versions of the model for which the form of the optimal
scheduling policy may be more tractable. Solving these could give a greater insight
for how to operate the complete system. These models are derived by reducing to
zero the transmission delay of the network in one of the directions from G to T or
from T to G. The first model is described in Figure 4.2.

.....

KO ~'--P-~- - - - - - - - - - - - - - - - -q~IIIFOf'
: . ..... :
i .111K)f2L J

Figure 4.2

There is a finite number KO of simple customers at time 0 in queue ql' There is a
sender process (controller) which as in the previous model, makes batches of simple
customers, and puts them in the network queue qN' Each such batch corresponds to a
batched customer and is destined to one of the two servers S 1. S2' The network con
sists of a server serving with rate .....N in FCFS basis batched customers. Once a
batched customer is served, it joins its destination queue q/, i = 1,2 as the set of its
composing simple customers. Each server S/ serves with rate ..... from its queue q/,
i = 1,2. The information available to the controller is the complete departure process
of the system.

The second model is shown in Figure 4.3.
The difference with the previous is that it takes zero delay to append customers in the
queues of the two servers, and that the information available to the controller is a
delayed picture of the departure process of the system. For both systems we want to
minimize the time all customers complete service. One can easily see that a threshold
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type policy of the form described in the previous section should perform well in these
models. Although the mathematical analysis of these two models might be prohibi
tively complex, any progress in this direction can result in a valuable practical contri
bution.

4.1. Performance Analysis

In this section we provide a simple analytic model in order to predict the approx-
imate performance of our scheme. Let

n = number of generator nodes
m = number of tabulator nodes
N = number of states in the graph to be analyzed
d = average out-degree of vertices in state graph
ts = average time required to generate a single state (seconds)
td = average time required to decide if one state is new (seconds)
B = average number of states batched in each message
tm(B) = average time required to send one message containing B states (seconds)

Using the above definitions, the reachability analysis performed on a single worksta
tion will take total time T 1 = Nd(ts+td) to complete, since each state is examined d
times on average, by both the tabulator and generator software. Assuming that using
the current technology, a tool runing on a 1 MIP workstation completes a graph of
10~ states and d = 10 in the order of an hour, we get that ts+ ts is equal to 5· 1O- 3s.

The first interesting remark is that there is a maximum achievable speed up
independent of the number of workstations. To see this, we compute the total time
spent in communicating through the network. One can easily see that this time is
equal to N(d+ l)tm(B)IB. Let B' correspond to the value of B minimizing tm(B)IB.
Then, if an arbitrarily large number of workstation is used, the maximum speed up is
aproximately equal to K max = B·(td+ts)ltm(B·). Using B = 40 (25 bytes/state, 1024
byte message), and and network bandwith equal to 5 Mbits/s, we get K max = 100.
(For a large number of two-way conversations the effective bandwidth of an Ethernet
is at least 5 Mbits).

We examine now how to choose the m, n. Assuming that we have m +n < K max
and we operate in the otimal way (all processors are kept busy until the end), then
we must have that Ndtdlm = Ndtsln = T1/(n+m). From this it follows that the
optimal partition is such that tdlm = tsln, and the speed up is equal to m +n.
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s. Conclusions

In this paper we demonstrated that distributed reachability analysis can be easily
incorporated into many existing protocol analysis environments and can produce a
significant speed up of the analysis. In many research environments there is easy
access to LANs with 10-20 workstations, which, according to the results of our per
formance study, is an ideal environment to implement our method. An important
remark which makes our approach even more viable in the future is that fiber optic
technology makes communication bandwidth available in a faster rate than the rate of
increase of hardware speed. In our method a large number of communicating works
tations can utilize this available bandwidth.

We are currently implementing the parallel reachability algorithm in SPANNER.
We hope that the results of our implementation will justify the approach presented in
this paper.
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L INTRODUCTION

Due to the increasing complexity of the protocols defined
by the 051 (Open Systems Interconnections) standards the
ability to formally specify communication protocols and
services is becoming more and more appreciate. In fact, it is
common belief that the use of a formal technique is the only
means to obtain a precise and unambiguos specificication of
051 communication protocols and services. Moreover, a formal
technique allows one to formally define protocol properties
and perform their verification.

The design of 051 systems can be viewed as consisting of
two main steps:

i. specifications of services and protocols;
ii. verification (consisting in proving the completeness,

correctness and consistency of the specification).
For these reasons the suitability of a formal technique

as Formal Description Technique (FDT) for the specification of
051 protocols and services is strongly linked to the existence
of automated tools able to aid the design of 051 systems, that
is able to support the designer in the effort to provide
formal specification and verification.

ECCS language, based on Milner's Calculus of
Communicating Systems [Mil 80], provides a framework to
formally specify and verify OSI systems as shown in [Carl 86],
[ Car 2 86] and [C a r 85]. This pap e r de a I s wit h the a b iIi t Y to
provide some tools in order to make ECCS actually useful as
FOT.

Two kinds of tools would be provided to implement an
automated enviroment for designing 051 systems. The first tool
is to make a syntax check and a simulation of the
specification [Pap 87] for rapid prototypingj the second one
is to perform the verification step.

This paper presents a verification tool
specifications, written in the logic programming
81]. This tool is based on the simulator
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specifications presented in [Pap 67] and on the bisimulation
notion given in [Par 81]. For this reason the tool is named
SIsimulation Prover (SIP). The verification algorithm used by
this tool is an extension of the Sanderson algorithm [San 82].

The present paper is divided in four main sections:
Section 2 contains a description of the used language, Section
3 discusses about the verification concept in the OSI
frameworK, Section 4 gives some information about the
algorithm on which the verification tool is based, Section 5
presents the structure of the SIP tool and gives a sort of
implementation notes of the SIP core. Finally, some remarks
are given on the suitability of PROLOG to implement the
proposed verification tool.

2.ECCS: ~ SPECIFICATION LANGUAGE FOR OSI PROTOCOL

To perform a verification by BIP, the language used to
specify a OSI system must be the ECCS language. It is based on
Milner's CCS [Mil 60] and it is an attempt to provide an ad
hoc algebraic language for the specification of open systems.
Some extensions are introduced in respect to CCS with the
purpose to make easy the specification of service and protocol
for open systems.

The ECCS (Extended CCS), as said, is the MILNER's
Calculus for Communicating Systems, without value passing, and
with the addition of the disable operator. Only a few syntatic
variants are also introduced with respect to CCS syntax. A
brief introduciton of ECCS follows.

ECCS is a calculus for specifying the behaviour of the
communicating systems. An ECCS system (called process in the
following) can be viewed as a black box interacting with the
environment through communication points named 'gates'. The
atomic form of communication is the action; the offers of a
processes to communicate with the environment are termed
'observable actions'. An observable action, in the case of
ECCS without value passing, is defined by:

the gate where it is offered;
- the direction, input or output from the viewpoint

process.
of the

An observable action may take one of the following forms:

g?
g

output at the gate g
input at the gate g

A process may also be capable of internal action denoted
by T, for which no agreement with the environment is
requested.

An action is the simplest ECCS process expression. An
ECCS process expression can be built from others ECCS
processes expressions by means of the suitable operators.

Table 1 shows the ECCS syntax, where P and Q are process
expressions.



59

Table. 1. ECCS syntax

Operator

Inaction
Action
Sum
Composition
Disable
Relabelling
Restriction
Behaviour
identifier

Process expression

ni 1
a P
P + Q
P par Q
P dis Q
P {S}

P \ A
P

Remark

a is an action

S is a relabelling
A is a list of gate
p is an identifier

In Table 2 the syntax of action and relabelling are
in a BNF form.

Table.2.

<action> ::= <gate_name>? I <gate_name>" T
<gate_name> ::= <identifier>
<relabelling> ::= <gate_name_list>/<gate_name_list>
<gate_name_list> .. <identifier> {,<identifier>}

The operator precedences are:

composition> disable > sum>
action> (relabbelling = restriction)

given

The formal language semantics is
inference rules. i. e. P-a->P' means that
a and transforms itself into P'. Table
semantics of ECCS.

given in
P executes
3 presents

terms of
the action
the formal

In the following an informal interpretation of
operators is given.

Inaction
nil can execute no action.

the ECCS

Action g? : P g P T : P
g? P can transform itself into P by executing an output
action at gate g.
g P can transform itself into P by executing an input
action at gate g.
T P can transform itself into P by executing the internal
action T.
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Table. 3. ECCS semantics

Operator Premiss Conclusions

Action none g?:P -g?-> P
g - : P -g--> P
T:P -T-> P

Sum P -a-> P' P + Q -a-> P'
Q -a-> Q' P + Q -a-> Q'

Composition P -a-> P' P par Q -a-> P' par Q
Q -a-> Q' P par Q -a-> P par Q'
P -g?-> P',Q-g-->Q' P par Q -T-> P' par Q'

Disable P -a-> P' P dis Q -a-> P'
Q -a-> Q' P dis Q -a-> P dis Q'

Relabelling P -a-> P' P{S} -a-> P' {S}
Restriction a 's.. A P -a->P' P \ A -a-> P' \A
Behaviour p . = P, P-a->P' p -a-> P'

identifier

Sum P + Q
P + Q may behaves like P or Q.

Composition P par Q
P par Q describes the concurrent behaviour of P and
communication through identical gates.

Q with

Disable P dis Q
P dis Q may behaves like Q and terminate together with it.
Alternatively, at any step, it may start behaving like P

Relabelling P{S}
A relabelling S (expressed by XIV) is a morphism over gates.
If X an Yare gate lists of equal lenght, XIV denotes that
each of gate in X must be mapped with the corresponding gate
in Y.

Restriction P\G
The behaviour of P\G is equal to the behaviour of P with the
gates in G hidden to the environment.

Behaviour identifier p:=P
Each process expression P can be associated to
identifier p in the form p:=P

a behaviour

In BIP system to prove the equivalence between two
process expressions P and Q, possibly containing some
behaviour identifiers, they must be named, i.e. they must be
associated with a behaviour identifier and they must be stored
in a file.

A relevant concept of a specification language is the
notion of equivalence. More than one equivalence relation has
been introduced for CCS [Mil 80], [Par 81], [DeN 82]; each of
them could be easily introduced in ECCS. In this paper, we
shall only introduce the equivalence relation, termed
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obsevation equivalence, needed for our verification purpose.
We shall define this equivalence relation in term of a
bisimulation relation li~e in [Par 81]. To this aim, we define
the relation

where s is a string of observable actions (possibly the empty
string E).

If s=E then =s=> :: (-T-» i<

If s=al a2 aN then
=s=> _ (-T-»* -al-> (-T-»* -a2-> (-T-»* -aN-> .. . (-T-»*

P and Q are observation equivalent if
bisimulation relation R such that <P,Q> E R.
bisimulation if:

there exists a
A relation R is a

'tJ. s
"'d- s

P=s=>P' exists a Q'
Q=s=>Q' exists a P'

Q=s=>Q' <P',Q'> E R
P=s=>P' <P',Q'> E R

the
of

~ PROTOCOL VERIFICATION

Protocol verification consists in proving the
completeness, correctness and consistency of the protocol
specifications. Completeness needs that each protocol entity
is able to manage all the inputs coming from the cooperating
remote entity and from the adjacent ones. Correctness needs
that the protocol satisfies both safety and liveness
properties. Consistency needs that the service offered
(requested) by the protocol conforms to that expected (given)
by the upper (lower) layer.

Incompleteness can produce two undesirable effects:

i) one or both the protocol entities handle as error the
arrival of an input which on the contrary is
productive for the service to be offered by the
protocol;

ii) the protocol does not offer all the service options.

The first situation is not acceptable because it generally
leads to deadloc~ or does not permit the correct execution of
the purpose of the protocol, so not satisfying the safety
condition. The second situation on the contrary may be
acceptable if the user is not interested in all the service
options. Completeness analysis is the first step for protocol
verification. Generally the completeness is statically proved
by chec~ing that there are no unspecified productive
receptions for each protocol entity.

Another property to be proved for protocol safety is
absence of overspecification. We can have two main types
overspecifications:

i) the protocol contains some redundant
which are never used for offering the

specifications
service fixed
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by the designer;
ii) the overspecification constraints determine the

impossibility of offering the service fixed by the
designer.

We note that the last situation should be surely avoided
because it does not conforms to the safety property. On the
contrary the former could be acceptable, but it should be
avoided because it could lead to unsafe situations. For
example the unexecised message receptions specified in the
first situation could be execised by erroneous messages, thus
leading to bad behaviours. The absence of the first type
overspecification can be statically proved by checking that
there are no unexecised message receptions for every allowable
state pair (protocol global state) of the cooperating
entities. The proof of the second type overspecification is
part of the proof of the correct execution of the purpose of
the protocol (see below).

Other two important properties for protocol safety are:
the freeness of state ambiguities and the deadlock freeness.
These properties can be proved by respectively checking the
absence of entity states shared by two different global stable
states and the absence of global states consisting of the pair
of the entity states allowing only message receptions.

The above four properties together with the property that
the protocol correctly executes its purpose guarantee the
protocol safety, i.e. protocol partial correctness. To prove
the total correctness of a protocol it is necessary also to
prove the liveness properties.

Protocol liveness generally requests the absence of
unproductive cycles during the protocol execution (livelocks)
due to either an erroneous resource scheduling (starvation
condition) or the relative speed of the messages (tempo
blocking condition). In addition liveness requests that the
protocol is able to handle faults (i.e. recovery from failure)
and to come back to a normal situation after any possible
pertubation (i.e. selfsynchronization). Finally liveness
requests that the protocol terminates within a finite time
(finite termination); however sometimes it may be acceptable
an "infinite termination", that is the property that the
protocol eventually terminates (fairness). The liveness
properties together with the assumed partial correctness allow
us to prove that the protocol completes in a finite time the
requested service (total correctness).

After proving the protocol completeness and correctness,
the protocol verification needs the consistency of the
specifications. This can be obtained by proving that the
purpose of the protocol (that is the service offered by the
protocol) is equivalent to that expected by its users.

Several approaches exist in literature for protocol
verification. Generally they use a hybrid approach consisting
of both state exploration and assertion proving. Algebraic
approach on the contrary allows us to verify protocol by using
a single framework. In particular the purpose of the protocol
(i.e. the service to be offered to its users) is expressed by
an algebraic formula and the verification essentially consists
in proving the equivalence between the exepected service and
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that really offered by the protocol obtained by using
algebraic operators from the algebraic specifications of the
protocol entities and the intermediate channel. The above
verification can be perfomed by the normal equational
reasoning for finite state protocol and maKes possible to
point out the following undesirable situations:

unspecified message receptions (protocol completeness)
unexercised message receptions (overspecification)
state ambiguities;
states without progress (deadlock).

Therefore algebraic approach allows us to prove partial
correctness. Algebraic approach allows us also to prove the
liveness properties verifiable by a finite observer. Thus it
is not possible to prove that a certain cyclic situation is
not a livelock. Livelocks can be treated by extending the
algebraic approach by temporal logic constructs. In addition
both temporal logic and structural induction should be applied
to treat protocol divergence (fairness or infinite state
evolution) .

4. BISIMULATION PROVING: AN ALGORITHM

As said in the introduction the part of the verification
framework that we must take into account in this paper concern
with the proof of the consistency of the service offered by
the protocol and the one expected by the upper layer.

The proof of other properties could be performed by using
ECCS too, but this topic is out of the scope of this paper.

In the spirit of ECCS the proof of consistency consists in
proving the observation equivalence between the service
expected at the upper layer and the composition of the
underlying service with the entities performing the protocol.

Our believe is that a more feasible algoritm for proving
the observation equivalence should be one based on the
bisimulation definition of Section 2.

This algorithm is b~sed on the definition of observation
equivalence in terms of bisimulation relation as introduced in
[Par 81] It aims to show the existence of a bisimulation
relation between the two processes. The Sanderson algorithm
[San 82] is based on this idea. In this paper we present
another algorithm that is an enhancemnt of the Sanderson
algorithm.

The key concept of both the algorithms is to build, if
any, the set R defined in the follcwing way:

<P,Q> E Riff,

i) "'rT s: P =s=> P' exists Q': Q =s=> Q' <P',Q'> E

ii) ~ s: Q =5=> Q' exists P': P =s=> P' <P',Q'>

where s is a sequence of actions.

R
E R

This is sufficient to guarantee that a bisimulation
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the set R
behaviours

restrictive

relation between P and Q exists.
If this set does not exist, then the algorithm terminates

with a failure. In this case, the behaviours of P and Q are
not in a bisimulation relation, that is P and Q are not
equivalent under the fixed point definition.

Sanderson algorithm cDnstructs, if any,
satisfying the above said conditions (for two
specified by P and Q) under the following
conditions:

i.e. the behaviour of P
of internal action T and

1)

2)

behaviour P (or Q) must be rigid,
must be described avoiding the use
the non_deterministic choice.
the behaviours P and Q must have
diverge.

no derivation that can

1 )

Sanderson
by the

of
82] ,

in the case
shown in [Sanas

i i)

The algorithm used in BIP tool removes the limitation
of Sanderson algorithm.

Both methods are based on a recursive algorithm and aiming
at building a list containing the behaviour pairs that are in
a bisimulation relation.

The condition i) and
algorithm can be replaced,
following simpler conditions:

1) Jrj- 6 P -6-> P' exists a Q': Q -6-> Q' <P',Q'> E R

2) "t 6
3) "t T

or
Q -T-> Q' <P,Q'> E R

Q -6-> Q' exists a P': P -6-> P' <P',Q'> E A
Q -T->Q' then <P,Q'> E R

where 6
action.

is a generic visible action and T is the internal

In the following we refer to R_list as the
the behaviour pairs, and we marking the
check~ark and unchecked_mark.

Let A and B the behaviour pairs for which
relation must be proved, this algorithm can
follows:

list containing
pairs with a

the bisimulation
be described as

1. Initially the R list consists of the only pair <A,B> with
the unchecked mark.

2. The first pair of the R_list with a mark unchecked is taken
into account. We call this pair <P,Q>; if there is no pair
with unchecked mark then the claimed bisimulation is proved.

3. The pair <P,Q> is checked by the condition 1. If there
exists the behaviour Q': Q-6->Q' then the pair <P',Q'> is put
in the R_list with the unchecked markjorif there exists the
behaviour Q': Q-T->Q' then the pair <P,Q'> is put in the
A_list with the unchecked markj otherwise there is a failure
and the bisimulation relation between A and B is disproved.

4. The
exists

pair <P,Q> is checked by the condition
the behaviour P' then the pair <P',Q'>

2. If there
is put in the
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A_list with the unchecked mark; otherwise there is a failure
and the bisimulation relation between A and B is disproved.

5. The pair <P,Q> is checked by the condition 3 and the pair
<P,Q'> is put in the A list with the unchecked mark.

6. Aeturn to step 2

In the case of a no_rigid behaviour pairs the algorithm is
symmetric and two main differences in the algorithm can be
found.

The first concerns with the fact that condition i) and
ii) should be replaced, as shown in the [Car 87), by the
following simpler symmetric conditions:

<P,Q'> E A

1) "ff 6: P -6-> P' exists a Q': Q -6-> Q'
or
Q -T-> Q'

<P',Q'> E R

2) -JJ- T: P -T-> p' exists a Q' : Q -T-> Q' <P',Q'> E R
or
Q ~> <P'Q> E A

3) -V- 6 : Q -T-> Q' exists a P' : P -6-> P' <P',Q'> E R
or
P -T-> P', <P'Q> E A

4) ~ T: Q -T-> Q' exists a P' : P -T-> P' <P' ,Q'> E A
or
P ~> <P,Q'> E R

where 6 is a generic visible action and T is the internal
action.

The second one concerns with the need to make a
backtraking operation in the construction of the process pair
list that are in a bisimulation relation. To manage the
backtracing operations two process pair lists are generated,
one for the pairs of processes proved equivalent, the second
for the pairs of processes assumed temporarily equivalent.

~ THE IMPLEMENTATION CODE

fortool

information about the
system. Our implementation

of the BIP system are also

This section gives some
implementation code of the BIP
choices and the development
discussed.

As said in Section 1, BIP system is a PAD LOG
verifying consistency of distributed systems.

Figure 1 shows the BIP system. It is functionally
structured in three modules and uses the information contained
in three data base: POB, DOB and EDB.
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~ S I M U L P 0 B
~

~

~

I N T E R F ACE D 0 B---
~

~ E QUI V E 0 B

Fig.1 BIP structure

The first data base is a collection of ECCS behaviour; BIP
investigates on the consistency of the only processes whose
behaviour expressions are associated to behaviour identifiers
in the data base. This data base is called Processes Data
Base, in the figure it is represented by the box PDB.

The second data base named Derivation Data Base (DDS in
the figure) contains the triplet formed by:

- the process P
- the action X
- the process P'

that are in the relation P -X-> P'
The third data base, named Equivalence Data Base (EDB in

the figure) contains the behaviour identifier pairs of the
processes assigned to be in bisimulation relation.

In addittion, Figure 1 shows three functional module: a
user directed module, named INTERFACE, and two operative
modules named SIMUL and EQUIV.

INTERFACE module is devoted to manage the interactions
between the user and the system and it provides the user
interface that making the system interactive. This module
contains the predicated devoted to manage the video and to
store the processes in the data base PDB.

SIMUL module is devoted to simulate a given process
expressed by a ECCS behaviour expression. Let us p the
behaviour identifier of a process contained in the data base
PDS, the SIMUL module returns, for each possible first action
that the process p may perform, the pair X, p'. Where X is the
action and p' is the behaviour identifier of the process in
which the execution of action X transforms P. Briefly, SIMUL
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module selects a process of POS and generates the triplets of
DOS to be checked by EQUIV. Moreover, it adds the resulting
processes P' to POS. This module contains the predicates
performing the inference rules of table 3. A more deeply
description of the structure and functionality of this module
can be found in [Pap 87].

EQUIV module is the core of the SIP system. It is the
module that actually executes the verification of the
consistency between processes. It aims to verify that two
processes are observation equivalent, in the sense that there
exists a bisimulation relation between the two processes
initially inserted in POS by the SIP user. This module is
structured in accord with the bisimulation algorithm presented
in the previous section. It contains the predicate bbis(P,Q)
devoted to prove the bisimulation relation between two finite
state processes having, respectivelly, P and Q, as processes
identifiers. The predicate bbis(P,Q) succeeds if P and Q are
in a bisimulation relation. The predicate bbis(P,Q) behaves as
follows:

i) prove the existence of the bisimulation relation
between P and Q.

ii) manage the backtracking operations when the search
of a bisimulation relation between P and Q fails.

To attempt at step i), the predicate bbis(P,Q) uses
predicate bis(P,Q) in order to check the existence of the
bisimulation relation. It succeeds if:

i) the pair P,Q is already in the equivalent behaviour list
expressed by the predicate e(P,Q).

ii) the pair P,Q is already in the temporarily equivalent
behaviour list expressed by the predicate temp(P,Q).

iii) the conditions', 2, 3 and 4 of the previous section,
are verified.

Sreafly this module starting by the information contained
in the data base DDS returns the equivalent behaviour pairs
that must be put in the data base EOS.

The advantages of the presented structure of SIP system is
the easily up-to-dating of this tool. If we choose another
equivalence relation, i.e. the testing equivalence [DeN 82] to
adequate the system it is sufficent to modify only the EQUIV
module; the other modules can be used without variantions.

~ CONCLUSIONS

A verification tool has been presented aimed at making
easy the design of OSI systems. The programming language used,
viz. PROLOG, has been shown suitable for a verification tool
for two reason;
- the easy mapping of the ECCS semantics and bisimulation
definition onto the PROLOG predicates;

the agreement of the PROLOG with the backtraking operation
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Supervisory Control of Discrete Event Systems:

A Survey and Some New Results

Peter J. Ramadge ..
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Abstract

We present an overview of the modeling of discrete event systems using formal

languages. Some new results on the controllability of sequential behaviors are presented

and a standard coordination problem for a product system is shown to be of polynomial

complexity.

1 Introduction.

A discrete event system (DES) is a dynamic system that evolves, i.e., changes state, in

accordance with the occurrence, at possibly unknown irregular intervals, of discrete events. For

example, an event may correspond to the completion of a task or the failure of a machine in a

manufacturing system, the arrival or departure of a packet in a communication system, or the

occurrence of a disturbance or change of setpoint in a complex control system. Such systems

arise in a variety of areas including, for example, computer operating systems, distributed

computing, computer networks, data bases, communication networks, manufacturing systems,

the start-up and shut-down procedures of industrial plants, and the higher level intelligent

control of complex multi-mode processes.

Control problems for DES center on the idea of how to ensure, by control, the orderly

and efficient now of events. Within is overall goal it is possible to recognize a hierarchy of

control problems: higher levels dealing with optimization, lower levels with the logical aspects of

decision making, information processing, and feedback control, and the lowest levels addressing

implementation issues in terms of hardware and real time computer languages.

In this article we are concerned with the second level of the above hierarchy: the logical

coordination of DES. We survey the modeling of DES in the framework of [RWl] and report

some new results concerning event sequences and the complexity of controller synthesis .

.. Research partially supported by the National Science Foundation through grant ECS-8715217 and by an

IBM Faculty Development Award.
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Numerous models for DES have been proposed in the literature. These models can be

roughly grouped as follows: Petri nets [P]; Doolean models [A]; sample path models (traces.

runs. languages) [DeN].[CDFV],[II].[MM],[Pa].[RWl]j and models based on temporal [FST].

[HO],[MWI.[OW],[O].[TW] or modal [Ha],[IIZ]'[MDH] logic. Although seemingly diverse these

models have a common connection through formal languages and sample paths of events.

Roughly speaking they are simply different means of specifying and reasoning about the set of

system sample paths considered as either a set of finite length strings or as as a set of infinite

sequences.

In [RWl].[WRl] Ramadge and Wonham proposed a simple framework for the study of the

supervision, Le., control. of a class of discrete-event systems. This theory uses a simple 'sample

path' model for a discrete-event system to study a number of qualitative issues such as the

existence, uniqueness, and structure of supervisors for simple control tasks. In addition. algo

rithms are developed for the synthesis of the desired supervisors. In its use of formal languages

the model is similar to the work of [S] and [Sh] on flow expressions and path expressions re

spectivelYi the work of [DeN] on using automata models to study process synchronization; 'lnll

there are certain points of similarity with the linguistic approach of Hoare to the specification of

concurrent processes [H]. The framework has proved useful in the theoretic analysis of a number

of basic supervisory control problems [RWl],[WRl]i has motivated investigations using related

models in database systems [LaW], and manufacturing systems [MT]; and more recently has

been extended to cover modular [RW2],[WR2] and distributed [CDFV],[LWl],[LW2] control.

The remainder of 'the paper is organized as follows. In Section 2 we describe the the

modeling of DES in terms of languages, Section 3 introduces the concept of a controllable

language and discusses a basic control problem, and in Section 5 we consider the issue of the

complexity of supervisor synthesis in the context of a standard coordination problem. Space

limitations preclude the inclusion of proofs - for these the interested reader is referred to the

appropriate literature.

2 Discrete Event Systems

Intuitively a DES consists of a set of elementary events together with a specification of the

possible orders in which these events can occur. To formalize this notion let E denote a finite

set of events, and E' denote the set of all finite strings of elements of the set E, including the

empty string 1. We say that u E E' is a prefix of VEE', denoted u ~ v, if for some string

wEE'. v = WU, and a proper prefix, denoted u --: v. if w :f= 1. The prefix closure of L ~ E' is

the subset leE' defined by

1 = {u: uv E L for some v E E'}

and L is prefix closed if 1 = L.

The behavior of a DES can then be modeled as a prefix closed language L ~ E'. Here L

represents the possible (finite) strings of events that the DES can generate.
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A natural extension of the above model is to consider infinite sequences of events in addition

to finite strings. For this let N = {I, 2, 3, ...} denote the set of positive integers, and EW denote

the set of all sequences of elements of E, i.e.,

E"'={c: c:N->E}

For e E l:w and j EN, let e(j) denote the jth clement of e, and ei = e(l )e(2) .. .e(j) denote

the string consisting its first j elements. A subset B ~ l:w is termed an w-langll.age, and the

prefix of B is the subset pr(E) of l:* defined by

pr(E) = Ui~l UeEB ei

For an increasing sequence UI -< Uz -< U3 -< ..• of elements of E* , there is a unique element

e E EW such that ei = Uk for j = IUkl, kEN. We call e the limit of {ud. The adherence (1)

or limit of L ~ l:* is the w-Ianguage

LOO = {e:e E EW & ei E L for infinitely many j E N}

Thus e E LOO if and only if there exists an increasing sequence UI -< Uz -< ... of elements of L

such that e = lim Uk. Note that if L is prefix closed, then e E Loo if and only if ei E L for all

j E N.

We incorporate sequences into the DES model by modeling a DES as a pair A = (L,S)
where L is a prefix closed subset of l:* and S is a subset of Loo. In general it need not be the

case that preS) = L. Equality implies that every string in L is a prefix of some sequence in S.

Roughly this can be interpreted to meall that the system is never 'blocked' or 'deadlocked' and

thus unable to produce a string in S. lIenee when preS) = L we say that A is llo11blocking.

The language based model defined above is representation independent. The languages L

and S could be specified, for example, hy finite automata, Petri nets, fixed point equations,

Turing machines, etc.. We make no assumption or restriction at this point about specific

representations. Of course at some point it may be interesting (or necessary) to specialize to

particular classes of languages for which a deeper analysis is possible.

2.1 Control

We assume that E is partitioned into uncontrollable and controllable events: E = Eu U Ec.

An admissible input for A consists of a subset ( ~ E satisfying Eu ~ (. Let r ~ 2E denote the

set of admissible inputs; note that r is closed under set union and set intersection. If ( E r
and a E (, then we say a is enabled by (, otherwise we say a is disabled by (. Disabled events

are prevented from occurring while enabled events can occur when permitted by the prescribed

dynamics; thus l' represents the allowecl 'next' events. The condition E u ~ ( means that the

uncontrollable events are always enabled.

A supervisor for the controlled DES (eDES) A = (L, S) is a map

f: L -> r

(I) After [BoN). See also [Mc),[E).
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specifying for each possible (finite) string of generated events the next input to be applied.

The closed loop DES consisting of I supervising A is denoted by (A, I), and the closed loop

behaviors, denoted Lf and Sf, are defined as follows:

(i) 1 ELf j and

(ii) WO' ELf if and only ifw E Lf & 0' E I(w).

(iii) Sf = Li n S

Note that it is sufficient for I to be specified on a subset J( of L containing Lf .

From the above definition it follows that

In general there need not be equality in this expression. Equality implies that the system (A, f)
is nonblocking in which case we say that I is nonbloeking for A.

3 Controllable Languages

The basic control problem in the above framework is the foJlowing: given a language [( <; L

(resp. an w-language JJ <; S) docs there exist a nonblocking supervisor I such that Lf == [(
(resp. Sf == lJ). The answer in the case of string languages was given in [RW1] in terms of the

concept of a controJlable language. This is a language ]( <; L satisfying the following invariance

property:

It can be shown that for nonempty J( <; L there exists a supervisor I such that L f == ]( if

and only if J( is both prefix closed and controllable [RW1, Prop. 5.1]. We show below that a

similar result holds in the case of sequential behaviors.

A metric p can be defined on ~w by

The topolgical closure of a set n c ~w with respect to the above metric is denoted lJ, and

IJ <; S is said to be closed ,dative to S if j) n S == lJ.

Proposition 3.1.

If IJ <; S is nonempty, then there exists a nonblocking supervisor I such that Sf == n if

and only if

(1) pr(B) is controllable, Le., pr(IJ)~u n L <; pr(B); and

(2) IJ is closed relative to S, i.e., lJ n S == IJ.

A subset B <; S satisfying the two conditions of the above proposition is said to be a

controllable sequential behavior.
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It was shown in [RWl] that the family of prefix closed and controllable sublanguages of L

is closed under set union and set intersection, and hence forms a lattice under subset inclusion.

Since the empty set and L are controllable it follows that and for any closed J( ~ L there

exists a unique largest closed and controllable language ](1 and a unique smallest closed and

controllable language [(1 such that [(1 ~ [( ~ [(1. These can be thought of as the best

controllable approximations to the language K.

The set of controllable w-languages is closed under arbitrary intersections and under finite

unions, but not in general under countable unions. Nevertheless in certain situations it is still

the case that there exists a unique maximal controllable w-language contained in a prescibed

w-language B.

Proposition 3.2.

If B ~ S is closed relative to S, then there exists a unique maximal controllable w-language

B1 contained in B.

4 Finite Representations and Computation

For purposes of computation it is necessary to select finite representations for the languages

Land S. One way in which this can be done is as follows. A generator G is a dynamic system

consisting of a state set Q, an initial state qa, and transition function 8 : ~ x Q -+ Q (in general

a partial function). Without loss of generality we assume that every state of G is reachable

from the initial state, Le., that G is accessible. 8 is extended to a (partial) function on ~. X Q

in the standard fashion [HU, p.17], and we write 8(w,q)! as an abbreviation for the phrase

'8(w,q) is defined'. Then the language generated by G is defined to be the subset

L(G) == {w: w E~' & 8(w,qa)!}

Every closed language L ~ ~. has such a representation. However, as is well known, L has a

finite state representation if and only if it is a closed regular language.

The limit behavior S can be specified as follows. Adjoin to G == (~, Q, 8, qa) one or more

subsets of states Qm ~ Q (2). To each sequence of events e E L(G)OO there corresponds a

unique state trajectory Se: N -+ Q satisfying

The sequence e and trajectory Se are said to be admissible if Se visits the set Qm infinitely

often. The set of event sequences generated by G == (~, Q, 8, qO, Qm) is then defined to be (3)

S(G) == {e: e E L(GrX>, and Se is admissible}

It is well known that an w-language S can be represented in this fashion if and only if S is the

adherence of a regular language. This comprises a proper subset of the regular w-languages

[EJ.

(2) For simplicity we restrict aUention at this point to one subset.

(3) This is a deterministic Buchi automaton [llJ.
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It is clear that in the above representation

S(G) ~ L(G)OO

with equality if Qm == Qj and that

pr(S(G)) ~ L(G)

(Gl)

(G2)

Similarly for computation and implemcntation purposes onc must select a finite represen

tation for a supervisor. One possibilty is to realize a supervisor in terms of a state machine

together with an output map [RWll,[WRl]. For this let S == (E, X,~, xo) be an automaton

and 4>: X -+ r. We say that the pair (S, 4» realizes the supervisor f if for each wE L(G, f)

We interpret S as a standard automaton whose state transitions are driven by the events in E.

In turn the state feedback map 4> determines the input for G as a function of the state of S.

We say that f is a finite state supervisor if it has a finite state realization.

Let Gl be a finite state generator for the DES A == (L, S), and let J{ ~ L be a regular

language represented by a finite state automaton G 2 • An algorithm for computing the supremal

controllable sublanguagc of f(, bascd on a lattice fLxpoint characterization of J{T, is given in

[WRll. This algorithm requires a time bounded by a polynomial in the number of states of Gl

and G2, and produces a finite state generator for ](t. A finite state supervisor realization that

implements J{T can then be synthesized directly from the generator for J{T. This algorithm

also provides a polynomial time decision procedure for testing the controllability of a given

language J{ C L.

5 Product Systems

Our main interest is in a class of structured DES which we call product systems. These

are DES composed of a finite set of asynchronous interacting components. Such systems arise

naturally when modeling the concurrent operation of several asynchronous, or partially syn

chronous discrete dynamical systems. One of the principal difficulties in dealing with product

systems is that the number of states increases exponentially with the number of components.

Thus synthesis methods based on searching over the product state space are not computa

tionally feasible. For example, the general supervisor synthesis problems posed and solved in

[RWll, [WRll, although known to be of polynomial complexity when the size of a problem

instance is measured in terms of the number of system states [RW3], cannot be regarded as

computationally tractable for product systems. We regard a decision or synthesis problem

for a product system as computationally feasible if it can be solved in a time bounded by a

polynomial in the size of the component subsystems n and the number of components p.

Let Ai == (Li,Si) be be p finite state DES over disjoint alphabets El, ... , Ep , with control

partitions ~i == Eci U Eui. For each Ai assume
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Let I: = ULI I:i, and define the projection Pi : I:' ..... I:i of I:' onto I:i by

() {
a, if a E I:i;

Pi a = 1, if a E Ej with i 1:- j.

pj(wa) == Pi(w)Pi(a) wE I:', a E I:

A sequence c E I:w is I:i-rCCltr1'cnl if c(j) E I:i infinitely often. In this case let Ci denote the

unique subsequcnce of c consisting of the elcmcnts of I:j, and extend the projcction Pi to a

partial function Pi : I:w ..... I:i by defining

{

C'). e - J'l.( ) - undefined,
if e is I:i-recurrentj
otherwise.

The product system A = Ilf=l Ai is defined to be the DES (L, 5) with (')

L = {w:w E I:' & Pi(W) E Li,i = 1, ... ,p}

and

S = {c:e E I:w & Pi(C) E Si, i = 1, . .. ,p}

Assume that for i = 1, ... , P the component DES Ai has a finite state realization

Let IQd denote the cardinality of Qi and set n = max{IQil : 1 ::; i::; pl·

The prod ud generator G = Ilf=l G i is defined according to

G = (I:, Q, 6, qo)

with
I:= Uf=lI:i (I:c = Uf=lI:ci)

Q = rrf=lQi

qO = (qOl, . .. ,qOp)

and for a E I:i

provided Ma, q;)!.

For i = 1, ... , P let

Ymi == {q:q E Q,qi E Qmi}

These sets will pay the role of the set Qmi for the generator Gi, except for G there are P such

recurrent sets - one for each of the component generators.

(.) This assumes a fair shurning of the component behaviors. If this is not acceptable then the sequential

behavior can be enlarged to include unfair shurnings.
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The language generated by G is defined in the usual fashion, i.e.,

qC) == (1II: IV E ~',8(w,q)!}

To each event sequence e E L(0)00 there corresponds a unique state trajectory Se. The sequence

e and trajectory Se are admissible if Se visits each of the sets Y,ni, i == 1, ... ,]I, infinitely often.

The sequential behavior of 0 is then defined to be the set

S(G) == {e: e E L(G)oo, and Se is admissible}

It is readily verified that for each i, 1 :S i :S p,

L(G) == {w:w E~' & Pi(W) E L(Gil,i == 1, .. . ,]I}

and that

S(G) == {c: e E ~w & Pi(e) E S(Gi), i == 1, ... ,p}

Thus G is a representation of the product system A.

Note that if each Gi has n states, then G has nl' states. If P is bounded, then the size of G

is bounded by a polynomial in n. It follows from our previous remarks that control problems

for G formulated in the framework of [ltW 1] are decidable in a time bounded by a polynomiilJ

in n. Here, however, we are interested in the case when both P and n are variable and both

are to be taken as a measure of problem size.

6 A Coordination Problem

In what follows A == IIf=l Ai will be a product system with components Ai == (Li, Si),

i == 1, ... ,po In order to discuss the complexity of decision and synthesis problems for A we

need to have a finite representation for the product system. For this we assume that finite state

realizations G i == (E, Qi, 6i, qOi, Qmi), i == 1, ... , P, are provided for each of the components Ai,

and let G denote the corresponding product generator.

A supervisor f for the product system is a coordinator if for every set of P event sequences

Cl, C2, ••• , cl' with ei E Si, i == 1, ... , p, there exists a sequence c in the closed loop behavior Sf

such t hat for i == 1, ... , p

Pi(C) == ci

i.e., the supervisor does not modify the open loop behaviors of the individual DES; it only

constrains how they interact by controlling the relative order of events.

A subset Qof the state set of the generator G is said to be nontmnsicnt if there exists all

admissible state trajectory for G that visits Q inflllitely often.

We now analyze the following standard problem:

MUTUAL EXCLUSION (MEX): Let Qi ~ Qi be p given nontransient subsets and k be a fixed

integer with 1 :S k < p. Synthesize (if possible) a nonblocking supervisor f for A satisfying tlle

following two conditions:
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(l) f is a coordillator; and

(2) For eacll e E Sf, and eadl j ~ 1, aft.cr ei at most k of tile generators Gj satisfy qj E Qi.

The problem requires the Ai to be coordinated so that at most k of the generators Gi are

in the designated subsets of states at anyone time. For k == 1 this is the traditional mutual

exclusion problem. When k == p - 1 the problem is equivalent to ensuring that the state of G

never enters the subset Q == rrf=lQi, or equivalently that Q - Q is an invariant set.

Let B denote the subset of S consisting of all sequences in the open loop behavior that

satisfy the mutual exclusion constraint, Le., that satisfy item (2) above. If {en} is a sequence

in B that converges in the p-topology to a sequence e, then it is clear that e also satisfies the

mutual exclusion constraint. So if e E S, then e E B. Thus B is closed relative to S. It follows

from Prop. 3.2 that there exists a unique largest controllable sequential behavior contained in

B. If MEX is solvable, then a supervisor f that solves MEX and that implements nt is said

to be a minimally restrictive solution.

Our main result on MEX is

Theorem 6.1.

MEX is polynomially decidable and polynomially solvable. Furthermore, when MEX is

solvable it is possible to synthesize a minimally restrictive solution in polynomial time.

That the problem is polynomial is due to the fact that it can be decoupled and analyzed

in terms of the component DES. To show this it will be helpful to introduce the following

notation. Let ~ui == ~i - ~cj be the set of uncontrolled events of Gi, and Di denote the set of

states of Gj from which is possible to reach Qi via uncontrollable events:

Necessary and sufficient conditions [or the solvability o[ MEX are readily determined in

terms of the sets Dj:

Proposition 6.1.

MEX is solvable if and only if the following conditions are satisfied:

(1) For at most k of the Gi, qoj E Dj; and

(2) There exist p- k + 1 generators with the property that every admissible state trajectory

of Gi enters Qj - Dj infillitely often.

The second condition o[ the previous proposition can be further resolved as follows:

Proposition 6.2.

Every admissible state trajectory of the generator Gj enters the set Qj - Dj infinitely often

if and only if Gj has no cycles in Dj that intersect Qmj.

Using these results it is straightforward to prove Theorem 6.1.
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7 Conclusion

The modeling of DES in terms of formal languages provides a setting for the study of the

logical coordination of the components of a DES, and, as we have shown in the context of a

simple example, can lead to computationally feasible synthesis methods for certain classes of

systems. The model has some limitations particularly in terms of its modeling scope. Exten

sions to include quantitative aspects of system behavior is a subject of current research.
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Abstract

In this paper discrete processes are defined by means of trace structures. Every symbol
in a trace denotes (the occurrence of) some discrete event. The trace alphabet is split into
two disjoint sets, one denoting the communication events, the other denoting the exogenous
events. Control of a discrete process means constructing a second discrete process having as
alphabet the communication events only, so that the connection of the two discrete processes
results in a desired exogenous trace set. Connection of discrete processes means blending of
the corresponding trace structures.

An algorithm is derived to construct a controller, given a process to be controlled and
specifications of the desired exogenous behavior.

Two examples of the use of this algorithm are presented.

1 Introduction

A number of possibilities exists to model discrete events. Most of them however lack the possi
bility to model plant and controller separately (for example Petri Nets). The controller has to
be known beforehand and plant and controller are handled as one system. There are no ways
to find a controller in a systematic way. Intuition and clever thinking are the only possibilities
in finding a controller.

Other theories exists in which plant and controller are handled separately (for example the
supervisory control theory of Wonham (see [RaWo))). Given a model of the plant it is possible
to compute a controller (a supervisor) and the behavior of plant, controller and the closed loop
system can be studied. However plant and controller need different interpretations. The plant
is given in the form of a generator of events, while the controller (the supervisor) acts as an
observer and generates enable/disable-strings. This different interpretation makes it hard to
connect more than two processes or, for example, to supervise a supervisor.

In this paper trace theory is used to model discrete processes. It turns out that plant and
controller can be described in exactly the same way. Furthermore a nice algorithm is developed
to construct a controller.

Throughout this paper we use the following notation:

(Yx : B(x) : C(x)) is true if C(x) holds for every x that satisfies B(x), e.g. (Yx : x E IN : x ~ 0)

(3x : B(x): C(x)) is true if there exists an x satisfying B(x) for which C(x) holds, e.g. (3x :
x E IN : x = 10)

{x : B(x) : y(x)} is the set constructor and denotes the set of all elements y(x) constructed
using elements x satisfying B(x), e.g. {n : n E IN : anbn} = {€, ab, aabb, aaabbb,. oo}
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2 Discrete processes

Describing a discrete process means:

• defining all possible events

• defining the behavior of the process

All possible events are collected in an event set (which we call the alphabet). Events are
denoted by small letters near the beginning of the Latin alphabet, like a, b, c, etc.

The behavior of the process is given as a collection of sequences of events (which is called
the trace set). A sequence of events is denoted by a string of letters, like abc, meaning, that the
events a, b, and c may appear in that order (first a, then b and at last c). Such a string is called
a trace. Sometimes we use small letters near the end of the Latin alphabet for traces, like x and
y. With £ we denote the empty string (a sequence of no events).

The set of all possible traces, together with the set of all events that a given system can
produce, is called a trace structure (TS for short) and is denoted by

P =< tP,aP >
where aP stands for the alphabet and tP for the trace set.

3 Trace theory

In this paper we discuss the notion of control of discrete processes. Therefore we introduce
connections between discrete processes. It turns out that connections can be defined using
existing operators from trace theory. Before we can define the notions discrete process and
connection of discrete processes we first introduce these operators and restrict our attention to
trace structures.

A connection of trace structures is in fact a shuffling, where identical events have to occur
simultaneously, i.e. occur in both processes at the same time. This means that a common event
can only occur if it occurs in both processes simultaneously. This kind of operation is called
weaving and is defined as follows:

Definition 1 The weaving w of two TS's P and R is defined to be

PwR
=

< {x: x E (aP U aRt 1\ x raP E tP 1\ xraR E tR : x}
, aPuaR

>

The symbol rstands for the restriction of a trace to some alphabet, meaning that all events
in the trace, that do not belong to the alphabet are deleted.

Sometimes we are only interested in those events, that are not common, i.e. belong to only
one of the TS's. Then we use blending:

Definition 2 The blending b of two TS's P and R is defined to bel

PbR
=

< {x: x E (aP U aRt 1\ xraR E tP 1\ xraR E tR: xr(aP + aR)}
, aP+aR
>

IThe operator -:- stands for symmetric set difference.
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In the sequel we use the following partial ordering:

Definition 3 For two trace structures P and R the ordering P ~ R is defined as:

aP = aR /\ tP ~ tR

Property 4 For TS's P and R, with aR ~ aP the following properties hold:

(1) P w R =< {x: x E tP /\ xraR E tR: x},aR >
(2) PbR=<{x:xEtP /\ xraREtR:xr(aP\aR)},aP\aR>
(3) P b R =< {z : z E tpr(aP \ aR) /\

(3x : x E tP /\ xf(aP \ aR) = z: xfaR E tR) : z}
,aP\aR>

(4) (P w R)faR = (praR) n R

and for TS's P, R 1, and R 2 we have:

4 Regular trace structures

If the trace set of a TS is regular2 , it is possible to describe such a set by means of a finite state
machine and also by means of so called regular expressions.

A regular expression (RE) is defined (recursively) as follows:

Definition 5 The empty string (f) and every single symbol is a RE and if x and yare RE's,
then also:

first x, then y
x or y
zero or more concatenations of x
to change pf'iority in evaluation

concatenation
union
repetition

xiY
xly
x"
(x)
x,y weaving

The corresponding trace structures are:

TR(€) = <{€},0>
TR(a) = < {a}, {a} >
TR(XiY) = < {t,u:tEtTR(x) /\ uEtTR(y):tu}

,aTR(x) U aTR(y)
>

TR(xly) = T R(x) U T R(y)
T R(x") < {t : t E tTR(x) : t"}, aTR(x) >
TR(x,y) = TR(x) w TR(y)

A more detailed introduction to this notation and terminology can be found in [JvdS].
A finite state machine (FSM for short) is defined as:

2 A trace set is called regular if the number of equivalence classes is finite, where the equivalence relation on
(prefixes of) traces of a TS T is defined as:

:I: == II = (V, : • E (aT)' : :I:Z E tT = II' E tTl
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-0 ©
0-a0
PI P2

ini tial state final state transition 8(pl> a) = P2

Figure 1: Representation of a FSM

A Finite state machine is a tuple M = (A,Q,8,q,F) with:

a finite set of events, called the alphabet
a finite set of states
initial (or start) state
set of final (or marker) states
the transition function

A
Q
q E Q
Fc;.Q
8:QxA-+Q

Definition 6

From the state transition function 8 we derive a path x from PI E Q to P2 E Q if P2 = 8"(PI, x),
with 8" the closure of 8, defined as:

8"(p,f) = P if x = a
8"(p,x) = 8"(8(p,a),y) if x = ay

The corresponding trace structure is:

TR(M) =< {x: 8"(q,x) E F: x},A >

In figure 1 we have given the representation of a FSM in a drawing.
In the sequel we consider FSM's that are minimal (Le. contain a minimal number of states

in order to represent a certain behavior), deterministic (Le. 8 is a function), and complete (Le.
8 is defined for all pairs (p, x». If a FSM M does not represent A" but only a subset of A" then
M contains an error state3, denoted by [0], with the property:

(Va: a E A: 8([0],a) =[0]) 1\ [0] ~ F

Once we have reached an error state using path x we are unable to reach a final state. This
means, that x is a trace that is no part of the corresponding trace set. So an error state is the
endpoint of all traces that do not belong to the corresponding trace structure.

A more detailed introduction to FSM's can be found in [HoUI] and many other books.

5 Discrete processes

We now return to the notion of control of discrete processes. First we split the alphabet while
introducing two kinds of events:

• exogenous events

• communication events

The exogenous events are used to model own actions of the process. This means that
exogenous events do not appear in other processes4 •

3In drawings of FSM's we omit this error state and all transitions going to it.
'One can argue about the name exogenow, endogenous events are perhaps more convenient. However it turns

out, that exogenous events are retained in a connection while communication events disappear. So communication
events are interna.I and exogenous events are externa.I.
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The communication events are used to model actions of a process, that may be common to other
processes. This kind of events is of interest in communication with other processes. Furthermore
we like to use communication events to control the exogenous events.

Such a TS, in which the alphabet is split up, is called a discrete process (DP for short) and
denoted as:

P =< tP,eP,cP >
where tP is the trace set of the process (the set of all possible sequences of occurring events),
eP the set of exogenous events and cP the set of communication events.

Notice, that such a DP P is only well defined if

ePncP = 0

We are not concerned with how this communication is actually performed, Le. which process
generates the event and which process receives it. In other words, we do not make any distinction
between input and output events here.

In the sequel we sometimes look at a DP as being a TS, i.e. use P as if it was defined as a
TP P =< tP,eP u cP >. Then we use aP as abbreviation for eP u cPo

If we restrict our attention to the exogenous events we have, what is called the exogenous
behavior or external behavior tpreP. If we restrict our attention to the communications we
have the communication behavior or internal behavior tprcp.

Control of discrete processes can be described as using the communication events to establish
some predefined behavior of the exogenous events. Therefore we need:

• the uncontrolled exogenous behavior: tpreP.

• one or more other DP's communicating with P by means of the events from cPo

• the resulting controlled exogenous behavior: t( P ® RHeP (where ® for this moment
denotes the connection of two DP's and R is the controller).

In order to be able to discuss this topic we have to define what is meant by connection of discrete
processes.

6 Connections

In this section we define the notion connection of discrete processes.

Definition 7 Given two DP's P =< tP, eP, cP > and R =< tR, eR, cR > with eP n aR = 0
and eR n aP = 0 then the connection of P and R is defined as

< t(P b R), eP U eR, cP + cR >
and denoted5 by P b R.

Note that all exogenous events of P and R are exogenous events of the connection. From
the communication events only those that do not belong to both processes are retained. This
guarantees, that

a(P b R) = aP+aR

so that the blend is well defined.
In the sequel we write P b R only if eP n aR =0 and eR n aP =0.

It is not difficult to prove the following properties:

'50 we use the same notation b for blending of TS's as well as for connection of DP's.
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Property 8 For the connection b the following properties hold:
(1) P b R =R b P
(2) Pb < {£},0,0>:::P
(3) cP n cR n cS = °'* (P b R) b S ::: P b (R b S)

For part (3) we have to remark that (P b R) b S = P b (R b S) only holds, if aPnaRnaS ::: 0,
which is established through the condition cPncRncS = O. This last property allows to write
multi-connections without parentheses.

The DP < {£}, 0, 0> is the unit element of the operator b . Notice, that it is necessary to
have at least the empty trace £ in the trace set, because for every DP P we have that

P b < O,0,0 >=< 0,0,0 >
(thus < 0,0,0 > is not a unit element).

Sometimes we are interested in the total behavior of the connected system. Therefore we
introduce the overall or total connection as well.

Definition 9 Given two DP's P =< tP, eP, cP > and R =< tR, eR, cR > with eP n aR = °
and eR n aP = ° then the total connection of P and R is defined as:

< t(P w R),ePUeRU(cPncR),cP+cR >
and denoted 6 by P w R.

Notice, that we have put all common communication events of P and R in the exogenous
event set of the total connection. This guarantees that a(P w R) ::: aPUaR, that communication
events can be observed outside the connection and that communication events can not be used
in other connections for communication purposes. A communication event can thus serve as
communication between exactly two DP's.

We have the following properties for the total connection:

Property 10 For the total connection w the following properties hold:
(1) P w R =Rw P
(2) Pw <{£},0,0>=P
(3) (P w R) w S ::: P w (R w S)

7 Introduction to control

Before we give an exact description of our control problem we give a illustrative example first.
Suppose a shop sells two kinds of articles and in order to get an article one has to pay for

it. Paying for an article is supposed to be a communicating action. So we have:

al article 1 is sold
a2 article 2 is sold
PI pay for article 1
P2 pay for article 2

The complete process becomes:

A customer can now be described as "letting event Pi occur for every article (number i) wanted,"
for example:

• Again the same notation for weaving of TS's and for the total connection of DP's.
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Connecting these two processes results in:

PbR

< ((ali aI),a2), {all a2},0 >

Notice that the uncontrolled behavior of the shop P equals

tpreP = (alla2)·

while the controlled behavior is

t(P b R) = (al;aI),a2

Notice, that the customer has in fact controlled the exogenous behavior of the shop.

8 A control problem

Using the previous definitions we are now able to state our control problem in a formal way:

Given are a DP P =< tP,eP,cP > and two trace structures Lmin and Lmax with

Lmin = < tLmin, eP,°>
Lmax = < tLmax , eP,°>
Lmin £;; Lmax

Lmin and Lmax specify the range of resulting exogenous traces, that are acceptable.
The problem is to find, if possible, a DP R with:

R =< tR,0,cR > with: cR £;; cP

such that

Lmin £;; (P b RHeP £;; Lmax

This last condition is called the minmax condition.

In words: construct, given a DP P, a second DP R, that controls the exogenous events of P
as specified by Lmin and Lmax , and whose possible events are at most all communication events
of P.

The restriction of tLmax to be a subset of (eP)· is needed because we can only give restric
tions on the existing exogenous events. Without loss of generality we assume:

Lmin £;; Lmax £;; PreP

(so we can give restrictions to existing exogenous traces only).
This problem is called control of discrete events (CODE for short).

In our previous example we had:

In the following section we give a general solution for CODE.
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9 Solution for CODE

In the sequel we deal (without loss of generality) only with the situation that R =< tR, 0, cP >,
i.e. cR = cPo So we use all communication events to control the process.

furthermore we use DP's P, R, and Sand assume7 :

P =< tP,eP,cP >
R =< tR,0,cP >
L =< tL,eP,0 >

In this section we give an algorithm to construct a solution for CODE that also can be used
to investigate if CODE has a solution at all. For the algorithm we need two functions:

Definition 11 With the CODE problem we associate the functions:

F(L) = (P b L) \ (P b (preP \ L))

called the friend of L, and

G(L) =P b F(L)

called the guardian of L.

In most cases we only need the trace set of F or G, so we introduce:

f(L) = tF(L)
g(L) = tG(L)

Notice that:

eF(L) = ° cF(L) = cP
eG(L) =eP cG(L) =°

The algorithm (called the deCODEr) is described as follows:

forall L such that Lmin ~ L ~ Lmaz: :
if Lmin ~ G(L) ~ Lmaz:
then F(L) is a solution

Of course, it is not immediately clear that this algorithm works. In the next section we try
to make it convincing. In the section thereafter we give a proof of the algorithm and, more
important, give a necessary and sufficient condition under which the problem is solvable.

10 Outline of the algorithm

First let us try

F'(L) =P b L

So, if G'(L) = P b F'(L) = P b (P b L) satisfies the minmax condition then R = F'(L) should
be a solution.
However, starting with an L such that Lmin ~ L ~ Lmaz: does not guarantee, that Lmin ~

G'(L) ~ Lmaz:. For example:

P =< {ac,ad,bc},{c,d},{a,b} >
Lmin = Lmaz: =< {c},{c,d},0 >

7In the sequel checking the alphabets in proofs is omitted, if this is clear from this context.
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results (with L =Lmar ) in:

J'(L) = t(P b R) = {a,b}
g'(L) = t(P b F'(L)) = {c,d} # tL

In J'(L) the trace a does not lead to the desired solution because it also allows exogenous event
d to occur and d does not satisfy the minmax condition.
We conclude the following:

• First compute P b L to get all possible control traces.

• Next compute P b -,L to get all control traces, that give undesired results8 .

• At last take (P b L) \ (P b -,L) to find exactly the right control traces.

This is precisely, what F( L) does:

...
desired controls

\ (P b (PfeP \ L))---..-.
-,L

F(L) = (P b L)
~

possible controls ...
undesired controls,

=

11 Proof of the algorithm

First a number of properties of the friend and the guardian (and the operators used) are listed.

Lemma 12 The friend and the guardian of L satisfy:

feLl = {Z:ZEtPfcP A (Vx:XEtP A xfcP=z:xfePEtL):z}
geL) = {x: x E tP A (Vy: yfcP = xfcP: yfeP E tL): xfeP}

proof: We have:

t(P b (PfeP \ L))
= [property 4 (3) 1

{z:zEtPfcP A (3x:XEtP A xfcp=z:xfePEt(PfeP\L)):z}
= [xfeP E tPfeP]

{z:ZEtPfcP A (3x:XEtP A xfcP=z:xfePrttL):z}

Hence:

feLl

t((P b S) \ (P b (PfeP \ L)))
[ definition of b and previous equation]

{z:zEtPfcP A (3x:XEtP A xfcP=z:xfeEtL):z}
\{z:zEtPfcP A (3x:XEtP A xfcP=z:xfePrttL):z}

= [xfeP E tPfeP 1
{z : z E tP fcP A ("Ix: x E tP A x fcP = z : x feP E tL) : z}

geL) now easily follows from feLl.
(end of proof)

SThe notation ..,L is an abbreviation of PreP\ L. It stands for the trace structure containing all traces (over
the same alphabet) that do not belong to L.
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The expression of f( L) in this lemma is useful in the proofs of the next three lemmas. These
lemmas together make up the proof of the correctness of the algorithm and result in theorem
16.

Lemma 13 G(L)!:;; L

proof:

z E gel)
[ definition of the guardian 1

z E t(P b F(L))
= [ definition of b 1

(3x:XEtP A xrePEf(L):xreP=z)
=> [lemma 12: x E tP A xreP E f(L) => xreP E tP 1

z E tL

(end of proof)

Lemma 13 implies that by choosing L = Lma", (the largest possible choice) the solution found
by the deCODEr still satisfies the right part of the minmax condition of CODE. Notice that
G( L) = L does not hold in general.

Lemma 14 R!:;; preP A P b R!:;; L => R!:;; F(L)

proof:

z E tR
=> [R!:;; preP A t(P b R)!:;; L 1

z E tpreP A (Vx: x E tP A xreP = z: x reP E tL)
=> [ lemma 12 1

z E f(L)

(end of proof)

Lemma 14 is a very important lemma. It implies, that (take L = Lma",) every solution of
CODE, that is contained in preP, is contained in Rma", = F(Lma",). Using lemma 13 we see
that Rma", therefore is the greatest possible solution of CODE and can be constructed using the
algorithm9 •

Notice, that we cannot prove:

R !:;; P reP A L!:;; P b R => F(L) !:;; R

and therefore, we cannot find in general a smallest possible solution. In other words, as we shall
see, if a solution exists, it is a most liberal solution. There may not be a most conservative one.

Lemma 15 LI !:;; L2 => G(L I ) !:;; G(L2)

proof:

L I !:;; L 2

=> [ lemma 12 1
F(Ld!:;; F(L2 )

=> [ property 4 (5) 1
P b F(Ld !:;; P b F(L2 )

=
G(L I ) !:;; G(L2)

(end of proof)

·Notice, that it is always possible to add to Rmoz traces that have no influence when they are blended with
P. So it is only possible to find a greatest solution that is contained in PfcPo
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This lemma states, that an increasing set of choices of L leads to an increasing set of resul ting
exogenous traces P b F(L) of the CODE problem (monotonicity).

We are able now to formulate the following important theorem:

Theorem 16 CODE has a solution if and only if Lmin !:;; G(Lma",)

proof: Suppose CODE has a solution, say R, then write

R =Rint U R.",t

with:

Rint = PreP n R
R.",t = R \ Rint

(which gives P b R =P b Rind. Then we have:

Lmin
!:;; [ R is a solution: Lmin !:;; t(P b Rint) = t(P b R) 1

P b Rint
!:;; [ Rint !:;; PreP /\ t(P b Rint) !:;; Lma", => Rint !:;; F(Lma",) 1

P b F(Lma:r)
=

G(Lma",)

Next, suppose CODE has no solution:

('t/R : P b R !:;; Lma", : Lmin ~ P b R)
=> [ choose R = F(Lma",) (such an R exists, see lemma 13) 1

Lmin ~ P b F(Lma",)

=
Lmin ~ G(Lma",)

(end of proof)

This theorem implies, that if the deCODEr does not abort, the constructed R is a solution
of CODE. If the deCODEr aborts with L = Lma", we may conclude that no solution exists.

12 Some properties of the deCODEr

The next lemma gives a property of solutions of CODE, as constructed using the friend and the
guardian.

Lemma 17
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proof: trivial, using:

=
P b F(L I U L2 ))

[ F(LI U L2 ) = F(Ld U F(L2 ), see lemma 121
P b (F(L I ) U F(L2 ))

= [ property 1.34 in [JvdSll
(P b F(LI )) U (P b F(L2 ))

G(L I ) U G(L2)

(end of proof)

This lemma states, that if RI and R2 are both solutions of CODE (and of the form F(L) for
some L), then also R I U R2 is a solution. This lemma implies that a maximal solution (contained
in P reP) exists.

In general, however, R l nR2 and R I w R2 need not be solutions, which prevents the existence
of a minimal solution, as is shown in the following example: Let

P =< {abc, bad}, {a}, {b,c, d} >
RI =< {bc},0, {b,c,d} >
R2 =< {bd},0,{b,c,d}

then:

t(P b R I ) ={a} and t(P b R2) = {a}

(so both R I and R 2 are solutions of CODE), but:

t(P b (R I n R2 )) = °~ tLmin

(hence R I n R2 is no solution of CODE).
This is due to the fact, that (according to property 1.34 in [JvdS]):

P b (RI n R2 ) ~ (P b RI ) n (P b R2 )

Next we like to investigate if every solution of CODE can be written in terms of a friend
of some L satisfying the minmax condition. Because every solution of CODE can be extented
with traces that do not have any influence on the result (take R new = Ru Re:ct for an R exl with
t(P b Re:ct) = 0, then R new is also a solution), we can only hope that every solution R with
R ~ preP can be written in terms of a certain friend. Suppose R is a solution of CODE with
R ~ P reP, then P b R satisfies the minmax condition. From lemma 14 we have:

R ~ F(P b R)

In general, we have no equality here.

It is easily seen, that if all exogenous traces can be found by applying a unique communication
trace only, all solutions of CODE can be found by applying the deCODEr (Le. are of the form
F(L)):

Lemma 18

(Vx,y: x E tP AyE tP: xreP:f. yreP =? x reP :f. yreP)
=>

(VR: R is a solution of CODE A R ~ preP: F(P b R) = R)
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proof: We only have to prove that R ~ F(P b R):

z E f(P b R)

zEtPfcP 1\ (Vx:xEtP 1\ xfcp=z:xfePEt(PbR))
:::} [t(PbR)={y:yEP 1\ yfcPEtR:yfeP}]

z E tP fcP 1\ (Vx : x E tP 1\ x fcP E z :
(3y: y E tP 1\ yfcP E tR : xfeP = yfeP))

:::} [ assumption implies y = x ]
z E tR

(end of proof)

If P has the property that

(Vx,y: x E tP 1\ y E tP: xfcP:I yfcP:::} xfeP:I yfeP)

we call P observable.
From lemma 18 it is clear, that every solution of CODE for an observable DP P has the

form F(L). In that case, the deCODEr gives exactly all possible solutions.

If P is observable we also have, that

G(P b R) =P b R

This property however holds for every P and every solution R:

Lemma 19 G(P b R) = P b R

proof: From lemma 14 we have (take L = P b R) that G(P b R) ~ P b R. So it remains to
prove G(P b R) ~ P b R. We have:

xfcP E tR
:::} [ take l' =Y]

(Vy:yEtP 1\ yfeP=xfeP:
(31': l' E tP 1\ ufeP E tR: yfeP =ufeP))

=
(Vy: y E tP 1\ yrep = x reP : yreP E t(P b R))

Hence:

z E t(P b R)

=
(3x : x E tP 1\ x fcP E tR : z =x feP)

[ above implication]
(3x:xEtP 1\ (Vy:yEtP 1\ yrep=xfcP:yfePEt(PbR))

: z = xfeP)
:::} [ see lemma 12 ]

z E g(P b R)

(end of proof)

We end this section with a summary of the founded results:

Theorem 20 Associated with CODE the following conclusions hold:

• If CODE has a solution, we can find one by constructing R = F( L), with L satisfying:
Lmin ~ L ~ Lma",
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• If CODE has a solution and P is observable, all solutions are of the form R =F(L), with
L satisfying: Lmin ~ L ~ Lma",

• If no solutions of the form R = F(L) exists (i.e. if F(Lmaz ) does not lead to a solution},
no solution of CODE exists.

13 An example: a ship lock

As an example of the use of the deCODEr we look at the following situation. Consider a ship
lock with two doors in which ships can pass from west to east (see figure 2). The lock is given
as:

P =< tP,eP,cP >
with

eP = {PI,P2}
cP = {01,02,CI,C2}

The behavior is given in figure 3.

Figure 2: A ship lock

Cl
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02 02
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"
Figure 3: Behavior of the lock

The meaning of the events is given in table 1. The lock can contain one ship at the time.
Our desired behavior therefore is:

L =< (PliP2)', eP, 0 >
Using the deCODEr lO we find the controller as in figure 4. This controller does precisely

lOWe use a computer program here, so we do not give any calculations.
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meaning

a ship passes through door 1
a ship passes through door 2

open door 1
open door 2
close door 1
close door 2

Table 1: Meaning of the events of the lock

/ '"©~o~o~o

Figure 4: Controller for the lock

what we expected he should do: first let a ship in by opening and closing door 1, next let the
ship go out by opening and closing door 2.

In figure 5 we have given P b L. Just computing P b L in general does not give the right
controller: in P b L for example the behavior

is possible. This may lead to

PliP2

but also

PliPl

is possible and this last exogenous behavior is certainly not desired.

It can easily be verified, that the exogenous behavior of the connection equals:

t(P b R) = (PliP2)*

C2

/ '"-©~ 0 ~ 0 ~ 0
clf 02

1 :==:K 1°1

0 ~ 0 """"01 0 C1 0

'" /
02

Figure 5: P b L
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I event meaning

Sj (get permission to) sit
glj grab fork on the left
grj grab fork on the right
ej eat
IIj lay down fork on the left
Irj lay down fork on the right
tj think

Table 2: Meaning of the events of Pj

and the total behavior:

t(P w R) = (OliPliCli02iP2iC2)"

Remark that one should not underestimate the simplicity of the above example. The computed
controller could (with a little effort) as well be computed by simple intuitive reasoning. However
it may be difficult to prove the correctness of the controller. If the examples become more
difficult then finding a suitable controller becomes intractable by hand calculations, but using
the deCODEr remains feasible.

14 The dining philosophers

Consider a number of philosophers (say k), sitting around a round table. Each of them in turn
eats and thinks. To eat each philosopher needs two forks, one to the left and one to the right of
his plate. Between each plate only one fork is present, so every fork has to be shared between
two philosophers, but only one philosopher at the time can use it.

Each philosopher can be modeled as follows:

Pj =< (Sji9lji9rj; ejilljilrj;t;)*, {glj,grj,llj,lrj,ej,tj}, {Sj} > i = 0,1, ... , k - 1

The interpretation of each event is given in table 2. To be able to model the sharing of the forks
we have:

Fj =< ((glj; llj)!(grj+l; Irj+l))*, 0, {glj, IIj, grj+lt Irj+d > i = 0, 1, ... , k - 1

Notice that fork F; plays the role of left fork for philosopher Pj and the role of right fork for
philosopher Pj+!. The behavior expresses, that grabbing a fork should first be followed by laying
down that fork by the same philosopher before it can be grabbed again.

The total behavior we like to investigate is:

T = Po W PI W ••• W Pk-l W Fo W Fl W ••• W Fk-l

Notice, that we have used the total connection here in order to be able to investigate the crucial
grabbing of the forks.

Suppose, that all philosophers have got permission to eat. Then the following sequence of
events is possible (take k = 3):

soi sli S2; glo; gil; gl2

Now all forks are in use, but no philosopher is able to eat. This phenomenon is called deadlock.
Notice, that the above trace is no trace of T. In order to use the deCODEr to prevent this

process from ending in deadlock we first have to add all deadlock-ending traces to T . This
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problem is not as difficult as it seems to be. To do so we have to be more specific about how
the weaving of two FSM's is defined.

Definition 21 Consider two deterministic, completely defined and minimal FSM's Mp and
MR, given as

Mp = (aP,Qp,6p,qp,Fp)
MR = (aR,QR,6R,qR,FR)

then the FSM M is given as:

M = (aP U aR, Qp X QR, 6, (qp, qR), Fp X FR)

where 6((p,q),a) is defined as:

a E aP A a ~ aR: 6((p,q),a) = (6(p,a),q)
a~aP A aEaR: 6((p,q),a)=(p,6(q,a))
a E aP U aR: 6((p, q),a) = [0] if 6p(p, a) = [0] V 6(q, a) = [0]

6((p,q),a) = (6p(p,a),6R(q,a)) otherwise

The FSM representing the weaving of P and R is denoted by MpR and constructed out of M by
deleting all unreachable statesll .

The constructed automaton MpR is again deterministic, complete but need not be minimal any
more. It represents the behavior of the total connection of P and R.

Next we define a deadlock state in MpR.

Definition 22 A state (p, q) in the FSM MpR is called a deadlock state if:

(p,q)¥[0j A (p,q)rj.FpxFR A (Va:aEaPUaR:6((p,q),a)=[0])

A path leading to a deadlock state is a trace not leading to a final state (so not part of the
trace set of the total connection) but possible by weaving prefixes of traces of P and R. Such a
path therefore leads to deadlockI2 •

Notice, that minimizing the FSM MpR results in a FSM that exactly represents the behavior
of the total connection of P and R but omits the possibility of detecting deadlock.

If we construct MpF it turns out, that there exists a deadlock state. To prevent the connec
tion to end in deadlock we first have to add all deadlock-ending traces to the behavior (simply
by making this deadlock state a final state) and secondly by using the deCODEr with desired
behavior according to F =Fo W FI W ••• W Fk-I'

Reconsider process T. Because the events ej and tj are not important to us at this moment
we omit these from Pj. So we use:

Pj =< (sj;glji9rjjlljilrj)*, {glj,grj,llj,lrj}, {sd >

and consider

T=PwF

with

P = Po W PI W •.. W Pk-I
F = Fo W FI W ••• W Fk-I

i = 0,1, ... , k - 1

II A state is unrelLChable if no path exists form the initial state to that state.
l'lt is possible to make all this formal, i.e. give a definition of deadlock (corresponding to our intuitive ideas)

and prove that deadlock in this sence is possible if and only if the FSM of the total connection has at least one
deadlock state. However it is outside the scope of this article to do all this (we only like to show that the deCODEr
can be used to prevent deadlock).
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Figure 6: First butler

Now add to T all deadlock-ending traces by making the deadlock state in the corresponding
FSM MpF a final state and use F as desired exogenous behavior of T (notice that because of
the connection all events of F are exogenous events in T).

The deCODEr gives us the controller (a butler in this case) (for k == 3 this butler is displayed
in figure 6). The butler can only prevent the total process to end in deadlock by forbidding one
(randomly chosen) philosopher ever to eat. This is not what we like. The resulting controller
is unable to notice if a philosopher is ready with eating and therefore can not use the fact that
this philosopher does not need the forks any more.

To be able to find a nicer controller we add to Pi an extra event ai, meaning that philosopher
Pi asks the butler if he may sit down. The butler then may give him permission to sit down by
letting event Si occur. So we have:

Pi == < (ai; Si; gli; gTi; lli; ITi)"' {gli, gTi, lli,ITi}, {ai, s;} > i == 0,1, ... , k - 1

Using the deCODEr we find (for k == 3) the butler as in figure 7.

This butler behaves precisely as we should think he should. He gives permission to at most
two philosophers to start eating. A third demand is retained until one of the philosophers asks
again (and thereby letting the butler know that he has finished eating).

15 Conclusions

In this paper discrete event systems are defined using (an extended version of) trace theory. It
has turned out, that this way of modeling gives the possibility to formulate a control problem
(CODE) and construct a controller, that is defined in exactly the same way as the original
plant. So it is not necessary to interpret plant and controller differently (as for example in the
supervisor control theory of [RaWoJ).

The philosophers-example illustrates that CODE can be used to avoid deadlock.
An advantage of this way of modeling is further, that the behavior of the process is given

as a set of traces, while nothing is said about (and nothing need to be known of) how such
traces are actually given. This means, that it is possible to give such a behavior by means of
finite state automatons or regular expressions (as is done in this paper), by means of (possibly)
infinite state automatons (as is done in [RaWoJ), or by other means (although in this last case
it may be impossible to compute for instance the blend of such (in a strange way defined) trace
sets).
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Figure 7: Second butler
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PROTOCOL VERIFICATION USING DISCRETE-EVENT MODELS
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1. l1:HBQD!lkIlQ~

Communication protocols belong to the broad class of discrete-event
systems. Other examples of these systems are flexible manufacturing systems,
process control systems, office information systems and VLSI circuits. The
behaviour of all of these systems can be characterized by starting and
ending times of their activities. All these systems inherently involve the
consideration of the notions of concurrency, nondeterminism, time and
communication. Therefore the formal description technique (FDT) used to the
description of a discrete-event system should be able to express these
not ions.

The satisfaction of these requirements, which corresponds to the
modelling power of a FDT, influences the analyzability of this technique.
The analyzabil ity of a FDT means here the ability to the analysis of the
specification written in this FDT. Therefore, the nature of a discrete-event
system influences also the formal technique used for the verification of its
spec i fi ca t ion.

In this paper we present a new approach to the verification of a
communication protocol modelled as a discrete-event system. This approach is
based on the analysis of a communication protocol considered as a time
driven system.

The paper is orCjanized as follows. First, in the second section, some
useful definitions d~al ing with protocol en9ineering, discrete-event
systems and time-driven systems are given. Then, in the third section, the
selected discrete-event models applied to protocol verification are
discussed. The fourth section gives the principles of the modelling a
protocol as a time-driven system. The analyzed protocol is specified by
means of time augmented Petri nets. In the fifth section the idea of the
verification technique is presented. The technique combines time constraints
based projection and the examination of the safeness of certain places in
timed Petri net model. A simple example is provided. In the last section the
useful lness of discrete-event models in protocol engineering is discussed
and topics for future research are suggested.

2. DEFINITIONS

Such a scope of a paper causes that some basic definitions deal ing with
protocol engineering, discrete-event systems and time-driven systems should
be given. The first definition specifies the protocol engineering itself.

Protocol engineering is the application of scientific disciplines to
the production of high-quality communication protocols on time and within
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budget.
These disciplines deal with the consecutive stages in the communication

protocol production process. These stages include: specification
ver i ficat ion, performance pred ict ion, implementat ion, testi ng, cert i fi cat ion
and assessment, performance evaluation, documentation, and possibly
synthesis and conversion. The major disciplines in protocol engineering have
been presented by Piatkowski (1983), who is also the author of protocol
engineering term. The state of art in protocol engineering has been
discussed further in (PiatkowskiI986).

We will define here, for the purpose of this paper, two stages of
protocol production process only: specification and verification. For the
definitions and scope of other stages see e.g. (Sajkowski 1985).

PR)tocol spe~fication we understand the description which defines the
required behaviour of a protocol.

The specification may be formal or informal. The formal specification
applies formal language to the description of a protocol behaviour. The term
"formal" means "expressed in a precise mathematical way using symbols with
specific meaning" (L16vengreen 1985).

P~otocol verification is understood as the demonstration of the
correctness, completeness and consistency of the protocol design represented
by its formal specification.

Now we will give the definitions of the most important notions in the
area of discrete-event systems.

Event is defined as an instantaneous elementary action. The elementary
action is understood as the indivisible one.

IJiccmte-evcnt iJya!;ern is understood as a dynami c system in whi ch events
occur at discrete times. The intervals between events have not to be
identical. The behaviour of the discrete-event system is then specified by
a set of concurrent and/or nondeterministic time-consuming activities, which
are performed according to prescribed ordering. Each event is seen as the
starting or ending of the activity (Cohen 1985, Cohen 1987, Dietz 1987,
Garzia 1986. Ho 1987, Lin 1986).

Disc~ete-event model we understand the model of discrete-event system.
Therefore, the model of a discrete-event system D is another discrete-event
system Mwhich reflects some characteristics of D.

We wil I obtain the mathematical model of disc~ete-event system if we
form it by a mathematical object or structure. Such a structure was proposed
by Zeigler (Garzia 1986), where the discrete-event system is specified by
6-tuple: "
- The set of possible external events.
- The set of system states, in sequence.
- The set of output values.
- A transition function which combines the current state and external events

to yield a new state.
- An output function that maps the current state to an output value.

A time-advance function that controls how long the system remains in a
given state. "

Now we will give two Qeneral definitions, based on (L16ven9reen 1985),
which describe the notions'of concurrency and nondeterminism.

Concu~~ency called also t~ue concu~~ency means that in a system the
elementary actions may overlap in time.

Nondete~minism is understood as an impossibility to uniquely determine
the future behaviour of the system knowing the future input event to the
system.

Finally, according to (Coolahan 1983), we will define time-driven
system.

Time-d~iven system we understand as one in which the time spent for
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the execution of the system functions is critical to their successful
performance, and in which the global clock drives the repetitive realization
of similar activities at regular intervals.

3. DISCRETE-EVENT MODELS

There are a lot of FDTs applied earlier for protocol specification
(Sajkowski 1983, Sajkowski 1984). However, a limited number of them can be
considered as the methods possessing the power being enough for the modeling
of discrete-event systems.

To this group belong all FDTs which satisfy the crucial requirement of
discrete-event systems, namely the specification of a time-advance function.
The next two requirements which should be satisfied by a FDT are concu~~ency

and nondete~miniam. The former is obvious if we recall our definition of
true concurrency, the latter results from the fact that discrete-event
systems are typically nondeterministic ones.

Among the FDTs appl ied earlier for communication protocol specification,
only time-augmented Petri nets, temporal logic and formal specification
languages satisfy three requirements given above (Sajkowski 1984). We will
add to them newly developed FDTs, which not necessarily have been applied to
protocol specification and which satisfy the required criteria. In this way
we can form the set of FDTs relevant to the specification of discrete-event
systems. This set is the following:
- Coordinated Concurrent Activities.
- Time-augmented Petri nets.
- Real-time temporal logic.
- Real-time languages.
- Timed communicating sequential processes.
- Algebras for timed processes.
- Real-time attribute grammars.

We will discuss now these FDTs. We will focus on the satisfaction by a
FDT of the criteria of model ing concurrency, time and nondeterminism.

The technique named Coordinated Concurrent Activities (CCAl, introduced
in (Aggarwal 1987a, Aggarwal 1987b), corresponds to the well-known model of
coupled finite state machines. The CCA model is an extension to the previous
Selection/Resolution model (Aggarwal 1983, Kurshan 1985). This extension
covers the introduction of: continuous time, activity termination and the
precise semantics of activities coordination.

In CCA, the model of distributed system consists of N Activity Machines
running in paral lei. These machines coordinate by exchanging the current
status of the running activities. The status corresponds to the selection in
SIR model. Each Activity Machine has a transition graph, called Activity
Graph, which specifies the sequencing of its activities. This graph
describes also the conditions for the changing of activities. These
conditions result from the status of other machines during coordination.

The real-time notion is introduced into the CCA model by assuming the
existence of an observer relative to which starting and ending times of the
activities are synchronized, and by the imposing timing constraints on the
switching of machine activities.

In this model, time is divided into successive intervals of work and
synchronization. If activities in various machines remain in their active
phases, then all the machines are in the work phase. However, if any of the
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activities comes into its termination phase, then the system of machines
enters synchronization phase and a new activity is incarnated.

The nondeterminism in CCA is included in that, that the selection of
an incarnated activity may be nondeterministic.

3.2. Time-Augmented Petri Nets

In Petri nets the notion of time can be associated with transitions
(Ramchandani 1974, Merlin 1976, Zuberek 1980, Molloy 1982, Razouk 1985,
Duqan 1984, Ajmone Marsan 1985) and places (Sifakis 1980, Coolahan 1983.
Wong 1984). The timing can be deterministic (Ramchandani 1974, Merlin 1976
Zuberek 1980, Coolahan 1983, Razouk 1985) or stochastic (Molloy 1982 !

Dugan 1984, Ajmone Marsan 1985, Florin 1985, Lazar 1987). In the case of the
deterministic timing, there may be deterministic firing time added to each
transition (Ramchandani 1974) or firing interval expressed by means of two
deterministic values (Merlin 1976). In the case of stochastic timina, the
fi ring delay is a random variable with an exponential distribution for
continuous time systems or with geometrical distribution for discrete time
systems.

Nondeterminism is modelled by means of conflict transitions, and
concurrency by the use of non-causally related transitions.

3.3. Real-Time Temporal Logic

There are known the examples of the application of temporal logic to
the modelling and analysis of discrete-event systems. For instance in
(Thistle 1986) linear-time temporal loqic has been used for the verification
of control system. However, it seems that more expressive temporal logics
should be used for this purpose, for instance real-time temporal logic
(Koymans 1983a, Koymans 1983b). It comes from the fact, that the linear time
temporal logic considers time qualitatively, and it cannot express the
time-out mechanism.

In the real-time temporal logic, for the purpose of quantitative
treatment of time, two new temporal operators have been added: "before"
referred to the past and "strong until in real-time til from which other
real-time operators can be derived: e.g. "eventually within real-time t from
now" or "always after real-time t has elapsed from now". Therefore, in the
real-time temporal logic the state possesses the component representing a
kind of a global clock.

3.4. Real-Time Languages

Recently, various high-level programming languages for real-time
applications in industry have been developed. The examples of them are:
Ada (Ada 1983), Occam (Occam 1984), Chill (Chill 1985), LUSTRE (Caspi 1987)
and ESTEREL (Berry 1985). The first three of them, i.e. Ada, Occam and Chill
are asynchronous, nondeterministic and they use the notion of "absolute"
time only. The last two of them, i.e. LUSTRE and ESTEREL are synchronous,
deterministic and they use the "multiform" notion of time.

We will consider now the treatment of concurrency, time and
nondeterminism in the representatives of these groups of languages.

Fo r ins tance, in Ada the passage of abso Iute time is exp res sed by means
of delay statement, but time-out mechanism can be described jointly by
select and delay statements. The select statement is the basic mean for the
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description of nondeterminism. The parts of a program in Ada called hlaka
can run in parallel, and they communicate or synchronize by the use of
rendezvous mechanism. The rendezvous can be also used in order to cause the
delay up to the occurrence of a particular event.

In the second group of real-time languages, the synchronous data flow
language LUSTRE provides simple way of. handling time. In LUSTRE, variables
may be considered to be functions of time. The variable is characterized by
sequence of values and its clock. LUSTRE possesses four non-standard
operators, i.e. "previous", "followed by", "when" and "current". These
operators are used for the construction of nested clocks and for the
operation on expressions with different clocks. LUSTRE has deterministic
nature.

3.5. Timed eonvnunicating Sequential Processes

Up to now, there are only a few approaches to add time notion to the
parallel language esp (Koymans 1985, Reed 1986, Gerth 1987).

The model of timed esp developed by Reed and Roscoe (1986) is
continuous with respect to time, assumes the existence of a conceptual
global clock, a system delay constant, hiding removing the external control,
and timed stabil ity. The events in esp are replaced by timed events. Two new
processes are added, with respect to untimed esp, namely process WAIT t
(uO) and diverging process. The main result of the extension of esp with
time notion is the distinguishing deadlock from diver~ence. This model
expresses non-discrete time with a least element and true concurrency.

Koymans et al. (1985) propose a real-time variant of esp, called eSP-R.
All events are related to each other by a conceptual global clock. The
concurrent execution is modelled by an extension of maximal parallelism
model. The main additional construct w.r.t. esp is the real-time construct
wait d, where d is a duration. eSP-R language allows to model discrete time
and time-out.

Gerth and Boucher (1987) developed a model for the real-time behaviour
of extended communicating sequential processes. This model is called "timed
failures model". It is really a generalization of the failures model. The
timed failures model allows to describe a-priori bounded delay of actions,
time-out of actions, non-discrete time with a least element, true
concurrency of actions, nondeterminism and abstraction.

3.6. Algebras for Timed Processes

Algebras for timed processes (Richier 1986, Quemada 1987, Nounou 1985)
are related to very well known ees (Hi lner 1980). These FOTs additionally
incorporate the notion of time.

The Algebra for Timed Processes - ATP (Richier 1986), which gave the
name to the group of similar FOTs, is an extension of process algebra
specified in (Bergstra 1984). In ATP standard delay statement is expressed
by means of start delay and termination delay constructs. The timed system
itself is described by the use of timed state graph. Its nodes are labelled
by corresponding delays. The parallel composition is asynchronous or
synchronous, according to the type of actions, and is defined by operators
"left merge" and "communication merge". Nondeterminism is described by means
of an "alternative composition" operator.

The second example of the algebra for timed processes is Timed LOTOS
(Quemada 1987). In it, a quantitative relative time notion is added to
widely used ISO language LOTOS (Brinksma 1986, Lotos 1987). It is done by
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means of a time interval associated with an action, indicatin~ the period of
time in which this action should terminate. Time is expressed by the data
type in ACT-ONE. Concurrency is modelled by parallel composition operator.
The nondeterminism is described by choice operator.

The previous technique to these two above which applies algebraic
specification of protocol timing behavior has been a variant of CCS proposed
in (Nounou 1985). The protocol timing behaviour is modelled by marked point
process, i.e. the set of events in a given time, and its attributes: time
durations and probabilities of possible behaviours. The correct ordering of
events is described by the use of a time constraint relation "«". Time-out
upper bound and mean-transfer time are analyzed.

3.7. Real-Time Attribute Grammars

Real-time attribute grammars are an extension of conventional attribute
grammars in order to specify concurrency and real-time. The only example of
this FDT is "Real-Time Asynchronous Grammar" - RTAG, proposed by Anderson
and Landweber (1985).

In RTAGs, terminal symbols correspond to input events, i.e. receiving
a message, or output events, i.e. sending a message. The parallel composition
of events is expressed using curly brackets notation. Time constraints are
described by means of a special terminal symbol /timer/, which has a single
integer attribute interval. Productions in which /timer/ is engaged are
called timed productions. The timed production is able to specify the
time-out mechanism.

3.8. Discussion of Approaches

In this section we have discussed the FDTs, which in our opinion are
the only ones sufficient for the modelling of discrete-event systems. FDTs,
considered here, have been applied to the speci fication of various instances
of discrete-event systems.

Communication protocols have been described by means of Coordinated
Concurrent Activities (Aggarwal 1987a), time-augmented Petri nets
(Merl in 1976, Razouk 1985, Ajmone Marsan 1985, Sajkowski 1986, Lazar 1987.
Sajkowski 1987), real-time languages (Bochmann 1981), al!Jebras for timed
processes (Nounou 1985, Richier 1986, Quemada 1987) and real-time attribute
grammars (Anderson 1985).

Flexible manufacturing systems have been specified only by means of cc~

(Aggarwal 1987b) and time-augmented Petri nets (AlIa 1986, Hi 11 ion 1987).
Control systems have been described by the use of CCA (Aggarwal 1987b,

Katzenelson 1986), time-augmented Petri nets (Coolahan 1983) and real-time
languages (Plessmann 1986, Caspi 1987).

It is seen that two FDTs: CCA and time-auqmented Petri nets have been
applied to all major examples of discrete-event systems. The biggest number
of FDTs has been used for the description of communication protocols.

There are some simi larities existing between certain FDTs. For instance
CCA, certain real-time languages (Ada, Occam) and Timed CSP use the
rendezvous concept, which requires synchronous communication. CCA, some
timed CSP (Reed 1986, Gerth 1987) use the continuous time notion, whereas
ATP, CSP-R, ESTEREL and RTAG apply discrete time. Time-au!Jmented Petri nets,
depending on the approach, apply discrete or continuous notion of time. CCA,
time-augmented Petri nets, real-time temporal lo~ic, Timed CSP (Reed 1986)
~nd Timed LOTOS assume expl icitly the existence of a !Jlobal clock.Finally
In all but one FDTs, discussed here, nondeterminism can be expressed.
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This exception are deterministic real-time lan~ua~es like LUSTRE and ESTEREL.
It should be noticed, that almost all of FOTs use the asynchronous

cooperation between processes, and synchronous communication between actions
in the different processes. The exceptions are lan~uages LUSTRE and ESTEREL
which use synchronous cooperation and Chil I which applies asynchronous
communication. For the definitions of asynchronous or synchronous cooperation
and communication see (Bergstra 1985). .

Let us consider now the techniques used for the verification of the
discrete-event system specification written by the use of given FOT. For
specifications in CCA, reachability analysis and simulation of sample
trajectories of a discrete-event system are applied (Aggarwal 1985a,
Aggarwal 1985b). Time-augmented Petri nets descriptions of a discrete-event
system are verified by the use of reachability analysis (Merlin 1976,
Razouk 1985, Sajkowski 1986, Stotts 1986, Sajkowski 1987) and invariant
analysis (AlIa 1986, Hillion 1987). The specifications written in real-time
temporal logic, real-time languages and Timed CSP require assertion provin~

techniques for the verification of the properties of discrete-event systems.
The systems modelled by means of algebras for timed processes are verified
by the use of algebraic verification, e.g. applying observation equivalence
notion of CCS (Richier 1986). Discrete-event system model applyino RTAG FDT
can be verified by means of any algebraic verification technique.

As it is seen form the above comparison of FOTs, the time-augmented
Petri nets are one of the techniques suitable for the description of
discrete-event systems. We wi] I show, in the next sections, a new approach
to the appl ication of this FOT to COfTillunication protocol analysis.

4. PROTOCOL AS A TIME-DRIVEN SYSTEM

We have applied a description of a communication protocol using the
model of a time-driven system proposed by Coolahan and Roussopoulos (1983).
Therefore we describe a protocol using time-augmented Petri nets (see
Appendix), and then we add a global clock construction and we distinguish
the final transition in the modelled protocol.

The olobal clock construction (cal led also a drivino cycle or master
timing mechanism) has the significant role in the time-driven system
analysis. This construction consists of a marked place Pl' called master
timing process, and the transition t 1 connected to P, by an elementary loop.
The master timing process has the execution time T1 associated with it. In
our solution the execution time T, has a little changed semantics. It models
the delay before the expiration of which the protocol should provide the
required service. In classical time-driven systems, time T1 drives the
repetitive realizations of the remainder of Petri net model.

Such an approach comes from the fact, that even in the case of so
called time-independent protocol, its user will not be waitin~ endlessly for
the service provision. Therefore a certain time limit should be imposed on
the service provision. Hence, in practice, every real-life protocol is the
time-dependent one. It implies that the formal protocol specification is
really a formal specification of its timing behaviour. A new approach to the
verification of such a speci fication is presented in the next section.

Our model of a protocol has the following properties:
- The firing of transitions can be simultaneous.
- All events, i.e. the starting and ending of the process execution, are

related with a global clock.
- The cooperation between protocol entities is asynchronous.

The communication between protocol actions in (different) entities is
synch ronous.
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As an example we have used the user-server protocol (Brand 1983). The
time-driven model of this protocol is given in Figure 1.

FIGURE 1 The time-driven model of the user-server protocol

5. VERIFICATION OF A PROTOCOL AS A TIME-DRIVEN SYSTEM

The verification of the communication protocol specified as a time
driven system is performed in two steps. First the time constraints based
projection is applied to the time-driven model of a protocol. Then the
examination of the safeness of certain places in the reduced protocol model
is carried out.

5.1. Time Constraints Based Projection

The projection via time constraints is proposed as a new technique for
the avoidance of state explosion. It differs from the classical projection
technique (Lam 1984) , cause it reduces the set of reachable states and
hence the analysis complexity by means of the use of time constraints
derived from the protocol model. Therefore, the complete protocol model is
projected into a plane on which certain time constraints are satisfied.
Then the reduced model of a protocol is analysed only.

Hence, the time constpaints based ppojection is understood as the
creation of the image of the complete protocol model by the cut off these
parts of the model which wil I never occur for given time constraints.

5.2. Examination of the Safeness of Places

For the protocol described as a time-driven system, the protocol
properties can be verified by the examination of the safeness of certain
places of the constructions existing in this model, The safeness is verified
by means of formulae derived in (Coolahan 1983) for various constructions
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like: simple places, synchronized parallel paths, independent cycles and
shared resources.

5.3. Example

Lets verify the semantic property of the correct execution of the
purpose of the user-server protocol. It is defined here as the service
provision to the user before the time limit will expire, and is modelled by
the firing of the transition +done.

We first apply the projection to our protocol model. It eliminates, for
instance, the firing of the transition -alarm and is based on the following
time expression:

(T < T. )~(T + T ~ T )~(t < t )~ready Idle ready req idle +req -alarm
fI(Td <T' dl )I\(T. <2T' d1 -T d +T .)one I e wal tie rea y service

Then we add the place named SP (checking the service provision), and we
set the global clock execution time T1 equal to Tb, where Tb is the time
limit for the service provision (see Figure 2).

FIGURE 2 The projection of the protocol model for service provision
checking

We will use now the formula for the safeness of the final place in the
path of the synchronized parallel paths construction,(see Appendix). The
condition for the service provision is satisfied in the case of the
safeness of the place SP. Lets consider the final place SP in the path p.:
SP, and the path p.: READY REQ SERVICE DONE. Then we have: I

J - - -
(T +T +T +T )-T ~(T/l)-Tready req service done sp - b sp
that is:

Tready + Treq + Tservice + Tdone S Tb (2)
And similarly for the path Pi and the path Pk: READY WAIT

T d + T . ~ T (3)rea y walt - b
In order to describe the lack of the loss of messages, the following

time expressions should be added:
(T ~ T )I\(T ~T) (4)req maxreqdelay done - maxdonedelay
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6. CONCLUS IONS

Existing previously FDTs, without the notion of time included, have
been used for any discrete-event system description. However such a
description is insufficient for the purpose of sophisticated verification
and performance prediction, which consider time constraints.

We have discussed here seven discrete-event models, incorporating the
notion of time, which can be applied for the specification and verification
of communication protocols and other discrete-event systems. It is seen that
CCA, time-augmented Petri nets and algebras for timed processes have
practical significance in these areas. The most promisin9 new technioues are
CCA and algebras for timed processes. It comes from the fact that these FDTs
are based on a strong mathematical background.

The design and analysis of complex real-life protocols require the
existence of appropriate development tools {for a comprehensive survey of
the usage of protocol development tools see (Bochmann 1987)). We will
indicate now the tools for specification development, constructed for the
FDTs discussed here.

For CCA two tools have been developed, that is SPANNER (Aggarwal 1985b)
and SIMUL (Aggarwal 1985a). For the Selection/Resolution model, preceding
the CCA model, COSPAN tool has been designed (Katzenelson 1986). Time
augmented Petri nets have the biggest number of tools, both for
deterministic time and stochastic Petri nets, for instance TINA (Roux 1986),
GreatSPN (Chiola 1987), GTPN Analyzer (Holliday 1985), DEEP (Duaan 1985).
For algebras for timed processes CUPID/Analyst tool applying alaebraic
verification is available (Barghouti 198]). There are other tools developed
e.g. for LOTOS language (Turner 198]), however the tool for Timed LOTOS has
not been announced yet. For RTAGs there exists RTAG Analyzer (Anderson 1985).
The author is not aware of the tools existin0 for other FDTs discu5sed here.

Therefore, one of the topics for further research is the desi0n and
implementation of software tools for other discrete-event models like
real-time temporal logic, real-time languages and timed CSP, in order to
make them more attractive.

The second direction is the addition of verification tools to existing
implementation oriented tools, e.g. RTAG Analyzer.

The third question which can be considered is the application of
discrete-event simulators, used up to now to flexible manufacturing systems
analysis - e.g. SEDRIC (Valette 1985), to the examination of communication
protocols and other discrete-event systems.

The fourth problem which remains to be done is the development of FDTs
themselves and the determination of the impact of a discrete-event system
modelled on the FDT used.

The fifth point that should be addressed is a separate examination of
protocol engineering and discrete-event systems fields in order to provide
formal definitions and reasonable taxonomy of notions relevant to them.

Finally, the presented verification technique should be further
developed in order to apply to the complete set of protocol properties and
to make it more friendly to its users.

APPENDIX

Time-augmented Pet~i neta (Coolahan 1983)

In this Petri net model, places represent processes and a nonnegative
execution time Tk is assigned to the each place k. The input transition to
the place models the beginning of the execution of the process. A transition
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will be able to fire if all its input places possess tokens and for all of
them the required execution times have expired. The transition will fire
immediately when is enabled. The firing time of the transition is equal to
zero. If more than one transition is enabled, then may happen that one of
them wi I 1 fi re only. Then the choice of the transition is nondeterministic.

A formula for the safeness of the final place p. f in the path p. of a
synchronized parallel paths construction, in the pre~ence of time, lis the
fol lowing (Coolahan 1983):

P. - P. ~ (Tl/F. f) - T. f (Al)
J I I I

where:
T

J
: global clock execution time

P. (P., respectively): time of the traversing the path p. (p., respectively)
I J I J

Fif : maximum relative firing frequency of the input transition to the final
place Pi f

Tif : execution time of Pi f'

7'hp- notation used in the pmtocol model

V: a process
T: the execution time of a process
xY transmitted message
-x: sending a message
+x: receiving a message
T

x
: sojourn time of a message in the channel

lossx: the loss of message
T d I : maximum allowed delay for a message X in a channelmaxx e ay
t (t , resp.) : global time of sending (receiving) message X-x +x
t < t nondeterministic choice of -y among transitions -y, +x.-y +x
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When we intend to control a discrete event system (DES) we need to
describe the system behavior in a mathematical form. Some of formal
representations, such as, a formal language, a sequential machine or a finite
automaton have been used for this purpose (Ramadge and Wonham (1982),
Cohen et al (1984)). A time domain representation was also used by Ho and
Cassandras (1983). A formal representation is a kind of external or a black
box type of model in a sense that it does describe the system input output
relation in terms of state transition but not describe the structure of the
system which actually realizes state transitions. When we want to realize
a control system, we need a structural model of a system. By structural
model, we mean the model which describes the structure of the system and
a state transition mechanism in the system. The structural model must
also be capable of representing sufficiently large class of DES.

We shall utilize a Petri net as a structural model in analysis and
design of a control system of DES since the Petri net has been recognized as
a suitable mean of describing a DES, particularly when a system is
asynchronous concurrent (Petri 1962, Peterson 1981, Reisig 1985). In
contrast with a state machine, a Petri net has no explicit input and output
from the outside in its definition. Presence of inputs from the outside is
implicitly assumed in selecting a transition to fire among fireable
transitions. Presence of outputs to the outside is also implicitly assumed
to be a sequence of markings observed from the outside. This is, however,
not the case in real systems. We are often prohibited from access to some
of transitions, and token counts on some of places are not seen from the
outside. We need, therefore, to define explicitly the external input and
output ports of a Petri net.

In this paper we first describe briefly the outcome of the authors' study
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conducted on a Petri net with the external input and output: they are;
modeling capability, observability, decision-free fireability, reachability
and control system design. Then we extend some of the results,
reachability in particular, to a wider class of Petri net. The major
contribution of this paper is, therefore, to give a necessary and sufficient
condition for reachability in a class of Petri nets and to utilize it in the
control system design of DES.

The reachability problem of a Petri net, which is to decide whether or
not a marking is reachable in a Petri net from its initial marking, has been
drawing considerable attention since many problems defined on the Petri
net are reducible to the problem. The structure of the reach ability set has
been extensively studied. Though it may be very complicated for a general
Petri net, the reach ability set is shown to be semi linear and decidable for
some restricted classes of Petri nets. They are less-than-6-places Petri
nets (Hopcroft and Pansiot 1979), reversible nets (Araki and Kasami 1977),
persistent nets (Landweber and Robertson 1978, Grabowski 1980, Muller
1980, and Mayr 1981) and weakly persistent nets (Yamasaki 1981, Yamasaki
1984). Necessary and sufficient conditions for reachability (NSCR) have
also been obtained for restricted classes of Petri nets, such as for marked
graphs (Murata 1977) , for forward conflict-free (Ichikawa et al 1985), for
constrained firing nets (Ichikawa and Hiraishi 1983) and backward
conflict-free Petri nets (Hiraishi and Ichikawa 1986) .

In this paper, a NSCR is obtained for a class of trap circuit Petri nets
where any fundamental circuit contained in the net is a trap. This result is
extended to a class of deadlock circuit Petri net. A sufficient condition
for reachability which seems to be very close to necessary and sufficient is
obtained for a class of trap containing circuit Petri net where any
fundamental circuit contains a trap.

The necessary and/or sufficient condirtions are then utilized for
designing the control system of DES represented by these classes of Petri
nets.

2. Definitions and Notation

2.1 Petri net

A Petri net ( a net) is a five-tuple,
M = ( P, T, B+, B-, m), C = (P, T, B+, B-) (1)

where P = {Pl' P2"'" Pm} is a finite set of places; T = {t1 , t2,... , tn} is a finite

set of transitions; P () T= <I> ; B+ = [b+j i] and BO = [b-; i] are mx n incidence
ma t ri ces from transitions to places and from places to transitions,
respectively, B = B+ - B- is used whenever convenient; m : P -+- N, N is the
set of natural numbers, is a marking; C is a Petri net sturucture.
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Marking and firing
We write m(O), 0 C P, to indicate the token count in a set of places 0,

at the marking m. If m(O) = 0 we say that 0 is token-free or unmarked at
the marking m. If m(O) == 0 we say that 0 is not token-free or marked.
Without confusion, we also write a marking in vector form. m = (m(P1)'

m(P2), ... ,m(Pm))T is the marking denoted as the m-dimentional non-negative

integer vector.
Transition t j is fireable when each input place p i of t j contains at least

b -j j number of tokens. Firing of transition t j results the removal of b-j i

tokens from each input place p i and the addition of b+j j tokens in each

output place p i of the transition t j.

When we intend to control a system represented by a Petri net from the
outside of the system, we need to introduce the outside time-scale into the
Petri net. So we assume that transitions in the net fire at discrete time,
k == 0,1,2,···, which are not necessary at regular intervals. We allow more
than one transitions to fire at a time when they are simultaneously fireable.
We do not allow, however, a transition to fire more than once at a time even
if it is possible by token counts in the input places. A firing vector at
time k, u(k), is am-dimentional {0,1} vector. Its j-th conponent is one if
transition t j fires at time k and zero if not. Thus, we have the marking
transition equation and the firing inequality.

m(k+1) = m(k) + B u(k), m(O) == mO, k = 0,1, ...

m(k) ~ B-u(k), k = 0,1, ...

(2)

(3)

We can extend the definitions and notation to the sequence of transition
firings. Let a firing sequence be a == u(0)u(1 )···u(k). A firng count vector
(firing count) a is a m-dimentional positive integer vector whose j-th
component is the number of firing occurence of transition t j in a firing
sequence a. A sequnce B is said to be included in a firing sequnce a if G:2 Ci.
A firing count x is said to be fireable if it has a firing sequence a =

u(0)u(1 )···u(k) where each u(k) satisfies Inequality (3) at each time k.
When a firing count x fires in a Petri net M = (C, m) , the resulting marking
m' is given by

m' = m + B x (4)

We call Equation (4) the matrix equation of Petri net M.
We also write m [a > m' , where a is any of a firing count, a firing

sequence, a firing vector or a set of transitions, to indicate that a is
fireable at marking m and that the firing of a yields marking m'. When we
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do not need to specify the rsulting marking we simply write m [et. > to
indicate et. is fire able at marking m. For example, Equation (2) together
with Inequality (3) are writen as m(k) [u(k» m(k+ 1).

Given a Petri net M and a firing count x, a firing count subnet is a
subnet of the Petri net, Mx == ( Px, Tx, B+x, B-x, mx), which consists of a set
of transitions included in the firing count x and their incident input and
output places, where B+ x, B-x, and mx are, respectively, the projection of
B +, B- and m on x. If a firing count x has to fire, each transition in the
firing count subnet Mx must fire at least once.

The set of reachable markings or the reachability set R(C, mOl of a
Petri net M == (C, mOl is {m I mO [x> m, for some x}. If m E R(C, mOl we
say that the marking m is reachable in M.
Substructure

Let t j be a transition. Then' t j == { p i I b-j j ~ 1 } and t j' == { p j I b+j i ?;

1} are the set of input places and the set of output places, respectively, of
transition t j. The set of input transitions, • p j == { t j I b+ i i ~ 1 }, and the set

of output transitions, p j'== { til b-j j ~ 1 } of a place p j are similarly defined.

We extend this notation to a set of transitions or places, such as, . S, S . for
SeT and' Q, Q • for Q c P, where, for example, 's == { pIp E 't, t ESC T }.

A Petri net is a single arc if each b+i i and b-j j is equal to either zero
or one.

A deadlock 0 of a Petri net M is the set of places defined by
O=={pl'OcO'}

that is, any transition which has at least one output place in a deadlock has
at least one input place in the deadlock. When a deadlock once becomes
token-free, it remains token-free by firing of any transition. A place which
has no input transition is the smallest deadlock. We call this a single place
deadlock.

A trap Tr is the set of places defined by
Tr == { p I Tr • c • Tr }

that is, any transition which has at least one input place in a trap has at
least one output place in the trap. When a trap has at least a token, then it
never becomes token-free by firing of any transition. A place which has no
output transition is the smallest trap. We call this a single place trap.

A directed path (path) in a Petri net is a chain PI t1P2 t2o .. tsPs+ l' where

p jE ' t j and p i+ 1E t i " i == 1,2, ...s. A directed path is a directed circuit

(circuit) if p j == P 5+1' A circuit is fundamental if it is not a sum of other

circuits.A set of places included in a path or a circuit is simply called,
without confusion, a path or a circuit, respectively.
Restriction of Petri net

A Petri net is a marked graph if each place has at most one input
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transition and at most one output transition.
A Petri net is structurely forward (backward) conflict-free if each

place has at most one output (input) transition.
A Petri net M is a trap circuit Petri net (tc-net) if each fundamental

circuit in M is a trap. Similarly a Petri net M is a deadlock circuit net
(dc-net) if each fundamental circuit in M is a deadlock. A tc-net is
equivalent to a normal net defined by Yamasaki(1984). The autors use the
name tc- rather than normal since the name tc-net indicates the structural
nature of the net and suggests the significance of a dc-net.

Given a Petri net M = (P, T, B+, B-, m), a reverse net is a Petri net M-1 =
(P, T, 8+', B-·. m) where B+' = B- and B-' = B+. The reverse net is the Petri
net obtained by reversing the direction of all the arcs of the original Petri
net.

A Petri net is persistent if for all t1, t2 E T, t1 = t2 and any reachable
marking m, m [t1> and m [t2> imply m [t1t2>; that is, if any two transitions
are fireable at a reachable marking the firing of one transition does not
make the other unfireable (Landweber and Robertson 1978). A Petri net is
weakly persistent if for any two sequences a, B ,a = B and any reachable
marking m, m [a> and m [B> imply m [a y > for some y which Y = B
(Yamasaki 1981).
Additive independance of integer vector

A set of integer vectors x i, i=1,2, ... ,r, is said to be additively
independent if an equation I: i a iX i = 0, a iE {-1,0,1} holds if and only if

all a i are zero.

1.2 Petri Net with External Input and Output

When we intend to control a system represented by a Petri net from the
outside we must have external input ports in the Petri net. The input ports
are provided by adding an auxiliary input place, called an external input
place, to a transition we want to control its firing. We may not be able to
control firings of all transitions from the outside. Some of transitions may
not be controlled and are left to fire spontaneously when they become
fireable without intervention from the outside. Similarly, we may not be
able to observe token counts in all the places. Token counts in some of
places are not seen from the outside. Thus we have the following structure
of a Petri net with external input and output.

A Petri net with external input and output (PNIO) is a four-tuple;

(C, Q, R, m) (5)
where C is a Petri net structure; Q = ( q(t j) I tiE U c T} is a set of

external input places, and ReT is a set of external output places.
A control input from the outside to a PNIO is a sequence of marking on
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Q, v(k), k = 0,1,2,···. which we are able to set at any sequence of
non-negative IQI-di mentional integer vectors.

After a control input is given, a PNIO has no intervention from the
outside with regard to the firing of fireable transitions. Transitons which
are fireable are left to fire spontaneously. The following notion of
decision-free firing (df-firing) thus becomes necessary.

A Petri net is decision-free at marking m if all the transitions
fireable at the marking m can fire simultaneouly, that is, the net is
behaviorally conflict-free at the marking m. Decision-free firing
(df-firing) is the spontaneous firing of transitions without further
intervention from the outside in a decision-free Petri net at marking m. A
Petri net is decision-free (df-net) if it is decision-free at any marking
reachable from the initial marking through a sequence of df-firing. We use
the name decision-free instead of conflict-free, since conflict-free has
long been used to indicate structual conflict-free.

3. Of-firing Petri Net

3.1 Of-firing Petri net is equivalent to Turing Machine

In this section we shall discuss the modeling capability (computational
power) of a df-net.
It is well known that;
-the modeling capability of a Petri net is more than that of a finite state
machine since a Petri net can simulate the machine,
-the modeling capability of a Petri net is less than that of a Turing machine
since a Petri net has no ability of detecting zero token of a place when

it is unbounded, and
-any extention of the Petri net which actually adds the ability of
detecting zero token to a Petri net makes a net equivalent to a Truing
machine.

In a first look a df-net seems to be a restriction of a Petri net since the
net is constrained such that it is behaviorally conflict-free at any marking
reachable by a sequence of df-firing. It is quite interesting to know,
however, that the modeling capability of a df- net is equivalent to a Turing
machine.

This is proven by showing that a df-firing Petri net can simulate a
register machine which in turn is equivalent to a Turing machine.

A register machine is a two-tuple (Re, Pr) where Re is a finite set of
registers which can store any large non-negative integers; Pr is a program
which is a finite sequence of instructions. Shepardson and Sturgeis (1963)
has shown that a register machine with a program consists of instructions
of the following three kinds can simulate a Turing machine:
(1) I(n): increase register n by 1,
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(2) D(n): decrease register n by 1 if it is not zero,
(3) J(n)[s]: Jump to statement s if register n is zero.

To simulate a register machine by a df-net, we construct a df-net
consists of three kinds of elementary df-nets each of which can simulate
each of the above three kinds of instructions (Sasaki 1986).

Let a given register machine has r number of registers and a program
consists of s number of instructions. Let Pr1'Pr2 •... 'Prr' be places which

represent the registers, and let PeO,Pe1,Pe2, ... ,Pes' be places which represent

program counters. For each instruction contained in the program, we use
one of three elementary df-nets shown in Flg.1 a), b) and c) corresponding to
I(n). D(n) and J(n)[s] of the instruction, respectively. Note that the obtained
net is df-fireable starting any token count in Pri ' i=1,2, ... ,r and a token in

PeO' since the elementary nets are all df-fireable and the program of the

register machine must be consecutively executable. Thus we
have the following theorem.
Theorem 1 A df-net is equivalent to a Turing machine.•

This property of the df-net is quite desireable in one hand since it
assures that the df-net can represents any of real life DES as far as they
are rigorously described. This property is not at all desireable, on the
other hand, in the sense that it prohibits us from analyzing most of
significant problems concerned with the property of the df-net. Typical
example of these is the df-fireability itself. The df-fireability problem,
which is defined as to decide whether or not a Petri net M = (C, m) is
df-fireable, is undecidable since the problem is easily shown to be
equivalent to the halting problem of the Turing machine. This property
requires us to restrict the df-net within a such class that some of
significant problems become decidable.

6) I(n) b) D(n) c) J(n)[s]

Figure 1 Petri nets representing instructions
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3.2 Making a Petri Net df-fireable

Even if the df-fireability problem is undecidable, It may be possible to
make a given Petri net df-fireable by chasing properly a set of external
input places, an initial marking and/or a control input sequence. From this
point of view, the following classification of the df-fireability becomes
significant.
Level 0: a Petri net is df-fireable at level 0 if it is df-fireable for any
initial marking, any choice of external input places and any control input
sequence.
Level 1: a Petri net is df-fireable at level 1 if there exists a set of
external input places such that it is df-fireable for any initial marking and
any control input sequence.
Level 2: a Petri net is df-fireable at level 2 if there exist a set of external
input places and a control input sequence such that it is df-fireable for any
initial marking.
Level 3: a Petri net is df-fireable at level 3 if there exist a set of external
input places, an initial marking and an control input sequence such that it is
df-fireable.

The following theorems which have been obtained by the previous
research (Ichikawa, Yokoyama and Kurogi 1985) will be usefull;
Theorem 2 Level 0 and Level 1 are equivalent..
Theorem 3 A Petri net is df-fireable at level if and only if it is
structurely forward conflict-free .•
Theorem 4 A Petri net is df-fireable at Level 2.•

Theorem 4 is obvious, since any Petri net can be made df-fireable at
Level 2 by adding an external input place to each transition which has input
places in common with other transitions. Level 3 is, therefore, of no
significance in determining a set of external input places in order to make a
Petri net df-fireable.

4. Observability of Marking

When a set of external output places R is a proper subset of the set of
places P, the marking on P is not directly observed and must be estimated
from the observed sequence of the marking on R. The observation problem
thus arises. Once the initial marking is estimated and the control input
sequence is known, the current marking is immediately computable. The
observation problem is, therefore, essentially to estimate the initial
marking of the net. Without loss of generality we shall limit our study
within a class of Petri nets with the external output (PNO).
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Observation Problem
Given a PNO. estimate the initial marking from the observed sequence

of the marking on the set of external output places; is the observation
problem.

The problem can be devided into two problems.
Firing sequence problem: Given a PNO and an observed output sequence,
esti mate the firing sequence of transitions.
Initial marking problem : Given a PNO and a firing sequence a, estimate
initial markings that give the firing sequence.

The necessary and sufficient condition for the solution of the firing
sequence problem to be unique is given by the previous research (Ichikawa
and Ogasawara 1986).
Theorem 5 Given a PNO and an observed output sequence, let BR be the
projection of the incidence matrix B onto only the set of external output
places R. The firing sequence that gives the observed output sequence can
be uniquely determined if and only if the set of column vectors of the matrix
BR does not contain zero vector and is additively independent..

The initial markings which give the specified sequnece of df-firing can
be obtained by the following equation. This is derived by successive
substitution of Equations (2) and Inequality (3):

(6)

k-1

mOk = L b-.i - L L t j

Ij E a(k) n=1 Ij E a(n)

-0 0m k j = m k j + b-. i

Equation (6) constitues an algorithm to estimate the initial marking
from the observed sequence of the output marking. The algorithm is
effective for a large-scale df-net, since the computation is straightforward
and contains no iterative procedure.

5. Necessary and Sufficient Condition for Reachability

In this section we shall give the necessary and sufficient condition for
reachability in a trap circuit Petri net(tc-net).

As described in Section 3, a df-net is equivalent to a Turing machine.
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The reachability problem of the df-net is, therefore, undecidable. To
control a DES represented by a Petri net, we have at least to know whether
the target marking is reachable or not. At this point, we shall limit our
concern within a such class of Petri net that the reachability problem is at
least decidable.

We shall deal with a single arc Petri net. A single arc Petri net is
equivalent to a Petri net in its modeling capability when we consider a
conventional Petri net, that is, the Petri net where the firing of any fireable
transition is subject to the control from the outside. They are, however, not
equivalent each other in the class of df-nets. A df-net employs mutiple arc
in the simulation of a register machine in order to realize a type of
instruction J(n)[s] or, in other words, in order to have a capability of
detecting zero token. This capability can not be achieved by a single arc
df-net. Thus a single arc df-net is not equivalent to a Turing machine. So
we can expect that the reachability problem is decidable for a class of
single arc df- nets and this is true as shown in succeeding sections.

Decidability is not only our concern for an application to real systems
since even if it is decidable the amount of computation may exceed our
capasity. It is quite desireable to have a necessary and sufficient condition
for reachability (NSCR) expressed in terms of an initial marking, a target
marking and a structure of a Petri net.

NSCRs have been obtained so far for some restricted classes of Petri
nets. A marked graph (Murata 1977). a structually conflict-free Petri net
(Ichikawa, Yokoyama and Kurogi 1985, Hiraishi and Ichikawa 1986) are these
classes. If we take a close look at these conditions so far obtained, we
find that the specified structure, such as marked graph and structurely
conflict-free, is only sufficient condition for the obtained NSCRs to be true.
This finding suggest us that it may be worthwhile to try to answer the
qestion under what structural constraint a NSCR is obtainable. This is
done in the following.

To obtain a NSCR expressed in terms of an initial marking, a target
marking and a Petri net structure means that we must be able to estimate a
sequence of markings, without computation, to such an extent that
Inequality (3) can be verified at each time k = 1,2,.... We shall seek a
structure that enables us this verification.

5.1 Preparation

A Petri net considered in this section is a single arc Petri net.
Lemma 1 Let a Petri net be M = (P, T, B+, B-, me). If a firing count vector
x is fireable at me, then the following two conditions hold:
1) all deadlock in the firing count subnet Mx are marked at the marking mO,
and
2) all traps are marked in Mx at m' = mO + B x.
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proof: Condition 1) : If there is a token-free deadlock in Mx at mO, then a
transition having an input place in the deadlock can not fire. This violates
that any transition in Mx must fire at least once.
Condition 2) : If there is a token-free trap in Mx at mO, then a transition
which has an output place in the trap do not fire in the firing sequence. This
violates that any transition in Mx must fire at least once .•
Lemma 2 Let a Petri net be M = ( P, T, B+, B-, mO). If no transition can fire
at a marking m, then there exists at least a token-free deadlock.
Proof: Assume that a transition, say t i' can not fire at m. It has at least

one token-free input place p k' Let a transition which has Pk as one of

output places be t s. The t s cannot fire at m. Repeat this procedure, then
we reach either of the following two cases since the Petri net is finite:
Case 1 : there is a token-free single place deadlock.
Case 2 : there is a token-free circuit. In this case, if there is no path which
is to deposit a token into the circuit then the circuit is token-free deadlock.

If there is a path which is to deposit a token into the circuite, we find the
path is token-free by applying the above procedure. Repeating this
procedure, we finally have a token-free deadlock.•
Lemma 3 Given a Petri net M = (P, T, B+, B-, mOl and a firing count vector x.

If ml
= mO+ B x ~o, then all single place deadlocks in Mx are marked at mO.

Proof: If there is a token-free single place deadlock at mO, then token count
of the place at ml must be negative after firing of its output transitions.
Lemma 4 If a Petri net M = (P, T, B+, B-, mOl has no circuit, then the
marking ml is reachable in M if and only if the equation ml = mO + B x has a
non-negative integer vector solution.
Proof: Only-if-part is imeadiate from Equation (2).
If-part: Assume that Mx has no fireable transition, then from Lemma 2
there exists a token-free deadlock. Since M has no circuit, this means there
is at least one token-free single place deadlock. Since this violates Lemma
3, there must exists at least one transition fireable. Consider the situation
that the transition fired. Let the remainning firing count vector be x'.
Then Mx' must have at least one transition fireable from the same reason
described above. Repeating this procedure, we can generate the firing
sequence which satifies a specified firing count vector..
Lemma 5 Let a Petri net be M = (P, T, B+, B-, mO). A marking ml is

reachable through a firing sequence a in M if and only if the marking mO is
reachable through the reverse sequence a -1 in the reverse net M- l = (P, T,
B-, B+, ml).

Proof: Proof is immediate if we subsitute mO by ml , ml by mO, B- by B+ and
B by -B in Equations (2) and Inequality (3) .•
Lemma 6 Let a Petri net M = (P, T, B+, B-, mOl be a tc-net. Then any
marked circuit in M does not become token-free by firing of any transition
in M.
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Proof : Obvious from the definition of tc-net..

5.2 Trap Circiut Petri Net

Lemma 2 and 4 indicate importance of the prE!sence of token-free
deadlock of circuit type in the firing sequence. In this respect, a Petri net
that any marked deadlock does not become unmarked during a firing
sequence is of significance. And from Lemma 6 the tc-net has such a
property.
Theorem 6 Let a Petri net M = ( P, T, B+, B-, mOl be a tc-net. Then a
marking m' is reachable in M if and only if there exists a non-negative
integer vector x which satisies the following two conditions,
1) x is the minimal solution of m' = mO + Bx, and
2) all deadlocks in Mx are marked at mO.
Proof : Only-if-part: Condition 1) is immediate from Equation (4).
Condition 2) is also immediate from Lemma 2. If x is not the minimal
solution of m' = mO + Bx then there exists the minimal solution x' ~ x.
Since Mx· c Mx for x' ~ x, there is no token-free deadlock in Mx· if there is no
token-free deadlock in Mx.
If-part: From Lemma 2 and Condition 2) there exists at least a transition
that can fire. Consider the situation after the transition fires. Let the
remainning firing count vector be x'. There is no token-free deadlock of
circuit type in Mx' from Lemma 6 , and there is no token-free single place
deadlock from Lemma 3. There exists, therefore, no token-free deadlock in
M x' and thus there is at least one transition fireable. Repeating this
procedure we can generate firing sequence from mO which satisfies the
firing count vector x.•

While a number of solutions of the matrix equation of a Petri net may be
infinite, a number of the minimal solutions is finite. So the reachability in
a tc-net is decidable within finite amount of computation.

Theorem 6 includes as its sepecial case the NSCR for a marked graph by
Murata(1977) and the NSCR for a structually forward conflict-free Petri net
(Ichikawa, Yokoyama and Kurogi 1985).

5.3 Deadlock circuit Petri net

Using Lemma 4 we have the following NSCR in a dc- net.
Corollary 1 Let a Petri net M = ( P, T, B+, B-, mOl be a dc-net. Then a
marking m' is reachable in M if and only if there exists a non-negative
integer vector x such that the following two conditions hold;
1) x is the minimal solution of the equation m' = mO + B x, and
2) all traps in Mx are marked at the marking m'.•
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5.4 Sufficient Condition for Reachability

If we carefully examine the if-part of the proof of Theorem 6, we find
it most essential that a marked deadlock in the firing subnet at the initial
marking does not become unmarked by any transition firing. The tc-net is
sufficient but not necessary to assure this property. We can weaken a
little bit the restriction imposed on the structure of Petri nets.

A Petri net is a trap containning circuit Petri net (tcc-net) if any circuit
in the net contains a trap. Then we have next.
Theorem 7 Let a Petri net M = ( P, T, B+, B-, mO) be a tcc-net. Then a
marking ml is reachable in M if there exists a non-negative integer vector x
which satisies the following two conditions,
1) x is the minimal solution of ml = mO + B x, and
2) all.deadlock in Mx conntain marked trap at mO.
Proof: If-part of the proof for Theorem 3 is also true for a tcc-net..

The reason why the condition 2) in Theorem 7 is not necessary but
sufficient is the following. As we see in Lemma 2, the necessary
condition requires token(s) be in a deadlock, not necessarily token(s) be in a
trap within a deadlock. When token(s) exists in a deadlock and not in a
contained trap at the initial marking it may be deposited into the trap
during the firing sequence before it is taken out of the deadlock.

This gives us the feeling that this sufficiency is very close to the
necessity. From practical point of view, it is worthwhile to examine a
given net to be a tcc-net when it is not a tc-net.

A deadlock containning circuit Petri net (dcc-net) is similarly defined
as a ltc-net and we have;
Corollary 2 Let a Petri net M = ( P, T, B+, B-, mO) be a dcc-net. Then a
marking ml is reachable in M if there exists a non-negative integer vector x
which satisies the following two conditions,
1) x is the minimal solution of ml = mO + B x, and
2) all traps in Mx are marked at mI.

6. Control System Design

There are two types of control in a DES represented by a Petri net. One
is to control a firing sequence such that the sequence follows a prescribed
firing sequence. We call this type of control a firing control. The other is
to bring a Petri net to the specified marking. We call this type of control a
marking control. For each type control, we have to carry out two tasks.
One is to provide a set of the external input places, and the other is to
determine a control input sequence on the set of external input places.

We shall limit our study within the class of tc- and dc-net so that the
NSCR obtained in the last section are utilized in the control system design.
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6.1 Firing Control

The firing control may be devided into two classes. One is the firing
sequence control where the firing sequence has to follow the prescribed
sequence. The other is the firing count control where the specified firing
count has to be realized. We shall discuss here only the firing sequence
control, since the firing count control is similar with the marking control
in its concept and in available theorems.

The initial marking which enables a specified firing sequence is
already obtained in Section 3, Equation (6) for a Petri net without
particular restriction.

If the set m° Ii m° obtained by Equation (6) for a prescribed firing
sequence a is non-empty, then a is realizable as a df-firing sequence
starting from an initial marking mO E m°Ii mO. We say this case the
initial marking control for a prescribed firing sequence. This means that we
need only to set the initial marking and need not to apply a control input
sequence.

If the set m° Ii m° for the prescribed firing sequence a is empty then
we can not realize a by an initial marking control and we need a control
input sequence.

The following algorithm will give the firing sequence control.
Algorithm 1
1) Compute mO and mO by Equation (6) for a prescribed sequence of firing o.
2) If the set mO Ii mO is non-empty then choose a mO E mO Ii mO. Deposit
the mO over the places and let the net start the df-firing. The df-firing

will realize the prescribed sequence of firing. If m°Ii m° is empty,
then go to Step 3).
3) Choose a mO E mO. Compute ml = mO + B 0, where a is the firing count of

o. Let S be the set of transitions which are not fireable in mI. Add an
external input place q(t) to each transition t E X + T - S, where X is
the set of transitions included in the firing sequence o. Q = {q(t)} thus
formed is the set of external input places.
4) Deposit tokens sequentially into coresponding external input places
according to the prescribed firing sequence.•

6.2 Marking Control

We shall again limit our study within the classes of tc-, dc- ,ttc- and
dcc-nets, in order to utilize the necessary and/or sufficient conditions for
reachability in these classes of Petri nets.

First of all, we shall show that a tc-net which satifies the NSCR is
weakly persistent.
Theorem 8 A Petri net M = (C, m) is weakly persistent if and only if it is a
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tc-net and all deadlocks are marked at the initial marking m.
Proof: Only-if-part : Consider firing sequences a, S and a y with Y = if .
Since the sequences a and Bare fireable, a firing count subnet Ma S = Ma U

M S = Ma y has no token-free deadlock. Therefore, the sequence a y is

fireable.
If-part: Assume the net is not a tc-net, then there is a circuit c which is
not a trap. There are at least two transitions which have their input places
in c. One is transition t that has no output place in c. The other is
transition t' that has an output place in c. Clearly a sequence t' first then t
is always fireable, but a sequence t first and then t' is not allways fireable.
The net is not, therefore, weakly persistent.,
Firing count bounded df-firing

Given a Petri net M = (C, m) which is a tc-net and a firing count vector x,
a firing sequence defined by the following procedure is a x-bounded
df-firing sequence.
1) Set k = 0, m(O) = mO and x(O) = x.
2) Let u(k) be the maximal df-firing vector at m(k).
3) If u(k) = 0 or x(k) - u(k) = 0, then stop. Otherwise, let x(k+ 1) = x(k) -
u(k), m(k+ 1) = m(k) + B u(k) and k=k+ 1, then back to Step 2).,

A x-bounded df-firing sequence is said to be df-fireable if there exists
an integer K such that x = L: K k=O u(k).

Then we have the following.
Theorem 9 If a Petri net M = (C, m) is a tc-net, then x-bounded df-firing
sequence is fireable if x is fireable.
Proof: For any two firing count vector x1 and x2 ' x2 ~ X 1 which are fireable,

x3 = x1 - x2 has firing sequence, since the tc- net is persistent from

Theorem 8. Assume that a df-firing sequence come to time k. x(k) = x 
(x-x(k)) has a firing sequence since x-x(k) has a firing sequence
u(O)u(1)u(2)"'u(k-1), and x(k) ~ x. Therefore, there is at least one fireable
transition at m(k) which is contained in x(k). u(k) becomes zero if and only
if x(k) becomes zero.,
Theorem 10 Let a Petri net M = (C, m) be a tc-net. Assume that the target
marking mf is reachable in M. Let s be a minimal solution of ml = mO + B s
and has a firing sequence. Let S be a set of transitions which are fireable
at the marking mI. Let Q = { q(t k) I t k E S } be a set of external input

places. Deposit Sk number of tokens in each external input place q(t k) .

Then the marking ml is reached by df-firing in M.
Proof: It is obvious from Theorem 9 that each t k in S fires Sk times. We

only need to show that a transition t j in T - S which is not fireable at mf

actually fires s j times. It is clear that t j can fire at least s j times
since s has df-firing sequence. We need, therefore, to show that the firing
of t j ends after Sj times firings. Assume that t j can fires s j+ 1 times.
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Since s is the solution of m' = mO + B s, and has a firing sequence, there
exists a firing sequence which leads to m' without firing t j s j+i times.
This means that t j can fire at m'. since the net is weakly persistent from
Theorem 8.
Control Design Procedure for Marking Control

Given a tc-net M = (C, mO) and the target marking ml , the procedure to
find the set of external input places and the control input is given by the
following.
Algorithm 2
1) Solve Equation ml = mO + B x and find the minimal solutions, Sa,Sb •...

If no solution of the equation exists ml is not reachable.
2) Among the minimal solutions find one that satisfies the conditions of
Theorem 6. If no such solution exists ml is not reachable.
3) Let S be the set of transitions which are fireable at mI. Add an

external input place q(t 5) to each t 5 E S, and let the set O(S) = { q(t 5) I t

5 E S } be the set of external input places.

4) Deposit coresponding number of tokens s 5 to each q(t 5) at time k=O.

Then let M be df-firing.•
Theorem 6. 9 and 10 assure that the net reaches to the target marking

mI. Token number s is not necessarily deposited all at time k=O. They can
be deposited consecutively into O(S) at any time k such that L k v(k) = s.

Similar design method is developed for a dc-net. utilizing Collorary 1
instead of Teorem 5.

6.3 Firing Count Control

The difference between the firng count control and the marking control
is that in the former the firing count vector x is prescribed and in the latter
the initial and the target markings mO and ml , respectively, are specified.
The matrix equation m' = mO + B x connects these two. The design
procedure for the firing count control is therefore obvious.
Algorithm 3
1) Find mO ~ 0 and ml ~ 0 such that m' = mO + B x for a given firing count
vector x.
2) If there is a token-free deadlock in Mx at mO. add tokens until all the
deadlock are marked.
3) Follow Algorithm 2 from Step 3).

In this case any non-negative integer vector x is made fireable by
properly setting the initial marking and manipulating the control input
seqI,Jence.
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7. Illustrative Example

A tee-net shown in Figure 2 is used to illustrate how the necessary
and/or sufficient conditions work in the control system design. The net is
tcc- but not tc- since a circuit {p" P2' P3} is not trap but contains a trap

{p" P2}' Note that the Petri net is not a marked graph, a structurelly

conflict-free, nor a free choice.
We shall examine whether a target marking m' = (0 a 2 1 O)T is

reachable from the initial marking mO = (0 a a 1 1 a )T. The matrix
equation m' = mO + B x , where the incidence matrix B = -1 1 1 a a a

1-1-1 1 a a
1 a 0-1-1 a
a 0-1 1 a a
a a a 0-1 1

00001-1

has the minimal non-negative solution x = (2 1 1 1 1 1)T. The firing count
subnet Mx is Mx = M. There exists a token-free deadlock {p" P2' P3} in Mx

at mO as shown in Figure 3 a), the target marking mf is not reachable in M.
Instead, m' = (1 1 a 1 1 O)T is reachable from mO = (1 a a a 1 O)T, since

any deadlock in Mx, x = (2 1 1 1 1 1)T, contains a marked trap at mO as shown
in Figure 3 b). The scheme of the control system obtained by Algoritm 2
is shown in Figure 4. The firing sequence is in this case either t, t5 ts t2 t,

t3 t4 or t, t4 t3 t, t5 ts t2, either sequence can bring the net to (1 1 a 1 1 0)T.

Figure 2 A structure of a tee-net
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a) Token-free deadlock {P1' P2 ' P3}

P3

b) No token-free deadlock

Figure 3 Deadlocks at the initial marking

Figure 4 A control scheme
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ABSTRACT

Digital signal processing systems constitute a special class of discrete event
systems where events correspond to samples of signals. A data flow description of
such systems can capture much of the information required for high performance,
cost-effective, parallel implementation. A formal model called synchronous data
flow (SDF) is a useful special case of data flow and subclass of discrete event sys
tems where the events are deterministic and periodic. An SDF description of an
algorithm can be first analyzed for implementability, then an implementation can
be synthesized. In the analysis phase we can check for (1) stability of the buffers,
(2) freedom from deadlocks, and (3) adequate concurrency to meet a given perfor
mance specification. The synthesis phase consists primarily of constructing a
periodic schedule and mapping the algorithm onto paral1el processors. The
resulting schedule is said to be static and is far less costly to implement than
dynamic, or run-time scheduling.

Although many digital signal processing systems can be accurately described
within the SDF model, the model needs to be generalized to be broadly applicable.
In particular, the expanded model should accommodate asynchronous systems
and systems with data dependent computations. To some degree, dynamic
scheduling becomes essential. However, in order to achieve high performance and
low cost, ful1y dynamic scheduling should be avoided. Limited extensions to the
SDF model are described which are inexpensive to implement and can be used to
describe a variety of systems with asynchronous events.

l. Digital Signal Processing and Discrete Event Systems

Digital signals are sequences of numbers cal1ed samples. Usual1y signals are processed to pro
duce new signals at the same sample rate, as shown in figure Ia, or at a sample rate related by a
rational factor, as shown in figure Ib. Both are discrete-time systems, although the multi-rate system
is a lillIe different from the usual conception of a discrete-time system. Time is discretized dif
ferently in different parts of the system. Such systems are said to be synchronous, and are a special

1 This research was sponsored by an IBM faculty development grant and National Science
Foundation Presidential Young Investigator award.
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Figure 1. Single sample rate (a) and multi-rate (b) digital signal processing systems.

subset of discrete event systems. The arrival of a sampIc is an event, and typically the events are
periodic and deterministic.

A complete signal processing system may be a compIcx interconnection of synchronous subsys
tems. Such an interconnection is conveniently described by a block diagram, or a dataflow graph, an
example of which is shown in figure 2a. Blocks in the block diagram (nodes in the data Ilow graph)
represent computations performed on signals, and the paths between blocks (branches or arcs in the
data Ilow graph) represent the routing of signal samples (called tokens). The fundamental premise of
data now program graphs [t1 is that nodes can fire whenever there is sufficient data on their input
branches. Since nodes can fire simultaneously, the concurrency available in an algorithm is exhibited
in a data now description.

(a)

(b)

Figure 2. (a) A signal processing system is built by connecting subsystems. The boxes represent compu
tations and the arcs represent signal paths. (b) The petri net equivalent of (a) has transitions instead of
boxes and places instead of arcs. The assumption is that transitions take some time to fire (the computa
tion time of the boxes).
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The connection between data now graphs and Petri nets [2] should be obvious to those readers
familiar with Petri nets. The graph in figure 2a is modeled as a Petri net in figure 2b. The nodes in
the data now graph correspond to transitions in the Petri net, and the branches in the data now graph
correspond to the places in the Petri net. In the Petri net model we assume that the transitions take
some time to fire (the execution time of a computation). Also, tokens can accumulate in the places,
but in a signal processing system they should be processed in the same order of their arrival.

We make the important distinction between data flow program graphs, data now languages, and
data now machines. The term "data now language" is often used to refer to languages that are easily
translated into data flow program graphs, even if the syntax of the language bears no resemblance to a
graph. Such languages are usually functional languages [3], and are often intended for use with data
now machines. Data now machines evaluate data now graphs. Such machines use costly hardware
or software to determine when to fire nodes in the graph. Since the scheduling is done at run time, it
is said to dynamic. A good survey of such machines is given by Srini [4]. Here we view data now
program graphs as the input from the programmer (preferably graphical input), and the target archi
tecture is a conventional multiprocessor, not a data now machine.

Our overall aim is the automatic synthesis of cost-effective implementations of sib'TIal process
ing systems from a high level description of the algorithm. The objective is to map the data now
graph onto processors such that we either maximize the throughput subject to a constraint on the
number of processors, or minimize the number of processors subject to a throughput constraint. In
essence, what is required is a scheduling strategy. In addition, we will need a way to check the
correctness of a graph.

For signal processing, data now descriptions of algorithms have important advantages.

Appropriateness:
Signal processing algorithms are often described as data now graphs by choice when there is no
compelling reason to do so. In fact, this appropriateness has led dozens of researchers to
develop so called "block diagram languages" for signal processing.

Parallelizability:
As mentioned above, the concurrency in an algorithm is evident in a data now description. Sig
nal processing applications are frequently computation intensive, so parallel processing is
essential.

Modularity:
Subsystems that have been implemented in the past and are well understood can be easily re
used by splicing them into a new data now graph.

Synchronous data flow [5,6] is a special case of data flow that has properties that are particu
larly convenient for implementation. A synchronous data now node is defined to be one where the
same number of tokens are consumed on each input branch and produced on each output branch each
time the node fires. A synchronous data now node is shown in figure 3. The numbers adjacent to
each branch indicate the number of tokens produced and consumed when the node fires. An SDF
graph is an interconnection of synchronous data now nodes, and is clearly capable of representing
synchronous multi-rate signal processing systems. The main advantage of specializing to SDF is the
ability to generate static schedules at com pile time and ensure correctness of the schedu\C.

Figure 3. An SDF node. The numbers adjacent to each branch indicate the number or tokens produced
lind consumed each time the node fires.
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An example of an SOF description of signal processing algorithm (a second order recursive
digital filter) is shown in figure 4. The triangle at Ihe left is a data flow node that can fire at any time,
because it has no inputs, each time producing one token. This models the signal source. Hence Ihe
assumption is Ihat Ihe computation can run forever, and must run forever without deadlock. This
assumption is peculiar to signal processing applications, and is one of the important differences
between signal processing and general purpose computations.

All of the nodes in figure 4 consume and produce a single token on each input and output
branch. A graph consisting exclusively of such nodes is called a homogeneous SOF graph, and
corresponds to a single-sample-rate signal processing system. Also, the nodes in the graph represent
elementary computations (additions, multiplications, forks), so the graph is said to be atomic. A
larger granularity may be desirable. The graph in figure 5 represents a voiceband data modem, and
each node is a complicated computation Ihat may be specified hierarchically as an SOF graph.
Oescriptions at this level of granularity are called large grain data flow [7]. The techniques discussed
in this paper apply equally well to all levels of granularity and any mixture oflevels.

The labels "0" on some of the branches in figure 4 refer to delays. The term "delay" is used in
the signal processing sense to mean a sample offset between the input and the output (a Z-I operator).
We define a unit delay on an arc from node A to node B to mean that the n rh sample consumed by B
will be the (n - l)'h sample produced by A. This implies Ihatlhe first sample Ihat B consumes is not
produced by A at all, but is part of the initial state of the buffer connecting the two. Indced a delay of

Figure 4. A data now graph for a second-order recursive digital filter. The empty circles are "fork"
nodes, which simply replicate each input token on all output paths. The "1" adjacent to each node input
or output indicates that a single token is consumed or produced when the node fires.
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Figure 5. A SDF graph showing a voiceband data modem. Note the multiplicity of sample rates. For
emphasis, signal paths that carry complex signals are shown with double lines, although these arcs are no
different from the arcs carrying real signals except that the rate of flow of tokens is twice the sample rate
of the complex signal.



139

d samples on a branch is implemented in SDF simply by initializing the arc buffer with d zero sam
ples. The inscription dD will be placed near the arc to illustrate the delay. In the Petri net model,
delays correspond simply to an initial marking.

Notably absent from the SDF model is data dependent routing of tokens. Since tokens drive the
firing of nodes, data dependent firing is also absent. The corresponding feature of the Petri net model
that is missing is connicts, which would introduce an indeterminacy. Although most DSP systems
can modeled without this indeterminacy, some practical systems are excluded by this restriction. An
example of a computation that we may wish to perform is shown in figure 6. It is equivalent to the
functional statement

z = if (x) then f(y) elsc g(y).

The nodes labeled switch and select are asynchronous because it is not possible to specify a-priori
how many tokens will be produced on their outputs or consumed on their inputs. A range (0,1) is
specified instead. Since the !iring of nodes in this graph is dependent on the data (the value of x), it is
not possible to construct a static schedule (a schedule constructed at compile time that is valid
throughout the computation). Our approach is to introduce limited dynamic scheduling to handle
only those situations that absolutely require dynamic scheduling. Hence the price (in overhead) of
dynamic scheduling is not paid when not necessary.

2. OBJECTIVES OF THIS PAPER

Given an SDF graph describing a digital signal processing algorithm, we wish to analyze it for
implementability (the analysis phase) and synthesize a cost effective implementation (the synthesis
phase). In the analysis phase we eheck for (I) stable buffers, (2) freedom from deadlocks, and (3)
adequate concurrency to meet the performance specification. All three can be done in polynomial
time. The relevant techniques have been described in two closely related papers [6.5], so we skip
some details in order to highlight the intuition and point out the relationship to other models used for
discrete event systems.

Figure 6. Two asynchronous nodes are shown used in a conditional construct implementing an if-then
else. The switch routes tokens to one of two output paths depending on a control input and the select
selects tokens from one of two inputs depending on the control token. The notation "(0,1)" indicates that
when the node fires, either zero or one sample will be produced or consumed.
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For cost reasons, the number of processors available for the implementation of the SDF graph
may be limited. Hence we cannot simply assign one processor to each node. Even if we could. this
would probably result in a gross under-utilization of the hardware resources. The problem that we
consider in this paper is to schedule the SDF graph onto one or more parallel processors such that we
maximize the throughput (or minimize the period of a periodic schedule). Usually for a signal pro
cessing system the number of processors is selected so that a required throughput is just barely mel.
To simplify the discussion, we assume that the parallel processors share memory without contention,
so there are no communication delays between nodes mapped onto different processors. Practical
parallel architectures with this feature have in fact been proposed [8,9]. A useful (and interesting)
special case is a single processor. In the single processor case it is clear that we are discussing compi
lation techniques.

The history of models related to SDF is extensively reviewed in [5] so the interested reader is
referred to that paper. Nonetheless, one prior paper is closely enough related to require mentioning.
In 1966 Karp and Miller introduced computation graphs. which are essentially equivalent to SDF
graphs but are intended to describe general computations [10]. In particular. Karp and Miller discuss
graphs that terminate. or deadlock after some time. They concentrate on fundamental theoretical con
siderations. for example proving that computation graphs are determinate, meaning that any admissi
ble execution yields the same reSUlts. Such a theorem of course underlies the validity of data flow.

Also described in [5] is a software implementation of an SDF programming system called
Gabriel. We again refer the interested reader to that paper.

3. THE ANALYSIS PHASE

In the analysis phase we check the implementability of the system by checking (I) stability of
the buffers, (2) freedom from deadlocks, and (3) adequate concurrency.

3.1. Stability or the Buffers

We assume that an SDF graph describes a repetitive computation to be performed on an infinite
stream of input data. so the desired schedule is periodic. It is not always possible to construct a prac
tical periodic schedule for an SDF graph, however. In particular, for some graphs the buffers used to
implement the arcs of the data flow graph may have to be of infinite size. This indicates an error in
the construction of the graph, and must be identified.

Consider the SDF graph of figure 7(a). To start the computation, node 1 can be invoked
because it has no input arcs and hence needs no data samples. After invoking node 1. node 2 can be
invoked, after which node 3 can be invoked. This sequence can be repeated. But node 1 produces
twice as many samples on arc 2 as node 3 consumes. An infinite repetition of this schedule therefore
causes an infinite accumulation of samples in the buffer associated with arc 3. This implies an
unbounded memory requirement, which is clearly not practical.

In a DSP sense, the SDF graph has inconsistent sample rates. Node 3 expects as inputs two sig
nals with the same sample rate but gets two signals with different sample rates. The SDF graph of

(a) (b)

Figure 7. (a) An example of a defective SDF graph with sample rate inconsistencies. The nags on the
arcs simply identify them with a number for rderence in the text. (b) A corrected SDF graph with con·
sistent sample rates. The nags attached to the arcs simply identify them with a number.
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figure 7(b) docs not have this problem. A periodic admissible sequential schedule repeats the invoca
tions (1,2,3,3). Node 3 is invoked twice as often as the other two. It is possible to automatically
check for consistent sample rates and simultaneously detemline the relative frequency with which
each node must be invoked. To do this, we need a little formalism.

A SDF graph can be characterized by a matrix similar to the incidence matrix associated with
directed graphs in graph theory. It is constructed by first numbering each node and arc, as done in
figure 7, and assigning a column to each node and a row to each arc. The (i ,j)lh entry in the matrix is
the amount of data produced by node j on arc i each time it is invoked. If node j consumes data
from arc i, the number is negative, and if it is not connected to arc i, then the number is zero. For the
graphs in figure 7 we get

(1)

This matrix is called a IOpology matrix, and need not be square, in general.

If a node has a connection to itself (a self loop), then only one entry in r describes this link.
This entry gives the net difference between the amount of data produced on this link and the amount
consumed each time the node is invoked. This difference should clearly be zero for a correctly con
structed graph, so the r entry describing a self100p should be a zero row.

We can conceptually replace each arc with a FIFO queue (buffer) to pass data from one node to
another. The size of the queue will vary at different times in the execution. Define the vector b(n ) to
contain the number of tokens in each queue at time n. The vector b(n) thus specifics the marking at
time n in the equivalent Petri net model.

For the sequential (single processor) schedule, only one node can be invoked at a time, and for
the purposes of scheduling it does not mailer how long each node runs. Thus, the time index n can
simply be incremented each time a node finishes and a new node is begun. We specify the node
invoked at time n with a vector v(n), which has a one in the position corresponding to the number of
tl1e node that is invoked at time n and zeros for each node that is not invoked. For the systems in
ligure 7, v(n) can take one of three values for a sequential schedule,

,(n)" [~] OR [~] OR m OJ

depending on which of the three nodes is invoked. Each time a node is invoked, it wiIl consume data
from zero or more input arcs and produce data on zero or more output arcs. The change in tlle size of
the queues caused by invoking a node is given by

b(n +1) = b(n) + rv(n) (3)

The topology matrix r characterizes the effect on the buffers of invoking a node.

To initialize the recursion (3) we set b(O) to reflect tl1e number of delays on each arc. The ini
tial condition for the queues in figure 7 is thus

b(O)" [H
and in figure 8 is

b(O)= [~l (4)

Recall that this corresponds to an initial marking of a Petri net. Because of these initial conditions,
node 2 can be invoked once and node 3 twice before node 1 is invoked at all. Delays, therefore,
affect the way the system starts up. Clearly, every directed loop must have at least one delay, or the
system cannot be started. Automatic identification of this condition is discussed in the next
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Figure 8. An example of an SDF graph with delays on the arcs.

subsection.

Inconsistent sample rates preclude construction of a periodic sequential schedule with bounded
memory requirements. A necessary condition for the existence of such a schedule is that
rank (f) =s -I, where s is the number of nodes. This can be seen by observing that stable periodic
execution requires that

b(n +K) =b(n ) (5)

where K is the number of node firings in one cycle of the periodic schedule. From (3) we also see
that

b(n +K)=b(n)+rq

where

q=v(n)+'" +v(n+K-I).

Equations (5) and (6) can only both be true if

(6)

(7)

rq=o

or q is in the right nullspace of r. For q to be non-trivial, r cannot have full rank. It is proven in [6]
that it must have rank s - I.

The topology matrix r a for the graph in figure 7a has rank three, so no periodic admissible
sequential schedule can be constructed. The topology matrix r b for the graph in figure 7b has rank
two, so a schedule may be possible. It is also proven in [6] that a topology matrix with the proper
rank has a strictly positive (element-wise) integer vector q in its right nullspace. For figure 7b, a set
of such vectors is

for any positive integer J. Notice that the dimension of q is s, the number of nodes. Notice further
that q specifies the number of times we should invoke each node in one cycle of a periodic schedule,
as can be seen from (7). Node 3 gets invoked twice as often as the other two nodes, for any positive
integer J.

Valuable information is obtained from the topology matrix. Its rank can be used to verify con
sistent sample rates, which is necessary for stable buffers, and its nullspace gives the relative fre
quency with which nodes must be invoked.

3.2. Freedom From Deadlocks

Even with consistent sample rates, it may not be possible to construct a periodic admissible
sequential schedule. Two examples of SDF graphs with consistent sample rates but no such
schedules are shown in figure 9. Directed loops with insufficient delays are an error in the construc
tion of the SDF graph and must be identified to the user. It is shown in [6] that a large class of
scheduling algorithms will always run to completion if a periodic admissible sequential schedule
exists, and will fail otherwise. Running such an algorithm is a simple way of verifying the
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Figure 9. Two SDF graphs with consistent sample rates but no admissible schedule.

correctness of the SOP graph. The class of algorithms is described in the section below on the syn
thesis phase.

3.3. Checking for Adequate Concurrency

The iteration period is the length of one cycle of a periodic schedule. Throughput is inversely
proportional to the iteration period. The iteration period is bounded from below in graphs with
direeted loops. If the iteration period bound exceeds the iteration period required for a panicular sig
nal processing algorithm, then the algorithm has to be modified. No amount of parallcl hardware will
overcome the problem. Hence the iteration period bound would be useful information for the
designer of the algorithm.

Por homogeneous SOP graphs (all nodes produce or consume one token on each input and out
put) the iteration period bound has been shown to be the worst case (over all directed loops) of the
total computation time in the loop divided by the number of delays [II, 12]. An alLernative point of
view is that the iteration period bound is the unique eigenvalue of a matrix used to describe the graph
in a max-algebra [13,14]. The iteration period bound can be found in polynomial time (13), but
existing techniques only apply to homogeneous SOP graphs. An algorithm for translating general
SOP graphs into homogeneous SOP graphs is given in [15].

4. THE SYNTHESIS PHASE

The synthesis phase consists of constructing schedules for single or mulLiple proeessors. We
begin with the single processor problem.

4.1. Scheduling for a Single Processor

Given a positive integer vector q in the nullspace ofr, one cycle of a periodic schedule invokes
each node the number of times specified by q. A sequcntial schedule can be constructed by selecting
a runnable node, using (3) to determine its effect on the buffer sizes, and continuing until all nodes
have been invoked the number of times given by q. We define a class of algorithms.

DEFINITION (CLASS S ALGORITHMS): Given a positive integer vector q S.t. rq :; 0 and an initial
state for the buffers b(O), the i 'h node is said to be runnable at a given time if it has not been run qj
times and running it will not cause a buffer size to become negative. A class S algorithm ("S" for
Sequential) is any algorithm that schedules a node if it is runnable, updates b(n) and stops (ter
minates) only when no more nodes are runnable. If a class S algorithm terminates before it has
scheduled each node the number of times specified in the q vector, then it is said to be deadlocked.

Class S algorithms construct static schedules by simulating the effects on the buffers of an
actual run for one cycle of a periodic schedule. That is, the nodes need not actually run. Any
dynamic (run time) scheduling algorithm becomes a class S algorithm simply by specifying a stop
ping condition, which depends on the vcctor q. It is proven in [6) that any class S algo'rithm will run
to completion if a periodic admissible sequential schedule exists for a given SDP graph. Hence, suc
cessful completion of the algorithm guarantees that there are no directed loops with insufficient delay.
A suitable class S algorithm for sequential scheduling is
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I. Solve for the smallest positive integer vector q in the right nullspaee of r.
2. Form an arbitrarily ordered list L of all nodes in the system.
3. For each a. E L, schedule a. if it is runnable, trying each node once.
4. If each node a. has been scheduled q a times, STOP.
5. If no node in L can be scheduled, indicate a deadlock (an error in the graph).
6. Else, go to 3 and repeat.

The only question remaining for single processor schedules is the complexity of the first step
above. Our technique is simple. We begin with any node A in the graph and assume it will be run
once in one cycle of the periodic schedule (Le. let qA =I). Assume node B is connected to node A .
We can find qB with a simple division, possibly getting a fraction, but always getting a rational
number. A node cannot be invoked a fractional number of times, so we will have to correct for this
later. We do the same for any node C adjacent to B. A simple recursive algorithm computes these
rational numbers in linear time (a linear function of the number of ares, not the number of nodes).
The resulting vector q has rational entries and is in the nullspace of r. To get the smallest integer
vector in the nullspace of r we use Euclid's algorithm to find the least common multiple of all the
denominators. Actually, three simultaneous objectives are accomplished with one pass through the
graph. Sample rate consistency is checked, a vector (with rational entries) in the nullspace of r is
found, and Euclid's algorithm is used to find the least common multiple of all the denominators.

SDF offers concrete advantages for single processor implementations. The ability to intercon
nect modular blocks of code (nodcs) in a natural way could considerably case the task of program
ming high performance signal processors, even if the blocks of code themselves are programmed in
assembly language. But a single processor implementation cannot take advantage of the explicit con
currency in an SDF description. The next section is dedicated to explaining how the concurrency in
the description can be used to improve the throughput of a multiprocessor implementation.

4.2. Scheduling for Parallel Processors

Clearly, if a workable schedule for a single processor can be generated, then a workable
schedule for a multiprocessor system can also be generated. Trivially, all the computation could be
scheduled onto only one of the processors. Usually, however, the throughput can be increased sub
stantially by distributing the load more evenly. It is shown in [6] that the multiprocessor scheduling
problem can be reduced to a familiar problem in operations research for which good heuristic
methods are available. We again give the intuition without the details. We assume for now homo
geneous parallel processors sharing memory without contention, and consider only blocked
schedules. A blocked schedule is one where one cycle of the schedule must finish on all processors
before the next cycle can begin on any (cf. Schwartz [12]).

A blocked periodic admissible parallel schedule is a set of lists {'Vi; i =I, ... ,M} where M is
the number of processors, and 'Vi specifics a periodic schedule for processor i. If P is the smallest
positive integer vector in the nuJlspace of r then a cycle of a schedule must invoke each node the
number of times given by q =1 P for some positive integer 1. 1 is called the blocking factor, and for
blocked schedules. there is sometimes a speed advantage to using 1 greater than unity. If the "best"
blocking factor is known, then construction of a good parallel schedule is not hard.

The task of the scheduler is to construct a schedule that avoids deadlocks and minimizes the
iteration period, defined more generally to be the run time for one cycle of the schedule divided by 1 .
The first step is to construct a graph describing the precedences in q = 1 P invocations of each node.
The graph will be acyclic. A precise class S algorithm accomplishing this construction is given in [6]
so we merely illustrate it with the example in figure lOa. Node I should be invoked twice as often as
the other two nodes, so p =[2 I l]T. Further. given the delays on the arcs, we note that there arc
three periodic admissible sequential schedules with unity blocking factor, $1 = {1,3,1,2},
$2 ={3,1,I,2}. or $1 ={I,1.3.2}. A schedule that is not admissible is $1 ={2,1.3,I}, because node 2 is
not immediately runnable. Figure lOb shows the precedences involved in all three schedules. Figure
IDc shows the precedences using a blocking factor of two (1=2).

The self-loops in figure lOa imply that successive invocations of the same node cannot overlap
in time. Some practical SDF implementations have such precedences in order to preserve the
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(b)

(c)

Figure 10. (a) An SDF graph with self.loops. (b) An acyclic precedence graph for unity blocking factor,
J =I. (c) An acyclic precedence graph for J =2.

integrity of the buffers between nodes. In oLher words, two processors accessing the same buffer at
Lhe same time may not be tolerable, depending on how the buffers are implemented. The self-loops
are also required, of course, if Lhe node has a state that is updated when it is invoked. We will hen
ceforth assume Lhat all nodes have self loops, thus avoiding the potential implementation difficuILies.
Note Lhat this may increase Lhe iteration bound.

Ifwe have two processors available, a schedule for J=I is

'VI = {l,1,2}

'V2 = (3) .

When Lhis system starts up, nodes 3 and I will run concurrently. The precise timing of Lhe run
depends on Lhe run time of Lhe nodes. If we assume that Lhe run time of node I is a single time unit,
the run time of node 2 is two time units, and the run time of node 3 is Lhree time units, then the timing
is shown in figure Ila. The shaded region represents idle time. A schedule constructed for J =2,
using the precedence graph of figure lOc will perform beller. An example is

'VI ={1,1,2,I,2}

'V2={3,1,3}

and its timing is shown in figure lib. There is no idle time, so no faster schedule exists.
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Figure 11. One period of each of two pe..iodic schedules for the SDF graph of figure 11. In (a) J =I while
in (b)J=2.

The construction of the acyclic precedence graph is handled by the class S algoriLhm given in
[6]. The remaining problem of constructing a parallel schedule given an acyclic precedence graph is
a familiar one. It is identical with assembly line problems in operations research, and can be solved
for the optimal schedule, but the problem is NP complete [16]. This may not be a problem for small
SDF graphs, and for large ones we can use well studied heuristic methods, the best being members of
a family of "critical path" methods [17]. An early example, known as the Hu-Ievel-scheduling algo
rithm [18]. closely approximates an optimal solution for most graphs [19. 17). and is simple.

S. EXTENSIONS TO HANDLE LIMITED ASYNCHRONY

It has been mentioned that the SDF model cannot accommodate some useful constructs that
involve data dependent routing. An example is shown in figure 6. Because of the data dependent
routing of tokens, some form of dynamic scheduling is in order. Our approach is to introduce limited
dynamic scheduling only where it is actually needed. rather than generalizing the system to do all
scheduling dynamically.

Observe that the graph in figure 6 can be divided into three synchronous subgraphs, (I) the
graph represented by f (-). (2) the graph represented by g (-), and (3) the rest of the system. Consider
a single processor implementation. Static schedules can be constructed for each of the three sub
graphs. The system is started such that the schedule for subgraph (3) is invoked first. When the
switch node fires. schedule (3) is suspended and either schedule (I) or (2) is invoked to run through
one cycle. The code to do this in effect is implementing a dynamic scheduler, but decisions are only
being made at run time if they have to be.

Consider a multiprocessor schedule. The problem is a lillIe more complicated for several rca
sons. For one. if f (-) and g (-) are complicated subsystems then it is desirable to distribute them over
several processors. For another, if the execution time of f (-) and g (-) are different then a worst case
execution time must be assumed. Our approach is to put dynamic scheduling code into all proces
sors, making all processors available for the subsystem g (-) or f (-). This is easily explained by
example.

In figure 12 we have shown how one such if-then-else might be scheduled. Beginning at the
left. subgraph (3) (the synchronous subgraph containing the switch and select) are scheduled like any
ordinary SDF graph. until the switch node is invoked. The boxes indicate time occupied by nodes in
the suhgraph on each of three processors. When the switch node is invoked, special code is inserted
(shown as cross-hatched boxes) to implement a conditional branch in each of the processors. Thcn
schedules for each of subgraphs (I) (for f (.» and (2) (for g (.» are created assuming that all three pro
cessors become available immediately after the switch code is executed. These two schedules are
shown at the top and the bottom of the figure. After this, we wish to return to scheduling subgraph
(3). but we need to know when the three processors are available. The code for subgraphs (I) and (2)
is padded with no-ops (boxes with horizontal lines) so that both subgraphs finish at the same time on
each processor. Then we can resume scheduling subgraph (3), as shown on the right.

6. CONCLUSION

We have outlined a paradigm called synchronous data Ilow for the description of digital signal
processing algorithms. The description permits interpolation and decimation, and restricts neither the
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SCHEDULE FOR SUnGRAPH (2)

Figure 12. An illustration of scheduling for an if-then~lse construct (figure 6) on multiple processors.
The blank boxes indicate time taken by nodes on each of three processors. The cross-hatched boxes indi
cate code associated with the switch and select nodes. This code implements the dynamic scheduling.
The top and bottom subschedules correspond to the two possible outcomes of the if-then-else. The boxes
with horizontal lines indicate no-ops inserted so that the two possible outcomes finish at the saDIe time on
each of the three processors.

granularity (complexity) of a node nor the language in which it is programmed. It is hierarchical and
encourages a structured methodology for building a system. Most importantly, SDF graphs explicitly
display concurrency and pennit automatic scheduling onto parallel processors. We illustrated how
the SDF paradigm can be used to generate code for DSP microcomputers. ineluding the management
of limited fonns of asynchrony that support conditionals. We also introduced the notion of static
buffering. Using these techniques, we believe that compilers can be constructed which efficiently
map SDF descriptions onto a wide variety of hardware architectures. thereby eliminating many of the
costly translations from one description to another that arc necessary under current methodologies.
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'l'he Netherlands

ABSTRACT

Recently an analogy between the conventional linear system theory and
the relatively new theory on discrete-event dynamic systems has been shown to
exist. A mapping which relates these two theories will be investigated,
specifically with respect to the theory of minimal realizations.

1. INTRODUCTION

A very large class of dynamic systems, such as the material flow in
production or assembly lines, the message flow in communication networks
and jobs in multi-programmed computer systems comes under the heading of
Discrete-Event Dynamic Systems (DEDS). In contrast to conventional dynamic
systems described by difference equations, where the underlying time set
is independent of the evolution of the system, the evolution of DEDS is
described by sudden changes of state (hereafter referred to as discrete
events) which occur at instants determined by the dynamics of the system.
Examples of points of time at which discrete events occur are the beainning
and the completion of a task or the arrival of a message or a customer.
Unfortunately, for several DEDS mathematical models, evaluation of their
performance or studies pertaining to optimal decisions are lackinq (with
the noticeable exception of many problems in queueing theory) .

Recently, at INRIA, France, a new approach [lJ has been promoted,
showing similarities with conventional system theory [2J and for which
the underlying algebra is the so-called max-algebra []J, an absorbing semi
ring. The elements in this max-alqebra are the real numbers (and minus
infinity) and the admissible operations are maximi~ation and addition.
One of the basic difficulties in proving statements in the max-algebra is
that the inverse of the maximum operator does not exist. In spite of this,
it is surprising to learn, that many analogies exist with respect to the
conventional linear algebra, such as Cramer's rule and the theorem of
Cayley-Hamilton [4].

The current paper is a continuation of [5J, in which it is investigated
whether the conventional minimal realization theory [2J does have an analogy
in the theory of DEDS. Minimal realizations are important for compact
mathematical descriptions without dimensional redundancies and also for
design purposes. In [5J a procedure was given (repeated in this paper)
which constructs a state space description of a DEDS if the impulse response
(or, el~uivalently, the Markov-parameters) is given. In this paper we will
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prove, at least for some cases, that the procedure aiven leads to a correct
state space description. We restrict ourselves to sin')le input/single output
systems.

In section 2 the precise problem statement is given, as well as the
standard theorem in conventional system theory about minimal realizations.
The basic idea for the proofs of theorems to follow is also given. The
characteristic equation plays a crucial role and it is lJiven, in max-algebra
setting, in section 3. section 4 gives the procedure indicated above.
Section 5 gives an example as to elucidate how the procedure works and
finally, in section 6, a proof is given for the correctness of the procedure
(in some specific cases; a general proof seems to be hard) .
The paper concludes with the references.

2. PROBLEM STATEMENT

In conventional linear system theory one considers models described by

x(k + 1) = Ax(k) + bulk) ,

or written componentwise,

y (k) = c'x(k) ( 1)

x. (k + 1)
~

n

L aijx
j

(k) + b i u(k), i
j=1

(2)

y(k)
n

1.
j=1

c .x, (k) •
J J

The state vector x is n-dimensional, the input u and the output yare scalars.
We will only consider single-input/sinole-output systems. Matrix A has
size n"n and the vectors band c have n components. The symbol • denotes
transpose. In (1) and (2) two operations are used, viz. addition and
multiplication. We will speak of a linear system as a discrete-event dynamic
system (DEDS) if the system can still be written in the form of (1) or (2)
with the only difference that the operations of addition and multiplication
are replaced by maximization and addition respectively. These operations
will be denoted by ~ and ®. Thus a linear discrete-event dynamic system
can be written as

n
x. (k + 1) LGl

(a. , I§ x. (k)) Gl b. fill u(k) , i 1, ... In;
~ ~J J ~

j=1

n
y(k) LGl

(c
j

(il x. (k)) ( 3)
J

j=l

A possible interpretation of such a system is that of a network with n nodes
in which xi(k) is the earliest time instant at which node i is activated for
the k-th time; u(k) is the time instant at which the resource becomes
available for the k-th time. y(k) is the time instant at which the output
(a finished product) becomes available for the k-th time; a." b. and c.
are processing times at nodes and transportation times betw~Jn tRe node§.
As the * symbol is quite often omitted in conventional analysis, this will
also be done with respect to the @ symbol if no confusion is possible. 'l'he

summation symbol L provided with the index refers to the maximization of
Gl
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the elements concerned.
In this paper we will be concerned whether a DEDS analogy exists of a

well-known theorem on minimal realizations in conventional system theory.
We will now first formulate this theorem in the conventional setting.

The external description of (1) is qiven by

(4)gk . u(j) ,
-J

k-1
y(k) = L

j=l

where {g.} is the impulse response; the quantities g. are sometimes called
Markov-pJrameters and they satisfy J

j = 1.2.... . (5)

In realization theory one starts from the sequence {g.] and tries to con
struct A. b. c. such that (5) is satisfied. In order to find A. b. c. one
constructs the semi-infinite Hankel matrix H;

H (6)

The truncated Hankel matrix Hk.i is obtained from H by deletina the rows
k+1.k+2 •... and the columns 1+1.1+2 •... . The proof of the following lheorem
can for instance be found in [21.

{
,co

• Theorem 1: To the sequence gili=l corresponds a finite dimensional

realization of dimension n if and only if rank Hi.i= n for i = n+1.n+2 •...•
equivalently det Hi.i 0 for i = n+1.n+2." ... IJ moreover det Hn • n 'I O.
then this realization is minimal. If the (n+1) vector y = (a

n
.a

n
_

1
•...• a

1
.1)'

satisfies Hn+
1

• n+ 1y = O. then

0 1 0 ...•.... 0.... .... ...
?1..... ... ....... ... .... ... 0 0.... ... ...

0......... '>:-0
....

A= "'1 b c (7)

qn 0
-an"········ -a2

-a
1

is such a minimal realization. 0
For a possible formulation of Theorem 1 in DEDS-settina. the startinq

point will be the conventional analysis. Instead of considering quantities
(scalars) a and S. we will consider exp (as) and exp (Ss) and then apply
conventional analysis. The quantity s is a (real) parameter. Since

sa sR s (a+R)
e * e = e

s (afAlR)
e (8)

s-><x>
lim
s-700

smax (a. S)
slog e lim

s (alI/S)
loq e

s
(9)
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we hope to obtain results in the max-alqebra setting by considering the
exponential behaviour of the quantities introduced.

Instead of considering the mapping a + exp (as) one could equally well
use the mapping a + za and then let z + 00. We will, however, stick to the
first mapping. If instead of (1) we consider

sx(k+l) sA sx(k) sb suCk)
e = e e + e e , (10)

where the exponential of matrices and vectors is defined componentwise, e.g.
(exp (SA»ij = exp (saij)' and if we now consider the limit as s > 00, then
the exponential growth of (10) is exactly given by (3) ~

3. THE CHARACTERISTIC EQUATION

Since the characteristic equation of a matrix in max-algebra settinq
will be used frequently in the sections to come, it will be introduced
briefly. For a more detailed analysis see [4J, [5J.

An equivalence of the determinant in max-algebra is the dominant, which
is defined as

dom (A) = lim 1. log I det (exp (sA» I.
s

s+oo

An eigenvalue A is defined by means of the equation

Ax = AX

(11)

in max-algebra sense. If such a A and x (i c) exist, then A is called an
eigenvalue and x an eigenvector. The element c introduced is the neutral
element with respect to ~, i.e. a ~ E = a for all a E R. In fact, E = -00.

In order to define the characteristic equation, we start with the following
equation in conventional analysis sense;

A(s)i{(s) = ~(s)i{(s)

where

x.(s) = exp (x.s),
1 1

i = 1, ... In; A(S) = exp {AS}, {A(s)},.
1)

( 12)

a .. s
e 1)

Since A(S) is a positiv~ matrix, the Perron-Frobenius theorem teaches us
that at least one such A(S) and xes) exist. For finite s, ~(s) satisfies
the characteristic equation

where

n - -n-l -
A (s) + c

n
_

1
(s) A (s) + ... + (,1 (s) A(S) + Co o ( 13)

(-1) k L det

i 1<i 2 <.. <ik

, k I, ... In.
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lim cn_k(s)
s-+oo

where

( 14)

and where dn-k is determined by a counting procedure. This quantity equals
the number of even minus the number of odd permutations which determine the

*value of cn-k. Thus d
n

_
k

can be negative, zero or positive. The terms in
k~

(13) will now be rearranged in the following way; if (-1) d n - k is positive,
then the corresponding term, i.e. the k-th term in (13), will remain at the
left-hand side; if it is negative then the corresponding term will be

k~

moved to the right-hand side of the equation. If (-1) d n - k is zero, the
corresponding term is deleted. Thus an equation arises for which all
coefficients at left- and right-hand side are positive for s sufficiently
large. If we now take logarithms of both sides of this equation - the
logarithm of a matrix is taken componentwise -, divide the result by sand
take the limit as s ~ 00, then we get

* n-k
Cn_kA

* n-l
c

n
_

1
A Ell ( 15)

where Nand N are nonoverlapping subsets of {2, ... ,n}. Equation (15) is
called the characteristic equation in max-algebra sense .

• Theorem 2: The characteristic equation (15) has .at least one (real)
solution. If A is replaced by A in (15), we get an identity. This latter
result is called the Cayley-Hamilton theorem in the max-algebra. n

This theorem has been proved in [4]. A different proof can be found in
[5]. Unlike the situation in ordinary calculus, in the max-algebra not every
polynomial is a characteristic polynomial. This will be elucidated by means
of polynomials of degree two, for which there are two forms;

( 15)

( 17)

2
The form X Ell c 1A = c

2
is not possible as a characteristic equation as follows

easily from the derivation of this equation.

as characteristic equation formula (15) fromProof: The matrix

• Lemma 1: For any values of c
1

and c
2

(15) is a characteristic equation,
for (17) to be a characteristic equat~on it is necessary and sufficient that

c
2

~ c~ (= c
1

~ c
1

)
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which the first assertion of the leJruna follows. 'I'o prove the second assertion
we start with

A

E9 a
22

, c
2

= dom (A).

(17), it is determined by an

The coefficients c
l

and c
2

satisfy c
l

= all

Because c2 belongs to the left-hand side of
even permutation, hence c

2
= all 0 a

22
;

2 . 2
c 2 = all 0 an'; all 0 a 22 E9 allE9an= (all E9

which proves the necessity. For the sufficiency-part of the proof we
struct a matrix A which has (17) as characteristic equation. Choose
all c l ' a 22 = c 2 - c l and choose a 12 and a 21 such that

a 12 0 a 21 < all 0 a 22 ·

4. PROCEDURE FOR MINIMAL REALIZATIONS

con-

[J

The starting point is the sequence (gi}~' and a procedure will be given
which yields A, band c such that

j = 1,2,... . ( 18)

The procedure consists of the followin'l seven steps.
1. Construct the Hankel matrix H as in (6).
2. Find a linear dependency among the least possible number of successive

columns of H. The coefficients describing this dependency are constant
(i.e. irrespective of which sequence of successive columns of II is taken,
provided the order is the same). These coefficients, called (c i }~:~, with

c
n

+
l

= 0, determine a polynomial equation. (A requirement is that this

must be a characteristic equation; see discussion in section 6.) Vectors
ai ( (JR U (E}) n, i = l, ... ,k, are called linearly dependent if the index
set (l, ... ,k} can be divided into two disjunct parts Sand S,and scalars
Ai E (JR U (d), i = l, ... ,k, exist such that

\' A. a ..
l'E9 1 1

iES

An equivalent statement is that dom(al, ... ,ak,ak+l, ... ,an) = E, where

ak+l, ... ,an are arbitrary n-vectors.
3. Apply the operation exp {s.} to the elements of H, after the trans

formation called H(S), and to the (characteristic) equation.
4. Extend H(S) to H (s) by adding lower-order exponentials to the elements

such that e
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c s
+e n

H (s)
e n + 1 ,n+1

0, H
e n + 1 ,n+1

where the ~ signs depend on the place of the corresponding term in the
characteristic equation; left-hand or right-hand side.

5. Apply Theorem 1 and construct A(s), b(s) and c(s) .
6. Make a coordinate transformation such that the dominant elements of the

transformed A(s), 5(s) and c(s) are nonnegative. _ _
7. Study the experimental behaviour of the transformed A(s), b(s) and c(s)

as s> <0, Le. apply operation lim (1/s)10g(.) to all elements.
s->=

This yields the minimal realization in max-algebra sense of the given
impulse response.

Section 5 will give an example to illustrate this procedure and section 6
gives a proof of the correctness of this procedure for some specific cases.
A general proof is currently not available unfortunately.

5. EXAMPLE

In this section an example is given which shows how the procedure of
section 4 can be applied.

Suppose we are given the Markov-parameters

( 19)

The columns of the Hankel matrix H,

3 5 8~ 12~ 16~ ..........

5 8~ 12~ ............................

H 8~ 12~ ......................................

satisfy

o 0 i-th column $ 6 0 (i-2)-nd column

The corresponding polynomial equation is

>. 2 $ 6 = 4>..

4 Q (i-1)-st column,

i = 3,4, ....

Matrix H(s) can be constructed and subsequently H (s), which satisfies
e

e
6s * (i-2)-nd column - ells * (i-ll-st column + eOs * i-th column O.

Matrix H (s) is
e 3 ,3
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55 4',s
e +e

H (5)
e 3 ,3

55 4~s
e +e

8~s
e

12~s 115 lUI,S
e -e -e

12~s 115 10~s
e -e -e

16',5 155 14',5
e -e -2e

from which

0

1
35

e

A(s) b (5) C(5)
65 e 45J 55 4~s 0-e e + e

Application of the transformation matrix

p

25 1';5 55
e +e e

yields

det P
55

e
25 l~s

e - e (20)

A
1

det P

75 6~s 5~s
e +e -e

105 95 65
e -e +e

95 75 6',5 65
e -e -e -e

-1
p b

1
det p

c

The DEOS which leads to the Markov-parameters we started with, can now
easily be found;

x(k + 1) = [: :] x (k) • [:] u (k), y (kJ (0 0) x (k) • (21 )

If instead of the transformation matrix P in (20) we would choose

P

25 l~s 45
e +e e

then the following DEDS would result;

2 2

[:
x(k + 1) x(k) Ell u(k) , y(k) (0 0) x(k) .

1~ 4

(22)

The series {gil we started with in this example was not chosen ad random;
it is the impUlse response of
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x(k + 1) = [: :] x(k) m [~~] u(k), y(k) (1~ 0) x(k) (23)

such that, starting with the series {gil, it would be known that at least
one solution, viz. (23), would exist. One easily convinces himself that
each of the systems (21), (22) and (23) yields the same Markov-parameters
as given in (19).

6. TWO CLASSES OF IMPULSE RESPONSES FOR WHICH THE PROCEDURE IS CORRECT

As already said, a general proof of the fact that the procedure
described in section 4 indeed yields the minimal realization is not cur
rently available. In [3] the proof was given for a specific class of
impulse responses (for sake of completeness the proof is repeated here) ;

• 'l'heoY'cm ;): Given an impulse response {gi }:=1 such that for the correspond
ing Hankel matrix

o I!l i-th colunm c
1
~ (i-l)-st colunm m ... m c

n
I!l (i-n)-th colunm,

i = n+1,n+2, ...

and n is the smallest integer for which this or another dependency is
possible, then the discrete-event system characterized by

E ... 0.... [: .... E <]1 0
... .... ....

.... ....
A

.... .... ...£
b (24).... c = £....

£ •••••••• £ 0

C ........... c
1 gn En

is a minimal reali zation.

['['(JO!: Direct calculation yields that the impulse response corresponding to
the system (24) equals the sequence {gil: = l' Realization (24) is minimal,

since if there would exist a lower dimensional realization, this would
result in a lower-order characteristic polynomial and then, due to Theorem 2,
there would be a smaller number (smaller t]c",1 n+1) of successive columns
of H which would be linear dependent which is contradicted by the statement
of the theorem. 0

We will now consider series {gil for which three successive colunms
in the corresponding Hankel matrix are linearly dependent. Three different
kinds of dependency relations exist;

0 \II colunm i c. \II colunm (i-1) m c
2

\II colunm (i-2) , (25)
1

0 Ii'l column i m c
2

Ii'l column (i-2) c
1

\II colunm (i-1) , (26)

0 \II colunm i m c
1

Ii'l colunm (i-1 ) = c
2

~ colunm (i-2) , (27)

i = 3,4,5, ... Relation (25) is a special case of the series {gi} con-
sidered in Theorem 3 and we know how to construct a minimal realization.
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Next we consider relation (26) , Without any loss of gencrali ty we can
confine ourselves to c

1 f £ and c
2 f £ •

o Lemma 2: If relation (26) holds, then
2

c
2

<:; c 1 .

I 'POD}': From (26), i = 3, it follows that

column 3 <:; c
1

~ column 2,

and from (26), i 4, it follows that

c
2

~ column 2 <:; c
1

~ column 3.

Combining these two results we get

c
2

~ column 2 S c
1

2
and therefore c

2
<:; c

1
'

~ column 3
2

<:; c
1
~ column 2

(28)

2
c

2
< c

1
and 9

3
= c

1
CJ

2
c

1
g

2
(and therefore

3,4, ....i

2
We now consider three subcases; a) c

2
= c

1
; b)

2
therefore c

2
g

1
<:; c

1
g

2
); c) c

2
< c

1
and c

2
g

1
=

g3 <:; c
1

g
2
), which will be treated separately.

2
c

1
' (26) yields

(and

~J a. Because c
2
2

c
1

Srn)stitution of i = 3 gives g2 c
1
~ gl and of i = 4: 9

3
c

1
~ g2 and

2 2
hence g3 ~c1 ~ gl' In general gi ~ c

1
~ gi-2 and (28) can be rewritten as

o ~ gi = c
i

~ gi-1 and (26) as 0 ~ column i = c
1

~ column (i-1), i = 3,4,.,.

Since this latter equation may not be true for i 2, it cannot be concluded
here that Theorem 3 can be applied such that a on~~dimensional system results,
Equation (28) can also be written as 0 ~ gi = c

1
~ gi-1 ~ a ~ gi-2' where a

2
is a constant <:; c

1
and therefore

o ~ column i c
1
~ column (i-1) $ a ~ column (i-2),

; 2• 3,4,.,., a<:;c
1

. (29)

The conclusion is that if (26) holds with c
2

now Theorem 3 can be applied.

2
c

1
' then also (29) holds and

Ad b. If (26) is considered componentwise, then

i = 3,4, ...o ~ gi $ c 2 ~ gi-2 = c 1 ~ gi-1'

For i = 3: g3 $ c
2

g 1 = c
1

g
2

· Since g3 = c
1

g
2

by assumption, c
2

g 1 <:; c
1

g
2

and

also c
2

g 1 <:; g3' Therefore we can write g3 = c
1

g
2

. For i = 4 we obtain

. 2 b . 2 dg4 $ c292 c 1
g

3
· S~nce c

2
< c

1
y assumpt~on, c

2
g

2
< c

1
g

2
= c

1
g

3
, an we

can write g4 = c 1g
3

, In general, gi = c
1
g

i
-

1
, i = 3,4, .... As in the

previous case Ad a), the first element gl is missing in these equalities,
In order to have gl included, we can write
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o €) co1 UlJUl i = c 1 €) co1UlJUl ( i - 1) l!l a il co1 UlJUl ( i - 2), i = 3, 4 , ... , ( 30 )

where a is a constant which is $ c
2

as is easily shown. Theorem 3 can be
applied to equations (30).

Ad c. Here we consider (26) with c2 < c1 and c2 g 1 = c 1g 2' Application of the
procedure of section 4 yields, after the fifth step,

A(s)

o
b(s)

gl s g2 s
where b 1 = e and ~2 = e + lo~er-order exponentials. A matrix P which
transforms A, band c to A, band c respectively with nonnegative elements
is

P (31 )

It is straightforward to show that the elements of A, band c are non
negative for s sufficiently large and provided the assumptions of case c)
hold. Ultimately, step 7 of the procedure leads to the DEDS

x(k + 1)

*

x(k) Ell

E

u(k), y(k) (0 0) x(k),

(32)

exponentials in
this were not
Markov-para-

l';~er-order
minimal. If
and for the

where the element indicated by * depends on the
b2' It is easy to show that realization (32) is
true, a one-dimensional realization would exist

i-l
meters we would have that gi = k 0 cl , i = 1,2, ... , where k is some
constant. Other choices of P exist which also lead to (other) two-dimen
sional realizations. If a colulJUl of P in (31) is multiplied by a positive
constant for instance, then this new matrix also leads to such a realization.
Another possibility is to replace the (2,2) element of P in (31) by e ks

where k is a constant ~ cl'
Dependency-relations (25) and (26) have been considered in detail now

and we next consider (27). Two subcases will be considered;

a) g3 < c 1
g

2 ; b) g3 ? c 1g 2 ·

Ad a. Consider the first scalar equation of the vector equation (27).
For i = 3 we get g3 l!l c

1
g

2
= c

2
g

1
· Because of the assumption g3 < c

1
g 2 ,

necessarily c
1

g
2

= c
2

g
1

.
2

For i = 4 we get g4 l!l c
1

g
3

= c
2

g
2

· Then either c 1g
3

= c
2

g
2

«c
1
g

2
) or

g4 = c
2

g
2

(and c
1

g
3

$ g4)' From the first possibility it follows that c
2

<

For i = 5 we get g5 Ell c
1

g
4

= c
2

g
3

. Now c
1

g
3

$ g4 is ruled out since
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2
c

1
g

4
2 c

1
c

2
g

2
c

2
g

1
> c

2
g

3
which is impossible, Therefore c

1
g

3
= c

2
g

2
,

g4 < c
1

g 3 and c 2 < c
1

, From the equality g5 e c
1
g

4
= c

2
g

3
it follows that

either c
1
g 4 = c

2
g

3
or g5 = c

2
g

3
, By studying what happens in (27) with i = 6,

it readily follows that g5 < c
2

g
3

and therefore c
1

g
4

= c
2

g
3

,

With induction it can now be shown that

i 3,4,5" "

from which we conclude that a linear dependence of two successive columns of
H exists, By means of Theorem 3 a one-dimensional system can be constructed
now,

ad h. Now equation (27) holds with 9
3

2 c
1

g
2

, By considering

gi e c
1

g
i

_
1

= c
2

g
i

-
2

for i = 3,4, etc., it readily follows that

Apart from (27), now also the following dependence among the columns of H
exists:

o ~ column i = a ~ column (i-l) e c
2
~ column (i-2), i = 3,4,.,.,

and now Theorem 3 can be applied again (a is a constant which is $ c
1

) ,
As an example, consider

then for the corresponding matrix H,

o ~ column i e 2 ~ column (i-l)

and also

5 ~ column (i-2), i 3,4" ."

o ~ column i a ~ column (i-l) e 5 ~ column (i-2), a ~ 2,

i 3,4,5, .. ,

Summarizing, we have obtained the following. If any three successive
columns of a Hankel matrix are linearly dependent, then at least one of
the following assertions is true:

1, any two successive columns are linearly dependent;
2. the linear dependence is of the form of (25);
3. if the linear dependence is not of the form of (25), then another

linear dependence exists which does have this form,
4. if none of the above assertions holds, then the procedure (also)

gives a minimal realization by construction.
Thus we have proved:

Theorem 4: Given a series {g.}~ 1 such that for the corresponding Hankel
~ ~=

matrix any three successive columns are linearly dependent, then a DEDS of at
most state dimension two exists for which the given series is the impulse
response.

D
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Remark: Wi th some obvious changes in notation and in terpretation, the
paper can be repeated in terms of the min-algebra instead of the max-algebra.
In the min-algebra the operations are addition and minimization.

o
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~ INTRODUCTION

The aim of this paper is to give, in a simple
some basic indications on the methodological tools
order to understand, develope and analyze Petri
models of manufacturing systems.

Petri nets have been developed in the last decade into a
powerful tool to model discrete event systems. Their growing
relevance is witnessed by a host of theoretical studies, the
wide ranging application areas and a number of software tools
for the analysis of Petri net based models (Ajmone Marsan et
al. 1984a, Chiola 1985, Cumani 1985, Dugan et al. 1985,
Molloy and Riddle 1986, Sciomachen 1986, Billington 1987).

Recently manufacturing systems have emerged as a most
important application area. Petri nets are well suited to
model the complex interactions between the elements of a
manufacturing system, in particular those features of
synchronization and concurrency of different activities which
exert a critical influence on the overall performance of a
system (Dubois 1983, AlIa et al. 1985, Martinez et al. 1986).

Petri nets have been particularly successful in the
specification and validation of control procedures at the
workcell level (Valette et al. 1983b, Thuriot and Courvoisier
1983, Murata 1984a, Komoda et al. 1984).

There are many advantages in modelling a system using
Petri nets. First of all, the system is described in a
graphical form and hence it is possible to visualize the
interactions among different components of complex systems.
Petri nets also indicate explicity those points in the system
where the control can be exercised (Valette et al. 1983a,
Marabet 1986). Second, the system can be modelled
hierarchically and represented in a top-down fashion at
different levels of abstraction. Moreover, a systematic and
complete qualitative analysis of the system is allowed by
Petri net analysis techniques. Finally, performance evaluation
of the system is possible by Markov techniques, when this is
stochastically and computationally feasible, and by direct
simulation of the net.

The above points will be dealt with in this paper and
exemplified considering the representation, analysis and
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simulation of a machine for electronic assembly.
The basic operations of the machine are in this paper

only sketched without going into unnecessary technicalities. A
complete description of the operations of a specific machine
of this type is given in Ahmadi et al. (1986).

For each workboard to be assembled by the machine a given
number of electronic components must be picked up from a
component magazine and fitted to the workboard in a specified
position. There are two component magazines located in the
north and south side of the machine, which can independently
move to align the slot containing the specified component with
the pick up position. At the center of the machine there is an
arm which has one h~ad at each of its ends. Each cycle of the
machine is defined by the following operations. The arm moves
first to the north magazine while the north head of the arm is
preparing for picking the component and the magazine is moving
to the proper position. Concurrently, the other magazine is
moving and the workboard is being positioned for the component
to be fitted by the south head. Only when the magazine is
aligned and the arm is idle the component is picked up. As
soon as the arm is idle the south head can start the
preparation activities and subsequently fit the component.
When both the picking and the fitting are completed, the arm
moves to the south magazine and the same operations are
performed in the south side of the machine reversing the roles
of the heads of the arm. The very features of concurrency and
synchronization which can produce, in ideal conditions, the
peak performance make the machine subject to severe
degradation when the concurrency is not properly exploited.

In order to plan the capacity of the assembly line and to
schedule the production, an accurate estimate of the machine
cycle time for a given product is required before the start of
the production.

Creating a setup and sequencing for a new workboard
requires extensive and time consuming preparation of the
machine.

Replacing this trial and error method on the machine is
the main reason behind the development of simulation models.

Petri nets have proved particularly suited to this task
for a class of Computer Numerically Controlled (CNC) machines
(Archetti et al. 1986, Grotzinger and Sciomachen 1987,
Sciomachen et al. 1987).

In this paper the steps required for the representation,
analysis and simulation of these machines will be described.

Section 2 is devoted to the basic definitions and
properties of Petri nets and to the model of the machine
sketched above.

In Section 3 the main technique for the logical
verification of the model computing the invariants of the net
(Reisig 1982) is presented. These invariants are shown to have
a meaningful interpretation for the operations of the machine.

Section 4 outlines the main techniques, based on
Markovian analysis and direct simulation of the net, to
compute the steady-state probabilities from which the
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performance indices of the machine can be derived.
The numerical results of the Markovian analysis and

direct simulation for the machine considered in this paper are
given and compared. Their analysis and that of the invariants
allow to draw useful considerations on the behavior of the
machine.

2. CREATING ~ PETRI NET MODEL

{p:
areA}

(P,T,A)

required

PN =
{p ,p

1 2
} .

n
p } and a set of transitions T = {t , t , t

12m
A (P x T) U (T x P) is a set of directed arcs which

link places to transitions and transitions to places.
Places are used to represent resources and logical

conditions of the modelled system.
Places may contain tokens. The state of the net, or its

marking, is given by an integer vector M(i) whose k-th
component M(i;k) is the number of tokens in place p •

k
The specification of the initial marking M(O) is

in order for the Petri net to be completely defined.
For each transition a set of input places I(t)

(p,t) A} and a set of output places ott) = {p: (t,p)

In this Section the basic components of a Petri net model
are introduced. The presentation, far from being complete, is
aimed at making the paper self-contained. For a comprehensive
coverage of the subject the reader is referred to the volumes
Peterson (1981) and Reisig (1982), while two survey papers of
a general and introductory nature are Agerwala (1979) and
Murata (I984b).

As far as manufacturing systems are concerned, two
recent introductory references are Kamath and Viswanadham
(1986) and Beck and Krogh (1986).

A Petri net is a bipartite directed graph
whose nodes are divided into a set of places P

given.
In the classical Petri net theory, a transition is

enabled when there is at least I token in each of its input
places. A transition, enabled in a marking M(i), can fire
removing I token from each input place and placing I token in
each output place.

Several extensions, e.g. weighted arcs and places with
capacity, have been added to the classical theory to reflect
the modelling requirements of specific application areas. The
firing rules have been modified accordingly.

The firing of a transition t moves the system into a new
marking M(i+l) = M(i) + F(t) where the k-th component of F(t)
is given by F(t;k) = I if p E ott) - I(t), F(t;k) -1 if p

k k
E I(t) - ott) and F(t;k) = 0 otherwise.

Transitions can be immediate, i.e. they fire as soon as
they are enabled, or timed: in this case there is a delay,
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firing.
in order to

timed transition

1982)
and

net of Figure 2.1 (Molloy
and 3 which are concurrent
are in conflict.

random or deterministic, between enabling and
Immediate transitions are utilized

synchronize multiple flows before enabling a
(Dubois and Stecke 1983).

Timed transitions are used to represent operations and
activities of the system (Ramchadami 1974, Sifakis 1977). A
general reference to the research activity in the area of
timed nets is in Torino (1985).

Graphically places are represented by circles, immediate
transitions by bars, timed transitions by rectangles and
tokens by dots inside places.

Enabled transitions which share input places cannot fire
at the same time. Indeed the firing of one transition disables
the others.

In this case the transitions are not independent and have
a joint firing probability. This situation is called a
conflict.

Two or more transitions are concurrent when they can
independently fire. Concurrent transitions represent
activities which take place simultaneously.

The set of markings generated by the firing of all the
enabled transitions is called reachability graph and denoted
by R(PN,M(O».

For instance, the
displays transitions 2
transitions 4 and 5 which

Figure 2.1

Given the initial marking M(O) (1,0,0,0,0) the
reachability graph contains the vectors (0,1,1,0,0),
(0,0,1,1,0), (0,1,0,0,1) and (0,0,0,1,1).

An important feature of Petri nets is the use of
inhibitor arcs. A token in a place linked by an inhibitor arc
to a transition prevents the transition from firing.

Inhibitor arcs are particularly useful to model failures
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of components of the system (Archetti et al. 1985, Archetti et
al. 1987) and priority rules (Abraham and Sciomachen 1986).

Another useful feature of Petri nets are the double arcs.
For instance, in the net of Figure 2.2 place 2 is both input
and output for transition 2. Places 1, 2 and 3 can
respectively represent the loading station, the output buffer
of a machine and the wait station of an Automated Guided
Vehicle (AGV). Places 4 and 5 represent respectively the AGV
loaded and the AGV in travel mode to load a workpiece from
place 1.

3

Figure 2. 2

4 '-----r---'

Transitions 3 and 4 represent respectively the travel
time of the AGV loaded and empty. The double arc from place 2
to transition 2 represents a transportation request.
Transition 2 fires but the token never leaves place 2. This
property is required in order to compute statistics about the
queue lenght in the output buffer.

After this simple example, we'll use the basic notions
introduced above to build the Petri net model of the machine
described in the Introduction. This model is displayed in
Figure 2.3. The net has 26 places and 19 transitions, 13 of
which are timed transitions representing all the operations
and activities performed by the machine.

The basic movements of the 4 main subsystems of the
machine namely arm, board, north and right magazines, are
represented by the timed transitions AMS and AMN (arm moving
south and arm moving north), BM (board moving), NFM (north
magazine moving) and SFM (south magazine moving).

The two timed transitions NHM and SHM (north and south
head moving) represent the movement of the head which has to
be aligned with the picking location when the arm is moving to
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north/south. The two timed transitions SHT and NHT
(south/north head preparing in the north/south side) represent
the preparation activities required to the south/north head in
order to be ready for the fitting when the arm is north/south
aligned.

25

0

r 4 6

99 19

~'ti15
7 5 3

2

8 6 4

o~jt NH 20

10

22

t
26

Figure 2.3
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The picking and the fitting operations are represented by
transitions PKN and PLN in the north side uf the machine and
by transitions PKS and PLS in the south side of the machine.

In this example, the time associated to each of the above
transitions is expressed by an exponential random variable
whose mean value is given in Table 2.1.

Table 2.1

Transition

BM
AMN
AMS
NHM
SHM
NFM
SFM
SHT
NHT
PKN
PKS
PLN
PKS

Mean value (sec.)

0.222
0.265
0.265
0.088
0.088
0.646
0.801
0.260
0.260
0.340
0.340
0.340
0.340

It can be noted that there are 6 immediate transitions in
the net. These transitions are introduced in order to
synchronize different concurrent operations before the
beginning of the activity corresponding to the subsequent
timed transition. For instance, picking can start when there
is a token in place 17 in the north side or in place 18 in the
south side of the machine, and the magazine involved, the arm
and the corresponding head are ready. Analogously, an
electronic component can be fitted only when the board is in
the proper position and the corresponding head is ready. The
completion of both picking and fitting represents the end of a
cycle.

At the beginning an initial marking is given in which 5
tokens are in the net, in the places I, 3, 5, 7 and 8. In this
case the first picking is performed in the north side of the
machine.

It can be remarked that only the main cycle of the
machine operation is modelled in the net and no load/unload
procedures are considered. In the initial marking, indeed, the
component to be fitted in the first cycle is supposed to be
ready for the head at the south end of the arm.

We observe that all the transitions enabled in the
initial marking are concurrent, that is each of these
transitions can be independently choosen to fire first
according to the realization of the random variable expressing
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its firing delay. All the activities represented by these
transitions are to be completed in order to start the
subsequent picking and fitting operations. In particular. a
picking is enabled after a time T(pick) from the initial
marking. where T(pick) is given by T(pick); Max{Time(LCM).
Time(NHM). Time(AMN)}. In the same way the time T(fit) can be
computed as the time elapsed from the initial marking before
the start of fitting a component. This time is given by T(fit)
; Max{Time(AMN) + Time(SHT). Time(BM)}.

3.SYSTEM VERIFICATION BY PETRI NETS

to the invariance of the
the system. A net is
in the net is constant.

In this Section we shall be concerned with
qualitative aspects of the behavior of the system and of
Petri net model.

Let us first introduce the basic properties
manufacturing system which can be analyzed using Petri
(Naharari and Viswanadham 1984).

Conservativeness. It is related
number of resources and jobs in
conservative if the number of tokens

the
its

of a
nets

n

that is if :EM(j;k)
k-\

n

:EM(i;k)k_. V (i,j).

Boundedness. It is a very important property when
modelling manufacturing systems. In fact it is related to the
absence of overflows. A place is bounded if there exists an
integer value k such that no more than k tokens can be in that
place in any marking of the net. A net is bounded if all its
places are bounded.

Liveness. This property means absence of deadocks. A
transition is said to be live if and only if for all markings
of the net there is a firing sequence which takes the net in a
marking in which that transition is enabled. A net is live if
all its transitions are live. If the Petri net representing
the manufacturing system is live and the model is correct then
no deadlocks will happen in the operation of the system.

Properness. It means that the system can be
reinitialized. A net is said to be proper if the initial
marking is reachable from all the markings in the reachability
graph. In the case of manufacturing systems. if the
corresponding net is proper then no manual intervention is
required to restore the system to its initial state from any
state.

In order to analyze these properties. the net is
represented thru its incidence matrix C; c(i.j). i;l •.••• n.
j;l •.••• m, where C<i.Jl; -1 if p EI(t). C<i.j); 1 if p

iii
E 0 (t ) and c ( i • j) ; 0 0 the rw i s e •

j
Given the markings M(i) and M(j). if M(j) is

from M(i) then the following relation holds: M(j);
where each component of the m-dimensional column

reachable
M(i) + CY
vector Y



170

denotes the number of times the corresponding transition has
fired.

In particular, if the net is to return to any given
state, then the existence of a positive integer vector Y such
that CY 0 is a necessary condition. Such a vector Y is
called a transition invariant.

If a positive integer n-dimensional row vector X exists
such that XC : 0 then XM(i) : XM(j). Such a vector is called a
place invariant. This relation implies, for each invariant,
that the number of tokens is constant in the places
corresponding to positive components of the same invariant.

If and only if X : I, the unit vector, the net is
conservative. A net is bounded if and only if there exists a
place invariant whose components are positive.

A Petri net is not proper if no transition invariant
exists.

Unfortunately, at least to the authors' knowledge, there
is no further condition in order to test the liveness and
properness properties of a net. However it is possible in most
cases, as we will show below in the case considered, to check
these properties from all the invariants of the net and from
some informations and considerations about the system.

The computation of the invariants for the machine
considered in this paper allows to verify the behavior of the
system and the correctness of the model. Indeed for the
machine to get back to a state, each operation must be
performed once, with the exception of the board which must
execute two movements for the two fittings performed in the
north and the south sides of the machine.

This requirement is reflected by the only transition
invariant Y obtained from the Petri net of Figure 2.3. In
this invariant all the components are equal to 1 except the
component associated with transition BM (board moving) which
is 2.

It can be observed, from the Petri net model and the
description of the machine, that in this case this result
implies that the net is proper.

Moreover, since all the transitions, for the net to get
back to a marking, fire, according to the transition
invariant Y, the net in this case is also live.

As far as the place invariants are concerned, the
solutions of the system XC : 0 span an 8-dimensional space. A
base of this space is given by the vectors VI, V2, V3, V4, V5,
V6, V7 and V8 listed in Table 3.1

Linear combinations of these vectors give the invariants
of interest.

In particular the invariant Xl : VI + V2 is associated
to the places representing the flow of the board in the net,
i.e. all its possible states. From the definition of place
invariant, the number of tokens in places I, 2, 22, 26, 21 and
25 is constant; since this number in the initial marking is I,
this implies that 1 and only 1 token is, in any marking, in
any of these places, This condition reflects the possible
states of the board: moving for fitting (place I), ready for
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fit ting (place 2) , during the fitting in the north or south
side of the machine (places 21 and 22) and after the
completion of the fit ting operation (places 25 and 26 ).

Table 3.1

Place VI V2 V3 V4 V5 V6 V7 V8

1 1 0 0 0 0 0 -1 0
2 1 0 0 0 0 0 -1 0
3 0 0 1 0 -1 -1 1 0
4 0 0 1 0 -1 0 1 -1
5 0 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 1
7 -1 1 -1 1 1 0 0 0
8 0 0 0 0 1 0 0 0
9 1 -1 1 0 -1 1 0 0

10 0 0 1 0 -1 0 0 -1
1 1 0 0 0 0 0 1 0 0
12 0 0 0 0 0 0 0 1
13 -1 1 -1 1 1 0 0 0
14 0 0 0 0 1 0 0 0
15 -1 1 0 0 0 0 1 0
16 0 0 0 0 0 0 1 0
1 7 0 0 0 1 0 0 0 0
18 0 0 1 0 0 0 0 0
19 -1 1 0 0 0 0 1 0
20 0 0 0 0 0 0 1 0
21 0 1 0 0 0 0 0 0
22 1 0 0 0 0 0 0 0
23 0 0 0 1 0 0 0 0
24 0 0 1 0 0 0 0 0
25 0 1 0 0 0 0 0 0
26 1 0 0 0 0 0 0 0

The invariants associated to the other components of the
machine, namely the arm, the north and south magazines, the
picking head and the fitting head, have been found in the same
way. The invariant X2 = V3 + V4 is related to the states of
the arm. Indeed the corresponding non zero components
represent all the places in which a token can be found. It can
be easily verified that the arm can be moving to the north
magazine (place 3) or to the south magazine (place 4), ready
for the north and south side respectively (place 9 or 10), or
can be aligned with the north/south magazine before and after
the completion of the picking (places 17 and 23/18 and 24).

As far as the two magazines are concerned, the
corresponding invariants X3 and X4 are given by X3 = V4 for
the north magazine and by X4 = V3 + V5 for the south one. In
fact, considering for instance the north magazine, it can be
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in four different states: moving to align the slot containing
the required component (place 7), ready for picking (place
13), during the picking (place 17) and after the completion of
the picking (place 23). Analogous considerations hold for the
south magazine whose possible states are represented by places
4, 14, 18 and 24.

In order to perform a pick, it is required that the
involved head is properly oriented with the component to be
picked up. The flow of the picking head is reflected in the
invariant XS given by X5 = V3 + V4 + V6 + V8. The positive
components of this invariant, in fact, are related to the
positions in which the head can be. This head can be moving
(place S), ready (place 11), picking (place 17) and idle
(place 23) in the north side and in the south side (places 6,
12, 18 and 24) of the machine.

The preparation activities performed by the other head,
which has to fit the electronic component, as it is also shown
by the invariant X6 = VI + V2 + V7, are associated to the arm
movements (places 3 and 4) which are to be completed before
the head start (places IS and 16). Then the head can be ready
(places 19 and 20), fitting (places 21 and 22) or idle after
the completion of the operation (places 2S and 26).

4.PERFORMANCE EVALUATION

The use of Petri nets for performance evaluation has been
mostly in the areas of multiprocessing, communications and
more recently manufacturing systems.

In this paper we shall not consider specific methods
suggested for a particular performance evaluation problem
(Sifakis 1980, Magott 1987), but only the main techniques.

Two basic approaches can be used to derive performance
measures: analytical-numerical techniques and direct
simulation.

The first can be
By this term we denote
the transitions is
variable.

SPN are isomorphic to continuous time Markov chains: the
states of the chain correspond to the markings of the net and
the sojourn times are the same. This result, due to Molloy
(1981) and extended by other authors (Ajmone Marsan et al.
1984b) to GSPN (Generalized Stochastic Petri Nets) which have
2xponential and immediate transitions, enables to apply to the
analysis of Petri nets the Markovian analysis techniques and
in particular to compute the probability of each state in
steady state and transient conditions.

Petri nets have two advantages over Markov models. They
are a formalized language of system specification and allow,
thru the computation of the reachability graph, the automatic
generation of the state space.

The method used to compute the probabilities for both the
transient and the steady-state case first computes the
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reachability graph R(PN. M(D». The states can be vanishing,
when at least one enabled transition is immediate, and
tangible, when all enabled transitions are timed. The
probabilities are computed only for the tangible states. This
is done, for the steady-state, solving the balance equations
of the Markov chain, typically by the Gauss-Seidel method and,
for the transient case, computing the exponential of the rate
matrix of the Markov chain.

These probabilities allow to compute the performance
indices of the system thru the distribution of the number of
tokens in each place of the net.

This analysis has been performed for the net of Figure
2.3. The number of markings is 128. Gauss-Seidel converged in
5 iterations to the steady-state probability for each state.

A substantial limitation of the Markovian approach is
that the number of states can be exceedingly high, making
computationally unfeasible the generation of the reachability
graph, even for middle size models, and subsequently the
computation of the probabilities.

A second limitation of the analytical approach is that it
can be applied, as already remarked, basically only when the
probabilistic structure of the net is Markovian.

The other main analysis technique is the direct
simulation of the net. In this case, tokens are moved around
according to the firing rules and the statistics are
collected about the number of tokens in each place.

The simulation procedure, (Sciomachen 1986), is simple
and straighforward. In a tangible marking it checks which
transitions are enabled. For the transitions which were
already enabled in the previous marking the time elapsed
between the two markings is subtracted from their time
constant. The variables required by each transition are
subsequently generated and the event list is updated
accordingly. At this point one can decide which transition
fires first and which marking is generated. Before moving in
the new marking the statistical counters of the simulation are
updated.

The lenght of the simulation run is controlled by the
usual criteria of statistical simulation. The search for
stopping criteria explicity dependent on the structure of the
Petri net is still very much an open problem (Haas and
Shedler 1986a, 1986b, 1987a, 1987b). In the same papers the
simulation of SPN is analyzed in the framework of Generalized
Semi Markov Processes.

Over traditional simulation languages Petri nets offer
the advantages that the system specifications, as they are
represented in the net, and the initial marking are the only
input required by the simulation procedure which generates
automatically the simulation program.

The methods recalled above are common in most of the
software packages for analyzing timed Petri nets. Specific
features may be different depending on the environment in
which the package has been developed and its main application
area. For instance MEGAS (Multiple Event Graph Analysis &
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Simulation), (Sciomachen 1986), developed in a manufacturing
environment, has several options for dealing with conflicts.
allowing the use of state dependent rules. which can represent
adaptive control policies.

Moreover the timing of the transitions can vary
dynamically during the execution of the net. This feature, as
illustrated in Archetti et al. (1986). is important when
dealing, in realistic conditions, with machines like that
considered in this paper.

For the machine of Figure 2.3 the token distribution has
been computed by the analytical technique and by simulation.

Table 4.1 gives the probability of having 1 token for
each place of the net.

Table 4.1

Place Probability of 1 token
Analytic Simulation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0.198
0.312
0.118
0.118
0.082
0.082
0.289
0.358
0.076
0.109
0.112
0.145
0.418
0.357
o. 116
0.116
O. 152
0.152
0.021
0.021
0.152
O. 152
O. 141
0.133
0.080
0.105

0.196
0.314
0.118
0.119
0.082
0.082
0.295
0.353
0.079
0.106
O. 115
0.143
0.413
o.361
O. 116
0.116
0.150
O. 151
0.020
0.021
0.154
0.152
0.141
o•135
0.081
0.102

The agreement between the analytical and simulation
results is more than satisfactory.

It is important to note the relation between the place
invariants and the token distribution. Let P be the steady-
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state probability vector of having 1 token in each place of
the net and X any place invariant vector. Then the sum of the
probabilities of having 1 token in the places belonging to
each place invariant is related to the corresponding invariant
by the relation XP = 1.

The verification of this property is given in Table 4.2
where for each invariant it is computed the scalar product XP.
In the Table the values P(i), representing the probability of
having 1 token in place i, are the results obtained by the
analytical procedure; the same results hold for the simulation
results.

Table 4.2

Invariant XP

Xl P(1)+P(2)+P(21)+P(22)+P(2S)+P(26) = 0.999
X2 P(3)+P(4)+P(9)+P(10)+P(17)+P(18)+P(23)+P(2S) 1.
X3 P(7)+P(13)+P(17)+P(23) = 1.
X4 P(8)+P(14)+P(18)+P(24) = 1.
XS P(S)+P(6)+P(11)+P(12)+P(17)+P(18)+P(23)+P(24) = 0.999
X6 P(3)+P(4)+P(lS)+P(16)+P(19)+P(20)+P(21)+P(22)+P(2S)

+P(26) = 1

CONCLUDING REMARKS

The example discussed in this paper and the growing
research interest in the use of Petri nets to model
manufacturing systems bear witness to their great potential in
the design and management of the automated factory.

The main advantages of Petri nets over traditional
simulation languages can be summarized in the following
points. First, the availability of a design and simulation
language which can be used at different levels of abstraction
and detail. Different analysis technique using the same data
structure can be employed from the initial macrosimu1ation for
capacity planning to the system control at workce11 level.
Second, the automatic generation from the net of the
simulation program, with a drastic reduction in the time and
cost of program development.

The main obstacle to a broader use of Petri net based
tools is the lack of a generally agreed upon methodology for
constructing models out of the system specifications. For this
reason, the model in this paper as well as the more complex
ones of Sciomachen et a1. (1987) and Abraham and Sciomachen
(1986), have been presented in such a way as to outline a
general methodology for building Petri net models. This
methodology holds, in the authors' opinion, beyond the issue,
specifically addressed in this paper, of modelling CNC
machines.
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The SMARTIE Framework for
Modelling Discrete Dynamic Systems

Geert-Jan Houben, Jan L.G. Dietz, Kees M. van Ike

I. INTRODUCfION

A major problem in software and systems engineering is the precise specification of the

system to be analysed or designed. A formal model of the system to be build can be con

sidcred as a specification of the system, restricted to the aspects considered in the model.

A computer-model is an implementation of a formal model. It can be used to simulate the

behaviour of a modelled system. In case this system is an information system a computer

model can be used as a prototype of the system. Users or potential users of an information

system usually are unable to understand a formal model of the system. With a prototype of the

system they can see if their requirements are translated correctly by the system designers.

The systems we are dealing with are discrete dynamic systems. Such a system is at each

moment in one of a set of states. At some moments it performs a transition to another, not

nccessarily different state. The number of transilions in each finite time interval is finite. A

transition is triggered by one or more actions. The system may produce by each transition one

or more reactions. Actions are coming from the environment of the system or they may bc

created by the system itself and fed back to the system.

Many real systems, including infornlation systems, are discrete dynamic systcms.

In literature there are many approaches to model discrete dynamic systems. Finite stale

machines, Markov chains and Petri nets are well-known examples of generic models. In Dietz

and van liee (1986) a frJmework, called SMARTIE, is developed. It is an extension of finite

state machines combined with a modelling language based on predicate logic. In Harel (1986)

another generalization of finite state machines combined with a graphical modelling language is

presented. A different and less formal approach is found in Jackson's System Development

(Jackson 1983). In Jackson (1983) several interesting examples are presented. In Sridllar and

Hoare (1985) some of these examples are modelled using the language of Hoare esp. In that

paper it is suggested that esp could provide a formal basis for the JSD method.

We feel that our approach is a powerful alternative. In van Hee, Houben and Dietz

(1987) this is already demonstrated by treating some examples. In that paper we also focused
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on a modelling language and a diagram technique.

In this paper we give the description of our model for a diserete dynamic system (dds) in

Section 2. In Section 3 we briefly describe our modelling language and in Section 4 we give

some examples. The examples include a banking system, a queueing system and a heating

system. In Section 5 some conclusions are drawn.

2. MODEL OF DISCRETE DYNAMIC SYSTEMS

A dds is determined by a seven-tuple, the components of which will not all be known.

Some of the components will be fUlly specified during the design phase of a dds, while others

will become known during the operational phase of the system.

In this section we define the components of a dds and its behaviour. In this paper we do

not define the aggregate of a dds. However, since it turns out that such an aggregate is adds

itself, our model allows decomposition and integration of dds'ses.

We usc the following notations:

p (X) denotes the set of all finite subsets of a set X.

!'!t. denotes the symmetric difference-operator, Le. a tob = (a u b )\(a n b).

dom and mg are functions that assign domain and range to a function, respectively.

X ~ Y denotes the set of aU functions with domain contained in X and range contained in

Y.
(ujeJ : Ai) denotes (x 13jeJ : x e Ai)'

(njeJ :Ai ) denotes Ix l'VjeJ:x e Ai)'

Furthermore, we use the usual notations of set theory and symbolic logic, including ~

for implication. Often we write Ix instead of I (x) for a function application. We frequently

use the !'!t.-operator and the fact that this operator is commutative and associative. Therefore,

we may define for some set of sets X, !'!t.X =X 1 to X2 to ... to XII for some enumeration

X (0.•• , XII of X. Similarly for some set-valued function X,

(!'!t.i e dom(X) : Xi) =Xj1 to Xi, to ... to Xi. for some enumeration i \" .. , ill of dom(X). Let IN

denote the set of natural numbers. Let IR+ denote (x I x e IR 1\ x ;::: e) for some fixed e > 0,

where IR denotes the reals. IR+ will be used as the time domain of dds'ses.

Definition 2.1.

A discrete dynamic system is a seven-tuple

<S ,M ,A ,R ,T ,/ ,E>

where

S is a set-valued function,

fori,j e dom(S) wehavei ~j ~Sj n SJ =0,

dom(S) is called the set of store indices,

for j e dom(S) : Si is called the state base of store i,
~ = P (SJ) is called the state space of store i.
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M is a function,

dom(M) is called the set of processor indices,

for i E dom(M) : Mj = <.MCj,MR j >

where:

M j is called the motor of processor i,

MCj and MR j are functions,

MCj is called the change function of processor i,

MR j is called the response function of processor i.

A is a set-valued function,

dom(A) =dom(M), .

for i,j E dom(M): j *j -t Aj r. Aj = 0,

for i E dom(M) and j E domeS) : Aj r. Sj =0,

i E dom(M) : Aj is called the action base of processor i,
~ = P (A j ) is called the action space of processor j.

R is a set-valued function,

dom(R) =dom(M),

for i,j E dom(M): i *j -t Rj r. Rj = 0,

i E dom(M) : R j is called the reaction base of processor i,

R; =P (R j ) is called the reaction space of processor i.

T is a function, dom(T) =dom(M) x dom(M)

for i ,j E dom(M) : Tjj E R; -t P(Aj x I?+),

T is called the transfer function.

I is a set-valued function, dom(l) = dom(M)

for i E dom(M) : I j c dom(S),

I is called the interaction function.

For i E dom(M):

* MSj = (u j E I j : Sj) is called the state base of processor j,

* MSj =P (MSj ) the state space of processor i,

* MCj E MSj x ~ -t MSj ,

* MR j E MSj x~ -tR;,
* 'VsEMS j :MCj (s,0)=MRj (s,0)=0.

E =<EU ,ES ,EA > where EU, ES and EA are functions:

* dom(EU) =dom(S) and

for j E dom(S) : EUj E P (Sj X I?+),

EUj is called the external update set of store j

* dom(ES) =domeS) and

for j E domeS) : ESj E ~,

ESj is called the initial state of store;.
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* dom(EA) =dom(M) and

for j e dom(M) : EA i e P(A j x R+),

EA i is called the external event set of processor j.

(end of definition)

A mechanical appreciation of a dds is as follows. A dds consists of a set of processors

and a set of stores. Processors are mutually connected by transaction channels and processors

and stores may be connected by interconnections. The motor of a processor transforms instan

taneously a set of actions into updates for the connected stores (by means of the function MC)

and simultaneously it produces some set of reactions. The transformations may depend on the

states of the connected stores. The state of a store may change by an update from a connected

processor or by some external update. Hence an environment may innuence a dds by external

updates on stores and by imposing actions on the processors. The occurrence of an action at a

particular moment is called an event. More than one event at a time for one processor is

allowed. The output of a processor is sent to the environment of the processor and a transfer

function transforms some reactions into actions with a time delay. Such a pair is sent to a pro

cessor as a new event with a time stamp equal to the sum of the processing time and the delay.

The delays are clements of R+ and therefore the number of transitions in a finite time

interval is always fmite. The events produced by a dds for itself or another processor are called

internal events. They are inserted into the event agenda of the receiving processor. Initially,

this agenda consists of all the external events, later on it contains also internal events. The

external updates are supposed to commute; in fact we assume that each update is specified by

some value from the state space of a store. If this value is denoted by S I and the actual state of

that store is s 2- then the effect of the update will be sIt>. S2'

Next we define the behaviour of adds.

Definition 2.2.

Let <S ,M •A _R •T ,I ,E> be a dds. The process of the dds is a five-tuple

<'t.a,p,o.c!l>

where:

't e N --+ R and for n eN: 'tn is the time stamp of the n -th activation,

a, p. o. c!l are functions with

dom(a) =dom(p) =dom(c!l) =dom(M) and dom(o) =domeS) .

For j e dom(M):

aj e R --+ X;, ai (t) is the action set of processor j at time t,

Pi e R --+~, Pi(t) is the reaction set of processor i at time t,

c!li e R --+ P (A j x R +), c!li (t) is the event agenda of processor j at time t.

For j e domeS):

OJ e R --+ Sj, o/t) is the state of store; at time t.
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These functions are defined recursively:

to =0, for i e dom(M) : aj(O) =0, pj(O) =0, c1>;(O) =EA j

for j e domeS) : OJ(O) = ESj .

Let t n be defined and let the functions a, p, a and <!l be defined on the interval [O,tn1,
tn+1 = min (t 13iedom(M): 3aeA j : <a,t> e <!lj(tn))

and for j e dom(S) let B be defined by

I5J (tn+l) = 0j(tn) Ii (~ [x I <X ,Y> e EUj "tn < Y < tn+l})

and for i e dom(M) let Y be defined by:

and let:

aj(tn+l) = (a I <a,tHl> e <!lj(tn)),

for t n < t < tn+l : aj(t) = 0;

Pj(tn+J) =MRj(Yj(tn+l),aj(tn+I))'

for t n < t < tn+1 : Pj(t) =0;

<!lj(tn+l) = {<a, t> I «a, t> e <!lj(tn)" t > tHI) V

V (3de R+: 3kedom(M): t =t n+l + d "<a,d> e Tkj(Pk(tn+I)))}

for t n < t < tn+1 : <!lj(t) = <!lj(tn).

For j e domeS):

0j(tn+l) =Bj(tn+l) t. (~i e dom(M) : Sj (") MCj(Yi(tn+I),aj(tn+l))) t.

t. (~{x I <X ,tn+l> e EUj ))

for t n < t < tn+l : OJ(t) = 0j(tn) t. ~ {x I <X ,Y> e EUj " t n < Y ~ t}.

(end of definition)

Note that B/tn+l) is the last state of store j before t n+l and that Yj(tn+l) is the last state

of processor i before t n+l' The state of store j at tn+1 includes also the external updates at

time t n+1-

Here we do not define the aggregate of a dds, but it turns out that the aggregate is adds

itself. However, it has only one processor and one store. So it may be called a simple dds. In

a top-down design-process we stan in fact with a simple dds and we decompose it into adds

with more stores and processors. At the top level we do not specify much components of the

dds. However, the funher we decompose the system, the more details we specify. If we finally

have specified at the bottom level all details of the dds, then that is also the specification of the

simple dds at the top level. In this design-proccss the diagram technique, proposed in van

Hee, Houben and Dietz (1987), can be helpful. When we observe the processes of a dds and

its aggregate, then we learn that they have the same outputs and therefore the same external

behaviour. So we could consider them equivalent.

In practice we only specify the first six components of a dds, since we cannot look into

the future to detennine EU and EA. However often we know or require some propenies from
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these sets, for example that the time lag between two evenlS or external updates is bounded

from below by some known quanlily. Such information may be used to prove propenies of

the behaviour of !he system, i.e. of the process of !he system. On the other hand we sometimes

require propcnies of !he process of a system, and then these requiremenlS may be translated

into requiremenls for E and therefore for the environment of the system.

In our model we assume that state transitions are executed instantaneously. This assump

tion is made to facilitate modeling. In practice it is often impossible to implement instantaneous

transitions. There are several ways to guarantee !hat the time lag betwcen two transitions is

longer !han the time needed to realise the transition in !he real system. One of these methods is

demonstrated in !he second example of section 4. We !hink !hat this kind of modifications of a

modcl is a next phase in the design process: first we model an ideal system, afterwards we

take care of the limitations of implementations such as bounds on store sizes and execution

times for state transitions.

Finally we note that our framework assumes !he existence of absolute time. However the

processors we model do not have the possibility to inspect some absolute clock. The absolute

time we assume is just for the definition of !he process of a system and may be used to

express and prove propenics of the dynamics of systems.

3. MODELLING LANGUAGE

The modelling language !hat we introduce in !his section is one of !he possible ways to

describe the componenls of a dds, defined in !he framework of Section 2. Although we feel

that a large class of systems can be described in !his way, we do not claim that this is true for

every dds.

Our modelling language consists of two pans. The first part is a first order language L

that is used to describe the state, action and reaction bases and spaces. The second part is a

language PRL for production rules, that is used to describe the motor functions.

The first order language L is constructed in the usual way (cf. Chang and Lee 1973). It is

extended by introducing two addilional quantifiers for summation and cardinality.

The alphabet consists of:

set of variables

set of constanls, caIIcd F 0

set of n -ary function symbols, calJed F", for n E Nand n > 0

set of n -ary predicate symbols, called P", for n EN,

P =(unEN :P,,)

quantifiers: 3, V, L, #

logical operators: v, 1\, .., ~, ~

relational operators: <, >,:$;,;::, =, ~

arithmetic operators: +, -, *, mod, illY
punctuation symbols: ( , ), :, .. ( , l, I
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Tenns are defined by:

constants and variables are tenns;

if t I,... , tn are tenns and f E Fn , then f (t (0 ••• , tn ) is a tenn;

if t I and t2 are tenns, then (t 1+ t2), (t 1* tz), (t 1 - tz), (t 1 div t2) and (t I mod t2) are tenns;

if t is a tenn, x is a variable and Q a fonnula, then (u : Q : t) and (#x : Q) are tenns.

Atoms are defined by:

if tl" .. ,tn are tenns and p E Pn , thenp(tl," .,tn ) is an atom;

if tl and t2 are tenns, then (t1:5:tz), (tl~t2)' (t1<t2), (tl>tz), (tl=t2) and (tl~t2) are

atoms.

Fonnulas are defined by:

an atom is a fonnula;

if Q and Rare fonnulas, then (Q V R), (Q f\R), (--,Q), (Q -)R) and (Q ~R) are for

mulas;

if Q is a fonnula and x is a variable, then ('<Ix : Q) and (3x : Q) are fonnulas.

Note that, when no problems arise, parentheses are often omilled. In formulas free and

bounded variables are distinguished, in the usual way. To give fonnulas a (fonnal) interpreta

tion (cf. Lloyd 1984), we choose the set of integers as the domain of interpretation. This means

that every constant is mapped to an integer and every variable is given an integer value, but

this restriction to integers is only made for convenience and is not essential.

For describing the state base of a store or an action- and reaction base of a processor we

choose a subset of the predicate symbols P. The bases are defined as the sets of all ground

atoms with corresponding predicate symbols. Note that when we specify such a set of predi

cate symbols, we also specify for each predicate symbol the number of arguments that the

corresponding ground atoms will have; p (. " ) denotes that the ground atoms with predicate

symbol p have two arguments. All sets of predicate symbols for base-definitions should be

mutually disjoint. Remember that the state space of a processor is the union of the state bases

of stores with which it is connected.

We assume that relational and arithmetic operators have their usual interpretation, as have

the logical operators and quantifiers. For each processor i with action- and reaction bases

defined with predicate symbol sets PA j and PRj respectively and a state base defined with

predicate symbols PSj , a subset POj of P is defined that is disjoint with PA j , PRj and PSj .

The predicate symbols in POj are used for shorthands in the description of the motor of i.

For each processor i a set of closed fonnulas OJ is defined. Fom1Ulas in OJ may contain

predicate symbols of POj U PA j U PRj U PSj . These fonnulas are considered to be axioms;

they have the truth value true. These fonnulas serve as definitions for shorthands or as con

straints on states and actions. We can for instance specify constraints for specifying that some

argument values are not allowed for some predicate symbols, thus specifying as domain of an

argument only a subset of the integers. The set OJ is called the axiom base of processor i.

We follow the closed-world assumption (cf. Reiter 1984), which implies that, given some

state s and some action a all ground atoms in s and a have the trulh value true, whereas all
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other ground atoms that can be formed by predicate symbols from the corresponding bases

have the truth value false. We require that a processor j never has to deal with a state or an

action that is in contradiction with Di • It is the responsibility of the designer of a system to

prove thal a dds fulfills this requirement. Usually, this is done by showing that, given a state

and an action, that do not contradict D j , the new state does not contradict Di either.

The definitions in D i are closed formulas of the kind:

VXI : ... : VXn : p(x\' ... ,xn ) f--) Q ,

where p E PDi and Q is some formula involving at most x \•.... Xn as free variables and

predicate symbols from PDj U PAj U PRi U PSi' Each predicate symbol of PDj occurs

exactly once in such a formula on the left-hand side. It is again the designer's responsibility to

guarantee that for each ground atom, with its predicate symbol in PD i , a truth value can be

determined w.r.t. some state s of processor j and some action a for processor j.

Given D i , some state s of processor j and some action a for processor j. the motor M i

may change the state and therefore the formal interpretation of fomlUlas. Such a change of

state consists of additions and deletions of ground atoms with predicate symbols from PSi' A

deletion means that the negation of that atom gets truth value true. This can never cause a con

tradiction with a definition in D j, but it may create contradictions with constraints. If an axiom

base, a state and an action are considered to be axioms of a theory, then a transition may

change this theory into a new one.

Now we can define the language of production rules PRL, for describing the motor of a

processor. First we define formally the language's syntax; its semantics will be defined infor

mally afterwards.

In PRL. formulas of L occur. The non-terminals <formula> and <atom> refer to formu

las and atoms of L resp. Using EBNF-notation we define:

<rule>

<condition>

<D -part>

<I-part>

<R-pan>

<atom set>

<enumerated set>

<atom list>

<conditional set>

<condition><D -pan><I-pan><R -pan>

F <formula>
o
:;. <atom set>

f
:;. <atom set>

R
:;. <atom set>

[<enumerated set> I <conditional set> I <atom set> ~ <atom set>J

( <atom list>)

<atom> ( , <atom>)

( <atom> I <formula>)

o f R
Note that 'F' , ':;.' , ':;.' , ':;.' and the underscored symbols are terminals.
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An example:

F= «(P(l,3)i\q(O» Y r(x,Y,z»
D

::;:. (q(8),r(7)] U [p(hx,y)lt(y)i\y~x}

I
::;:.

R
::;:. (m(x, z) I t(X)}

There may oeeur free variables in a rule, Le. in the formula of the condition or in an

atom set. However, the free variables in an atom set have to occur also in the condition. Note

that a variable that occurs as a free variable before and after the bar in a conditional set is

bounded. With each state and action of a processor we associate an active domain. This is the

set of all constants that occur in the axiom base, the state or the action. The active domain and

the set of all variables occurring in the description of a motor or store are finite. A binding of a

set of variables is a function with this set of variables as domain and the active domain as

range.

The semantics of a rule are as follows. For each binding of the free variables of the for

mula in the condition of a rule, it is checked whether this formula is true, with respect to the

formulas in the axiom base, the (current) state and the action. If it is true, then the atom sets of

the D -, I - and R -pans are computed, where for free variables in these atom sets the values

defined by the binding are substituted. The quantifications over bounded variables in closed

formulas and conditional sets are computcd also with respect to the active domain, so these

quantifications are computable. The computation of a conditional set is as usual. When in a

D -, I - or R -pan no atom set occurs, then the set of ground atoms computed wi11 be empty.

For reasons of convenience we allow that, instead of writing a part without an atom set, such a

pan is omitted.

Denote for rule n and binding b of the free variables of the condition of the rule, the sets

of ground atoms computed in the D-, 1- and R-pan by Dn,b' In,b and Rn,b' respectively.

Then we define:

C = (~n : (ub : Dn,b» & (~n : (ub : In ,b» ,

R = (un : (ub : Rn,b» .

For a transition of a motor is now defined for state s and action a:

MC (s •a) =s & C

MR(s,a)=R

so the state is changed by taking the symmetric difference of the old state and for all rules, the

union, over all bindings of the free variables in the conditions in the condition of the rule, of

the computed sets of the D - and I -pans, whereas the reaction is just the union over all com

puted sets of R -pans for all rules and bindings. Note that the distinction between D - and 1

pans is only made for convenience.
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4. EXAMPLES

In this section we present three examples. The first one treats a banking system similar

to the example treated in Sridhar and Hoare (1985). The second one shows how to deal with

queues. The last one treats a heating system.

4.1. Banking System

In this section we will give two versions of a banking system. The first version describes

a very simple system in which the balances of aecounts are managed. This example comes

from Sridhar and Hoare (1985).

Processor I receives banking transactions, originating from the account holders, and

makes appropriate changes to the balances in Store I. Processor 2 periodically reads the con

tents of Store I and produces a balance report, which is sent to the bank management Store I

holds the balances of the accounts. For Store I we will use ground atoms balance(i,x), where

bal ance(i ,x) means that the balance of account i is equal to x.

Processor 1, which has interaction with Store 1, can be specified as follows:

A = (invest(· " ) , payin(. " ) , withdraw(· " ) , terminate(· »)

R=0

M:

F= invest(i, x) 1\ no-account(i)
I

~ (balance(i, x»)

F= terminate(i) 1\ baJance(i, 0)
o
~ (bal ance(i , 0) )

F= balance(i, x) 1\ -.invest(i, y) 1\ -.terminate(i)
D
~ (balance(i, x»)

I
~ (balance(i ,y) I y = x + (LW : payin(i, w) : w) - (LW : withdraw(i, w) : w»)

D = (V i : no-account(i) ~ -.(3x : balance(i ,x»)

Processor 2, which has interaction with Store I, can be specified as follows:

A = {makereport)

R = (report(. " ) , doreport(. »)

M:

F= makereport 1\ balance(i ,x)
R
~ (report(i ,x»)

% note that this rule is executed for all accounts, if a makereport action is received %

F= makereport
R
~ (doreport(t»)

% note that this rule is executed only once when a makereport action is received %
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Furthennore ;

T Z;2 ; 'V t ; dorcport(t) E A ~ T Z;2(A) = (<makereport,t»

% via the feedback transaction channel a next makereport action is transferred, that will be

received t time units later %

Store I can be specified as follows ;

S = (balance(· " »)

When we consider this specification, we can notice that we assume that Processor I can

only get some sets of actions at a time, e.g. not an invest action and a tenninate action

together. This implies that we have some knowledge concerning the environment, Le. the pos

sible sets of events.

In the second version of the banking system we will specify Processor I in such a way

that we do not have to make assumptions about the event sets coming from the environment

FUithennore we will specify exactly the domains of the predicate symbols. Again both proces

sors have interaction with Store I.

Specification of Processor 2 :

A = (makereport)

R = (report(· ," ) , doreport(" ) J

M:

F= makereport 1\ balance(i, x)
R

=:> (rcport(i, x»)

F= makereport
R

=:> (doreport(t) J

Specification of Store I

S = [balance(. " ),no-account(" »)

Specification of Processor I ;

A = [invcst(",·), payin(. ," ) •withdraw(. ," ) , tenninate(. »)

R = (error(.»)

M:

F= inputerror(i)
R

=:> (error(i»)

F= -,inputerror(i) 1\ invest(i, x)
o

=:> (no-account(i ) )

I
=:> (balance(i, x»)
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F -,inpulerror(i) /\ terrninalc(i) /\ balance(i ,x)
D

:;> ( balancc(i , x )}

I
:;> (no-accounl(i)}

F -,inputerror(i) /\ balance(i ,x) /\ -,invest(i ,y) /\ -,terrninate(i)
D

:;> (balancc(i, x)}

I
:;> (balancc(i .y) I Y =x + (~w : payin(i, w) : w) - (~w : withdraw(i, w) : w)}

If D is the union of the axi'om bases of both processors, then D can be specified as follows:

D = ("i : inputerror(i) ~

(3 x,y : invest(i,x) /\ balance(i,y» V

(3 x : (payin(i .x) V withdraw(i ,x) V terrninate(i» /\ no-account(i» V

(3 x ,y : invest(j, x) /\ invest(i ,y) /\ x *" y) V

(3 x ,y : invesl(i, x) /\ (payin(j ,y) V withdraw(i, y) V terrninate(i») V

(3 x : terrninate(i) /\ (payin(i,x) /\ withdraw(i,x») V

(3 x : terrninate(i) /\ balance(i ,x) /\ x *" 0),

"i ,x : invcst(i ,x) V payin(i ,x) V withdraw(i ,x) V tcrrninatc(i) V no-account(i) ~

ieN/\xe N,

" i, x : balance(i, x) V report(i, x) ~ i e N /\ x e Z,

"t : doreport(t) ~ t e IR+,

"i : no-account(i)~ -,3x e Z : balance(i, x),

" i ,x, y : balance(i ,x) /\ balance(i ,y) ~ x = y,

"i : error(i) ~ i e N}

One of the differences between the two specifications is that the second one imposes less

constraints on the environment. The sets of events which in the first case lead to an undefined

situation are accepted in the second case and imply an error message to the environment.

Another difference is, that no-accounl(i) is a shorthand in the first specification, whereas it is a

ground atom. bound to some constraints. in the second specification. We already mentioned

the exact specification of the domains of the predicate symbols.

Note that in the second specification D includes

"i,x,y: balance(i,x)/\ balance(i,y) ~x =y.
which is a constraint stating that for each account only one balance is valid. Of course, this

constraint is met in the first specification. but this can only be easily verified due to the simple

nature of the specification. In more complex cases we shall specify constraints in order to

make a specification more readable. but also to make the task of proving the correctness of the

specification (as mentioned in Section 3) much easier.

4.2. Oucueing System

A processor will be activated instantaneously when a non-empty set of actions arrives. In

practice many systems can process only one action at a time and moreover each processing
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takes time. so that the system is unable to handle actions arriving during the busy period. In

principle it is possible to modify a given dds with instantaneously reacting processors into a

system that simulates processing time and fifo-queueing order. To do this one needs to modify

the processors such that they give themselves feedback events telIing that the processing has

finished and one has to keep an administration of the waiting actions.

Instead of modifying processors we add to the dds another dds, which is a simple dds

and which behaves as a waiting room for the oribrinal dds. Since the waiting room we describe

here can be defined independent of the characteristics of the original dds, the waiting room

may be considered a standard dds construction.

Suppose a simple dds, called ddsl, is given. Remember that every dds can be aggregated

into a simple dds. The composition of ddsl and the dds, called waiting room, is also adds.

This dds is called dds2. For simplicity we assume that the action base of ddsl consists of

ground atoms with only one unary predicate symbol : p. We also assume that the motor of

ddsl produces upon arrival of an action a reaction that contains a ground atom ready(d), where

ready is a predicate symbol not used elsewhere in ddsl and where d is an integer indicating

the time needed for processing the just arrived action. This quantity d may depend on the

state of ddsl and on the received action. The transfer function T interprets d as a delay. We

assume that T transfonns such a reaction into a pair <ok, d>. where ok is a ground atom of

the action base of the waiting room and where d is the delay.

So we have for ddsl :

A = {p (. )}

ready(·)e R

M:

F p (x) 1\ "d is the time of processing for p (x)"
R

::;. (ready(d)}

We can specify the waiting room. consisting of one processor and one store which have

interaction. as follows :

S = Ips (. " )}

A = {pa(. ),ok}

R '= (pr(.)}

M:

F pa (x) 1\ max(k) 1\ rank(x. m)

% rank(x. m) means that in the action set there are m grouna atoms with a constant

smaller than or equal to x; max(k) means that in the state the maximal constant

occurring in a ground atom is k, i.e. the highest scheduling number is k; if there is

no ground atom in the state. then max(O) holds, Le. the queue is empty%
I

::;. Ips (x , k +m ) }
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% this rule specifies that upon receiving an action, this action is storcd with a schedul

ing number equal to the maximal number in the store plus the rank of the action

atom in the set of atoms in the action%

F pa(x) f\ max(O) f\ rank(x, I)
R

=:> (pr (x»)

% if the queue is empty, then the action can be sent to ddsl directly%

F ok f\ ps(x,k) f\ -,3y : ps(y,k-I)
D

=:> Ips (x , k»)

% upon receiving an ok signal of dds I, the action to which the ok reflects should be

deleted; note that ps (x , k) is deleted after p (x) is processed by dds 1%

F ok f\ ps(x,k) f\ 3y : ps(y,k-I) f\ -,3y : ps(y,k-2)
R

=:> {pr (x»)

% if, upon receiving an ok signal of dds I, there is a next action, then that action is sent

to ddsl; note that at the same time the third rule makes thatps(Y,k-l) is deleted%

If D is the union of the axiom bases of ddsl and the waiting room, then D can be

specified as follows:

D:

(V x : pa (x) Y pr (x) Y ps (x) Y P (x) -t X E tv,

V d : ready(d) -t d E U?+,

V y,m : rank(y,m) ~ (pa(y) f\ (# z : pa(z) f\ z:5: y) =m),

V k : max(k) ~ (3 y : ps(y,k» f\ -,(3 y : ps(y,k+I»,

max(O)~ Vy,k : -'ps(y, k»)

The transfer function will transform pr (x) into <p (x), e >. So, if I is the abbreviation for

ddsl and w that for the waiting room, then we can state:

Vd :ready(d)E A -tT1,w(A)= «ok,d»,

V x : Tw,l({pr(x»)) = (<p(x),e».

Now we have a standard dds construction for modelling a processor with non-instantaneous

processing and fifo-queueing order.

4.3 Heating System

First we will describe the heating system in natural language. This example originates

from the problem set for the 4th International Workshop on Software Specification and Design.

The controller of an oil hot water home heating system regulates in-flow of heat, by turn

ing the furnace on and off. The controller activates the furnace whenever the horne temperature

falls below tr - 2 degrees, where tr is the desired temperature set by the user. The activation

procedure is as follows :
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(I) the controller sib'Tlals the motor to be activated;

(2) the controller monitors the speed and once the speed is adequate it signals the ignition and

oil valve to be activated;

(3) the controller monitors the water temperature and once the water temperature has reached a

predefined value it signals the circulation valve to be opened; the heated water then starts to

circulate through the house;

(4) once the home temperature reaches t, + 2 degrees, the controller deactivates the furnace by

first closing the oil valve and then, after 5 seconds, stopping the motor.

In addition the system is subject to the constraint that the minimum time for a furnace

restart after a prior operation equals 5 minutes.

This heating system can be described with one processor and one store. The specification

of the store is :

S = ( furnaceoff, startingmotor, heatingwater, fumaceon, stopping, cool ingdown, t, (.) ]

The processor. that has of course interaction with that store, can be spccified as follows:

A = ( hometemp(·), motorspeed(·), watertemp(·), stepstopmotor, cooldown, setdestemp(') ]

R = { checkhometemp, activatemotor, checkmotorspeed, activateignition, checkwatertemp.

opencircvalve, closeoilvalve, stepstopmotor, stopmotor, cooldown. error]

M:

Fin?
R

=:> {error]

% in? means that the input, i.e. the action set, is not meaningful (in this state)%

F --in? 1\ furnaceoff 1\ hometemp(t) 1\ t, (t) 1\ t ~ t-2
R

=:> (checkhometemp]

F --in? 1\ furnaceoff 1\ hometemp(t) 1\ t, (t) 1\ t < t-2
o

=:> {furnaceoff]

I
=:> {startingmotor]

R
=:> (activatemotor, checkmotorspeed]

F --in? 1\ startingmotor 1\ motorspeed(s) 1\ s < adequatespecd
R

=:> (checkmotorspeed)

F --in? 1\ startingmotor 1\ motorspeed(s) 1\ s ~ adcquatcspeed
o

=:> {startingmotor]

I
=:> {heatingwater]

R
=:> (activateignition, checkwatertemp]
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F= --in? 1\ hcalingwalcr 1\ walCJ1Cmp(t) 1\ t < predefinedvalue
R

=:> [chcckwalCJ1Cmp}

F= --in? 1\ hcalingwalcr 1\ WaLCJ1Cmp(t) 1\ t ~ predefinedvalue
D

=:> {hcalingwalcr]

I
=:> {fumaccon J

R
=:> {opcncircvalvc, chcckhomclcmp}

F= --in? 1\ fumaccon 1\ homclcmp(t) 1\ tr(f} 1\ t ~ 1+2
R

=:> {chcckhomclcmp}

F= -- in? 1\ fumaceon 1\ homclcmp(t) 1\ tr (t') 1\ t > 1+2
IJ
=:> {fumaceon}

I
=:> {slopping}

R

=:> {c1oscoilvalvc, SlcpSlopmolor}

F= --in? 1\ slopping 1\ Slcpslopmolor
D

=:> {slopping}

I
=:> [coolingdown}

R
=:> [slopmolor, cooldown}

F= --in? 1\ coolingdown 1\ cooldown
D

=:> {coolingdown}

I
=:> {fumaccoff}

R
=:> {chcckhomclcmp}

F= seldcslcmp(t) 1\ tr (f)
D

=:> {tr(f}}

Thc lransilion funClion T can be spcci ficd as follows :

T({Slcpslopmolor)) = {<Slcpslopmolor. 5 sec. >}

T «( cooldown}) = {<cooldown, 5 min. >}
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The a,.;iom base D of the processor can be specified as follows:

D = ( 3 t : t, (t) ,

in?~ (3 t,t' : hometemp(t) 1\ hometemp(t') 1\ t "* () y

(3 s, / : motorspeed(s) 1\ motorspeed(s') 1\ s "* s' ) Y

(3 t,t : watertemp(t) 1\ watertemp«() 1\ t "* () y

(3 t,t : setdestemp(t) 1\ setdestemp(t) 1\ J "* () y

(3 t : hometemp(t) 1\ -'(fumaceoff Y fumaceon)) Y

(3 s : motorspced(s) 1\ -'startingmotor) Y

(3 t : watertemp(t) 1\ -,heatingwater)}

When we consider this. specification we can notice that we assume that the system itself

is always on, i.e. there is no possibility for the user to tum off the system.

Neither do we consider errors in the operation of the system. As far as the reeciving of

actions is concerned we have stated in the constraints that the action sets are such that an

action like hometemp(t) is only reecived in a slate in which such an action is e,.;pected. When

such an action is reecived in another state, then we signal this as an error. We also signal an

error, whenever e.g. two different hometemperatures are sent. We assume that the system

starts in a state with two ground atoms : fumaceoff and t, (t) for some temperature t. This

means that at the start the fum<lce is off and a desired temperature is known.

Of course, we also assume that whenever a message is sent in order to learn for instance

the motorspeed, then there is definitely coming a message with this information. As always

with dds'ses the decision, on what to describe e,.;plicitly in the dds and what to assume for the

environment of the dds, is based on the definition of the system and tl1US of its environment.

5. CONCLUSIONS AND FUTURE RESEARCH

A framework is developed for the fomlal description of systems of a large elass, includ

ing information systems. In this framework data modelling and process specification arc com

pletely integrated. Hierarchical decomposition is possible.

The l<lnguage for system description iliat we proposed is powerful, but may be replaced

by others. For instance, the data modelling can be replaced by the relational model, the entity

relationship model, a binary model or by a functional data model. The process modelling may

be repl<lced by <lny third generation programming langu<lge or by a functional language.

The framework is also useful for the development of simulation models of physical sys

tems. The framework may be used for formulating and proving temporal properties of adds.

This issue is a current research topic.

Another research topic is the el(lension of the framework to allow for tl1e creation and

starvation of copies of a dds. This e,.;tension will allow for ilie application of object-oriented

programming techniques.

We arc also studying on a software design environment based on our framework in order

to be able to derive prototypes directly from high level system specifications.
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A HIERARCHICAL FRAMEWORK FOR DISCRETE EVENT SCHEDULING IN

MANUF ACTURING SYSTEMS

Stanley B. Gershwin
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Boston University, Boston, Massachusetts, USA

1. INTRODUCTION

Operating policies for manufacturing systems must respond to important discrete
events that occur during production such as machine failures, setups, demand changes,
expedited batches, etc. These feedback policies must be based on realistic models, and
they must be computationally tractable. In this paper, we develop a class of hierarchi
cal scheduling and planning algori thms whose structure is systematically based on the
characteristics of the specific kind of production that is being controlled. The levels
of the hierarchy correspond to classes of events that have distinct frequencies of oc
currence.

Computational tractability is an important concern because of the complexity of the
system. Even for a very small, deterministic, idealization of a production system, the
computational effort for combinatorial optimization renders it impractical for real-time
control. Any control scheme must be based on a simplified representation of the system
and a heuristic solution of the scheduling problem.

There have been many hierarchical scheduling and planning algorithms, some quite
practical and successful. However, there has been no systematic justification of this
structure. The main contribution of this paper is a framework for studying and synthe
sizing such a structure.

This work extends a formulation by Kimemia and Gershwin (1983) in which only two
kinds of events were considered: production operations on parts and failures and repairs
of machines. Operations occurred much more often than failures, and this allowed the
use of a continuous representation of material flow. A dynamic programming formulation
led naturally to a feedback control policy. The state of the system had two parts: a
vector of real numbers represented the surplus, the cumulative difference between pro
duction and requirements. The discrete part of the state represented the set of ma
chines that are operational. The object was to choose the production rate vector as a
function of the state to keep the surplus near O.

The production rate (the continuous control variable) was restricted by linear in
equality constraints that depended on the repair state. They represented the instantan
eous capaci ty of the system, and they expressed the idea that no machi ne, while it is
operational, may be busy more than 100% of the time; and no machine, while it is not
operational, may be used at all. The present paper describes the extension of this work
to the widest possible variety of phenomena and decisions in a manufacturing environ
ment.

Figure 1.1 illustrates some of the issues that are considered here. It is a graph
of the cumulative production and demand for one part type (j) among many that share one
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machine. A long term production rate (uJ) is specified for this part type, and its in

tegral is represented by the solid straight line. It is not possible to fol1ow this
line exactly because the machi ne is set up for Type j parts only duri ng a set of time
intervals. During such intervals, the medium term production rate uy must be greater

than uJ, because during the other intervals while it is set up for other parts -- uy

is O. The integral of uy (the dashed line) is staircase-like, close to the integral of
1uj •

The dashed line cannot be realized either. The machine is unreliable, and while it
is down, its production rate uf is O. Consequently, while it is up and set up for Type

j, it must be operated at a .short term rate uf greater than that of the dashed line.
The dotted line, which represents this phenomenon, is again staircase-like, and is close
to the dashed line. Final1y, the actual cumulative production graph (which requires too
much resolution to be plotted) is a true staircase. It has vertical steps at the in
stants when parts are loaded, and it is flat otherwise. It is very close to the dotted
line.

This paper formalizes this hierarchy, and extends it to an arbitrary number of
levels and several machines.

Ll terature Survey

There is a large literature in scheduling (Graves, 1981). Many papers are based on
combinatorial optimization/integer programming methods (Lageweg, Lenstra, and Rinnooy
Kan, 1977 and 1978; Papadimitriou and Kannelakis, 1980) or mixed integer methods (Afen
takis, Gavish, and Karmarkar, 1984; Newhouse, 1975a and 1975b; Wagner and Whitin, 1958).
Because of the difficulty of the problem, authors are limited to analyzing computational
complexity, or proposing and analyzing heuristics.

An important class of problem formulations is that of hierarchical structure (Bit
ran, Haas, and Hax, 1981; Dempster et aI., 1981; Graves, 1982; Hax and Meal, 1975; and
others). The goal is to replace one large problem by a set of many small ones because
the latter is invariably easier to solve. These methods are often used but there is no
general, systematic way of synthesizing hierarchies for large classes of stochastic
scheduli ng problems.

Multiple time scale problems have recently been studied in the control theory (Sak
sena, O'ReillY, and Kokotovic, 1984) and Markov chain literature (Delebecque, Quadrat,
and Kokotovic, 1984). We use insights from these methods to develop a systematic justi
fication for hierarchical analysis. This paper also makes use of, and extends the work
of Kimemia and Gershwin (1983). A recent survey (Maimon and Gershwin, 1987) describes
this and several related papers.

Outline

Section 2 describes the manufacturing systems that we are considering. It establi
shes terminology and discusses the basic concepts for the present approach: capacity
and frequency separation. Section 3 builds on the frequency separation to deri ve a
smal1 set of results that form the foundation of the hierarchy. Control in the hierar
chy is described in detail in Section 4. Sections 5 and 6 present the two building
blocks: the staircase strategy and the hedging point strategy. A simple example appears
in Section 7, and conclusions are drawn in Section 8.

2. PRODUCTION EVENTS AND CAPACITY

In· tlris .section, We discuss the discrete events that occur during the production
process. We define terminology to help describe these events. We categorize events in
two ways: the freq,ue"llcy' witb which they occur; and the degree of control that deci
sion-makers can exert·over·th6ll1. We define capacity, and show how capacity is affected



( I)

199

by production events.

2.1 Definitions

A resource is any part of the production system that is not consumed or transformed
during the production process. Machines -- both material transformation and inspection
machines, workers, pallets, and sometimes tools -- if we ignore wear or breakage -- can
be modeled as resources. Workpieces and processing chemicals cannot.

An activity is a pair of events associated with a resource. The first event corre
sponds to the start of the activity, and· the second is the end of the activity. Only
one activity can appear at a resource at any time. For example, the opera/ioll of dril
ling the 3/8" hole in part type 12, serial number 947882927 that started at 10: 03 this
morning and ended at 10: 07 is an activity. Other examples include machine failures,
setups (i.e., changes of tooling, etc.), preventative maintenance, routine calibration,
inspection, and training sessions. We use the same term to refer to a set of such pairs
of events. For example, drilling 3/8" holes in tYP<l 12 parts is an activity; specific
ally, an operation.

Let i be a resource and j an activity. Define aij(t) to be the state of resource i.
This is a binary variable which is I if resource i is occupied by activity j at time t,
and 0 otherwise. Since at most only one activity may be present at a resource at a
given time,

2: aij(t) $ I. for all i
j

Every acti vi ty has a frequency and a dura/ioll. To define frequency, let Nij(T) be the

total number of times that resource i is occupied by activity j in (O,T). Then define

(2)

This is the frequency with which type j activities occur at resource i.

In the following, we do not indicate a resource (i) explicitly in the subscript of
u. This allows the flexibility of either considering the index j to include a specific
resource (in which case j might mean "operation 30 on a Type 12 part at Machine 5") or
any resource (in which case j might mean "the required operation on a Type 12 part at
the current machine"). When u has only the j subscript, (2) holds only when activi-
ty j actually takes place at resource i. If it does not take place at resource i, (2) is
meaningless, and if it takes place at more than one resource i, it must hold for each i.
(This implies a "conservation of flow" condition, since uj = u 1j = U2j if j goes to both
resource I and resource 2.)

The vector u is the activity ra/e vector. It satisfies uj ~ O. Let Tij be the aver

age duration of acti vi ty j at resource i. Then T is the activity dW'(l/ioll nrl/rix. It
satisfies Tij ~ O. (We can now say that (2) holds only when Tij > 0.) Durations may
be random or deterministic, but we assume that they are not under the control of the
decis ion- maker.

Observa/ioll: If the system is in steady state,

(3)

Proof:

Consider a sample history of the system. The total time that resource is occupied by
activity j in (O,T) is



Tf ()ij(t)dt.
o

The average duration satisfies

T Tf ()ij(t)dt +f ()ij(t)dt
o 0

Tij = N..(T) = ---"-,u"'-J'--
IJ
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(4)

( 5)

(6)

If the system is in steady state, then the time average of a quantity is the same as its
expected value, so the numerator is E()ij and (3) is proved. (This can also be viewed
as an instance of Little's law.) The assumption that the system is in steady state is
an important one. In later' sections, the dynamics of the system is divided into sub
sets, each considered over different time scales. Each subset has a different time
period for steady state.

Since only one activity may occur at a resource at one time, the fraction of re
source i's time that is spent on activity j is TijUj. This is called the occupatiol/ of
resource i by acti vi ty j.

Exomple: Type I parts arrive at Machine I at a rate of I per hour (u 1). They undergo
operations that take 20 minutes (Tn)' Therefore Machine I is occupied by making Type
parts for 1/3 of its time.

2.2 Capacity

From (I),

I ~ E~ ()ij( t) = ~ TijUj for all resources i.
J J

This is the fundamental capacity limitation: no resource can be occupied more than
100% of the time.

Example: In addition to the Type I parts, we wish to send Type 2 parts to Machine
I for an operation that takes 25 minutes (T12 ). There is a demand of one Type 2
part every 35 minutes (u2). This is not possible because it violates (6).

The set of all activi ty rate vectors u that satisfies (6) is the capacity set Q
It is important to observe that capacity is a set -- a polyhedron -- and not a sca
lar. Here we have defined capacity as a constant set. In later sections, capacity is
descri bed as a function of the state of the system. This means that capacity is a
time-varying, stochastic set.

2.3 Frequency Separation

Dynamic models always have two parts: a constant part and a time-varying part. In
all dynamic models, there is something that is treated as unchanging over time: some
parameters, and, most often, the structure of the model. For example, the model de
scribed in Sections 2.1 and 2.2 is a conventional one in which there are static quanti
ties (Uj' Ti), a static structure, and dynamic quantities «)ij(t), Nij(t)).

Recently, the dichotomy between static and dynamic has been extended to systems
with multiple time scales, modeled as differential equations or Markov chains. At one
end of the scale, there are quantities that are treated as static. The other variables
are divided into groups according to the speed of their dynamics. Because of this
grouping, it is possible to simplify the computation of the behavior of these systems.
Approximate but accurate techniques have been developed to calculate the effects of the
slower and faster dynamics of adjacent groups on each group of variables.

The essential idea is: when treating any dynamic quantity, treat quantities that
vary much more slowly as static; and model quantities that vary much faster in a way
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that ignores the details of their variatIOns (such as replacing fast-moving quantItIes
by their averages; or by Brownian noises with appropriate parameters.) This is the
central assumption of the hierarchical decomposition presented here.

Assumption I: The activities can be grouped into sets JI' J2 , ••• such that for each
set Jk , there is a characteristic frequency fk satisfying

f l « f2 « ... « fk « fk+1 « ...

The activity rates satisfy

j { Jk '* fk _1 « uj « f k+l •

Figure 2.1 represents two kinds of production that satisfy this assumption.
horizontal axis represents frequency and the vertical axis represents occupation
critical resource. Because of Assumption I, all the event frequencies occur at
clusters.

The time period over which a component of the system reaches steady state depends
on the frequency classes of the activities that affect that component. It is on the
order of I/fk_1 if the lowest frequency activity is a member of J k.

A capacity set can be associated with each time scale k. Consequently, capacity
is a sa of tinr-wuyillg. stocha'itic sets.

2.4 Slow variation

In 2.1 and 2.2, uj is treated as constant. However, it is convenient to allow
uj to be slowly varying. That is, uj is not constant, but it changes slowly com
pared to the changes in Qij' An important special case is where Uj is piece
wise constant, and its changes occur much less often than those of Qij' Equation
(3) is now

Tij uP) = Eaij(t). (9)

This is established in the same manner as (3), but the bounds of the integral
(4) are t l and t, where t l is the time of the most recent change in uj, and t
is the current time. The quanti ty ui t) satisfies

If uj(s)ds for Tij > 0, or
o

I

Nij(t) - Nij(t l ) = f uis)ds = (t - tl)uPI)' (10)
II

The assumption here is that many occupations of resource by acti vi ty j occur in
the interval (t l , t): enough so that

I

EQij(t) = t-'tf Qij(s)ds. (II)
I II

2.5 Degree of control

Events mayor may not be under the control of the decision-maker. Figures 2.2-2.4
represent a variety of acti vi ties wi th different degrees of control. Figure 2.2 shows
the two repair states of a machine: operational and down. In this 'case, the times at
which the transi tions occur are beyond the control of the production personnel.

Figure 2.3 represents the operation states of a flexible machine. It can work on a
family of four parts, and setup is not required. That is, after doing an operation on
one part, the time required to do an operation on another part depends only on the new
part, and not the identity of the part that preceded it. While the machine is in the
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idle state, it may be used to do an operation on any of the parts. When to make the
transition, and what state to visit next, are entirely at the discretion of the manager.
Once that decision has been made, however, the manager loses control. The time required
to perform the operation mayor may not be known, but it cannot be chosen, and the next
state must be the idle state.

Figure 2.4 displays the configuration states of a machine which can do operations
on three families of parts. There is a substantial setup time to switch the machine
from operations on one family to another. While the system is set up for anyone fami
ly, it can remain that way indefinitely. The manager can choose when to switch out of
the current family and which family to switch into next. However, the system then goes
to the appropriate setup state. (While it is there, tools are changed, calibration is
performed, test parts are made, etc.) It stays in that state for a length of time which
is not under the control of .the manager. (Again, it mayor may not be known, but it
cannot be chosen.) After that, the system goes to the new family state, and the series
of events repeats.

2.6 Effects of events

The goal of the factory is to produce in a way that satisfies demand at least cost.
The only events that directly further this goal are the production events, and only if
they are chosen correctly. The direct effects of all the other events work against this
goal.

When any activity occurs, it prevents all other activIties from occurring at the
same resource. Thus a low frequency, high occupation activity is a mapr disruption to
the system. During such an activity, the resource it occupies is unavailable for a very
long time (as seen by the high frequency events). This may not simply shut down all
production; instead, it may temporarily restrict only some kinds of production. Such
disruptions greatly complicate the scheduling problem.

2.7 Purpose of the decomposition

It is possible to represent the scheduling problem as an integer programming prob
lem, particularly if time is discretized. However, this almost always leads to a prob
lem which cannot practically be solved even in the absence of random events. The goal
of the approach described below is to formulate the problem in a way that will provide
an approximate feedback solution for the stochastic scheduling problem.

The solution approach is based on a reformulation of the problem in which the large
set of binary variables that indicate the precise times when events occur is replaced by
a small set of real variables representing the rates that events occur. This is a good
approximation because of the large difference in frequencies of these events. Eventual
ly, the binary variables are calculated, but by a much simplified procedure.

3. THE SPECTRUM ANn THE HIERARCHY

In this section, we defi ne the variables of the hierarchy and what calculations
take place at each of the levels. In the followi ng sections, we propose problem formu
lations for those calculations.

3.1 Definitions

The structure of the hierarchy is based on Assumption I: that events tend to occur
on a discrete spectrum. Classes of events have frequencies that cluster near discrete
points on the spectrum. The control hierarchy is tied to the spectrum. Each level k in
the hierarchy corresponds to a discrete point on the spectrum and thus to a set of acti
vities. This point is the characteristic frequency fk (and Ilfk is the characteristic
time scale) of those activities.
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At each level of the hierarchy, events that correspond to higher levels (i.e.,
lower frequencies, and lower values of k) can be treated as discrete and constant or
slowly varying. Events that correspond to lower levels can described by continuous
(real) variables. These variables can be treated as though they are deterministic.

The approach is to define a set of rate or frequency variables for every activity.
These quantities represent the behavior of the system in an aggregated way. At each
level, we calculate optimal values for those. aggregate variables. Optimal, here, means
that they must be close, on the average, to the corresponding values chosen at the high
er levels. However, they must respond to events that occur at thei r level.

Define the level L(J) of activity j to be the value of k in Assumption I
associated with this activity. That is,

L( J) = kif j c J k

in (8). We choose the convention that less frequent activIties are higher level
activities and have lower values of k; lower levels have higher values of k.

In the following we define Level k quantities. These are values of system states
as perceived by an observer who is not able to distinguish individual events -- that is,
changes in cr -- that happen much more frequently than fk. The frequencies of high
frequency events, as perceived by this observer, depend on the current states of low
frequency activities, and expectations must similarly be conditioned on the current
states of low frequency activities.

Let crt(t) be the level k stale 0/ resource i. This is defined only for activities
whose level is k or higher. If L(j) :5 k,

crt( t) = crij( t). ( 13)

Define crk as the vector whose components are crh. Its dimensionality depends on k.

Let Ek be the level k expeclalioll operalor. It is the condi tional expectation, gi ven
that all level m quantities (m:5k) remain constant at their values at time t. That
is, we treat cr:'j(t) as constant.

Let u~ be the level k rale 0/ actIVIty j. This is defined only if the level of acti
vity j is lower than k, that is, L(j) > k. The level k rate of activity j is the fre
quency that a level k observer would measure that activity j occurs while all level m
events (m:5k) are held constant at their current values. This rate satisfies

u~( t)
Ekcrij( t)

( 14)=~

and

u~( t) ? O. ( 15)

The conditioning event of Ek is a subset of that of Ek_1•

quantities held constant for Ek _1 is a subset of that for Ek.
This is because the set of

Consequently,

( 16)

Taking the level k-I expectation of (14):

Ekcr..( t)
E k = E __IJ_

k-lUj k-l Tjj •

Ek_1crij( t)
But this is equal to according to (16).Tij

This implies that

( 17)
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( 18)

That is. the level k-I rate of an activity is the level k-I expectation of the
level k rate of the activity. This is a very important observation, because it relates
quantities at different levels of the hierarchy.

If L(J) > k. level k of the hierarchy calculates u~. How that calculation is per
formed depends on the degree of control of activity j. If activity j can be initiated
by the decision-maker rather than by nature. then u~ is chosen to satisfy (18).

All activities j appear in three different guises in the hierarchy. At their own
level (k=L(j»), they appear as pairs of discrete events (the start and the end of the
activity). This is, of course, exactly what they are. No approximate representation is
possible. At higher levels in the hierarchy (k<L(j)). however, their details are ig
nored, and they are represented by rates (u~). At lower levels (k>L(j)), they are treat
ed as constant at their current values.

Controllable activities are chosen from top down. That is. a rate uI is chosen ini
tially. Then (k>I) is chosen to satisfy (18) and other conditions (according to the
Ju.'dging point straJegy of Section 6) for increasing values of k until k = L(j). At that
point, Qij is chosen to satisfy (14) according to the stairca~e straJegy described in
Section 5.

On the other hand. (14) and (18) have different interpretations when activity
j is not controllable (for example. machine failures). In that case, the expectations
are statistical operations, in which data are collected and sample means are found. The

rate u~(j)-l is calculated from (14) by observing the values of Qij' If L(j)<k-I, (18)

is repeated for decreasi ng values of k.

3.2 Capacity in the hierarchy

For each k, the sum in (I) can be broken into two parts:

L Qij $ I - L Qrj (19)
L(j»k L(j):$k

in which (13) is applied to the high-level sum on the right side. If we take a level
k expectation of (19), the right side is not affected. From (14),

L 1"iju~ S. I - L Qr· (20)
L(j»k J L(j):$k J

This equation is the basic statement of capacity in the hierarchy. It limits the
rates at which low level events can occur as a function of the current states of high
level events. If any high level activity is currently at resource i, that resource is
not available for any low level events. In that case, the right side of (20) is 0 and
all u~ that have a positive coefficient must be zero. If none of the high level
activities in (20) are currently taking place, this inequality becomes

L 1"iju~ S. I. (21)
L(j»k J

Capacity is thus a function of hierarchy level and, since it depends on the state
of the system. a stochastic function of time. We define the l(!\Iel k capacity set
as

Y i; Y j, L(j»k }. (22)

This set is the constraint on the hedging point strategy. It limits the choice of
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rates uk as a function of the current state of the system. Note that the condition

is a necessary but not sufficient condition. That is, rf(ak) was constructed so that every
sequence of events must satisfy (23). However, we have not demonstrated that for
every uk that satisfies (23) there corresponds a feasible sequence of events. We
assume sufficiency in the following, however.

4. CONTROL IN THE HIERARCHY

The goal of the hierarchical scheduler is to select a time to initiate each con
trollable event. This is performed by solving one or two problems at each level k. We
emphasize control -- Le., scheduling and planning -- here. Data-gathering and proces
sing is also an important fu'nction of the hierarchy, but is not discussed in this paper.
The hierarchy is illustrated in Figure 4.1.

Problem I: (The hedging point strategy)

Find u~ (for all j, L(j»k) satisfying (18) and (20) (and possibly other conditions).

Problem 2: (The staircase strategy)

Find ah (for all j, L(j)=k) satisfying

Ek Ia~. = T"U~-I
- 1J IJ J

(and possibly other conditions).

At the top level of the hierarchy (k=I), required rates of some of the controllable
activities are specified, for example, production rates and maintenance frequencies.
Other rates may not be specified, such as setup frequencies. We assume that rates of
uncontrollable events are known. The frequency associated with the top level is O.
Consequently, there is no Problem 2 at that level, and Problem I reduces to a static
optimization. The function of Problem I here is to choose all the rates that were not
specified. The vector u l is the target rate vector for level 2.

If there are any controllable events at level k > I, we solve Problem 2. (An exam
ple is the change in setup of a machine.) Controllable events are thereby initiated in
such a way that their rates of occurrence are close to the target rates that are deter
mined at level k-1.

(24)

Then we solve Problem I to determine the level k rates of occurrence u~ of all acti

vities j whose frequencies are much higher than fk. These rates are refinements of

the target rates determined at level k-I: utI. They differ from the higher level rates

in that they are affected by the level k discrete events. These events, if they are
controllable, were chosen by Problem 2 at this level. However, even if the level k
events are not controllable, the level k rates differ from the higher level rates.
These rates are then the targets for level hI.

For example, if at level k we choose setup times, the production rates must be
calculated so that they are appropriate for the current setup. If we are making Type I
parts at the rate of 4 per day, but the necessary machine is only set up for that part
on Tuesdays, then we must work at a rate of 20 per day on Tuesday and 0 Type I parts per
day during the rest of the week.

Similarly, the activities associated with level k may not be controllable, such as
machine failures. It is still necessary to refine the production rates. If the overall
requirements for Type I parts are 20 per day, and the machine is down 100/0 of the time,



(25)

(26)

(27)
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and failures occur several tinl!s per day, then the appropriate strategy is to operate
the machine at a rate of 22.2 parts per day while it is up. Note that this only makes
sense if failures are much more frequent than setups and much less frequent than opera
tions. I f not, related but different calculations must be performed in a different
order. That is, a di fferent hierarchy is appropriate.

An important feature of this hierarchy is that rates u~ are always chosen to be
wi thi n the current capaci ty of the system. When a level m event occurs (m~k), the capa
city set (22) changes. Problem 2 is then recalculated so that the new rates remain
feasible. As mentioned earlier, this is necessary for feasibility. In all the simu-
lation experiments that we have performed, it appeared to be sufficient as well.

S. THE STAIRCASE STRATEGY

The staircase strategy was introduced by Gershwin, Akella, and Choong (1985) and
Akella, Choong, and Gershwin (1984), although stated somewhat differently from here. It
was used to load parts in a simulation of a flexible manufacturing system.

Instead of treating the statement of Problem 2 in Section 4 directly, we choose
starting times for events 0h to satisfy (2), or rather

t

Nh(t) 'V f u~(s)ds
o

where Nh(t) is the number of times activity j occurs at resource i during [O,t]. This
expression is only approximate because the left side is an integer and the right side is
a real number. The objective is to develop an algorithm which keeps the error in (25)
less than I. This is because, approximately,

t

kIf I (k( k )Ek_1oiit) = ~ 0ij(s)ds = ~ Nij t)-Nij(t 1) Tij
t 1

in steady state. If the times to start activities are chosen to satisfy (25), then

Ek_1ot(t) = TijU~tl)

The difference between (25) and (24) is that a simple algorithm can be devised

to implement (25). It is called the staircase strategy because of the graph of Nh(T).

Staircase strategy: For all activities j such that L(j) = k, perform activity j at re-
source i as early as possible after the eligibility rule is satisfied.

T

Eligibility rule: Nh(T) ~ f u~dt (28)
1I

If there were only one activity in the system, it would be initiated as soon as (28)
were satisfied with equality. Immediately afterward, the left side of (25) would
exceed the right side by exactly I. The difference would then start to diminish until,
again, (28) is satisfied with equality. Thus, the error in (25) would never grow
larger than I. Figure 5.1 represents this strategy, and illustrates the term "stair-
case." The solid line represents the right side of (28), and the dashed line repre-
sents the left side. Note that the change in slope of the solid line poses no difficul
ties for this strategy.

Example: If activity j is an operation on Type A parts at Machine 6, attempt to
load a Type A part into the machine whenever (28) is satisfied.

In reality, there are two complications. First, because there are other activi-
ties, activity j may not be the only one to satisfy (28) at any instant. Therefore,
there must be a mechanism or an additional eligibility rule for selecting one. Conse
quently, we can no longer assert that (25) is satisfied with an error no larger than I.
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Second, there are relationships among activities other than non-simultaneity. For
example, some manufacturing operations may not be performed unless the system is set up
in a certain way. That is, in order to perform an operation on Type I parts, the system
must be set up for them. The most recent setup activity must have been one that is
appropriate for Type I parts. This leads to additional eligibility rules.

Example: If activity j is an operation on Type A parts at Machine 6, attempt to load a
Type A part into the machine whenever (28) is satisfied and Machine 6 is set up for
Type A and the part that has been waiting longest for Machine 6 that can be produced in
its curre~configuration is Type A.

Methods for implementing this strategy can be developed based on the methods of
Ramadge and Won ham (1985), Maimon and Tadmor (1986).

6. THE HEDGING POINT STRATEGY

The hedging point strategy was introduced by Kimemia and Gershwin (1983) and re
fined by Gershwin et aI. (1985) for a restricted version of the scheduling problem dis
cussed here. In that problem, there were only two activities: operations and failures.
The hedging point strategy was used to calculate the production rates of parts in re
sponse to repairs and failures of machines.

In the present context, the purpose of the problem is to find uf (for all j such
that L(J) > k) to satisfy (18) and (23) (and possibly other conditions). That is,
we find the optimum frequencies of controllable events whose frequencies are much higher
than fk. These frequencies are chosen in response to changes in low frequency activi
ties: those whose values change at a frequency roughly fk or slower.

6.1 Surplus

We introduce xf, the activity j surplus. This quantity represents the excess of oc

currences of activity j as determined by uf over the number of occurrences required by urI.
The surplus is illustrated in Figure 6.1. It ~atisfies

or

t t

xf( t) = J uf(s)ds - J ut-I(s)ds
o 0

(29)

(30)

To keep uf near urI, we must keep xf near O. We therefore define a strictly convex

function g such that g(O) = 0; g(x) ~ 0 V x; and II!ir-+OO&(x) = 00; and we seek uf to

minimize

T

Ek-1J g(x~t»dt (31)
o

in which T is long enough so that the dynamic programming problem has a time-invariant
solution uf(xk,ok). Thus T is much greater than I/fk. If (31) is small, then xf(t) must be

small for all t. Equation (29) then implies that uf(t) is near uf-l.

6.2 Capaci t y const ral nts

The activity rate vector uk(t) must satisfy the stochastic capacity constraints

uk( t) E cf( ok( t) (32)

where rl'(o~t» is given by (22). This means that the activity rat~s of all
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high frequency actIvities are restricted in a way that depends on the current states of
activities whose frequencies are roughly fk or less. Those whose frequencies are much
less than fk can be treated as constant at their present values. but the variations of
those that change at a frequency comparable to fk must be considered.

Because Kimemia and Gershwin were dealing with machine failures and repairs. they
could treat Qk(t) as the state of a Markov process. Here. however. some components
of Qk( t) are chosen by the scheduler according to the staircase strategy of Section
5. For the purpose of determining the frequencies of high-frequency activities. we
treat Qk(t) as though it is generated by some exogenous stochastic process with tran

sition rate matrix Ak;

(33)

(34)

By treating all level k events this way. we are ignoring information that could be
used. in principal. to improve the performance function (31). Since the time for the
next event is known and not random. the optimal trajectory should be different. This
requires further study.

6.3 Other constraints

Some activities are non-controllable, such as machine failures. Their frequencies
cannot be chosen; they are given quantities. Thus, if .N is the set of uncontrollable
activities.

u~ specified. j E .N.

Other activities require special constraints because of their special nature. For
example. when a resource may have more than one configuration, and setups require
significant time. setup frequencies are constrained to satisfy a set of equality
constraints. Assume resource i has configurations I ..... C(i). Denote .i=<iab) as the

activity of changing the configuration of resource i from a to b. Then U~ab is the level
k frequency of changing the configuration of resource i from a to b. These frequencies
must satisfy

( 35)

since the frequency of changing into setup b must be the same as the frequency of
switching out of setup b. Related formulations appear in Gershwin (1986) and Choong
(1987) .

We summarize all such miscellaneous constraints as

(36)

6.4 Problem statement

Here we present a compact statement of the problem. It is a dynamic programming
problem whose states are xk(t) and Qk(t) and whose control is uk(t). (The rates Uk- l are
treated as exogenous constants.)

Find the feedback control law uk(xk(t),Qk(t).t) to mll1lmlZe (31) subject to (30).
(32). and (36) in which Qk is the state of an exogenous Markov process. with para

meters A
k
. The initial conditions at t=O are xk(O). Qk(O). T is very large.
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6.5 Solution

Kimemia and Gershwin (1983) derived a Bellman's equation for this problem:

o = min {g( xk) + ~ (uk - uk-I) + ~ + ~>''';[Xk,p,t] }

in which J[xk(t).e:t«t),t] is the cost-to-go function, the cost incurred during (t,T) if the
initial conditions are xk(t) and ~k(t) at time t. The minimization in (37) is performed at
every t subject to (32) and (36). If such a J function could be found to satisfy
this nonlinear partial differential equation, the optimal control uk could be
determined from the indicated minimization.

If J were known, determining uk would reduce to solving

min aJuk . }

SUbje: to (32) and (36).
(38)

If m(uk) is a linear function, this is a linear programming problem.

Akella and Kumar (1986), Bielecki and Kumar (1987), and Sharifnia (1987) have ob
tained analytic solutions for versions of this problem in which xk and uk are
scalars. In no other cases are exact solutions to this problem known. Numerical solu
tions are equally unavailable because of the "curse of dimensionality." To overcome
this difficulty, Akella et al. (1984) show that a quadratic approximation of J can
produce excellent performance.

Kimemia and Gershwin ran several simulations to test a simple hierarchical policy:
solve (38) at every time instant to determine uk, and then load parts (in a manner
somewhat more complex and less effective than the staircase strategy of Section 5) so
that the rate of loading parts was close to uk. This worked well until the solution
of (38) changed abruptly. (This is an important possibility since (38) is a
linear program.) Very often, it changed abruptly again at the next time instant, and
this led to reduced performance.

Gershwin et al. (1985) avoided this chattering by observing a behavior similar to
that of a closely related problem of Rishel (1975). The continuous part of the state,
xk, is restricted to reduced dimensional surfaces whenever uk would otherwise chatter. In
the present problem, chattering is avoided by adding linear equality constraints to
(38) whenever xk reaches certai n planes.

This step has the additional benefit of reducing computational effort. It is no
longer necessary to solve (38) at every time instant. Instead, a series of computa
tions is performed at every time te when there is a change in ~k. At those instants
(38) is solved, and then solved repeatedly with additional constraints, as described
above. The outcome of these calculations is a piecewise constant function of t, ut( t;~k( t;»,

defined for t>te. This function is the set of target rates for level k+1. When ~k

changes, the function is recalculated.

There are two kinds of states ~k: feasi ble and infeasi ble. Femible states are

those for which Uk-1 € d'(~k(t». All other states are infeasible. If ok is feasible and con
stant for a long enough period, the strategy drives xk to the value that minimizes J(xk,ok,t).
In steady state, this is a constant which we call the hedging point. We have assumed
that T is large enough so that the system can be assumed to be in steady state.

The hedging point represents a safety level of the surplus. Infeasible states are
certain to occur eventually. While ok is infeasible, xk must decrease, and possibly
become negative. The hedging point represents a compromise between a cost for positive
xk and a cost for negative xk. When the activities considered are production operations
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on parts, for example, the tradeoff is between production that is ahead of demand (and
therefore can lead to inventory) and production that is behind demand (and therefore
leads to starved downstream resources or unhappy customers). The hedging point need not
be positive. Bielecki and Kumar show that it can sometimes be O.

7. SIMPLE EXAMPLE

In this section, we illustrate the ideas developed in this paper with a two-part,
two-machine system. There are only two phenomena in this system: failures and opera
tions. The former are much less frequent, but of much greater duration, than the lat
ter. This is an example of the methods of Kimemia and Gershwin (1983) and Gershwin,
Akella, and Choong (1985). An extension of this system, in which setup plays a role, is
described in Gershwin (1987).

7.1 Description of System.

Figure 7.1 illustrates the two-machine system. In this system, Machine I is per
fectly l1exible. That is, it can do operations on either part type, without time lost
for changeover. It is unreliable, however: it fails at random times and stays down for
random lengths of time. Machine 2 is perfectly reliable, but totally inflexible. It
can only make Type I parts. Thus Machine I is shared among the two part types and Ma
chine 2 is devoted entirely to Type I.

The data that are specified are the demand rates for the parts, the failure (p) and
repair (r) rates, and the durations of the operations (TW T12 , and T2l, where Tij is the
duration of an operation on a Type j part at Machine i). To simplify the problem, we
assume that the demand rate for Type I parts is broken down by the machine at which the
operation is performed, so that the specified demand rates are dll' d I2=d2, and d21.

For this problem, Assumption I becomes:

TU ' T12 , T21, I/du ' I/d2, I/d21 are the same order of magnitude.

These quantities are all smaller than Ilr, lip, which are the same order of
magnitude.

7.2 Levell: Hedging point strategy

The states of the system are a, the repair state of Machine I, an exogenous random
variable; and xlI' x12 ' and X21' the surpluses. The control variables are uij , the level I

flow rate of Type j parts to Machine i (ij = II, 12, 21).

Here, (30) becomes

Xij = uij - dij for ij = II, 12, and 21.

The linear programming problem of Section 6.5, which determines uij , becomes

min 2:: cij (x,a) uijuij

subject to:

(39)

(40)

TUU U + T12U12 ~ a (41)
T2lU21 S I (42)
Ujj ~ 0 (43)

where for ij = II, 12, and 21 and for mn II, 12, and 21,

Cj } x,a) = 2:: Aijmn( a)xmn + b
jJ
.( a). (44)

mn
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Here, c(x.o:) is the approximation of aI/ax.. Satisfactory results have been obtained
with diagonal A matrices, so we choose Aijmn = 0 if (mn) t- (ij). The hedging point is

then

bij( 0:)

- Aijij( 0:)"

The outcome of this calculation is a piecewise constant function of time uij( t), as

described by Gershwin et al. (1985). This function is used in the staircase strategy,
below, until the repai r state 0: changes. When that happens, a new function is
calculated at this level.

7.3 Level 2: Staircase strategy

Loading a Type j part into Machine is eligible if:

I. The number of Type j parts made on Machine I is less than

If u1j(s)ds, and
o

2. Machine I is now idle.

Loading a Type I part into Machine 2 is eligible if:

I. The number of Type I parts made on Machine 2 is less than

If U21(S)ds, and
o

2. Machine 2 is now idle.

7.4 Si mulation results

(45)

(46)

Figure 7.2 demonstrates how the cumulative output follows the cumulative requirements
when the system is run with this strategy.

8. CONCLUSIONS

A hierarchical scheduling and planning strategy has been described for manufactur
ing system. It is based on two maj:>r propositions:

I. Capacity. No resource can function more than 100% of the time.

2. Frequency separation. We assume that the spectrum of events is discrete. The fre
quencies of important events are grouped into distinct clusters.

This work is in its early stages. Among the important outstandi ng research prob
lems are proving the conjecture that hierarchical decomposition is asymptotically opti-
mal as times scales separate; determining how to deal with systems in which time scales
are not widely separated; formulating and solving the hedging point problem with non
Markov events (such as those generated by a staircase strategy); developing sufficiency
conditions for capacity. To improve on the staircase policy, new formulations of combi
natorial optimization problems are required in which the objecti ve is to load material
as close as poss ible to a gi ven rate.

We have not discussed at all the collection and processing of data in the hierar-
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chy. This will require the solution of statistics problems. Some extensions include
the reduction of the problem size at higher levels. This requires aggregation of acti
vities (so that one considers, for example, large classes of part types, rather than
individual types) and of resources (so that the smallest unit can be a cell or workshop
or even factory, rather than a machine).

The last issue is related to the long time that parts spend in some kinds of manu
facturing, particularly semiconductor fabrication. Preliminary work in extending the
Kimemia-Gershwin formulation to systems with both operation and queuing delay and is
described in Lou et al. (1987) and Van Ryzin (1987).
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Since its accidental beginning in 1977 as a by product of research on the
FIAT 131 Engine Production Line Monitoring System (see reference 1
below), Perturbation Analysis (PA) has grown into a full blown research
area. A total of ten present and past faculties and Ph.D. students of
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dynamic systems. Arguments used in these papers are somewhat naive by current standards.
They are included here for purposes of illustrating the development of the idea.

4. Ho, V.C., and C.G. Cassandras (1983), "A New Approach to the Analysis
of Discrete Event Dynamic Systems", Automatica, 19,2, pp. 149-167.
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5. Ho, Y. C., and X. A. Cao (1983), "Perturbation Analysis and Optimization
of Queueing Networks", Journal of Optimization Theory and Applications,
40, 4, pp. 559-582.

These papers represent the first work of perturbation analysis on general queueing
networks. Much research was stimulated by them.

6. Ho, Y.C., X. A. Cao, and C.G. Cassandras (1983), "Infinitesimal and Finite
Perturbation Analysis for Queueing Networks", Automatica , 19, 4, pp.
439-445.

This is the first paper on the finite perturbation analysis rules and experimental
results. The importance of event order change was recognized then.

7. Cao, X. A., and Y. C. Ho, (1984), "Estimating Sojourn Time Sensitivity in
Queueing Networks Using Perturbation Analysis", Technical Report,
Division of Applied Science, Harvard University; also Journal of
Optimization Theory and Applications, Vol. 53, 3, 353-375, 1987.

The paper is the first work which discovers the discontinuity of the sample
performance function and proposes the interchangibility problems for discrete event
systems. Perturbation analysis algorithms are developed for sojourn time sensitivity
estimation. Experimental results are presented. An earlier version of this paper entitled
·Perturbation Analysis of Sojourn Times in Queueing Networks" was submilled to and
reviewed by Operations Research in 1984. Eventually, a more rigorous version appeared as
[ref.26)

8. Cao, X.A. (1985), "Convergence of Parameter Sensitivity Estimates in
a Stochastic Experiment", IEEE Trans. on Automatic Control, Vol. AC-30, 9,
pp. 834-843.

The paper is the first work which formalizes mathematically the problem of
interchangibility of the expectation and the differentiation for discrete event systems.
Conditions are found under which this interchangibility holds. It is proved that under these
conditions the sample derivative is the best estimate of the derivative of the expected value
among three kinds of estimates discussed in the paper.

9. Cao, X.A. (1987), "First-Order Perturbation Analysis of a Single
Multi-Class Finite Source Queue", Performance Evaluation. Vol.7, 31-41,
1987

The contribution of this paper is twofold: First, it gives an example which shows that
the interchangibility does not hold for the throughput of multiclass systems. Second, it
provides an algorithm which yields the exact estimate for the throughput sensitivity of a
multiclass system using first order perturbation analysis.

10. Cassandras, C.G., and Y.C. Ho (1985), "An Event Domain Formalism for
Sample Path Perturbation Analysis of Discrete Event Dynamic Systems",
IEEE Trans. on Automatic Control, Vol. AC-30, 12, pp. 1217-1221.

Consistent formalism is provided for the earlier results on Infinitesimal PA.
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11. Suri,A. and M. A. Zazanis, (1985) "Perturbation Analysis Gives Strongly
Consistent Sensitivity Estimates for the M/G/1 Queue", to appear in
Management Science

This paper is among the earliest studies of consistency of IPA. It considers, for an
MlG/1 queueing system, the sensitivity of mean system time of a customer 10 a parameter
of the arrival or service distribution. It shows analytically that (i) the steady state value of
the perturbation analysis estimate of this sensitivity is unbiased, and (ii) a perturbation
analysis algorithm implemented on a single sample path of the system gives asymptotically
unbiased and strongly consistent estimates of this sensitivity.

12. Ho, V.C. and Cao, X.A. (1985), "Performance Sensitivity to Routing
Changes in Queueing Networks and Flexible Manufacturing Systems Using
Perturbation Analysis", IEEE J. on Robotics and Automation, Vol. 1, pp.
165-172.

This paper, among other things, shows that despite claim to the contrary, regular IPA
rules can be applied to yield correct estimates of performance sensitivity to routing
probabilities.

13. Cao, X. A., (1985), "On Sample Performance Functions of Jackson
Queueing Networks", to appear in Operations Research.

The paper proposes the concepts of Sample Performance Functions and Sample
Derivatives and proves that the interchangibility holds for the average time required to
service one customer in any finite period as a function of the mean service time in a Jackson
queueing network; and the perturbation analysis estimate of the sensitivity of throughput is
a strongly consistent estimate.

14. Cassandras, C. G. (1985), "Error Properties of Perturbation Analysis
for Queueing Systems", to appear in Operations Research.

IPA is placed in the context of a family of PA estimation procedures, showing the
tradeoff between increased accuracy and state memory costs. The GI/G/1 model is analyzed
to characterize the error properties of the simplest PA procedures which, under certain
conditions, provide unbiased performance sensitivities. Extensions to tandem queueing
networks and blocking effects are included.

15. Cao, X. A. (1987), "The Convergence Property of Sample Derivatives in
Closed Jackson Queueing Networks", submitted to Journal of Applied
Probability (The result was also presented in a technical report of
Harvard University, 1986).

The paper proves that the sample elasticity of throughput with respect to the mean
service time obtained by perturbation analysis converges in mean to that of the steady state
mean throughput as the number of customers served goes to infinity.

16. Cao, X. A. (1987), "Realization Probability in Closed Jackson Queueing
Networks and Its Application", to appear in Advances in Applied
Probability. Sept. 1987
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This paper introduces the concept of realization probability for closed Jackson
networks. This new concept provides an analytical solution to the sample elasticity of the
system throughput and some other sensitivities. Using realization probability and the
ergodicity of the system, it is proved that the sample elasticity of throughput with respect
to the mean service time obtained by perturbation analysis also converges with probability
one to that of the steady state mean throughput as the number of customers serves goes to
infinity.

17. Ho, Y.C. and Yang, P.Q. (1986) "Equivalent Networks, Load Dependent
Servers, and Perturbation Analysis - An Experimental Study" Proceedings
of the Conference on Teletraffic Analysis and Computer Performance
Evaluation, O.J. Boxma, J.W.Cohen, H.C. Tijms (Eds), North Holland 1986.

This paper derives the PA algorithm for load dependent queueing networks and shows
that the idea of PA can be applied to aggregated systems.

18. Cassandras, C. G. (1987), "On-Line Optimization for a Flow Control
Strategy", to appear in IEEE Trans. on Automatic Control.

It is shown that a direct extension of PA, tracking queue lengths in addition to event
times. can be used to estimate performance sensitivities in a simple state-dependent
routing environment. This is done at the expense of state memory along the observed sample
path. When a state memory constraint is imposed, the estimates become biased, but may
still be sufficiently accurate.

19. Zazanis, M. A. and R. Suri (1985), "Comparison of Perturbation Analysis
with Conventional Sensitivity Estimate for Stochastic Systems",
submitted to Operations Research.

This paper examines the Mean Squared Error (MSE) of PA estimates and compares it to
that of estimates obtained by conventional methods. We consider two different experimental
methods that are commonly used: (i) independent replications and (ii) regenerative
techniques. The analytic results obtained establish the asymptotic superiority of PA over
conventional methods for both of these experimental approaches. Furthermore, it shows that
PA estimates have a mean square error which is of order 0(1/t) where t is the duration of
the experiment in a regenerative system, whereas classical finite difference estimates have
a mean square error which is at best 0(1/t112)

20. Zazanis, M. A. and R. Suri (1985), "Estimating First and Second
Derivatives of Response Time for GI/G/1 Queues from a Single Sample
Path", submitted to Queueing Systems: Theory and Applications ..

A PA algorithm is developed for estimating second derivatives of the mean system
time for a class of G/G/1 queueing systems, with respect to parameters of the interarrival
and service distribution, from observations on a single sample path. The statistical
properties of the algorithm are investigated analytically and it is proved that the estimates
obtained are strongly consistent.

21. Cao, X. R. (1986), "Sensitivity Estimates Based on One Realization of a
Stochastic System", Journal of Statistical Computation and Simulation
Vol.27, 211-232, 1987.
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The paper shows that the perturbation analysis estimate corresponds to the estimate
of the difference of two random functions using the same random variable: thus, its
variance is smaller than other one sample path based sensitivity estimates such as the
likelihood ratio estimate.

22. Cao, X. A. (1987), "Calculation of Sensitivities of Throughputs and
Realization Probabilities in Closed Queueing Networks with Finite
Buffers", manuscript to be submitted

The paper derives equations for realization probability for systems with finite buffers
and shows that the infinitesimal perturbation analysis estimate is generally biased for
these systems. However, examples indicate the bias is usually very small.

23. Cao, X. A. (1987), "Realization Probability in Multi-Class Closed
Queueing Networks", submitted to European Journal of Operations Research

The paper discusses the concept of realization probability for multiclass closed
networks.

24. Cao, X. A., and V. Dallery (1986), "An Operational Approach to
Perturbation Analysis of Closed Queueing Networks", Mathematics and
Computers in Simulation, Vol. 28, pp. 433-451.

The paper develops and operational definition of realization probability and proves the
sensitivity equations using operational assumptions.

25. Cao, X.A., and V.C. Ho (1987). "Sensitivity Estimate and Optimization of
Throughput in a Production Line with Blocking", to appear in IEEE Trans. on
Automatic Control Vol. AC-32, # 11, 1987

The paper proves that the perturbation analysis estimate is strongly consistent for
systems with finite buffer capacities but no simultaneous blocking. The perturbation
analysis estimate is used in optimization of a production line. It is shown that perturbation
analysis enables us to use the Robbins-Monro procedure instead of the conventional
Kiefer-Wolfowitz procedure.

26. Cao, X.A., and V.C. Ho (1986), "Perturbation Analysis of Sojourn Times in
Closed Jackson Queueing Networks", submitted to Operations Research, .

The paper proves the convergence theorems for the perturbation analysis estimate of
sojourn times in closed Jackson networks.

27. Cassandras, C.G. and Strickland, S.G. (1987), "Perturbation Analytic
Methodologies for Design and Optimization of Communication Networks",
submitted to IEEE J. of Selected Areas in Communications.

Simple PA algorithms are used to estimate performance sensitivities for
communication network models. Of particular interest is the application of IPA in
estimating marginal delays in links modeled as G1/G/1 queues. These estimates are used in
conjunction with a distributed minimum delay algorithm to optimize routing in a
quasi-static environment.
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28. Ho, V.C. (1987), "Performance Evaluation and Perturbation Analysis of
Discrete Event Dynamic Systems ", IEEE Trans. on Automatic Control,
AC-32, 6, July 1987, 563-572

This paper contains probably the most complete references on PA and related mailers
as of 12/86.

29. Ho, V.C. (1987), "PA Explained" to appear IEEE Trans. on Automatic
Control.

This note explains in simplest term via an example the essence of PA and answers
intuitively the question "How can one infer the performance of a discrete event system
operating under one parameter value from that of another with a different parameter value?
Don't the two sample paths behave totally differently?"

30. Zazanis, MA (1987) "Unbiasedness of Infinitesimal Perturbation
Analysis Estimates for Higher Moments of the Response Time of an M/M/1
Queue" Technical report 87-06 Northwestern University, 1987. submitted
to Operation Research

This paper uses classical markovian analysis to establish the unbiasedness of IPA
estimates for the MlM/1 system and refutes another public claim of the limitations of IPA.
The restrictive markovian assumption is the price paid for the simplicity of the arguments
used.

31. Suri, R., and J. Dille (1985), "A Technique for On-line Sensitivity
Analysis of Flexible Manufacturing Systems", Annals of Operations
Research ,3 , pp. 381-391.

The PA approach is applied to flexible manufacturing systems (FMS). We give a
simulation example illustrating how our perturbation analysis could be used on-line on an
FMS to improve its performance, including reducing its operating cost. Experimental results
are also presented validating the estimates obtained from this technique.

32. Suri, R., and V.T. Leung (1987), "Single Run Optimization of Discrete
Event Simulations - An Empirical Study using the M/M/1 Queue". Technical
Report #87-3, Department of Industrial Engineering, University of
Wisconsin, Madison.

This study proposes a stochastic optimization method to optimize a simulation model
in a single simulation run. Two algorithms are developed and evaluated empirically using an
M/M/1 queue problem. Experimental results show that an algorithm based on IPA provides
extremely fast convergence as compared with a traditional Kiefer-Wolfowitz based method.

33. Cassandras, C. G., and Strickland, S. G. (1987), "An 'Augmented Chain'
Approach for On-Line Sensitivity Analysis of Markov Processes",
submitted to 26th IEEE Conference Decision and Control (also to Trans. on
Automatic Control).
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This paper presents a new way of estimating performance sensitivities of Markov
processes by direct observation. The parameters considered are discrete (integer-valued),
e.g. queue capacities, thresholds in routing policies and number of customers of a specific
class in a closed network model. The main idea is to construct an "augmented chain" whose
state transitions are observable when the process itself is observed.

34. Zazanis, MA (1987), "An Expression for the Derivative of the Mean
Response Time of a GIIG/1 Queue", Technical report 87-08 Northwestern
University (see also "Extension to GI/G/1 systems with a scale
parameter", Technical report 87-07).

In this paper an expression is given for the derivative of the mean virtual waiting time
in a GI/G/1 queue with respect to the service rate.

35. Suri, R. and M.A. Zazanis (1987), "Infinitesimal Perturbation Analysis
and the Regenerative Structure of the GI/G/1 Queue", Proc. 19871EEE
Decision and Control Conference, LA, Calif. to appear

The strong consistency of IPA estimates for the mean response time is shown using
the regenerative structure of the GI/G/1 queue. The analysis throws some light on the
conditions which are required for the consistency of IPA estimates in general systems with
regenerative structure.

36. R. Suri (1987), "Infinitesimal Perturbation Analysis For General
Discrete Event Dynamic Systems" J. of ACM , July 1987

This is the final version of the paper first presented in 1983 at IEEE Decision and
control conference which sets forth IPA in a general selling under deterministic similarity
assumptions.

37. Gong, Weibo, and V.C. Ho (1987), "Smoothed (conditional) Perturbation
Analysis of Discrete Event Dynamic Systems", to appear in IEEE Trans. on
Automatic Control.

We show that by using the smoothing properties of conditional expectation, the
problem of interchange between expectation and differentiation can be resolved to give
consistent PA estimates for problems heretofore proclaimed to be unsolvable by PA, e.g.
derivatives of throughput w.r.1. mean service time in multiclass queueing networks, mean
number of customers served in a busy period w.r.1. mean service time, etc.

38. Ho, V.C. and Shu Li (1987), "Extensions of the Infinitesimal
Perturbation Analysis Technique of Discrete Event Systems", submitted to
IEEE Trans. on Automatic Control.

In this paper, we show another general approach to circumvent the difficulty of
discontinuities in PM(9,ro) w.r.1. q for Markov systems. This technique also puts in
perspective earlier work on finite PA showing it to be one member among a range of possible
approximations from the crudest to the exact for handling the discontinuity problem.
Robustness of these approximations is discussed and experimental supports are illustrated.
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39. Glasserman, P. (1987), "IPA Analysis of a Birth-Death Process"
submitted to Operations Research Letters.

This note shows that the regular IPA rules can be applied to a birth-death process to
yield correct sensitivity estimates despite written claim to the contrary.

40. P. Heidelberger, X. Cao, M. Zazanis, R. Suri "Convergence Results for
Infinitesimal Perturbation Analysis Estimates" to appear in Management
Science, 1988



ANALOG EVENTS AND A DUAL COMPUTING STRUCTURE USING ANALOG AND DIGITAL
CIRCUITS AND OPERATORS
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Uri-u 49 Budapest H-lU14

1. INTRODUCTION

Despite the impressive and further increasing power of digital
electronic circuits and systems proving their success in applicatiolls
like computing, communication and control there are signs and facts
which clearly show the inherent limits of the exclusiveness of the
digital way of operation. Some of these facts are as follows.

(i) Complex algorithms (even NP complete) are solved with
appropriate success and accuracy in a few time constants using analog
arrays (Tank et al. 1986), (Chua et al. 1985) and there are some "smart
analog" components showing practical advantages of the dual operations
(Lineback 1986).

(ii) The physical and informational view of computation provides a
broader understanding of electronic information processing or decision
circuits and systems (Csurgay 1983).

(iii) There are
of the capability of
circuits and systems
(Conrad 1974).

well defined theoretical and practical limitations
digital simulation of large-scale analog physical
(Roska 1983) as well as of biological systems

(iv)
nonlinear
operators

A simple discrete-time approximation with delay elements and
memoryless readout maps of many practical continuous nonlinear

is an appealing realization possibility (Boyd et.al. 1985).

(v) The summarized experiences concerning
manifestations of the human cerebral asymmetry show
combined analytic-holistic or perhaps digital-analog way
solving difficult tasks (Bradshaw et al. 1983).

the behavioral
and suggest a
of operation in

Paradoxically, the widely publicized so called "non von Neumann"
architectures are very specialized forms proposed by von Neumann where
even the analog basic operations were considered too (von Neumann 1958).

Based on the above results and facts, as well as keeping in mind
the standard theory of modelling (Zeigler 1976), a novel dual computing
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structure is proposed using analog, digital and joint digital-analog
modull's LInd operators.

Section 2 contains the motivating facts, models and statements. In
section 3 one crucial concept of the model, namely, the analog event is
introduced and the principles of the physical realization of some
important nonlinear operators as computational elements are discussed.
The general framework of the novel computing structure is shown in
Section 4 while some important parts of the model including the joint
processor are presented in more details in Section 5. In Section 6 the
conclusions are summarized along with some proposals.

2. MOTIVATING FACTS AND RESULTS

Analog and hybrid computations are old topics. Recently, however,
based on the advantages of VLSI possibilities it turned out that regular
structures with arrays of operational anplifiers shows surprising
characteristics. They are able to realize complex algorithms like the
nonlinear programming (Chua et al. 1985) or even the traveling salesman
problem and complex signal decision algorithms (Tank et al. 1986).
Hence, even a digitally NP complete problem can be solved in a few time
constants with a quite useful accuracy using "neural" electronic
circuits (Hopfield et al.). Furthermore, there are new "smart analog"
devices on the market which combine the digital and analog functions for
communication, data conversion and signal processing applications
(Lineback 1986). The new BIMOS (combined bipolar - MOS) technolgies are
especially suited for digital-analog dual structures.

Based on the physics of computation (Mead et al. 1980) considering
the physical realization and the information content of an I/O operator
constructed using artificial electronic circuits and systems it turned
out (Csurgay 1983) that the hardware and the software has a unified and
well-defined meaning independent of the way of operation (analog or
digital) .

Considering the complexity of the digital simulation of electronic
circuits and systems it has been shown (Roska 1983) that increasing the
complexity of the analog circuit or system to be simulated, if the
digital simulator's complexity is increasing in the same rate then the
complexity of the simulation is increasing too. Hence, there are well
defined limitations of the digital realization of analog functions.

A recent result (Boyd et al. 1985) shows a possibility, at least
theoretically, for approximating many practical (with a fading memory)
continuous nonlinear operators (even described by partial differential
equations) by a simple discrete-time structure. It consists of unit
delay elements and one multi-input polinomial nonlinear readout map. An
extended class of the latter (any continuous nonlinear map) can be
approximated by a novel memory structure (Roska 1987).

Finally, the rich research experiences concerning the behavioral
manifestations of the human cerebral asymmetry provide a genuine source
for understanding a dual way of processing. In what follows, based
mainly on (Bradshaw et al. 1983), an attempt is made to summarize some
crucial characters of cerebral asymmetry from our special point of view.



Namely, the left hemisphere (LH)
were considered as performing the
are considered as if they were
respectively. Later we modify this

LH
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and the right hemisphere (RH), which
analytic and hulistic prucessiny, here
the digital and analog type ones,
strict view.

RH

dual facts

- analytic (breaking into parts
and elements, etc.)

- differential

- sequential processfng and
temporal resolution of infor
mation (sequencing, discrimi
nation of duration, temporal
order and rhythm)

- verbal abilities especially
at motor level

- matching of conceptually
similar objects

- events of high rate of
change ( 50 msec)

- infurmation ordered in
time

- holistic (global)

- integral

- immediate, perception
of the relations of the
parts and the whole

- performing abilities

- matching of structurally
(pictures, curves etc)
similar objects

- events of small
rate of change

information ordered in
space

verbal,
-dual encoding hypothesis in

symbuls
(tipical dual representatiun:

unique fact

memory theory
picturial,

metaphures)
images

preeminence in motor control

cuntradictional facts

-superiority at visuospatial tasks
requiriny fine spatial acuity (per
forming by analytic extraction of
significant features or elements)

-possesses considerable
linguistic power, especi
ally receptive

-linguistic specializatiun only
on limited fields (e.g compu
tational and combinatorial al
gorithms that characterize ab
stract syntax and phunolugy)
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2. ANALOG EVENTS AND THE PHYSICAL REPRESENTATION OF NONLINEAR COMPUTING
OPERATORS.

Digitally coded logical events playa dominant role in present day
information processing and decision systems. The actual processing
machines operate on the elementary events specifically on the digital
bits. This is one of the reason why this machines are so accurate and
reliable on one hand and why they are so ineffective on the other hand
in some specific other tasks (e.g. selecting some features and
optimizing some cost functions).

Next, we introduce
storing process and the
show, in parallel, ~he

events.

analog event

r.
x(t)e J-T

rz:- 0 J.J T;C , nonzero on [O,T

and define the analog event, its detection and
elementary operators on it. We are doing it to
corresponding facts for the digital-logical

digital-logical event

signals

~1,2 :threshold values for
binary codes (0,1)

/'

t sampling time instant

x(t) ~.2"F : ~, (t) j a finit.e set
T J

of event functions, j =1,2 .. iYl

unique detection

/'
Ilx(t) -x,(t)II~C

J
0 ..... [0, T J

~ (tl ~ L : finite coded
'. ABC

set of symbols

x, (t) _ ~l, 2 I f: £
l

i=-1,2, ... n

unique detection devices

nonlinear memory less two-ports

storing

events within a class:
- elementary I/O operators

of a unified input
- elementary inputs of a

unified I/O operator
- reed-out map (look-up table)

the class is represented by a
digital code

comparator

1,0 codes
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elementary operators

f dt, d/dt, I J , sgn, etc.
nonlinear progr., A/D, etc.

AND, OR, NOT
+, -, x, /

real-time sequentidl

algorithmic elements

elements of recursive
functions (on integers
as coded events)

The last que5tion mark denotes those elementary
nonlinear operators which plays the role of the elementary
functions in the digital-logical computational paradigm (see
interpretation of the Church thesis in (Lewis et al. 1981»).

continuous
recursive
e.g. the

Concerning the physical representation of nonlinear operators as
computational clements four concepts arc summarized as follows.

(i) The electronic circuit or system as a physical object realizes
an operator which worth to consider either as a solution of a
differential equation or as a minimum of a well defined energy function.
The first two cited examples of Section 2 are characteristic special
cases. Due to the inherent constraints in the circuit the minimum of an
appropriate energy function is not necessarily an unconstrained minimum.

(ii) A convenient realization of the detection of an analog event
within a class of events could be a parallel connection of nonlinear
(memory less) two-ports having the inverse characterictics of the analog
events. Hence, the minimum signal output selects the appropiate event.

(iii) Realizing a multi input memoryless discrete time operator
with single-input single-output memories a systematic decomposition
procedure (Roska 1987) based on Kolmogorov's approximation theorem
reduces drastically the surface, the time or the power needed to perfom
the prescribed operator.

(iv) Biological considerations (Conrad 1974) show that within well
defined problem classes non-programmable analog physical-chemical
processes are extremly economic, hence, before decomposing a complex
operator (or a decision system) into programmed computational structures
it is worth to analyse whether the natural elementary parts of the
complex operator are realizable (or not) by non-programmable electronic
structures.

4. THE GENERAL FRAMEWORK

It is quite easy to prove that both the exclusively analog or
digital computational decision structures have serious inherent
disadvantages (a few of them have been cited above). Next, we introduce
a novel computing structure (see the next page) .
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joint
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FIGURE 1 The general framework
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This structure

(i) prefers a given dual way of operation (digital and analog) and

(ii) tries to capitalize the special division of labour shown by
the human cerebral asymmetry (as summarized in Section 2 ).

We call the framework in Figure 1
dual (digital-analog) computing structure"

"the asymmetrical, controlled,
(shortly ACD structure).

(i)
(ii)

( iii)

(iv)
(v)

It conists of five main parts:
the memory encoding part (Me)
the dual (digital and analog)
the controller (C)
the three types of processing
the memory decoding part (Md)

memory (M),

arrays (Pa)

The controller (C) is a standard digital finite state machine with
an inherent finite memory making unique digital-logical decisions (next
state functions and output functions).

The memory (M) has a dual structure, a digital and an analog part.

All the other three parts have basically three building blocks.
These are the digital, the analog and the joint digital-analog
processors. All the directed arcs in Figure 1 represent the flow of
either digital-logical or analog events.

with the summarized behaviours
be realized. These are the

time to select between the
the sychronous and asynchronous
of change), the dual memory

(digital, analog and joint).

Considering Figure 1 some relations
of cerebral asymmetry (Left-Right) can
digital (motor) control, the threshold
digital and analog events as well as
control (based on high vs. small rate
encoding and the three types of processors

the
analog

of the
is the

right hemisphere and
(or soft programmable)

1974) suggest the use
events (a special case

The holistic processing of the
particularly effective non-programmable
biological primary structures (Conrad
analog processors operating on analog
analog value) under analog programs.

Hence, some of the left hemisphere
in the conventional digital processors
the analog processors. Both processors
series or parallel mode. The sequential
processor.

characteristics are incorporated
and the right hemisphere ones in

and arrays of them can work in
mode is dedicated to the digital

The contradictional facts concerning the hemispheric division and
the joint actions of the two hemispheres motivate the introduction of
the joint (digital-analog) processor. The main characteristics of the
joint processor are as follows.

(i) Operators working on analog events are groupped in classes.



(ii)
operators
digitally

Within these
and the setting

progranunable.

classes
of some
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the interconnections between
parameters of the operators

the
are

(iii) Decisions between the classes are done either by digital
programs or by analog operators (analog programs)

The memory (M) has two parts. Besides the conventional digital part
the analog part contains the analog events within a class of events
(represented as defined in Section 3).

In the memory encoding part (Me) the joint memory encoding
processor, based on the dual memory encoding hypothesis, determines the
digital code of the ciass and the analog event within the class.

5. Details concerning the realization of some parts of the model

In what follows the realizability , the progranunability and/or the
uniqueness of some proposed structures are shown.

5.1. Analog event detection

The stucture of Figure 2 contains nonlinear memoryless 2-port
elements (NEil, detectors detecting signals below a small threshold and
a conventional digital decoder. NEi have the inverse characteristics of
the analog events within a given class of events.

The structure of Figure 2 is unique, because, unlike linear
dynamical systems, nonlinear memoryless operators are unique modulo
scaling and delay (Theorem 1 in (Boyd et al. 1983». However, delay is
set by the controlled starting instant of the analog events and scaling
is given by the fixed peak value of them. Hence, the cited Theorem
assures the uniqueness of the detecting structure. The practical
approximation errors of the inverse characteristics can be taken into
account by the threshold values of the detectors.

analog

digital
decoder

events

FIGURE 2 Detecting analog events
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5.2 A programmable nonlinear memoryless multi-input element. (PNE)

Recently, it has been shown (Roska 1987) that any multi-input
nonlinear memoryless operator can be approximated (with any given
precision) by a nested structure of single-input single-output digital
memories and a few adders (Figure 3). The practical finite physical
parameters of the realization (area, energy, power, time) are quite
appealing. In a fully analog realization adders are replaced by
operational amplifiers with feedback resistors approximating +' and x.. .

....

0.
~

0'

'\- 0...:

clN 1 +

>/ 11
~Nc-< [)c: II c-<N 0'
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. .
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...:

0'
~

~

~

0'
0. 0'

?- ~

0'
~o. 0'

~

N
X

FIGURE 3 A programmable multi-input nonlinear element (PNE)
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5.3 A prototypc progranunablc dynamic analog structurc (PDA)

According to Theorem 4 in (Boyd et al. 1985) , if N is any time
invariant discrete-time operator (1 1 ) with fading memory (N is
continuous and the effects of the input are decreasing with time i.e.
unique steady state) then the system of Figure 4 with f() being a
polynomial can approximate N with any prescribed error. We generalize
this structure allowing f() to be an approximation of any multi-input
continuos funcion, moreover, it is programmable using PNE-s. On the
other hand without using A/D and D/A converters the signals are of
finite precision.

unit
-t-delay

PNE

FiGURE 4 A prototype programmable dynamic analog str"ucture
(PDA)

5.4 A programmable regular feedbach structure (PRF)

Providing a progranunability with PNE-s for the regular feedback
structure similar that of (Hopfield et al. 1985) the system of Figure 5
seems a quite natural solution. APi is an analog processor with A/D-D/A
elements.

This structure which can be seen on the next page not only provides
programmability but, because the use of PNE-s allows to realize any
memoryless multi variable non-symmetric feedback function, extends
substantially the class of operators.
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5.5 The joint processor

Figure 6 shows the structure of a
control is carried out by the digital
analog operators are organized according
events.

joint processor. The general
processor. The classes of the

to the classes of the analog
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outputs

analog
operators

Class A

analog
operators

Class B

. , .. .
-decision
-interconnection
-parameters

digital
processor

analog
processor

decision within classes

--------,-\---- -------.....
I
I
I
M

FIGURE 6 A joint (digital-analog) processor (JP)

6. IN CONCLUSION

Based on the investigations presented in the paper there are quite
strong evidences supporting the following statements.

(i) Human cerebral asymmetry, as it is understood now, strongly
advices to finish with the exclusiveness of the digital computing
structures as well as not only to introduce also the analog operators,
however, in some particularly complex situations a genuine joint
digital-analog way of operation seems inevitable.

(ii) The asymmetric controlled dual (ACO) computing structure
suggested in the paper is a starting attempt to build up such a complex
model. Although analog events are allowed it is eventually a discrete
event structure.

(iii) Some parts of the ACD structure has been elaborated and its
realizability, uniqueness and programmability properties were partly
shown without determining the exact class of operators solvable by the
models. It is also certain that concerning the finite physical
parameters (area, time, power, etc.) in some tasks this structure has
definite advantages against the exclusive digital solution.
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(iv) It is u quitc important opcn L[ucstion within thc frumcwork
suggested hier which are the equivalent representations and the formal
realizability conditions.

(v) Thc ACD structure is far not a model of the human cerebral
asynunetry (al though perhaps some investigations CiHl be made with it).
Conversely, it has been an experiment to build up a computational
structure for the artificial electronic circuits and systems which
reflects some genuine characteristics of the manifestations of cerebral
asynunetry.
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ROBUST IDENTIFICATION OF DISCRETE-TIME STOCHASTIC SYSTEMS*

Han-FU CHEN and Lei GUO
Institute of Systems Science, Academia Sinica,Beijing,China

1. INTRODUCTION

Since a real system can hardly be modelled by an exact li
near deterministic or stochastic system and in this case a small
disturbance may cause instability of adaptive algorithms (Egardt,
1980,Riedle et al 1984,Rohrs,1982),it is of great importance to
analyse the influence of the unmodelled dynamics contained in the
system upon the behavior of the adaptive control system. For re
cent years there has been a vast amount of research devoted to
this issue (Anderson et al,1986,Bitmead et al,1986,Goodwin et aI,
1985,11111 et al,1985,Ioannou et al 1984a,b,Ioannou et al,1985 and
Kosut et al 1984).

The authors have analysed the robustness of identification
and adaptive control algorithms in (Chen & Guo,1986a,b) for dis
crete- and continuous-time stochastic systems respectively,when
the extended least squares (ELS) identification is applied.Rough
ly speaking, there it is shown that the estimation error and the
deviation of the tracking error from its minimum value is small
when the unmodelled dynamics is small in a certain sense.

In this paper we are concentrated on the robustness issue
of identification for the discrete-time stochastic system which
consists of a modelled part being a CARMA process and of an un
modelled part ~n,i.e. the system is described by

A(z)y =B(z)u tC(z)w tnn n n n

where
A(z)=ItA zt ••• tA zP p~O

1 p'

B(Z)=B1ztB2z2t ••• tBqzq,q~1

C(z)=ItC zt ••• tC zr
1 r'

(2)

(3)

are matrix polynomials in shift-back operator z with unknown ma
trix coefficient

eT=(-A1···-ApB1···BqC1···cr) (5)
-The project supported by the National Natural Science Founda
tion of China and by the TWAS Research Grant No.87-43.
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but with known upper bounds p,q,r for orders and where the unmo
del led dynamics n is dominated by

n

(6)

with aE(O,1),E~O.

The driven noise {w } in the modelled part of the system is
n

assumed to be a martingale difference sequence with respect to a
non-decreasing family of a-algebras {Tn} with properties

1n-1 1n -1
O<a=liminf- L Ilw·112~limsup;;- L Ilw.I/2=S<<oa.s.

n+<o ni=O 1 n+<o ni=O ~

(7 )

(8)

The purpose of the paper is to show three things:
1) The estimation error a-a has an upper bound proportio

nal to IK where k is the conditiBn number of the matrix

where a is the estimate for a given by ELS and
n

(j)'=(y' ••• y' u' •.• u' y'-(j)' a ... y' _1>' e ) (9)n n n-p+1 n n-q+1 n n-1 n n-r+1 n-r n-r+1

2) In stochastic adaptive control in order simultaneously to
get consistent parameter estimates and optimal or suboptimal con
trol performances a small dither is usually added to the system
(Caines & Lafortune,1984,Chen,1984,Chen & Caines,1985).Later,it
has been shown that better results can be achieved if the excita
tion is put to the system input (Chen & Guo,1986,1987)rather to
the output. Here we prove that for the system with unmodelled dy
namics considered in this paper the condition number of

n
L (j).(j): is bounded in n if the desired control is disturbed by a

ialt~e~ with constant variance.Thus,in this case the estimation
error is of order E.

-1 3) For results mentioned above the positive realness of
C (z)-~I is required.Further,we remove this condition for single
input single output systems and get results similar to the pre
vious ones.

2. ROBUSTNESS OF ELS ESTIMATION

Let the unknown matrix a be estimated by the ELS algorithm

an+1=an+anPn(j)n(Y~+1-(j)~an)
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( 10)

with P =dI,d=mp+lq+mr and 8 arbitrary,where $ is given by (9),o 0 n
m and l are the dimensions of y and u respectively.

n n
Denote by An and An. respectively the maximum and minimummax mln

eigenvalue of

1 Theorem 1. For the system described by (1)-(8) suppose that
C- (z)-~I is strictly positive real.Then

( 11)

(12 )

where

k=limsupA n IAn.
n+cx> max mln

and c is a constant depending on C(z) and the real number a in
(6). 0

Proof. We just point out the key steps of the proof and re
fer to (Chen & Guo,1986a).

Set

~ = -w _OT $
n+1 Yn+1 n+1 n+1 n

Then

8 =8_8 ,
n n

n-1
r =1 + I II$.W

n i=O 1

that
Using the strictly positive realness condition we can show

where o>O,c 1>O are constants depending on C(z) only.Next,we can
prove

liminf(rn+1/n)~a (17)
n+cx>

The desired estimation follows from (16)(17). #
We now consider when k defined by (12) is bounded.
Set
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4> 0 = (y' ••• y , u ' ••• u ' w' •••w' ) , ( 1 8 )
n n n-p+1 n n-q+1 n n-r+1

with 4>?=0 for i<O and denote by Aon and Amon10n respectively the1 max
maximum and minimum eigenvalue of

n-1
L 4>? 4>?'+lr.

. 011 d1=

Lemma 1. If conditions of Theorem 1 hold then

where k =limsupAon
/AO~ <00 and c 2 is independent of £ and n but

o n+ max m1n
possibly dep;nds on w.

Proof. By (16)(17) it follows that

~ 11-' 11 2 ( 1+2[3 2 1+0i~O Gi +1 4>i ~c3 1+--a--)£ r n +1+O(log r n +1 ) (20)

where c 3 depends on C(z) and a only.Then by (6)(17)(20) from (15)
we can find c2>0 such that

n
i~0"E.:i+1 W~c2£2rn+1+0(log1+Orn+1) a.s. (21)

Starting from (21) we can conclude (19).For details we refer
to (Chen & Guo,1986a). #

We now introduce the dither v to the desired control us.
Let {v } be a sequence of l-d~mensional iid random vect8rs

independentnof {wn} and such that

Ev =0 Ev v'=lJI, lJ>o,llv W<a~ ~n>On ' n n n
Without loss of generality assume

(22)

and set
'n=a{vi,wi,O~i~n}

,
, =a{v. 1'w. ,O~i~n}n 1- 1

(23)

(24)

Let the desired control US be ,'-measurable and let the con
trol u applied to the system n(1) b~ defined by

n

U =us+v
n n n

We need an auxiliary system

(25)
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A(z)z =B(z)u +C(z)wn n n

with the same {u } and{w } as those for system (1).Setn n

o (T T T T T T )T= Z ···z U ···u w ···wWn n n-p+1 n n-q+1 n n-r+1

and denote by Amin(X) the minimum eigenvalue of a matrix X.

(26)

(27)

Lemma 2. If A(z),B(z) and C(z) have no common left factor
and Ap is of full rank with Ao=I by definition and if

n
E Ilu~W=O(n)

i=O 1

then for sufficiently large n

n-1 1 1
A. ( I \~.w.Thyn (28)

mln i=O 1 1

where y>O and it may depend on w.

Proof. The proof is essentially the same as that for (46) in
(Chen & Guo,1986c) if \1e note that £,0 and ex of (Chen & Guo,1986c)
equal 0,0 and 1 respectively in the present case. #

Theorem 2. Suppose that A(z),B(z) and C(z) have no common
left factor and A is of full rank with A =I,control defined byp 0
(25) is applied to the system (1) and that

n-1
I (IIY· WtJlu. WhSHn,\"n

i=O 1 1

with H possibly depending on w only.Then

and
A~~n~c5(y-c4£2)n

where c
i
,i=4,5,6 are constants,£</(y/c

4
) and y is given in

If,in addition,C-1 (z)-bI is strictly positive real,then

\'Jhere

(30)

(31)

(28).

(32)
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Proof. Set

I) ( , " )'<1>=1)1) ••• 1) 0···0n n n-1 n-pt1

By (1) and (26) we have

hence

<I> 1 =\111 t sn n n
where

[

AdjA(Z). 0 ]
s = • <1>1)

n n
o ·AdjA(z)

From (6)(33) and condition (29) it is easy to see

n-1
ifJlsnW~c4£2n for some c 4>0

For any XERd from (35) it follows that

and hence
n-1 1 1 n-1 1 1,

A . ( I \II W')~2A . ( I <I> <I> )t2c
4

£2 n •
mln i=O n n mln i=O n n

From this and (28) it follows that

Let

(36)

(37)

detA(z)=a ta zt ••• ta zmp
o 1 mp·

By the Schwarz inequality and the fact that <I>~=O for i<O it
is easy to see that 1

n 1 n mp
A . ( I <I>.<I>~')= inf I (x'<I>~)2~(mpt1) I a~Ao~ (38)

mln i=O 1 1 II x 11=1 i=1 1 j =0 J mlll
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Then (31) follows from (37)(38),while (30) from (29)(31).
Finally,putting (30) into (19) leads to an estimate for k which
together with (11) implies (32). #

3. REMOVAL OF SPR CONDITION

In this sectio~1we consider the single input single output
system for which C (z)-~ is unnecessarily strictly positive
real,but assume that we can find a polynomial

D(Z)=1+d
1

z+ ••• +d zr
. r

so that (D(z)/c(z»-b is strictly positive real.
Instead of y ,U,$ it is natural to use their prefiltered

f f fn n n
value y ,u and $ ,wheren n n

f (f f f f f fT f fT )T= ••• u ···u - 0 ••• - 0$n Yn Yn-p+1 n n-q+1 Yn ~n-1 n Yn-r+1 ~n-r n-r+1

D(z)yf=y, D(z)uf=u
n n n n (40)

In the present case the unknown parameter e is no longer a
matrix but a vector.For estimating it we apply an algorithm modi
fied from ELS,namely,the estimate e for e is recursively given
by (see Goodwin & Sin,1984) n

where

o =8 1+P ~f 1(e +(D(z)-1)v )n n- n n- n n

p =P _p $f $fT P /(1+~fT P $f )
n n-1 n-1 n-1 n-1 n-1 n-1 n-1 n-1

(42)

In the sequel by a =O(b ) we mean that la I<cb holds for
all n and for some cons~ant n c>O. n n

Theorem 3. Assume that for system ~1)-(8) with rn=~=1 there
is a known polynomial D(z)=1+d1zt ••• +dr z such that (D(z)/C(z»-~

is strictly positive real and that the estimate 8 for 8 is given
by (41)-(44).Then n

n - 2
I Ilo:$~ W=O(rf T1~-;:-T2)+O(log1+l\f) a.s.

i=1 1 1-1 n ,,-a, n

f n-1 f
where r =1+ III$.W, 0>0 and 8 =8-8

n i=1 1 n n
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- f2) limsupllO W=O(k £2/(1_a)2) a.s.
n-klo n

where it is assumed that

(46)

fA!. . n-1 f fT 1 n-1 f fT 1
k =11msupX (I ~'~i +a)/X i ( I ~i~' +0)<00 a.s. (47)

n+oo max i=O 1 m n i=O 1

3) (48)

if n =O,i.e.,if there is no unmodelled dynamics.
n

Proof. By (44) we have

C(z) (v _D- 1 (z)w )=v +(C(z)-1)v _C(z)D- 1 (z)wn n n n n

tD-1 (z)n +(C(z)-1)v -lT16 -C(z)D-1 (z)wn n n- n n

=~~~18n+n~
where

Set
l;; =D(z)v -wn n n

Clearly,we have

D(z)(v _D- 1 (z)w )=l;;
n n n

Combining (49)(52) yields

D(z)(",fT e + f)=
~ ~n-1 n nn l;;n

(49)

(52)

(53)

By the assumption of strictly positive realness there are
constants k1>O,k2>0 such that for all n>O

n fT - f 1+k -T f f
s = I (~. 16 . +n . )( l;; • --1( 6 . ~. 1+n . »+k23 0

n i=O 1- 1 1 1 2 1 1- 1
By (41)-(44) and (53) it is easy to see that

l;; +w =(e +(D(z)-1)v )/(1+~fT1P 1~f 1)n n n n n- n- n-
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and
f8 =8 1+P 1$ 1 (r; +w )n n- n- n- n n

Similar to (19) in (Chen & Guo,1986c) from (56) we have

(56)

Summing up both sides of the last inequality we obtain

~ f -T f n -T f
+2 l 1).(r;.-(1+k1 )8.$. 1)-2 l w.8.$. 1

i=1 1 1 1 1- i=O 1 1 1-

n - f n f
~O(1)-k1 l (8:$'_1)2 -(1+k1 ) l (1).)2

i=1 1 1 i=1 1

n f -T f n ~T f
+2 l 1).(r;.-(1+k1 )8.$. 1)-2 l w.8.$. 1

i=1 1 1 1 1- i=O 1 1 1-

By stability of C(z) from (53) we see that

n n - f f
i~0r;~~k3(i~0((81$i-1)2 +(l)i)2»)

for some constant k
3

>0 and that for any 0>0

(57)

(58)

Substituting (59) into (57) leads to
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for any 6>0.
By an argument similar to that used for (22)(30) in (Chen &

Guo.1986c) we have

Putting (61) into (60) we find

1 n f 1+6 f
-(1+k1-o-26k3 ) I (n.f+O(log r)

i=1 1 n

By (6)(40) and (50) it is easy to see

n f n-1 f fI (n.~(e::2k4/(1-a)2)I (y.f +(u.)2 +n)
i=1 1 i=1 1 1

(62)

(63)

for some constant k independent of e:: and a.
Multiplying D(~) to the 3130 system (1) we get

yf=(1_A(z))yf+ B(z)uf +n f +(C(z)D- 1 (z)_1)w +w ,
n n n n n n

which means that yf_w is t-measurable.Then by Lemma 2 of (Chen&
Guo 1987) we have n n

n f n f n n f AI (Y1·f= I (y.-w.f+ I w.+O« I (y.-w.f) ), b<A<1
i=1 i=1 1 1 i=1 1 i=1 1 1

and hence

r n-1 n-1
liminf2.~liminf(1/n) I (y~f )liminf.l I w~=(»O a.s. (64)

n+oo n n+oo i=1 1 n+oo n i =1 1

From (63)(64) we see

n f fI (n. f ~k5e::2r /(1-a)2 (65)
i=1 1 n

for some constant k
5
>0.Then taking 6 small enough so that

k1-26(k
3

+(1+k1 f )2 >0

and combining (62)(65) we obtain

- ,- p - f f 1+6 f
8'1'" 0 ~0(1 )-k6 I (8:<1>. 1)2 +k 7e:: 2r /(1-a)2 +O(log r) (66)

n n n i=1 1 1- n n

where k6 and k7 are positive constants independent of e:: and a.
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Finally,all ~~Eclusions of the theorem follow from (66):(45)
holds because OTp e ~0,(46) is true if we remove the neeative
term on the rigHt~haRd side of (66) and (48) follows if set £=0
in (66). #

We now give results similar to Theorem 2.

Theorem 4. If conditions of Theorem 3 are satisfied,A(z),
B(z) and C(z) have no common factor and A is of full rank with
A =1 and if control defined by (25) is apBlied to system (1) and

o

n-1
I (y~+u~)~Ln, ~n

. i=O 1 1
(67)

with L possibly depending on W only,then there exists an~>O such
that

limsucllen-ell~k8£2 a.s.
n+oo

. for any £t[O,£*),where k8 is a constant independent of £.

Proof. Defining

we have

and

D(z)wf=w
n n

fo (f f f f f f JT:: ••• u···u w···w~i Yn Yn-p+1 n n-q+1 n n-r+1

n-1 n-1
>.. • ( I ~ ~~ ~T ) = inf I (xT~ ~)2
un i=O 1 1 Ilxll=1i=0 1

(68)

n-1 rTf r n-1 T f
= inf I ( I d. x ~. o. )2 ~ (r+ 1) I d ~ inf I (x ~. 0)2
/lxll=1i=o j=O J l-J j=O Jllxll=1i=o 1

r n-1
=(r+1) I d~>" . ( I ~~O~~OT)

j=O J mln i=O 1 1

Hence by (31) we find

(70)

for

n-1 r
>.. • ( I ~~O~~OT)p(c5(y-c4£2)n/(1+r))( I d~)-1 (69)

mln i=O 1 1 j=O J

On the other hand,by (67) it is easy to see

n-1
>.. (I ~~o~~OT)~k n

max i=O 1 1 9
some constant k •

Combining (69)9(70) we get
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By definitions of ~f and ~fo and (44)(52)(68) we haven n

f fo ( f f JT
~ -~ = O···Ov -w ···v -wn n n n n-r+1 n-r+1

(72 )

Then applying (45)(63) to (53),from (72) we see that

(73)

which is the analogue of (21).Starting from this estimate by an
argument similar to that used in Lemma 1 we get an inequality

between kf and kf similar to (19).Finally,the desired result fol-
lows from (46)(7~). #

Applications of the obtained results to robustness analysis
of adaptive control and similar results for continuous time sys
tems will be published elsewhere.
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DERIVATIVES OF PROBABILITY MEASURES-
CONCEPTS AND APPLICATIONS TO THE OPTIMIZATION OF STOCHASTIC SYSTEMS
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1. INTRODUCTION

Consider a stochastic system with state space S. Assume that Z is the
random state of the system and that ~x' the distribution of Z depends on a

vector x of controls. lie are interested in finding the optimal control, that
is the control which maximizes the performance of the system. In
mathematical terms we want to find the solution of the problem

F(x) := Ex(H(Z,x)) = JH(Z'X)d~x = max!

(P)
k

xeX~1R

Here H(Z,x) is a performance-generating function, which may depend on the
control x. Applications of (P) include optimal design of service systems,
optimal facility location, optimal design of communication systems, optimal
traffic control, etc.

If the structure of H resp. ~x is rather complicated, we cannot solve (P) in

an analytic manner. But it is nearly always possible to simulate the system
(by using a random generator for ~x). IIhat we get then is an unbiased

stochastic estimate for F(x). lie are however primarily interested in the
solution of (P) and would like to have an unbiased stochastic estimate of
the gradient of F(x), since such an estimate can be used in a recursive
stochastic gradient procedure for the minimization of (P) (see the monograph
of Ermoliev (1976) for a profound discussion of such a technique and Ho et
al. (1983) for an application in Queueing Networks)

The existence of unbiased estimates of the gradient of F(x) depends on
differentiability properties of x ~ H(z,x) (classical!) and x ~ ~ .x
In this paper we study different notions of derivatives of probability
measures with respect to a parameter x and compare their scope and
applicability. The weak derivative will be introduced in section 2 and the
pIYJ(;es;;; Jed Vii ti 'Ie will be discussed in sect ion 3. Section 4 is devoted to
examples for weak derivatives. In section 5 sampling procedures are
presented which allow a direct sampling of derivatives. These procedures may
be used to construct unbiased estimates of the gradient of F(x). These
estimates are much better than the widely used numerical stochastic
gradients.
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2. WEAK DERIVATIVES

Let AI be the set of all finite signed regular measures on the Borel
field A of a separable metric space (S,d). AI can be endowed with a
Banach-norm, the variation-norm

111111 = var(Il)(S) sup Il(E1 )-Il(E2 )
E1,E 2e.A

If S is not countable, then (AI, II IP is not separable. Therefore we will
consider the weak topology on AI. Let CIS) be the set of all bounded
continuous real valued functions on S. CIS) is a Banach space with norm

Ilf II = sup If (x) I·
x

If S=Rm, the m-dimensional Euclidean space, then we consider furthermore

C(~) (~m) the set of all test-functions

Ck (Rm) (for k~l), the set of all continuous functions f, for which

k
there are constants c1 ,c2 such that If(x) l~c1+c21Ixll .

It is well known, that AI is contained in the topological dual of C(S), with
equality if S is compact (cf.Dunford-Schwartz (1957), p.265). We write <g,Il>
for the bilinear form, i.e.

<g,Il> := Jg(y) dll(y)·

The set of all probability measures on S is denoted by "'1' By the known

Jordan-Hahn decomposition (Dunford-Schwartz (1957), p.130), every 11 e ~ may
be written as

(1)

with 111 ,112 e All; ci~O; where C11l1 is the positive and C21l2 is the negative

part of 11. hence III 1 112' It is clear that the representation of an element

of '" as a weighted difference of probability measures is not unique, since,
for an arbitrary nonnegative measure ~ the decomposition

c1=sup(d1u1 (F)-d2u2(F))
F

in an analogue manner.

would also do the job. However note that (c1+c2) is minimized in the

representation (1), if 111+ 112' To see this, write C11l1-C21l2=d1u1-d2u2' If

clll1 is the positive part of 11, then C11ll (E) = sup Il(F) for all EEA, Hence
F~E

sup dl u1 (F) ~ d1 . The inequality c2~d2 is proved
F

In the following, we study applications x ~ Ii ' mapping x e Rk into
x

All' In particular differentiability properties will be studied.
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Definition 1. A function x ---0 IJ
x

' mapping an open subset of IRk into "1 is

called weakly differentiable at the point x, if there is a k-vektor of
I '(1) I (k) I (i)

signed finite measures IJx := (lJx ' ,lJx ); IJ e ~ such that

o(l/hlP (2)

for all g e CIS) as h ~ O. Here 0(') may depend on g.

The derivative IJ' may be represented as
x

. (i) .. (i) . (i) •• (i)
where IJ , IJ e ~. We do not require that IJ and IJ are orthogonalx x 1 x x

f h th b . h .. d th t . ... d' f . (i) .. (i)o eac 0 er, ear1ng owever 1n m1n a c i 1S m1n1m1ze 1 I-'x 1 IJx •

'(i)
Note that <g,l-'x ) = 0 for the constant function g =1, since <g,lJx ) =1.

I

We write I-'x = (c, I-'x' ~x) to denote the situation that c = (c1 '···,ck)

. (1) . (k).. ..(1) ..(k).
IJx (I-' ,···,IJ ) IJ = (IJ ,· •• ,IJ ) 1S the derivative of x ---Ol-'x at xx x x x x
in the sense of (2).

The derivative obeys the following rules:

1) If x --4 IJ and x --4 v is differentiable, with derivative (c, ~ , ~ )x x x x

resp. (d, vx ' v), then x -----+ alJ +(1-a) v is dif ferent iable wi thx x x
derivative

[
aciJ +(l-a)du ac~x+(l-a)dUx]

ac+(1-a)d, x x,
ac+(l-a)d ac+(l-a)d

2)

3)

(Note that a~ +(l-a)v is in general not orthogonal to a~ +(l-a)v ).x x x x
Under the same assumptions x --4 IJ *v (convolution) is differentiablex x
with derivative

TIf T is a measurable transformation which maps I-'x onto IJx i.e.

I-'~ (A) : = I-'x (T-1 (A) )

T ·T ..Tthen x ---0 IJx is differentiable with derivative (c,l-'x,l-'x)
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. ,
4) If T is a continuous application 5 ~ (5 ,d ) and A

o
is the a-algebra

generated by T, then x ~ ~xlAo is differentiable with derivative

(c, j; IA , jj IA )x 0 x 0

is L1(~)_ differentiable,

A mapping X ~ L1(~) is

(ll (k)
(gx , ... , gx ) of

If ~x « ~ with density fx(y) and x ~ fx(y)

then x ~ ~ is also weakly differentiable.x

called L
1
-differentiable, if there is a vector gx =

5)

L1-functions with the property that

for h ... O.

Of course, c.
1

Ilg~i) IIL1

. (i)
d~x

d~

.. (i)
d~x

d~

and ~x resp. ~x may be taken as

1 (i)
= - max(g ,0)

c i x

-1. (i)
= - mln (-g ,0) •

c i x

It may happen that ~x « ~ and x ~ ~x is weakly differentiable with

var (~~) « ~, but x ~ ~x is not differentiable in the L1-sense.

Consider the following example: Let 5 = [0,1],

d~x(Y) = c(x) .(l+x.sin(~)dY d~o(Y) dy

It is easy to see that c(x) = 1+0(x2). Therefore

!.[f (y)-f (y)] = sin (t) +0 (x)x x 0 x
1

which is not convergent in the L1[0 ,l]-sense. But Jg (y) ·sin (~dY ... 0

o
for all measurable, bounded g (Riemann-Lebesgue Theorem).

6) If x --+ ~ is differentiable with derivative (c, j; , jj ) and x ~ g(x)x x x
is differentiable, then so is

x ~ ~g(x)

and has derivative

(c,J.j; , J.jj )
g x g x

where J g is the jacobian of g.
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7) Decomposition of measures.

If Ji = Jv (·Iz) d'Y (z) is a decomposition and both v and 'Yarex x x x x
differentiable, then

8) If x ~ Ji is weakly differentiable with derivative (c,~ ,~ ), thenx x x
- per definitionem -

x ~ <g,Ji/

is differentiable for .all continuous g. However, one may slightly depart

from continuity. If A is the set of discontinuities of h and satisfies ~ (A)
x

= ~ (A) = 0 thenx
x ~ <h'Jix )

is differentiable, with derivative

c«h,~x) - <h,ii/).

9) If IJix I are probability measures on IR
m and x e IR, then weak

differentiability is equivalent to the following: There is a function of

bounded variation Fx' such that for each continuity point u of Fx
1

lim i (Fx+h(h) - Fx(U))

where Fx is the distribution function of Jix '

3. PROCESS DERIVATIVES

F
x

We have just seen that on /Rm weak differentiability is equivalent to
the differentiability of the distribution functions

x ~ F (u)x

with respect to x. There is another notion of differentiability - somewhat
dual to the above - , which is connected to the differentiability of the
functions

-1
x ~ F

x
(u)

This concept is called process differentiability and was used by many
authors previously (see Ho et al. (1983), Suri (1987), Glynn (1987), etc.)
Its relation to weak differentiability will be studied below. For simplicity
we assume S = IR and x e /R.

Definition 2. A family of random variables IYxl on a probability space

(n,A,p) is called a process representation for lJixl, if Yx has law Jix
~(Yx) = Jix '
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Example 1. If Fx is the distribution function belonging to ~x' then

Y "F-1 (U)
x x

U - uniform on [0,1]

is always a process representation of {~xl.

Definition 3. If IYxl is a version of a process representation for I~xl, for

which

lim h!-(Y +h-Y ) -. Y
h....o x x x

" Y2 - N(0,1) and

x 2
2 ).

1+x
in the second representation, the derivative is Y ,, __x y - N(O,

x
~

Remark that the second representation leads to a process derivative with
smaller variance. This fact will be explained below.

exists almost everywhere, then Yx is called a process derivative of ~x at

the point x.

It is important to stress the fact, that the law of Y is not uniquely
x

determined by the family I~xl and hence we may only speak of "a" process

derivative.

Example 2. Let I~xl be normal N(0,1+x2)-distributions. There are two

possible process representations:
1. Yx Y1+xY

2
,where Yi are independent N(0,1)-distributions

2. Y /1+x2-.y, where Y is a N(0,1)-distribution.
x

In the first representation, the pathwise derivative is Y
x

Suppose that x ~ Y is differentiable not only in the a.e. -sense but also
x

in L1, Le.

IIY+h-Y-h.Y IlL "o(h) ash .... Ox x x 1

Then, for each bounded, continuously differentiable function ~

~(Yx+h) " ~(Yx+hYx+Rh) "

" '#'(Yx) + (h 'Yx+R h) .,#,' (yh), where Rh " Yx+h-Ax-hYx and Yh lies between Yx
:L

and Yx+h ' Since Yh .... Yx and Yx+h-1Rh~ Yxit follows that
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x

258

<'I"f/x> = E(Y 'I' (Y )). Thus,dX x x
for every

appropriate '1', E(Y 'I' (Y )) must be independent of the particular process
x x

representation. It is easy to check that indeed, for example 2

E(Y21"(Y1+XY 2)) = E[-X- y ./(f1+X2 Y)]
f 1+x 2

If x ~ Yx is process differentiable at xo ' then the process behaves near

x like
o

+ (x-x)·y
o xo

Thus the joint distribution of (Y ,Y ) determines its local behavior. We
x xo 0

have already seen that (Y ,Y is not determined by I J.lx " Since, for anyx xo 0

square integrable random variable Y and sub-a-algebra ~

(Var (Y 1'7:1)

Var (Y) = Var (E (Y l'/j)) + E(Var (Y 1:11))

is the conditional variance), we see that Var(Y / (Y ))
x x is

minimized if the conditional variance Var(Y IY ) is zero. Notice that in the
x x

xexample 2, Var(-- YIY) = 0 for the second representation.
l1+x2

This idea may be extended further: Since we are mainly interested in finding
good estimates for

• I

the estimate Yx1' (Yx) can be improved (i.e. its variance can be reduced) by

taking E(YxIYx) instead of Yx itself. We call

E(Y IY )x x

a reduced process derivative. It may happen that there is no process

representation for IJ.l " for which E(Y IY ) a process derivative. Howeverx x x

there may be another process Yx representing IJ./x I which has E(Yx IYx ) as
o 0

process derivative

representa t ion.

~

at Xo and J.lx =J.lx •
o 0

We call a recJucf:.u process
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Example 3. (Glynn) Let J.'x 2 6 1 Then Y+x·'l with Y::O:r x + :r 6x '

J 1 with prob. 2/3
Y

1-1 with prob. 1/3

derivative is 1/3 (deterministic): The process

is a process representation of lJ.'xl. . (. I 1Slnce E Y Y) :: :r a reduced process

1Y+x') belongs to the family

I~ I, where ~ = 6/ 3, This family has process derivative identical to thex x x .
reduced process derivative of lJ.'xl.

The next theorem shows that if the joint distribution of (Y ,Y ) has a
x x

Lebegue density, then a differentiable process representation can be found
by taking the "inverse distribution function" method. The derivative is
automatically reduced.

Theorem 1. Suppose that (Y,'l) has a joint Lebesgue density f(y,z). Let F
h

be

the distribution function of Y+h'l. Suppose that F is strictly monotone.o
Then

Proof. Write Fh as

F(h,x)

x 00

P{Y+hYSX} = I If (y-hz,z)dzdy
-00 -00

00 x-hv 00

I If(U;V)dUdV IG(X-hV,V)dV, where
-00 -<10 -00

x

G(x,v) = If(U,V) dudv. Of course ~x G(x,v)

-00

f(x,v). We have to show that we

may differentiate under the integral sign to get

00

I-Vf(X,V)dV.

-00

Since, for h ) 0,
00 00

I I h
!- IG(x-hv,v) - G(x,V) I dx dv

-00 -00

00 00 max(x,x-hv)

I I} I f (u , v) dudv dx

-00-00 min(x,x-hv)
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00 00 00

J J J ~ l[min(u,u+hV) ,max(u,u+hv)] (x) f(u,v) dx dv du
-00 -00 -00

00 00

J J Ivl f(u,v) du dv
-0) -00

1and h [G(x-hv,v) - G(x,v)] converges a.e. to

-v·f(x,v), Scheff~'s Lemma implies that} [G(x-hv,v) - G(x,v)] converges in

L1 (dx,dv) to -v·f(x,v). The same is true for h ( O. Thus, for almost all x,

00 00

J} [G(x-hv) - G(x,v)] dv converges to J-Vf(X,V)dV.

-00 -00

-1Now fix a pe(O,ll, such that FO is continuous at p.Let F(h,xh) =p, Le.

-1xh=Fh (p). The implicit functions theorem gives

00

E(YIY=F-1 (P».

-00

00

o

Theorem 2. Let Yh , he(-e,e) be a family of random variables with

-1distribution function Fh. Suppose that Fh (u) is Lipschitz-continuous in a

neighborhood of uo ' uniformly in h. Let Rh be a random variable with the

property

(3)

with a(h)=o(h), b(h)=o(h).

Let Fh be the distribution function of Yh+Rh . Then

1 -1 ~1
lim h(Fh (uo)-Fh (uo» = o.

Proof. From the inclusions
IYh~ul S IYh+Rh~u+a(h) I u IIRh I>a(hl I

we get
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-1in a neighborhood of Uo=Fo (p). Therefore

-1 -1-1Fh (p-b(h)) -a(h) ~ Fh (p) ~ Fh (p-b(h)) -a(h)

--1 --1Since IFh (p-b(h)) - Fh (p) I ~ const. b(h) we get the desired result. a

If the family tIJ I is not smooth enough. then the theorem 1 does notx
apply. There is a simple trick to bring everything to the smooth case: a
regularizat ion.

Definition 4. Let IIJ' be a family of probability measures. We call thex·
(a) 2 2family IIJx = IJ

x
R N(O,a (1+(x-xo) )1 the a-regularized family at xo ' This

family has smooth densities.

Remark. The idea behind the definition is the following: If

y = y + (x-x ).Y + Rx x 0 x x
o 0

is a differentiable process representation of IIJx " then

y = (y +aZ
1

) + (x-x ) (Y +aZ
2

) + R
x Xo 0 Xo x

is a differentiable process representation of IIJ~a) I, where Z1 and Z2 are

N(0,1) random variables independent of each other and everything else. The

regularized variables (Yx +aZ
1

) resp.
o

(Yx +aZ
2

) fulfill however all
o

smoothness conditions.
We are therefore able to state the main result.

Theorem 3. If IIJx ' possesses a L1-process derivative at Xo which satisfies

(3) then

(i)

(ii)

For the regularized family (,,(a)1 with distribution function F(a)rx x

~ F(a)-1(u) I
ax x x= exists for all a>O

o
and

~ F(a)-1(U) is uniformly integrable for U-uniform [0,1].
ax x

(00) (2 .-1) 1
For every ~eC (~) with sup sup I v J (x) ~.--.~r I ( ~2·4· .(2j)

j x

~ K·sup I~' (y) I
y

x ~ (~,IJ ) is differentiablex

~ (~ )Iax ,IJx x=x
o

at x=x ando

for a constant K.
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Conversely, if (i), (ii) is satisfied, then there is a pair of random

varibles (Y ,V ) such thatx xo 0

~ <'#' ) Iax 'J.'x x=x
o

( 00)
for all '#'eC • The process

x ~ Y +(x-x)Vx 0 x
o 0

is a reduced process representation for lJ.'xl.

Proof. The first part is contained in theorems 1 and 2. In order to prove
the second assertion, let

with U-uniform (0,1]. Because of (i) (y(a), v(a» is uniformly tight and we
x xo 0

2N(O, a ), Z

choose a limit (y ,V ) as a ~ 0. Of course ~(y )=J.' •x x x xo 0 0 0

(a) 2 2J.'x = J.'x· N(O,a (l+(x-xo) » the regularization and

- (a)
J.'x

may

Let

J1 • N(0,a
2

)x

L(y (a» (a)
another different smoothing. Let x = J.'x and ~(Z)

independent of y(a). Then, for'#' E c(oo) (~)
x

1< '#"J.'~a) ) - < ,#,,~~a) ) I = IE (,#,(y~a) + (x-xo) 'aZ) _ ,#,(y~a») I
= Ix - X

o
l·a.O(1) (4)

'#' (y) = J '#'(y-z) 2 be the regularization of '#'. Then, by (4)Let dN (0, a ) (z)
a

~<
'#'a'J.'x ) Ix=x ~< -(a)

) Ix=x = ~ < '#' (a) ) I + O(a)oX oX '#',J.'x oX 'J.'x x=x
0 0 0

= E(V(a),#" (y(a») + O(a) ------t E(V '#" (y » as a ~O (5)x x x x

A Taylor expansion of '#' leads to
00 •

\ (2j) a2J
'#'(y) + L. '#' (y) '2·4··· (2J)

j=l

a
oX < '#'a'J.'x )

and therefore from (5)

Since sup
j

(2j-ll 1
sup'#' (x)· 2.4 ... (2j) 1< 00 we get from (ii)
x

a 2
~ < '#',J1 ) + O(a )
uX x

~ < '#'ax ,J.'x

which is the desired identity. D
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If x ~ ~x possesses a process derivative, it may not be weakly

differentiable (Simply take Yx :; x). Conversely x ~ ~x may be weakly

differentiable without having a process derivative:

Take uniformly distributed in [0,1] and

px.

If A is a set with boundary oA, satisfying (~+~ ) (aA) = 0 then x ~ ~ (A)x x x

is differentiable, if x ~ ~ is weakly differentiable (cf. property 8. of
. x

section 2).A similar statement is not valid for process derivatives.

A numerical example

Let ~x be an exponential distribution with expectation x. ~x has density

x·exp(-xy)

and inverse distribution

f (y)
x

function
-1 1F (u) = -- In(l-u).x x

Let Yx be distributed according to ~x. We look for estimates for ~(lVx)

~x ( 1Y,~x >. Three different methods will be considered:

1. Numerical differences

Fix a h > O. We estimate ~ (IY,~ > by
uX x

z(ll:= 1 (~- .;V ) (6)
x n x+h x

where Yx+h' Yx are independent. Of course, (6) is a biased estimate. We may

reduce the bias by making h very small but then the variance will increase.

2. Process derivatives
A process representation of I~xl is

1
Yx = -x In (1-U)

A process derivative of .;V isx
Z (2):=

x
which is an unbiased estimate.

U - uniform [0,1].

1 -2/3 /-In(l-Ul.- "2 x

3. Weak derivatives

~ (IY.~ > is estimated byax x
z(3):= _1_ (.;V(1)

x e.x x

~ resp. ~ . Details ofx x
contained in the next section,

where y(1) resp. y(2) are distributed according to
x x

the generation of these random variables are
example 2). This estimate is also unbiased.
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H' (x)and

The following table compares the variances of the three estimates. Notice,
that in the particular case we may calculate analytically that

H(x) := (/Y,!Jx > = Jx /Yexp(-xy) dy = ~/iilX.

-/if

TABLE 1:

x=l.O x=2.0 x=3.0

HI (x) -0.4431 -0.1566 -0.0852

Numerical difference :

h=O.l E(Z (1» -0.4590 -0.1569 -0.0853x
Varlz(ll) 10.8 5.37 3.57x

h=O.Ol E(Z (ll) -0.4308 -0.1567 -0.0852x
Var(z(l» 1069.9 534.5 356.2x

Process derivative:
Var(z(2» 0.0485 0.0061 0.0008x

Weak derivative:

Var (Z (3» 0.0226 0.0027 0.0001x

We see that the weak derivative has always the smallest variance.

4. EXAMPLES FOR WEAK DERIVATIVES

4.1 Poisson distribution.

Let !Jx be a Poisson distribution with mean x, i.e.

-x
!Jx = e ~ x

j

L. JT 6 j
j=O

(6u is the point mass at u). x --1 IJx is differentiable with derivative

-x+ e

!Jx may be represented in different ways. The simplest representation is
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-x ~ x
j

where ~x e L rr 6 j +1 ' a shifted Poisson distribution and ~x

j=O
is however not the Jordan-Hahn decomposition. The latter is

~ . This
x

with

1 -x-e
c

..
2 [j~X]

j= rx1

..

1 -x-e 6
c 0

+ L~ [X~j]
j=l

-x
c = e 2 P~X]

j= x

The second representation has a smaller c, namely

x c

0.5 0.6.65

1.0 0.3679

2.0 0.2707

3.0 0.2240

4.0 0.1954

5.0 0.1754

but the first representation has clear sampling advantages. We may sample ~x

as a Poisson-variable Y and ~ as Y+1. Of course, process derivatives do notx
exist, since the Poisson distribution is discrete.

4.2 Exponential distribution

If ~x is an exponential distribution with density x.e-XY , a derivative is

[
1 -xy -Xy ]
~,x.e(l-xy)e .1IY~1/xldY, x·e·(xy-1)e 1IY~1/xldY

A process representation for the exponential distributions is

- !. lnWx

where ( is uniformly [0,1] distributed. A process derivative is

1
2 ln (t).
x
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This derivative does not help us in differentiating e.g. x -----+ Jlx ( [a,oo]),

the probability that a Jl -distributed random variable is larger than a. Withx
the weak derivative we get

4.3 Normal distribution

Let Jl have a Lebesgue densityx

f x (y) = ~ a(x) exp [- HY:(~i) (]
and x -----+ mIx) and x -----+ a(x) be differentiable.
A process representation for Jlx is

a(x) (t-m (x) )

with t-N(O,l) and derivative a'(x)(t-m(x)) + a(x)./(x).

If g is a c(l)-function then

x -----+ <g, Jlx )

is differentiable with derivative

where L is the differential operator

, [a' (x) '](Lg) (y) = g (y) y·aTXf - a(x) m (x)

In the space L1 (IR) n c (1) (IR)
operator in this space

(7) is the inner product. L has an adjoint

where

(8)

The weak derivatives have Lebesgue densities which are identical to the
positive resp. negative part of (8).
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5. SAMPLING DERIVATIVES OF PROBABILITY MEASURES

Let IJx be a probabili ty measure on (S, A) and let (c, iJ ,jj) be a weak
x x

derivative. If a pair of random variables (Y,V) has marginal distribution iJx
resp. jj , thenx

c (g(Y)-g(Y)) (9)
ais an unbiased estimate for ax <g,IJx ) for g e C(S). Of course, we are

interested in estimates with small variance. Let i:=g(Y) and i::=g(Y). The

marginals of (i,f) are the image measures iJ~ resp. ~~ of iJx resp. jjx' and

hence fixed. We are looking for the joint distribution with given marginals

which minimizes Var(i-f). The solution of this minimization problem is given
by the following theorem.

Theorem 4. (Major,1978). Let "f> be a convex function. Let (Zl,Z2) have

marginal distribution functions F1 resp. F2. Then

infl E("f>(Zl-Z2) : Zl has d.f. F1 and Z2 has d.f.F2

J"f>(F~l (u) - F;l (u)) du

o
Corollary. The joint distribution which minimizes Var(Zl-Z2) is that of

-1 -1
(F1 (U),F2 (U)) U-uniform [0,1].

Thus the minimal variance estimate for (7) is
c( Zl - Z2)

-1
where Zl= F1 (U),

F1 d.f. of IJi' F2

U - uniform[O,l],

Since the decomposition of a signed measure is not unique, we may decompose
IJ~ in several ways.

(Jordan-Hahn decomposition)

"I d (v - v ) (other decomposition)."'x x x
Although the constant c is minimized for the Jordan-Hahn decomposition, it

may happen that a different decomposition leads to an estimate for ~ <ax
g,IJ ) with smaller variance. It is somewhat astonishing that in some casesx
we can do better than to decompose IJ~ into orthogonal parts and to use then

the optimal estimate given by the Corollary. Here is the example:

Example: Let IJx (0.125+x.0.l)61 + (0.125-x.0.4)62 + (0.125+x.0.l)63 +

(0.125-x.0.2)6
4

+ (0.125+x.0.1)6
5

+ (0.125+0.2)66 + (0.125-x.0.4)6
7

+

(125+x.0.5)67. 1



~x= 0.1'61 + 0.1'63

~X= 0.4'62 + 0.2.64
Another decomposition of
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The Jordan-Hahn decomposition of ~~ is

c = 1

+ 0.1.65 + 0.2'66 + 0.5'67. 1

- 0.4.67
~' isx

d = 1.05263 = (0.95)-1

vx= 0.095'61 + 0.145'63 + 0.095'65 + 0.19'66 + 0.475'67•1

..
Let F1 resp. F2 be the distribution functions of ~x resp. ~x and G1 resp. G2

the distribution functions of v resp. v • We may estimatex x

:x Jy d~x (y)
(which has by the way the constant value 1.25, easily obtainable by direct
calculation) either by

D1 .- l'(F~l(U) - F;l(U)) U - uniform [0,1]

or by

D2 = 1.05263'(G~1(U) - G;l(U))

A somewhat lengthy calculation shows that
E(D1) = E(D 2) = 1.25 (as it should be!)

but
Var(D1) = 2.4415 > 2.3198 = Var(D2) !

For the practical implementation of optimization algorithms one is often

satisfied with a reasonable, though not optimal estimate of ~ (g,~ >. The
oX x

simplest way is

sample Y resp.

to take the Jordan-Hahn decomposition ~' = c(~ - ~ ) and tox x x

Y independently from jJ resp. jj. Of course, the variance
x x

could be decreased, if g(Y) and g(Y) has positive correlation, but it is not
easy to sample from such a joined distribution.

In principle, any known method for random number generation can be used to

sample (Y, Y) from (jJ ,;.; ). (For the generat ion of non-uniform variables see
x x

Devroye(1986)). The problem discussed in this section is however the
following:

Is it possible to modify a generator for a ~x-distributed random

varible Y in an easy way to get a random number generator for the derivative

(Y, Y)?
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We begin with discrete distributions. Let ~x

the point mass at u. Alternatively, we may write

m

\po(x)'<5 ,where <5 isL 1 Uo u
i=l 1

P (Y=u, I
1

po (x).
1

Of course, x ---+ ~x is weakly differentiable iff x ---+ Pi (x) is

differentiable for all i. Let

(0) •
po J (x) : = _0_ p, (x)

1 ax 0 1
J

The derivative is:

and +a : = max (a. 0); a := -min(a,O).

Co
J

m

2
i=l

m2(P~j) (x))-

i=l

• (j )
~x

m

2
i=l

.. (j )
~x

Consider the following graph for illustration. Let x be univariate.

To sample ~x' we have to choose one of the i-th arc with probability Pi (x).

dSuppose that the solid arcs indicate that T::"" po (x) ~ 0 and the dashed arcsax 1

correspond to ~ Pi(x) ( O. We sample ~x resp. ~x by

0 resp.

Pl (x) Ps(x)
--c c

ul u4 Us

o

/ /, ""
/ I. "P2(x) / I p 3 (x) ""

-- / 1-- "C / C
/

/
/

/

/

u2

--c

where c

m

2(Pi (x))+

i=l

m

2(Pi (x))
i=l



j then a v .
X,J

with derivative
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sometimes random numbers are generated in a two - or multiple step
procedure. Let, for instance

m

J.I = '\ p. (x)·v .
x L J X,J

j=l

We sample J.lx by a two-stage procedure:

Let Z take the val ue j with probabili ty pj" If Z equals

distributed r.v. is sampled. If x ~ v . is differentiable
X,J

(c.,v .,v .) and x~ p.(x) is differentiable, then so is x ~ J.I and the
J X,J X,J J x

derivative is

m

[
1 2.+d, T p. (x)v .
(l J X,J
j=l

m
1 2 ,

+ d- p. (x) v . ,
J x, J

j=l

m

1 2.-
d
- p. (x)v .

J x, J
j=l

m

1 2 ,.]+d- p.(x)v .
J x, J

j =1

where d

m
'\ .+
L Pj +

j=l

m

LPj (x) ,c j •

j=l

The sampling procedure is the following:

Let c

m

2p;(x) and i resp. Z the derivatives of Z.

j=l

With probability c i and if i jif we sample

we sample finally V.
J.

(and analoguously for Z)
with probability 1- c an if Z jif we sample Z =

we sample finally V
j

(and analoguously V.)
J

For a non-discrete probability J.I there are several methods of sampling. We
x

discuss here the transformation method:
Suppose that

Y
X

:= K(x,O (10)

is a J.lx-distributed random variable, where ( is uniformly [0,1] distributed.

A typical transformation method is the inverse-distribution function method,
where K is defined as

F being the d. f. of J.I. Our goal is to find random variables Y resp. Yx x x x
which are distributed according to

y y ..
x - J.lx x - J.lx
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Theorem 5. Suppose that (x,z) ~ K(x,z) is twice differentiable. Let, for

z E [0,1]

a2 a
-2 K(x,z ax K(x,z)
az

a
azax K(x,z)

-----:-----+
a: K(x,z)

L(x,z) :=

[a: K(x, z)r
Let L(x,z) = L+(x,z)-L-(x,z) be the decomposition of L into its positive
resp. negative part. If q1 resp. q2 have Lebesgue densities

const. L+(x,z) resp. const. L-(x,z)
on [0,1], then

Yx - K(x,q1)

'Ix - K(x,Q2)

is a possible sampling realization for ~x resp. ~x.

Proof. By the transformation rule of measures we know that the density of

K(x,() is

f (y)
x

1
a -1

az K(x,K (x,y)

Let ~x be the signed measure which is the derivative of x ~~x. Of course

(11)

Let A be the Lebesgue measure on [0,1] and let the signed measure Vx have

the density

Everything is proved, if we show that

,
dv
__x_ (z)
dx

a
azax K(x,z)

-.,------+
~ K(x, z)
az

which follows from simple calculus. D
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1Example 1. Let K(x.() = - xln(I-(); i.e. ~x is an exponential distribution.

1Then L(x.z) = x(lnl-z)+I). The positive resp. negative normed parts of L are

and c 1
e·x

L+(Z) e·(lnz+l) .llz~l/el

-e· (lnz+l) .l lz <l/el

If ql has density L (z) and q2 has density L (z) then

is a possible model for the derivatives. qx may be sampled by a rejection

method. since it has bounded density. .Iii;, has the density

-2ez(2Inz+l)llz~l/el which again is bounded and may be sampled by rejection.

Note that the distributions of ql and q2 both do not depend on x!

The very same method can be applied. if the distribution of ~x is sampled by

using a couple of uniform random variables. i.e.

Suppose that for fixed z2, ... ,zk

decomposition of the form

~x = JlJx ( ·lz2• .. · .zk) dz2···, .dz k,

satisfies the assumptions of theorem then we may view ~ asx a

where lJx is the image measure of K(x, (1 • z2' ...• zk)' Since the "mixture

measure" dz2•...• dzk does not depend on x. we may differentiate ~x by mixing

over the derivatives of lJ i.e.
x

where c has

measures.

..
to be chosen in such a way to make ~x and ~x probability

Example 2. Take a normally distributed random variable Y - N(x.l). sampledx
by the Box-Muller method:

Yx 1-2In(I-(I} cos(n(2)+x
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Here K(X,zl,z2) 1-21n(1-zl) cos(2nz 2)+x. (x,zl) - K(X,zl,z2) satisfies

the assumptions of theorem 1 and we may calculate L(x,zl,z2) for fixed z2:

-;.:;;::;:::::;1:;::::::;:- _ 1_ 21n 11-z )
1-2ln (l-z)

We may decompose L in the two parts

1

1-21n ll-z)
L2 = 1-21nl1-z)

_1_ .Ii
j!"

We do this for the sake of simplicity being quite aware that this is not
the decomposition of L into positive and negative parts.

1

As J-;.:;:;:;:;1:;::;~ dz = J/-21nl1-z) dz = 1", r(})° 1-2In(1 z) u.

We have to sample random variables Y resp. Y with densitiesx x

1 1 _1_ /-In (z)- resp.
.Ii /-In(z) .Ii

These densities are unbounded on [0,1] and the calculation of the
distribution function requires the knowledge of the incomplete r-function.

So, we proceed a different way: The densities of fi2 resp. /f2 are
x x

1 z resp. _1_ z.r-rnrzT
.Ii I-ln(z) .Ii

1 -1/2which are both bounded by --- e
.Ii

The final algorithm is:

1. Sample U1 '(2'(3 from uniform [0,1]

2. Accept

Accept

y
x

3. The constant is c .m/2.
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Of course, one could also consider the function

(x,z2) ~ K(x,zl,z2) for an application

of theorem 5. Here

cos(n.z2)

sin2(n.z 2)

which is not integrable in [O,l]! There are two poles: z2 = 0 for the

positive part and z2 = 1 for the negative part. We are therefore led to try

to take the point mass at 0 for the positive part and the point mass at 1
for the negative part.

Thus the algorithm is
1. Sample (1 from the uniform distribution

2. Take

y
x

c =

-1-2In((1) + x

(2n) -1/2

Obviously, this leads to a correct distribution.
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THE SEPARATION OF JETS AND SOME ASYMPTOTIC PROPERTIES
OF RANDOM SEQUENCES

I.M. Sonin
Central I<;conomic Mathematical Institute, USSR Academy or Sciences,
ul. Krasikov, 32 Moscow 117418, USSR

1 The present article is concerned with three seemingly unrelated problems which
are actually proroundly interconnected. We shall rder to these as Problems 1,2,3.

Problem I deals with a mathematical model or a physical problem concerning the
asymptotic behaviour or the nonhomogeneous solution in a system or vessels (discrete
coloured streams) as time tends to infinity. Theorem 1 proved in II] - a theorem on
separation or jets -- states that every coloured stream with a bounded number or
vessels at each moment., can be decomposed int.o jet.s (a jet. is any sequence or subsets
or vessell,) such t.hat. stabili~at.ion or volume and concent.ration t.akes place in every jet.
and t.he overflow between diITerent. jets is finite on an infinit.e t.ime interval. From t.he
physical point or view a coloured stream is an example or an irreversible process and
in our opinion Theorem I is only a sketch or a g('neral t.Iworem about. t.he asympt.ot.ic
behaviour or such processes. Frolll t.he probabilist.ic point. or view Problem I is a
problem on the asympt.ot.ic behaviour or a nonhomogeneous Markov chain. Using
Theorem J we get Theorem 2 which describes such behaviour under t.he single condi
t.ion t.hat. t.he number or element.s in the st.at.e spaces or the Markov chain is bounded.
Problelll 2 d('als wit.h 1'(lim inr (Xn cD,.)) ror classes or random sequences wit.h t.he

same t.wo-dimensional dist.ributions P(Xn, Xn+Il, n EN. Theorem 3 gives an
interest.ing inequality ror such probabilit.ies. Problem 3 and the corresponding
Theorem 'I arc concerned with t.he exist.ence or a nonrandom sequence (barrier) such
Lhat. t.he expected number or int.ersections between this sequence and t.he traject.ories
or a martingale-type random sequence is finit.e on infinite time interval.

2 A sequence (Mn, r~) == (M, r) is called a (discret.e) stream ir it.s element.s sat.isry the
rollowing condit.ions:

Mn c: N = {I, 2,' .. }, r~ ~ 0, i E Mn, i E Mn+ \' n EN,
(I)

The elements or a stream (M, r) have the rollowing interprct.at.ion: Mn is a set. or
vessels in moment n, r~ is t.he amount or liquid (solut.ion) /lowing rrom vessel i E M n
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to vessel j t=Mn I I in moment II.

Denote by m~ = ~J'E M r~ the amount of solution in vessel i in moment n. We
nil

assume that ~iEMl m1 < 00 and hence from (1) without loss of generality

~ m:,~,I,nCN
i( M n

(2)

A sequence (Mn, r~', On' 0;,) == (M, r, 0,0) is called a (discrete) coloured stream
(CS) if (M. r) is a stream, °= (On) is a sequence of subsets, 0" ~ M n• II EN, the
numbers o~ satisfy the following conditions:

O<;o~<;I.o~=O.iEOn ;

(3)

The number (}~ is interpreted a.'i a concentration of the solution (temperature) in
vessel i in a moment n. The sequence of sets (Or.) is called an "ocean" the concentra
tion of the solut.ion in vessels of this sequence is always zero and docs not depend on
the concentration of the solution !lowing into these vessels. l'~very CS (M, r, 0, a) is
specified if a stream (M. r), an ocean (On) and initial values or for i E MI\OI are
specified.

Problem 1 is to describe the asymptotic behaviour of the CS as time tends to
infinity. For a fixed stream, any sequence J = (In), I n ~ Mn, n E N is called a jet; a jet
J = (.In) is called a trap if the total 'over!low' from jet J to other vessels is finite, i.e.

(4)

00

A tuple of jets I = (11 •. ", F) is called a partition (of M = II Mn) if
n=1

a) J" n JI =" B ./. In n ,:I, f'

C

h) LJ J~ = M n, n eN.
s=1

Let Inl be the cardinality of the set nand mn(A) = ~iEMn m~, A <;;; Mn. The fol

lowing theorem was formulated and proved in [11.

TIII~OIU';M 1 (Separation of jets). For any CS (M, r. 0,0) such that
IMn\Onl <; N < 00, n E N there exist an integer c, 1<; c <; N + 1, a tuple ml , a/),
1= 1, ... , c, ml > 0, 0 <; a l < < a C <; 1, a partition ,= (11 .... , JC), JI = (J~),

I .7 I, .. " c and a tuple of jets (]I jC) such that j~1 ~ J~.. I = I, .. ,. c and

a) Stabilization of the volume in every jet JI takes place,

lim mn(J~) = ml , I = 1, ... / c ,
n

b) Stabilization of the collcentration in every jet JI takes place, with the possible
exception of some vessels whose volume tends to zero, i.e.

I, i - -I . -' J"I JI I' (JI \J"/) - I - IUIlO" -- (} • I = a" E n <;;; n' un m n " n - 0, - " ..• c ,
n n
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c) Every jet )1, 1= 1, ... , c is a trap for the stream (M, r).

REMARK 1 The existence of the partition "1 with properties a) and b) is rather
trivial. A nontrivial fact is the existence of "1 with all three properties a), b), c). The
main difficulties arise in the case of Iim llinfiEM.. m~ = O.

REMARK 2 The partition "1 in Theorem 1 was constructed in [II recursively in an
explicit form and it was proved also that the overflow between each jet and other jets
can be estimated through the increments of the function 1"( Inn' an) == ~i E M.. m~(a~)2,

which is monotonically decreasing for every CS.

3 The probahilistic interpretation of Problem 1 is the following. Let (M, r) be a
stream. Without loss of generalily m~ > 0 for all i, n. Consider a sequence of matrices

Pn = [}I~I, where P~ = r~/m~, i E Mn, i E Mn+ I , n EN. It is obvious that Pn are sto
chastic matrices and (Pn ) with initial condition mi, i E M I , uniquely specify a nonho

mogeneous Markov chain (Zn) with state spaces Mn, transition matrices Pnand inilial
distribution mi. Conversely, if a Markov chain (Zn) with values in discrete spaces Mn
is given, then defining a sequence r;{ by formulae r~ = P(Zn = i, Zn+ 1= j), i E Mn,
i E Mn , I it is easy to check that (M, r) is a stream. Therefore, a stream and a nonho
Illogencolls Markov chain arc two illterpret.ations of the same model. Obviously the
sequence m~ = P(Zn = i) = ~iEM"=1 rU' satisfies the following relations.

(5)

I ~ (I IM.I) '. tw lere mn - m n, ... , mn IS a row-vec or.

The relation (4) from the definition of a trap means that the expected number of
t.he entrallces illto alld exists from a jet (In) of a trajectory of the Markov chain (Zn) is
rin itc.

Any CS (M, r, 0, a) also has a simple probabilistic interpretation. It is easy to
show that a CS may also be defined in such a way that the initial condition aI, i E M I

will take a form Cit = le(i), where G ~ MI\OI' leO is a characteristic function of the
set G. Let (Zn) be a Markov chain corresponding to a stream (M, r). Deline a sequence
of sets (Dn) by DI = G, Dn = Mn\On for n > 1 and introduce the posterior probabilities

f3~ = P(Z. ED•• s = 1, ... , n[Zn = i), i EMn, n EN (6)

Using the Markov property of (Zn) it is easy to show that f3;. satisfy the same formulae

as a~ in (3). It is evident also that f3i =aI for i E MI'

Conversely, any nonhomogeneous Markov chain Z = (Zn) with values in some
discrete spaces (M n) and a sequence of sets D = (Dn) Dn ~ Mn (we shall say for the
sake of brevity that (Z, D) is a Markov pair) specify a CS with a stream (M, r),
r~ = P(Zn = i, Zn+l = i), i E Mn, i E Mn+ I , with an ocean °= (On), On = Mn\Dn and
with (}~ given by (6). So as in the case of a stream alld a Markov chain, CS and a
Markov pair provide two in terpretations of the same mathematical model.

It is useful to note that, if we introduce the sequence of vectors (an), where
an =- (a~, i E M,.), a~ = a~m~ is equal to the amount of a solute in vessel i in a moment

n alld the substochastic matrices Pn = [P~I, with P~ = p;{ for i ¢ 0n-J I' p~ =- 0 for



j E On I I' n EN, then, as in (5), we have

an +. = an j5n' n EN.
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(7)

The above relationship between CS and Markov pairs allows us to consider
Theorem. as a theorem dc.scribing all asymptotic behaviour of posterior probabilities
(6) for a given Markov pair (Z, V), V = (Vn) in the case when IVnl ~ N < (Xl. Proper
ties a) and b) of Theorem 1 take a form

a)

L)

lirnnP(Zn E J~) = m' >0, I = ., ... , c ,

lirnnl'(Z, E V" • ~ 8 S nlZn = i) = ai, i E J~ ~ J~ ,

limnP(ZnE(J~\l~))=O,I=., .. "c •

From (!») it is easy to get

0 ' = lim P(Z, ED" • ~ 8 ~ nlZn E J~)
n

(8)

(9)

(lO)

4 We now present Theorem 2. We introduce some useful notions which play also an
important role in the proof of the Theorem 3. Generalizing the previous definition of a
trap for a Markov chain, let us say that a sequence of sets J = (In) is a trap for a ran
dom sequence (LS.) X = (Xn ) if as in (4)

00

~ IP(Xn E I n• Xn+ 1 rI I n+.) + P(Xn rI J... Xn+. EJn + dl < (Xl

n=1
(11)

If the LS. X is lixed or there is no danger of confusion we shall omit the reference to X.
If J = (Jr,) is a trap for X = (Xn) let us call the limit P(Xn E I n) (it always exists for
allY trap) as the volume of J for X. We say that a trap J is indecomposable if its
volume is positive and J can not be represented as a slim of two traps with positive
volumes, I n -'. J~ I J~, JI eN.

TllI~ORI~M 2 Let (Zn) be a (nonhomogeneous) Markov chain with values in Mn,
IMnl <; N < (Xl, nE N. 'l'hen there exist a partition into indecoTnlJOsable traps

1 '" (JI",., Jr.) and a tuple of numbers m', m1(j), j E Mk , k E: N, I = I"", c, such that

a) limnP(Zn E J~) = m' > 0, limnP(Zn E J~IZk = j) = m1(j),
b) limklirnnP(Zk E Ji, Zn E J~) = m'h",
<:) lilllklimnl/'(Zk = j, Zn = i)m' - l'(Zk = j)l'(Zn = i)h"] = 0,

j == jk E Ji, i == in E J~, 8, I = ., ... , c. llere h" is the Kronecker symbol.

RI~MAIU{ 3 It is easy to prove that the existence of 1, specified with regards to
traps with zero voluIlle, and points a), b) and point c) for 8 II are valid for any LS.

with bounded number of values, A nontrivial fact, valid in general only for a Markov
chain with a bounded number of values is point c) for 8 = l. In otlier words any Mar
kov chain with bounded number of vailles has a mixing property inside every indecom
posable trap. Theorem • is used only in the proof of this part of Theorem 2.
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5 Let us dwell upon another interesting item related to Problem 1. We give first
some basic delinitions and not.ions regarding the so-called theory of majorization. Our
starting point is the books of Marchall and Olkin [21 and of Dieter and Uhlman [31. Let
x, y be the vcelors in Il~. The veelor x is said to be majorized by the vector y (y r x)
if for any continuous convex function 9 the inequality Eig(Yi) 2 E,g(x,) holds. The
relation r dennes a partial pre-order and if y r x and x r y then x may be gotten from
y by some permutation of coordinates. This relation also has some other interesting
interpretations. In particular, y r x if and only if there exists a doubly stochastic
matrix I' such that x ,~- yl'. According to an economic interpretation the coordinates
of a veelor x =, (xl, __ ., x N ) are the incomes of N economic agents and the transforma
tion of y into x represents some "fair" redistribution of incomes. The background for
geometric interpretation gives Birkholf's theorem on the representation of a doubly
stochastic matrix as a convex linear combination of permutation matrices. A funelion
preserving the relation of majorization, i.e. such that y r x ilf 'P(Y) 2 'P(x) is called
Schur-convex or simply S-convex. As was mentioned above all the funelions
'P(x) -= Eig(xi), where 9 is convex are S-convex. If 9 is strictly convex then 'P is strictly
S-convex, i.e. 'P(y) > 'P(x) if y >- x and x'l y. The theory of majori<':ilt.ion gives a unilled
approach to deriving a large number of dilferent inequalities and results based on
them in dilferent lields of mathematics. The systematic consideration of these prob
lems may be found in 121.

The generali7.ation of the main notions of theory of majorization to abstract alge
braic systems - W'-algebras is described in a book [3]. Some seelions of this book are
devoted to physical interpretations of the majorization. If the veelors x, yare inter
preted as the states of some physical systems and y r x then x is called more mixed,
more chaotic. This terminology is due to the fael that any sequence of vectors (x,,),
where x"l I = x"l',., I'" are doubly stochastic matrices, n EN, describes an irreversible
process. The property of irreversibility fails to hold of course if P" are only stochastic
(not doubly stochastic matrices). But if a state of some physical system is described by
a pair of vectors z = (m, a), 711, a EIlf and the transformations of a physical system

(z r>- z') have a form m~+1 = m"1',,, a,,+1 = a"P", PrJ is an N x N stochastic matrix,
n EN, then the property of irreversible holds, This fael follows immediately from the
exist.ence of functions preserving the relation >- r (sec Section 1.9 of book [31), An
example of such a function is Eimig(ai/rni), where 9 is convex. Note that in our paper

es (without an ocean) is a scquence of states (m~, a~), a~ = Q:.m~, i EM", of the same
type (sec formulae (5) and (7)) and that the function Eimig(./-J was used in [II for
g(,\) ,_~ ,\2 (sec Remark 2).

Every sequence (x,,), x,,-j I = x"l'", x" E R~, where P" arc doubly stochastic, can
be considered as a specilic es with m~ = 1/N, Q~ = X~/EiXi, i = 1, ... , N, n EN. So
Theorem 1 may be applied but in the case when m~ = constant its proof is rather
trivial (sec Remark 1).

The idea of using the theory of majorization to the description of irreversible phy
sical processes was elaborated in some papers following the pioneering work of Ruch
[-11. But in these papers as in [21 and 13], two important problems were not touched:
what is the limit state of an irreversible process and how is this limit achieved.
Theorem 1 gives an answer to these questions in a more general situation than doubly
stochastic transformations - that is in the case of es. Moreovcr, in our opinion it is
only a sketch of a general theorem about the asymptotic behaviour of an irreversible
proccss. The hcuristic formulation of this theorem is the following. The limit state



280

exists and til(! system may be decomposed into subsystems such that there is mixing
insidc every subsystcm, the limit, state of the subsystem is "uniform" and the iut.crac
Lion between subsystems is in some sense "finite". The decomposition may depend on
time. Of course this theorem would be valid under some conditions of the same type
as in Theorcm 1. We stress once more that the crucial point is the finiteness of the
int.eraction.

6 Now we turn to Problem 2. The LS. X = (Xn ) and X = (Xn ) with values in some
discrC!Le spaces (M n) arc called eCluivalent (X - X) if for all A <;; Mn, 11 <;;; Mn I I' n E N

(12)

It is obvious that evcry class of equivalcnt LS. contains some nonhomogeneous
Markov chain and conversely, every Markov chain defines some class of equivalcnt LS.

Let X = (Xn) be a LS., 0 = (On) be a sequence of sets. Denote by

i( X, lJ) c= P(lim inf( X" ED,,)) = P(U n (XnE lJn))
k n~ k

the probability that the trajectories of X do not leave (Dn ) after some (random) time,
and by

s(X, D) = P(lim sup(Xn E lJn)) = P(r1 U (Xn E lJn))
kn~k

the probability that X visits (Dn ) infinitely often.

Problcm 2 is to invclstigatc i(X, D), (s(X, D)) for some fixed class of equivalent
LS. The following theorem was formulated in III (the proof is not yet published).

THEOREM 3 Let Z = (Zn) be some nonhomogeneous Markov chain with values in
(Mn) and D = (On) be some sequence of sets, lJn <;;; Mn, n EN, such that 10ni s: N < 00,

n eN. Then for every r.s. X - Z the following inequality holds

i(Z, 0) s: i(X, 0) (13)

IU~MARK -1 Since i(X, lJ) = 1- s(X, M\lJ), M\O = (Mn\Dn) the inequality (13) is
equivalent to the assertion that for any Markov chain Z and a sequence G = (Gn ) such

that IMn\Gnl ::; N < 00, n E N

s(Z, G) :::: s(X, G), X - Z . (14)

REMARK 5 There is an example where 10nl-t 00 and the enequality (13) fails to
hold but it is too complex to be presented here. The motivation for studying (13) was
the following. The question of when Markov strategies ensure a payoff close to the
value is one of the main questions arising in the theory of stochastic programming.
Strange as it may seem, there is as yet no full answer to this question. In particular it
is an open problem for a countable state space and a functional E Jim sup !(X:), where
(X:) is a r.s. corresponding to a strategy lr. In the fundamental work of IIiIl 16] a posi
tive answer wa.<; givcn for a finite state space and a class of functionals L(xo, XI' •• )

callcd shift-and-permutation invariant. This class includes the classical finite fortune
gambling problems of Dubins and Savage [51, L = Jim sup!(xn), as well as a case
L =: lim inf!(x,') and their combinations, (in a recent paper of Hill and Pestien [7] the
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case of L = lim inf was extended to a countable state space). Using the well-known fact
that for any strategy 7r there corresponds a Markov strategy (J such that X 7f ~ X(1 and
X(1 is a Markov chain, it is easy to get from Theorem 3 the result of Hill for a finite
state space and L = lim sup f(x n). Note that the formulation of Problem 2 and the
hypothesis ahout inequality (l:J) are due to KA. Fainberg. Note also that the exam
ple showing that the inequality (13) fails to hold if IDnl -+ 00, does not imply that
theorem of Hill fails to hold for a case of countable state space. To prove Theorem 3
we prove also a lemma which may be called an analog of the Borel 0, 1 law for nonho
mogeneous Markov chains. From this lemma and some other lemmas Theorem 4
below is an easy corollary from results of [11.

7 We first give some definitions. Let (an) and (b n) be some nonrandom sequences.
The sequence (an) intersects the sequence (b n) ill a moment k if ak ::::; bk, ak+ I > bk+ I or
ak> bk, ak+ I ::::; bk+ l' Let X = (Xn) be a r.s., d = (dn) a nonrandom sequence. Denote
by Vr(X, d) the expected number of intersections of trajectories (Xn ) with (d,J on the
time interval (I, 7'). The nonrandom sequence d -= (dn ) is called a barrier for r.s. X if
V<X'( X, d) < 00. In otller words, d is a barrier for X if the jet (In), I n = (- 00, dnl is a
trap for X. Problem 3 111 is to describe the classes of random sequences for which bar
riers exist in some intervals (a, b).

Denote by MN(a, b) the class of r.s. X = (Xn) taking no more than N values inside
the interval (a, b) for all n EN, i.e. X E MN(a, b) iff there exists a sequence of finite
sets (Gn), such that IGnl ::::; N < 00, n E Nand

P(X.. 1 Gn,Xn E(a,b))=O,nEN.

(Outside the in terval (a, b) the sets of values of X may be arbitrary). From the results
of III (Theorem 3 and Lemma 4.3) we immediately get Theorem 4.

TIII'~OIl.l';M 4 Let (Xn ) be a bounded sub(super)martingale in direct or reversed time

and lel X E MN(a, b) for some a, b, N. Then lhere exisls a barrier (dn) for X, dn E(a, b),
n EN.

The idea of using Tl\(~orem 4 is the following. If (M, r, 0, 0) is some CS and (Zn)

is the corresJlonding Markov chain, then a LS. ( Yn) defined by

Yn = o:n == ~iEM o~Ii(Zn) is a submartingale (a martingale in the case of a CS
n

without an ocean) in reversed time with respect to u-algebras u(Zn' Zn+ 1" •• ), n EN.
If IMnl ::::; N < 00, n E N then (Yn) satisfies the conditions of Theorem -1 for all (a, b).

Note that Theorem 4 does not follow from the well-known theorem of Doob which
states that the expected number of intersections of every fixed interval by trajectories
of bounded submartingale is finite. The example mentioned above shows also that
Theorem -1 fails to hold if the condition IGnl ::::; N < 00 is replaced by IGnl -~ 00.

8 Let us mention some unsolved Jlrohlems connected with these questions besides
the mentioned theorem about general irreversible process. (1) To formulate an analog
of Theorem 1 for the case IMnl = 00. Such an analog would give a possibility to con
sider the case of continuous space and time. (2) To estimate a value of "work"
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connccted with givcn CS, i.e. :En:Eijr;/lah, I - a~1 or in other words a value of
E:EnlYntl - Ynl for a martingalc associated with given Markov pair (Z, D). (3) To
generalize the inequality (13).
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