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Abstract

Verification of access control systems against vulnerabilities has always been a challenging

problem in the world of computer security. The complication of security policies in large-

scale multi-agent systems increases the possible existence of vulnerabilities as a result of

mistakes in policy definition.

This thesis explores automated methods in order to verify temporal and epistemic

properties of access control systems. While temporal property verification can reveal a

considerable number of security holes, verification of epistemic properties in multi-agent

systems enable us to infer about agents’ knowledge in the system and hence, to detect

unauthorized information flow.

This thesis first presents a framework for knowledge-based verification of dynamic

access control policies. This framework models a coalition-based system, which evaluates

if a property or a goal can be achieved by a coalition of agents restricted by a set of

permissions defined in the policy. Knowledge is restricted to the information that agents

can acquire by reading system information in order to increase time and memory efficiency.

The framework has its own model-checking method and is implemented in Java and

released as an open source tool named PoliVer.

In order to detect information leakage as a result of reasoning, the second part of

this thesis presents a complimentary technique that evaluates access control policies

over temporal-epistemic properties where the knowledge is gained by reasoning. We will

demonstrate several case studies for a subset of properties that deal with reasoning about

knowledge. To increase the efficiency, we develop an automated abstraction refinement

technique for evaluating temporal-epistemic properties.

For the last part of the thesis, we develop a sound and complete algorithm in order to

identify information leakage in Datalog-based trust management systems.
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CHAPTER 1

INTRODUCTION

1.1 Research motivation

Social networks like Facebook and LinkedIn, cloud computing networks like Salesforce and

Google docs, conference paper review systems like Easychair and HotCRP are examples

of applications that huge numbers of users deal with every day. In such systems, a group

of agents interact with each other to access resources and services. Such multi-agent

collaborative systems are getting more and more complex which raises the possibility of

there being vulnerabilities in their information access rules.

All the above systems have a built-in access control system with a set of rules, named

access control policy. Policy designers have a human readable form of the access policy

for the principals in the system which should be enforced. Further developments of the

system cause the access control policy to become more complicated and as a consequence,

it may not comply with the organization information security requirements. For such

complex systems, reasoning about the correctness of access control policy by hand is not

feasible. Automated verification is a solution which enables policy designers to verify their

policies against required properties. For instance, in Google docs, we need to verify “if

Alice shares a document with Bob, it is not possible for Bob to share it with Charlie unless

Alice agrees”, or in HotCRP, “if Bob is not chair, it is not possible for him to promote

himself to be a reviewer of a paper submitted to the conference”. If such properties do

not hold, it can imply a security hole in the system that needs to be investigated and

fixed by policy designers.

One of the most challenging aspects of verifying access control systems is knowledge,

which is the information that an agent or group of agents gain about the system. In-

formation leakage is the knowledge that is acquired by some unauthorized principals. In

general, finding information leakage in the systems is not straightforward. This is because

not all the information is gained by direct access, but some is gained by reasoning. Suc-
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cessful hackers are in general talented in reasoning. They use the information gathered by

social engineering together with the ones gained by interacting with the system in order

to find a way to penetrate the system.

An important question that arises is: Is it possible to verify the knowledge that a

principal can acquire in a system which is regulated by a set of access control rules? To

answer this question, we first divide access control policies into two categories: dynamic

or state-based, and stateless. In dynamic policies [94, 11, 42, 78], the permissions for an

agent depend on the state of the system. As a consequence, permissions for an agent

can be changed by the actions of other agents. In such policies, the knowledge also may

change when the state changes. In stateless policies [13, 70, 48], access decision does not

change the state of the system.

We first look at the category of dynamic policies, which is the main contribution

of this thesis. While the majority of the research is focused on verification of temporal

properties, formal reasoning for information leakage and anonymity is not well automated

by the state of the art tools [88]. One of the frameworks for the verification of temporal-

epistemic properties over dynamic policies is proposed by Zhang et al. [95, 94] which

is implemented as a tool named AcPeg. Although their framework models a memoryful

system (perfect recall) by building the system around knowledge states, it suffers from

several problems. We will discuss the problems later in the related work section, but in

the context of knowledge verification, they only consider the knowledge gained by reading

system information. Their framework is not able to verify the information leaked as a

result of reasoning. As a positive point, modelling knowledge by the information gained

by reading system information reduces the complexity and improves the efficiency. On

the other hand, this approach is unable to detect some specific but important information

leakage vulnerabilities in the policies.

In the category of stateless policies, the first research that adequately formalized the

information flow in trust management frameworks was performed by Becker [12]. He

proposes an algorithm which is able to find if some private information can be leaked to an

unauthorized principal in a Datalog-based policy through sending legitimate credentials,

called probes, to the system. His work is well formalized and the soundness of the algorithm

is formally proved. Becker’s approach has two weaknesses: first, the algorithm that

investigates if some information is detectable in a policy is sound but not complete, and

second, the algorithm is difficult to automate. Therefore, there is still the requirement of

finding a sound and complete algorithm which is also easier to implement.
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1.2 Knowledge-based verification in dynamic policies

This research was motivated at the beginning by RW, the formal verification framework

developed by Zhang, Ryan and Guelev [94, 95] at the University of Birmingham. RW

(Read and Write) is built around the states that store the knowledge of the agents or

in the other words, knowledge states and uses model-checking techniques for property

verification. The knowledge in RW is the accumulation of the knowledge the agents in a

coalition gain by reading system variables. Our main idea was that building the system

around knowledge states is not essential when the knowledge is the result of reading system

information. In the case of knowledge by readability and when perfect recall is required,

reading a variable can be introduced into the policy as an action together with some extra

variables that support memory of reading. In the original RW framework, introducing

memory into the policy is not possible as we require actions to update multiple variables

at the same time. In RW, each write action can only update one variable at a time. Our

idea resulted in designing and implementing a new tool, which we named PoliVer 1.

Verification of knowledge by readability is simpler and more efficient than the knowl-

edge gained by reasoning. While a high percentage of vulnerabilities can be detected by

RW, PoliVer, DynPAL and other policy verification tools, there still exists some infor-

mation leakage vulnerabilities that the state of the art tools are not able to detect. Let

us demonstrate it with an example.

Example 1.1. Assume a conference paper review system in which all the PC members

have access to the number of papers assigned to each reviewer. Further assume that each

PC member can see the list of the papers assigned to the reviewers which does not contain

the papers that he is the author of.

An important security requirement in a conference paper review system is that no

author should be able to find out who is the reviewer of his or her paper. This property

does not hold in the above system. Assume that Alice is a PC member and also the author

of a paper which is submitted to the conference and Bob is allocated as the reviewer of

her paper. By the policy, Alice knows how many papers Bob is allocated to review. When

Alice checks the list of the papers assigned to Bob, she finds that the number of the papers

she can see in the list is less than total number of papers assigned to Bob. Therefore, Alice

can reason that Bob is the reviewer of her paper, which violates the security requirement

in the system. Such information leakage vulnerabilities can not be detected by the tools

that model knowledge by readability of information.

In addition and in this research, we develop a method that enables us to verify the

1PoliVer is available at http://www.cs.bham.ac.uk/~mdr/research/projects/11-AccessControl/
poliver/
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knowledge expressed by the modal logic KT45n [58] using Interpreted systems framework

[45, 46]. We also use abstraction and refinement techniques in order to overcome time

and memory limitations when verifying temporal-epistemic properties.

Model-checking and abstraction This research uses model-checking as the for-

mal verification method. The Interpreted systems framework allows us to reason about

knowledge in multi-agent systems, and will be used as our framework later in this re-

search. Model-checking temporal-epistemic properties often becomes intractable when

the number of variables and therefore the state space grows. For large state space sys-

tems, abstraction techniques can be adopted in order to simplify the model. Abstraction

in multi-agent systems has received few attention in recent years [33, 96, 44]. As another

important point, automated refinement methods for epistemic properties is not as de-

veloped as those for temporal properties [30, 91]. Therefore, design and development of

automated abstraction and refinement is of considerable importance when realistic large

systems come into account. This research also contributes to designing an automated ab-

straction refinement in order to optimize the verification of temporal-epistemic properties

over access control systems.

1.3 Information leakage in static policies

The detectability and opacity of information in trust management systems in not fully

investigated yet. In distributed systems, the trust management framework is subject to

some attacks called probing attacks which were first introduced by Becker [12]. Gurevich

and Neeman [50] demonstrated a similar attack on SecPAL [13], which is a Datalog-

based policy language. In probing attacks, an adversary can infer information about

the system by submitting a series of probes, which are access requests together with

conditional credentials. To demonstrate the problem, let’s have a look to the following

example [12, 50]:

Example 1.2. Imagine a service policy, which allows principals to park their car according

to some terms and conditions. The service policy also contains some confidential facts

like if a principal is a secret agent written in SecPAL [13]:

Service says x can park if x consents to parking rules

Service says x can say x consents to parking rules

In the above policy, says denotes the intension or digital signature of an agent over the

assertions, and can say denotes the delegation of authority. The query 〈Service says

4



Alice can park〉 succeeds if the assertions Service says Alice consents to parking

rules evaluates to true, which can result from the second assertion union with the asser-

tion Alice says Alice consents to parking rules. Now Alice submits two self-issued

credentials together with the request for parking permission to the service:

1. Alice says Alice consents to parking rules if Bob is a secret agent

2. Alice says Service can say Bob is a secret agent

If the above assertions together with the query 〈Service says Alice can park〉 suc-

ceeds, then we need to find out if the fact Service says Bob is a secret agent is crucial

for the succession of the query. Therefore, Alice needs another step in order to complete

the attack. She submits only the first credential together with the query. In the case of

denial of the permission, Alice can infer that Bob is a secret agent.

For complicated policies in Datalog-based trust management systems, the problem

of decidability of opacity (the negation of detectability) is open. The third part of this

research solves this problem by proposing a sound and complete algorithm that has the

power to determine if a property is opaque in a given policy.

1.4 Our solution

For the category of dynamic policies and in this thesis, we cover verifying interesting

temporal-epistemic properties over dynamic access control policies. We divide our ap-

proach into two categories and compare the outcomes:

Knowledge gained by reading (Chapter 4):

1. We develop a model-checking framework that deals with knowledge by readability.

We will show that even in the case of memoryful knowledge, it is not practically

efficient to verify such properties in knowledge state. We prove this argument by

comparing the runtime and memory usage of our algorithm with RW, which works

on knowledge space. To have a memoryful approach, the memory of reading system

variables can be introduced into the policy and therefore system states instead of

incorporating knowledge states for each agent.

2. Based on our framework, we implement the tool PoliVer. PoliVer keeps some useful

features of RW (guessing strategies) as we found them to be important in verification

of properties over access control policies. The policy language is expressive and

the query language is reach enough to handle nested queries. We apply a post
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processing algorithm in order to verify the knowledge of agents over the information

that agents require in order to achieve the goal. Finally, we compare the results

with its predecessor AcPeg. PoliVer is implemented in Java and performs symbolic

model-checking using the binary decision diagram library BuDDy [71].

Knowledge gained by reasoning: (Chapter 5)

1. We introduce the second framework as the complimentary which is now able to

verify epistemic properties that deal with reasoning. The new framework is less

time and memory efficient, but is able to detect information leakage vulnerabilities

in policies which are not possible to be detected by the state of art verification tools.

We use interpreted systems as our basic framework.

2. Our framework in general uses a larger number of state space and higher verifica-

tion time compared to our approach in the first category (knowledge by readability).

In order to make the verification method competitive and more practical for large

systems, we design an automated abstraction and refinement method for temporal-

epistemic safety properties which dramatically reduces the time and memory con-

sumption. Our abstraction and refinement method is applicable when verifying

safety properties.

Datalog-based policies: (chapter 6)

Regarding to the category of Datalog-based authorization systems, Becker first in-

troduced a method that detects information leakage by verifying if a property is detectable.

As we discussed before, the algorithm is not complete and is difficult to implement. In this

research, we verify the detectability by checking if a property is not opaque. We propose

the first sound and complete algorithm which is also easy to implement. As verifying

knowledge in Datalog-based policies grows exponentially when the number of available

probes increases, similar to the dynamic systems, we need to apply optimization. Hence,

we develop several methods that reduce the state space search and then compare the

results with the ones in the absence of optimization.

1.5 Research contribution

Our research focuses on finding automated methods in order to check if required properties

hold in an access control policy. Our research consists of three parts:

First, we investigate knowledge-based verification of properties over access control

policies when the knowledge comes from reading system information. In this research, we

implement and release a model-checking tool called PoliVer, with the following properties:
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• The tool handles co-operation of agents in a collaborative environment, together

with interaction of the rules and multi-step actions.

• It provides a user friendly syntax that covers action rules, which are able to update

a group of system variables at one step, and read permission rules, that define the

conditions in which system variables are allowed to be read by the agents.

• The query language is flexible and supports nested goals with possible different

coalitions active for each goal.

• The model-checking algorithm finds the propositions that the coalition requires their

value in order to proceed through the goal. A complementary algorithm checks if

the agent is able to find the values of those propositions or needs to take the risk of

guessing the values.

• Various case studies demonstrate the experimental results and enhancements over

the previous knowledge-based approach (RW framework [94, 95]).

Second, we develop a complimentary verification method based on interpreted systems

with the ability of reasoning about the knowledge of the agents in access control systems.

In this part of the research, we use a model-checker for multi-agent systems called MC-

MAS1 [74, 72] as our model-checking engine, and build our framework on top of it. Our

approach has the following properties:

• The policy language is similar to the one for PoliVer, which supports action rules

and read permission rules. The query language is the standard CTLK (CTL logic

with knowledge modality K).

• Time and memory usage is reduced by implementing a fully automated abstrac-

tion and refinement algorithm over temporal-epistemic properties. Although the

optimization is mainly available for safety properties in ACTLK (CTLK containing

only universal path quantifier), we also provide an interactive refinement for some

security properties that do not fall into the category of ACTLK.

• In the absence of abstraction, all properties in CTLK logic can be verified over the

policy. Without optimization, the verification may not be practical for medium to

large policies.

• The verification tool is implemented in F# programming language. Our case studies

compare the results of our new approach with PoliVer and RW.

1MCMAS is available at http://www-lai.doc.ic.ac.uk/mcmas/
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Thirdly, we carefully investigate information leakage vulnerability in Datalog-based

trust management systems. The outcome of the result is a tool written in F# functional

programming language, which accepts an input policy and available probes, and deter-

mines whether a property is opaque in the policy or not. This research has the following

properties:

• A formal definition for probing attacks over trust management systems is provided,

which is handled in verifying opacity in Datalog-based policies. Datalog-based

policies are vastly used in various trust management frameworks.

• Our algorithm is proved to be sound, complete and terminating: If it proves the

opacity of a property when the property is not detectable (soundness), and if it fails

to prove the opacity, then the property is provably detectable. The proof procedure

always terminates assuming that the number of available probes for the adversary

is finite.

• Several optimization mechanisms are provided. Our experimental results show that

they dramatically reduce verification time in many practical scenarios.

• Several realistic case studies demonstrate the effectiveness of the algorithm. The

verification times for different optimization methods are also calculated and com-

pared with non-optimized algorithm.

1.6 Structure of the thesis

The reminder of the thesis is structured as follows: Chapter 2 covers the related work and

background of access control policy verification. This chapter also looks at the abstraction

refinement techniques in model-checking as it will be used in our research. Chapter 3

is the preliminary chapter, which provides the required materials like policy language

and some definitions for the rest of the thesis. In Chapter 4, we present a verification

algorithm that investigates temporal-epistemic properties over an access control system

described by a policy and when the knowledge is gained by the readability of information.

We demonstrate the performance of the implemented tool in the experimental results.

Chapter 5 contains a complimentary framework that is able to verify epistemic properties

that demonstrate knowledge by reasoning. One of the important features of this chapter

is the abstraction refinement method that reduces the verification time and memory usage

for temporal-epistemic properties. Chapter 6 describes the opacity verification method on

Datalog-based policies and experimental results, and Chapter 7 concludes the thesis.
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1.7 Notations

As the convention and for the rest of this thesis, we write constants in typewriter font,

variables in italic and key words in sans serif.

1.8 Publications

The thesis is partly based on the following publications:

• Moritz Y. Becker and Masoud Koleini. Opacity analysis in trust management sys-

tems. In 14th Information Security Conference (ISC 2011), 2011

• Masoud Koleini and Mark Ryan. A knowledge-based verification method for dy-

namic access control policies. In ICFEM 2011: Proceedings of 13th International

Conference on Formal Engineering Methods, 2011

• Masoud Koleini and Mark Ryan. A knowledge-based verification method for dy-

namic access control policies. Technical report, University of Birmingham, School

of Computer Science, Available at: http://www.cs.bham.ac.uk/~mdr/research/

projects/11-AccessControl/poliver/, 2010

• Masoud Koleini, Hasan Qunoo, and Mark Ryan. Towards modelling and verify-

ing dynamic access control policies for web-based collaborative systems. In W3C

Workshop on Access Control Application Scenarios, 2009

A journal version of the paper “Opacity analysis in trust management systems” is also

submitted to the Journal of Information Security.
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CHAPTER 2

RELATED WORK

In this chapter, we briefly provide the definitions, features and categories of access control

systems. We then introduce model-checking techniques as the formal verification method,

which we will use in this thesis for modelling and verifying access control systems. Finally,

we will explain abstraction and refinement in model-checking. Abstraction techniques

enable us to reduce the size of state transition system and improve time and memory

efficiency in model-checking. We also review several major works in the field of access

control policy verification.

2.1 An overview of access control

Access control is the process of mediating the requests for accessing data in a system

and determining whether the request should be granted or denied. Access control can be

divided into three control categories [57]:

1. security policy : At the top of the access control is security policy, the high level

description of the conditions and rules under which a user or process can access some

resources in the system. Policies are in general dynamic and possible to change by

the administrators when some requirements in the system are changed.

2. security mechanism: Access control mechanism enforces the policy through trans-

lating the requests into system acceptable structure.

3. security model : Access control model, which formally presents how the policy is

enforced in the system, provides the link between the policy and the mechanism.

In general, access control models are divided into two major categories of discre-

tionary and non-discretionary access control which will be discussed later. Non-

discretionary models also contain two major reference models of mandatory and

role-based access control models.
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Several important features that need to be included in access control systems are

highlighted in [38, 57]. Some of the features are as follows:

• Conditional authorizations : Access permissions are granted or denied if some con-

ditions in the system holds. The conditions can be in the form of system predicates.

• Support for fine-grained and course-grained specifications : Access control should

support fine-grained authorization rules to be applied by the administrator in the

system. However, administrating fine-grained access control is difficult and error

prone. Therefore, access control should provide the support for administrating the

authorization of groups of users and resources, which is the main motivation of

designing role-based access control model.

• Separation of duty : This principle does not provide the sufficient authorization for

the individuals in the system to perform fraudulent actions [84].

• Delegation of authority : Access control should provide the possibility of passing

authorizations between agents. Delegation of authority enhances scalability and

flexibility, but increases the complexity of access control.

• Least privilege: This principle states that each individual should have the minimum

required permissions to perform his tasks. Least privilege in general is difficult or

costly to achieve [57].

We now introduce major access control security models in the following sections.

2.1.1 Access control matrix

The concept of access control matrix was first introduced by Harrison et al. [52]. In their

formal model of protection systems, a configuration is a triple (S,O, P ) where S is the

set of subjects (the entities that perform actions in the system), O is the set of objects

(resources in the system) and P is the access control matrix that contains a row for each

subject in S and a column for each object in O. The authors have considered S ⊆ O.

Let R be the set of generic rights is the system, for instance, read, write and execute

permissions in Unix-like file systems. If s ∈ S and o ∈ O, then we have P (s, o) ⊆ R.

In [52], commands contain the operations that are able to modify the contents of access

matrix. But in general, an access control matrix by itself does not provide a complete

view of security policy. This is because the matrix does not model the operations that

change the rights in the matrix.
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Figure 2.1: The general structure of an access matrix. r indicates the access rights that
s has on o.

Access control lists (ACL) are the list of permissions attached to an object can be

modelled by access matrices. Most of the operating systems have their own access control

lists implemented in their file system, mainly known as access control entries (ACE) .

2.1.2 Discretionary access control

In discretionary access control (DAC), the owner of an object or the authorized entity

decides about access permissions of the object. Therefore, access permissions are not

regulated by the organization policy or rules. In DAC, owners can delegate the control or

pass the permission of accessing the resources to other entities.

A security policy based on DAC can be presented by an access control matrix (defined

in section 2.1.1). One of the problems of DAC policies is their large memory for storage and

complicated administration. An example of DAC access control is file system permissions

in Unix-like operating systems. In such systems, each file has an owner that determines

the read/right/execute rights for the owner/group/other entities. Such access control is

not fine-grained, but is simple to manage by individuals1.

Discretionary access control suffers from several weaknesses like unauthorized infor-

mation flow (Alice grants Bob read access to her file, Bob copies the content of the file

into another file of his own and allows some unauthorized users to access the content of

Alice’s file), vulnerability to Trojan horses, unrestricted information usage and possibility

of violating organization policy [57].

1Linux kernel version 2.6 allows users to apply more fine-grained access control lists using the command
setfacl.
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2.1.3 Mandatory access control

In contrast with DAC where the owners have the ability to override the permissions

of their own objects, in mandatory access control (MAC) it is a central authority that

enforces authorization rules to the subjects and object in the system. One of the most

well-known examples of MAC is multi-level security (MLS) also known as BellLaPadula

model [18] developed for military applications. MLS assigns security levels to the objects

beginning from top-secret (most sensitive), secret, confidential and ends with public or

unclassified (least sensitive). The subjects are also assigned with similar security levels.

Bell-LaPadula model enforces two mandatory access rules:

• No read-up: A subject with a specified security level can not read the object with

higher security levels. For instance, an entity with security level confidential can

not read a document labelled with secret.

• No write-down: A subject with a specified security level can not write over the

objects with lower security levels. This rule is also known as *-property.

The model also defines strong *-property, where a subject can write only over the

objects of the same security level.

Security Enhanced Linux (SELinux) is the commercial implementation of mandatory

access control in Linux distributions1 supported by National Security Agency. SELinux

applies least privilege principle to the system and server in such a way that the programs

have the minimum required privileges to perform their task. This feature prevents the

programs to harm the whole system if they get compromised.

2.1.4 Role-based access control

The main motivation for designing role-based access control model (RBAC) is to facilitate

the administration in medium to large-scale multi-user systems [87]. RBAC as a form of

non-discretionary access control first introduced by Ferraiolo and Kuhn [47] and officially

maintained and developed by NIST (National Institute of Standards and Technology).

Sandhu et al. [87] introduced four conceptual reference models. RBAC0 is the basic model

containing the minimum requirement for systems supporting RBAC. RBAC contains three

core set of entities: users, roles and permissions. Users are in general human-beings,

roles are job titles, responsibilities and ranks in the organization that are extractable

from organization documents and charts, and permissions are the conditions under which

the roles can access objects and resources. The permissions are application-specific, like

1SELinux is integrated in Linux kernel version 2.6.
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read/write/execute in a file system or issue prescription, read prescription and read patient

personal information in a healthcare system. The key feature of RBAC is the two relations

of user assignment (UA) and permission assignment (PA). Users can dynamically be

allocated to a set of roles, a role can be related to a group of users, a role can have several

permissions and permission can be shared between a group of roles. The assignment of

users to roles and roles to permissions can be changed dynamically by the administrator

and changes in organization roles and policy.

Another component of RBAC is the session. Each session in the system is mapped

to a user and to a group of roles that user has activated. In the case that more than

one role are activated in a session, the permission is the union of the permissions of the

activated roles. In RBAC0, there is no restriction for the user to activate a subset of roles

he belongs to simultaneously and still the principle of least privilege applies. That means

the permissions of the user is the union of the permissions of the invoked roles, not all

the roles that he is assigned.

RBAC1 extends RBAC0 by introducing role hierarchies. In RBAC1, role hierarchy is

a partial order over the set of roles with seniority relation. A senior role inherits the

permissions of the related junior roles. The anti-symmetric property of the partial order

prevents two roles to inherit from each other at the same time. Therefore, if a user is

assigned to a role, he is implicitly assigned to all the corresponding junior roles.

The only difference between RBAC2 and RBAC0 is the application of constraints over

the values. For instance, it should be impossible to allocate a user to mutually exclusive

roles, as it may raise the risk of fraud in the system. Therefore, RBAC2 supports separa-

tion of duties by applying the constraints to user assignments and permission assignments.

Cardinality constraints like restricting the number of roles a user or a permission can be

assigned is another way of maintaining organization’s discipline, which is supported in

RBAC2 model. RBAC3 combines the features of role hierarchy and constraints.

Sindhu et al. in [85, 86] proposed an RBAC-based model called ARBAC97 (Adminis-

trative RBAC 97) for administrating RBAC. Their model simplifies the administration of

the systems with thousands of users and roles in a decentralized way. SARBAC [35, 36]

modifies ARBAC by defining administrative functions in terms of administrative scope,

which is used to control the user to role and role to permission assignments.

Role-based access control is actively implemented and used in various products like

IBM WebSphere InterChange Server, IBM AIX operating system, Sun Solaris and Mi-

crosoft Exchange Server.
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Figure 2.2: RBAC reference models [87].

2.2 Access control policy

An access control policy is a set of rules that is written in a formal policy language [10].

The rules express the regulations that should be enforced and the policy language needs to

be flexible and expressive enough to accommodate the common requirements (also known

as policy idioms [10]) like constraints, delegation of authority, separation of duty and role

hierarchy.

Policy languages can provide language constructs to facilitate the definition of re-

quirements and constraints. For instance, some languages use the constructs that fa-

cilitate encoding the policies of role-based systems [63, 79]. In addition, [79] supports

the definition of static and dynamic separation of duty and cardinality constraints in the

policy. SecPAL [13] uses the constructs says and can say to support digital signature

in a decentralized networks and delegation of authority. SPL [83] is a policy language

that is specifically designed for expressing various constraints of type history constraints,

enforcing and expressing obligations, and invariant constraints.

One of the important classification of access control policies is dynamic (or state-

based) and static. In dynamic policies [11, 94, 82, 42], performing actions depend on

the authorization states and action performance results in changing the authorizations.

Static policies [77, 13, 70, 48] express the conditions where access request, which can

be complicated and contain lots of dependencies, are granted or rejected in a specific

authorization state. Static policies (simply consider an access matrix) does not provide

the details of the actions, and access requests does not change the authorization states.

Now, we will discuss different languages for access control policies and explains their

specifications, advantages and disadvantages.
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2.2.1 eXtensible Access Control Markup Language (XACML)

The eXtensible Access Control Markup Language (XACML) [77] is an XML-based policy

language approved by the OASIS committee. The main motivation for defining a stan-

dard for authorization languages is that lots of application -specific policy languages are

designed, but the authorization rules can not be shared between different applications.

XACML acts as a common language for the applications to interact and share their au-

thorization rules1. The policy language is flexible enough in the context of extensibility

and can be extended to accommodate application-specific requirements.

Security policy in general is separated from enforcing the decisions. In XACML data-

flow model, policy is created and stored in policy administration point (PAP). When

an authorization request is submitted, policy decision point (PDP) renders access deci-

sions. Access control decisions are enforced by policy enforcement point (PEP), and policy

information point (PIP) acts as a store of resource attributes and returns the required in-

formation to PEP. The data-flow model contains the entity context handler with the duty

of translating decision requests in native format to XACML and translating authorization

decisions in XACML to the native form.

The data-flow in XACML is as follows: PAP makes the policy accessible to PDP.

Access requests are submitted to PEP. PEP sends the access requests to context handler,

including the attributes (characteristics) which is passed to PDP after translating to

the XACML request. If PDP requires additional attributes, it sends the request to the

context handler. Context handler collects the required attributes (optionally including

the resources) from PIP and sends them to PDP. PDP evaluates the policy, prepares the

response including the authorization decision and send them to context handler. Context

handler translates the decision back to the native form and sends it to PEP, which enforces

the decision. In the case that access is granted, PEP permits access to the requested

resources.

XACML language model v3.0 is composed of three top-level components rule, policy-

set and policy. Rule is the basic unit of the XACML language with the main components:

a target, an effect, a condition, obligations and advice. target defines the decision requests

where the rule applies. The effect of a rule is the intended decision that should be enforced

if the rule is evaluated to true, which is always permit or deny. Condition is a Boolean

expression over the predicates implied by the target, which refines the applicability of the

rule. The rule is applicable if both the target and the condition evaluate to true, and then

the effect will be returned.

The policy in XACML is composed of the main components: a target, a rule-combining

algorithm, a set of rules, obligations and advice. Obligations are included in the context

1XACML v3.0 was approved by OASIS in 2009.
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which is returned by the PDP to PEP (through context handler) after evaluating the

rules. Similar to obligations, advice is also included in the context returned by PDP,

but in spite of obligations, it can be ignored by PEP. Rule-combining algorithm specifies

the procedure of combining the result of evaluating the rules in the policy. In general, it

handles conflict resolution in the cases that several rules in the policy are applicable.

The policy-set contains a target, a policy-combining algorithm, a set of policies, obli-

gations and advice. Similar to rule-combining algorithm, the policy-combining algorithm

define the procedure of combining the results of verifying the included policies. Obliga-

tions and advice is defined similar to the policy.

Combining algorithms (rules and policies) divide into four categories. In divide over-

rides, if at least one of the rules or policies evaluates to deny, then the result is deny. In

permit overrides, the result is permit if some rules or policies return permit. The algo-

rithm first-applicable evaluates to the result of the first rule or policy, which is applicable

to the decision request. Only-one-applicable applies only to the policies, and if only one

policy or policy-set is applicable in the context of a target, it evaluates to the result of that

policy. Otherwise, it evaluates to not applicable if no policy or policy-set is applicable,

and evaluates to indeterminate, if more than one is applicable.

XACML policy language suffers from several weaknesses. The policies written in

XACML are verbose and complex. They are hard to read by someone who is not familiar

with the rules and difficult to analyse. Interactions between the main components like

PEP and PDP are not standardized and policy administration in XACML is not modelled

or discussed.

2.2.2 Role-based trust management framework (RT)

The term trust management was first introduced by Blaze et al. [21]. The trust manage-

ment problem deals with the following question which is also known as proof-of-compliance

problem:

Given a request to perform a specific action and a set of credentials (signed by different

authorities), does the request comply with the local policy?

In [21], the authors argue that the simple name to certificate binding does not provide

enough security in terms of legal actions (names to actions mapping problem). Policy-

Maker [22] uses a trust management engine over the submitted credentials in order to

process the authorization queries, which are the requests by one or a sequence of entities

(public keys in the context of decentralized trust management system) to perform an
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action regarding to the local policy. The queries in PolicyMaker are of the form:

key1, . . . , keyn Requests Action

The queries are processes based on the assertions which contain the trust information.

Each assertion contains a source which is the local policy or in the case of signed assertions,

public key of a third authority, an authority structure which is a sequence of public keys

representing identities whom the assertion applies, and a predicate called filter :

source Asserts authority structure Where filter

KeyNote [20, 19] is the successor of PolicyMaker. The advantages of KeyNote over its

ancestor is simpler C-like syntactic notations for the predicates and assertions, expressive-

ness in terms of delegation of trust, and extensibility while preserving the compatibility

with PolicyMaker.

Role-based Trust-management framework (RT) [70] is logic-programming-based policy

languages which combines trust management with role based access control (RBAC). The

delegation of the authority in PolicyMaker and KeyNote is restricted. For instance, a book

store can not simply specify the policy statement “anyone who is a student is entitled

to discount” [68]. The solution is the delegation of the discount permission by the book

store to the university, and then explicitly delegation of the permission by the university

to each student’s key. The above approach makes the access control system inefficient and

difficult to manage. To overcome such limitations, RT uses Delegation Logic [68] which

is specifically designed to facilitate expressing delegation of authorities.

RT has a family of languages: RT0 is the basic language where the roles are simply

the names without any arguments, RT1 expands RT0 by adding parameterized roles, RTT

adds the construct manifold roles and role-product operator for expressing threshold and

separation of duty policies. Delegation of role activations is supported in RTD.

In RT, a role is named by a principal (identity which is identified by its public key)

and a role term. For A as a principal and R as a role term, A.R denotes the role R defined

by A. The basic language RT0 contains the following rules:

• Simple member: A.R←− B means B is a member of the role A.R.

• Simple containment: A.R ←− B.R1 means the role A.R contains all the princi-

pals of the role B.R1.

• Linking containment: A.R←− A.R1.R2 means the role A.R contains the princi-

pals of B.R2 (R2 is the role defined by B) for every B that is a member of A.R1.
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• Intersection containment: A.R ←− B1.R1 ∩ · · · ∩ Bn.Rn means the role A.R

contains the principals that are the members of all the roles B1.R1,. . . ,Bn.Rn.

The following extra rules define the simple and linking delegation and are definable

by the above basic rules:

• Simple delegations: A.R⇐= B : C.R1 where the part C.R1 is optional. This rule

means A delegates its authority over the role R to B. The optional part restricts B

to the members of the role C.R1. This rule is equivalent to A.R←− B.R ∩ C.R1.

• Linking delegation: A.R⇐= A.R1 : C.R2 where the part C.R2 is optional. This

rule means that A delegates its authority over the role A.R to the members of A.R1.

The whole rule can be written as A.R←− A.R1.R ∩ C.R2.

RT framework uses DatalogC (Datalog with constraints) [69] for the deduction

engine. Datalog as a subset of Prolog is a logic programming language without func-

tion symbols, with restricted use of negation and recursion (stratification restriction) and

range-restricted variables. The query evaluation in Datalog is sound and complete.

The lack of function symbols disables Datalog-based languages to express structured re-

sources, but makes the language tractable. The constraints in DatalogC enable the trust

management language designers to define access permissions over structured resources.

2.2.3 SecPAL

Similar to RT, SecPAL is a declarative authorization language based on DatalogC. The

major success of SecPAL is in its flexible delegation of authority, which allows defining

unlimited delegation path in one policy assertion. The definition of constraints in SecPAL

is unrestricted and constraints does not make the language intractable (In RT, constraint

domains are not guaranteed to be tractable [70]). Although SecPAL does not allow

negation in the assertions in order to prevent intractability and ambiguity, it permits

negation inside the queries.

Abadi et al. [1] first used the term says in their access control calculus to denote the

intention or signature of an agent over an assertion. The type of the assertion can be

imperative or factual. For instance, Alice says “Delete AliceSecret.wmv” is an imper-

ative assertion, while TrustedParty says “Alice is the owner of AliceSecret.wmv”

is factual.

SecPAL uses the same notation “says” for issuing an assertion as in [1], and uses the

term “can say” for delegation of authority, which is similar to controls in [1]. The following

is a part of a local policy for a conference paper review system, where TTP is a trusted
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third party and CPRS is a particular conference paper review system (like easyChair or

HotCRP):

TTP says Alice is a chair (1)

CPRS says TTP can say x is a chair (2)

CPRS says x can allocate y as the reviewer of p if (3)

x is a chair,

y is a PC member,

p is a paper

CPRS says x can allocate y as the sub-reviewer of p if (4)

x is the reviewer of p

The above is an example of a decentralized conference paper review system, where

the chair submits assertion (1) to the conference system in order to prove his identity.

SecPAL uses can act as, for principal aliasing. Consider the following assertion:

CPRS says x can act as proceeding author if (5)

x is an author,

currentTime() ≤ 12/3/2011

The assertion states that all the facts that apply to a proceeding author also applies

to a principal which is an author and before the specified deadline. The general form

of an assertion is of the form A says fact if fact1, . . . , factn, c where A is the principal

who issues (or digitally signs, in the context of distributed systems) the assertion, facts

specify properties over the principals and c is constraint. Constraints (as currentTime() ≤
12/3/2011 in the above assertion) contain equality (=), numerical inequality (≤), regular

expressions (r matches pattern), negation and conjunction of constraints. Inequality and

disjunction can be expressed combining basic constraints. In general, the expressiveness

of SecPAL policy language is the result of its flexible and supporting class of constraints.

SecPAL can act as the engine of a reference monitor, which validates access requests

to the resources and enforces the policy. A principal sends a set of assertions (also known

as credentials) and then requests access. SecPAL evaluates the query against the union of

local policy and submitted assertions and verifies if the access is granted or rejected. While

negation in recursive policies may result in complexity and undecidability1, SecPAL allows

negation in the authorization query. Queries can contain constraints in the form of the

ones used in assertions, conjunction, disjunction, negation and existential quantification.

Authorization query table introduced by SecPAL which provides a mapping between

1Some declarative languages like Prolog define negation in the form of negation as failure. Prolog
derives not p if it fails to derive p.
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parameterised access requests and authorization queries in SecPAL query language. For

instance and in a file sharing server, read(x, f) 7→ FileServer says x can read f is the

mapping from the request for reading file f by the principal x to the query language.

Using authorization query table preserves separation of duty in declarative languages

like SecPAL which does not let negation in the assertions. Negation plays an important

role in preserving separation of duties. Let’s consider assertion (3). Integrity constraints

in the system do not let the author to be assigned as the reviewer of his paper. Therefore,

we would like to have ¬(x is the author of p) as a fact, while negation is not allowed in

facts. Authorization query table provides the support for such cases. So, the request for

adding a principal as the reviewer will be mapped to the query in the following way:

addReviewer(x, y, p) 7→ (6)

CPRS says x can allocate y as the reviewer of p,

not (y is the author of p)

SecPAL can easily express different access control models like discretionary access

control (DAC):

Bob says Alice can read f if (7)

f is a file, Bob is the owner of f

and mandatory access control (MAC):

FileServer says user can access file if (8)

user is a manager, file � ManagementDir, isConfidential(file)=TRUE

where � is the path constraint and shows that the directory ManagementDir includes

the file.

Role hierarchies can be easily explained by using the keyword can act as. The asser-

tions and queries will be translated into DatalogC and then evaluated.

SecPAL and RT are the two well-known authorization languages based on DatalogC

and are categorized as stateless policies. Given a policy and a set of submitted credentials,

their trust management engine decides whether a request should be granted or denied.

This thesis focuses on finding vulnerabilities over access control systems. As a part of

our research, we will try to find if a set of available credentials and queries for a princi-

pal enables him to infer some confidential information contained in the policy. We will

formalize such attacks (called probing attacks) and their detection algorithm in chapter

6.
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2.2.4 RW

As reviewed in section 2.2.1, XACML is a standard language designed for access control

policy definition. Zhang et al. [94] introduced a framework that has its own policy

language and synthesising mechanism, but is able to translate the policy written in its

formal language into XACML. The modelling formalism is called RW and is supported

by a model-checking tool called AcPeg (access control policy evaluator and generator).

The formal verification support provides the opportunity to ensure that first, legitimate

properties hold in the policy which means the users have enough permission to carry

out the required actions, and second, malicious behaviour is prohibited. In spite of the

existence of various model-checking tools like NuSMV [27, 26], Alloy [59, 60] and SPIN

[56], RW has its own model-checking mechanism.

RW formalism uses propositional variables which are Boolean variables. the policy

language allows defining two classes of parameterized rule-definitions over predicates: read

and write. Read rules define the permissions for reading the truth values of instanced

predicates, and write rules define the permissions for overwriting their values. For example

in a conference paper review system, the following fragment of the policy specifies the

condition in which user (the agent that performs reading or overwriting) can read the

value of reviewer(p, a) and the condition he can overwrite the value (assigning a principal

as the reviewer of a paper) [94]:

reviewer(p, a){
read : pcmember(user) ∧ ¬author(p, user)

write : (chair(user) ∧ pcmember(a) ∧ ¬author(p, user)) ∨
(pcmember(user) ∧ user = a ∧ reviewer(p, user)) ∧ ¬ (∃b subreviewer(p, user, b))

The rules in the policy specify dynamic state changes when a read or write is per-

formed. Overwriting action changes the state of the system and therefore, changes access

permissions for other agents.

The model-checking algorithm in RW checks if a property (or goal) is achievable by

a coalition of agents and through a sequence of reading/overwriting actions in the model

build based on the policy. A coalition is a set of agents which co-operate together in order

to achieve the goal. In the case that the goal is achievable, the model checker produces a

sequence of actions that leads the coalition to the goal and is called strategy.

Transition system: The states in RW are called knowledge states where each state

accumulates the initial knowledge of the coalition and the knowledge gained by sampling

or overwriting the propositions when executing a strategy. If the value of a proposition

is overwritten by an agent, the agent learns the current value of that proposition and he
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does not need to sample its value in future steps. Reading the truth value of a proposition

also adds the knowledge about the current and initial value of that proposition. For each

proposition p, four Boolean knowledge variables v0p, t0p, vp and tp are used: v0p is true

if the initial value of p is known by the coalition, t0p stores the initial value of p when

v0p is true, vp is true if the current value of p is known by the coalition and tp stores

the current value when vp is true. If P is the set of propositions, the knowledge state

is defined by (V0, T0, V, T ) where V0 = {p ∈ P | v0p = >}, T0 = {p ∈ P | t0p = >},
V = {p ∈ P | vp = >}, T = {p ∈ P | tp = >} and the transitions are as follows:

(V0, T0, V, T )
sampling p returns >−−−−−−−−−−−−→ (V0 ∪ {p}, T0 ∪ {p}, V ∪ {p}, T ∪ {p})

(V0, T0, V, T )
sampling p returns ⊥−−−−−−−−−−−−→ (V0 ∪ {p}, T0 ∪ {p}, V \{p}, T\{p})

(V0, T0, V, T )
p:=>−−−→ (V0, T0, V ∪ {p}, T ∪ {p})

(V0, T0, V, T )
p:=⊥−−−→ (V0, T0, V \{p}, T\{p})

The first two transitions are the result of sampling proposition p and the last two are

the transitions made by overwriting p. Sampling p is only permitted when the value of p is

not known (p 6∈ V0). If KG represents the knowledge states in which the coalition “knows”

that the goal is achieved, then a strategy is a sequence of sampling/overwriting steps that

lead the coalition from initial knowledge states to KG. In strategy finding algorithm, it is

assumed that an agent performs an action if he knows that he has the right permission.

Constraint definition in RW is flexible by allowing negation and universal and existen-

tial quantifiers in permissions. But the framework suffers from several major weaknesses:

• Overwriting steps are able to update only one proposition. This weakness reduces

the expressiveness of the language as some scenarios require updating several propo-

sitions in one step. For instance, if Alice is a reviewer in a conference paper review

system, when she resigns as the reviewer of a paper, all the sub-reviewers she allo-

cated to the paper should get deleted at the same time. Such bulk updating rules

can not be specified in RW policy language.

• For each proposition p, there are 7 relevant valuation of knowledge variables. There-

fore, the total number of knowledge states increases by the factor of 7 when the

number of propositions increases which causes the state explosion even in small and

medium size models.

• The knowledge state in RW stores the history of reading or altering propositions.

The transition system shows that the knowledge is incremental during state transi-

tions. Knowledge variables for different propositions are also independent. A side
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effect of such an approach is that reasoning about knowledge is not possible. For

example, consider the case that whenever the variables p is true, variable q turns to

true. Then knowing that p evaluates to true should reveal the value of q, while RW

is unable to handle such reasoning.

This thesis addresses the weakness of RW by first introducing a policy language that

supports variable bulk update and corresponding verification framework. The framework

performs verification over system states and is able to verify knowledge gained by reading

system variables. Our method does not handle memoryful knowledge as in RW, but the

ability of the language to handle variable bulk update provides the potential of incorporat-

ing memory into the system states. Chapter 4 explains the framework and implemented

tool. To verify knowledge by reasoning, we have proposed another verification method,

which is described in chapter 5.

2.2.5 DynPAL

DynPAL is a dynamic authorization policy language designed by Becker [11]. Compar-

ing to RW, DynPAL provides the additional features of bulk updates, nested actions,

intermediate conditions and postconditions. One of the major features in DynPAL is

that variables may range over infinite domains as in decentralized systems, the number of

principles may be unbounded. Two analysing methods are proposed to verify reachability

and safety properties over the policy. Reachability deals with the problem of finding a

sequence of actions that lead to a state that satisfies the required property, beginning

from initial states. Safety is the complimentary problem: the states that satisfy an un-

wanted property are not reachable from some initial states. To verify the reachability of

a property over a policy in DynPAL authorization language, the policy and the query

are translated into the PDDL (Planning Domain Definition Language) [49, 92] which is

the standard artificial intelligence planning language, and verified by an AI planner [55].

In the case of reachability analysis, the variables as the arguments of predicates range

over finite domains, otherwise the problem is undecidable. When analysing safety prop-

erties (policy invariants), the policy and invariance hypothesis can be transformed into a

problem of first order logic (FOL) and solved using a first order logic theorem prover [81].

In DynPAL, a state is a set of extensional ground atoms known as extensional database

in Datalog. Actions in DynPAL change the state by adding some ground atoms into

the state or retracting some of them. For instance and in our example of a conference

paper review system, the following rule:

delReviewer(p, a)← reviewer(a),¬submittedReview(p, a),
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−reviewer(p, a),−{subReviewer(p′, a′, b) : p′ = p, a′ = a}

demonstrates the situation where a principal resigns as the reviewer if he has not submitted

his review yet. The effect of such resignation is the retraction of the reviewer and his

allocated sub-reviewers form the extensional database and therefore it changes the state.

In DynPAL, insertion or retraction of atoms into the state are executed from left to

write. In the above rule, sub-reviewers are retracted after the reviewer. In some cases, this

sequential execution may result in different states when the order of updates is changed.

For example after executing −p(0),+p(0), the atom p(0) will stay in the state, while it

will not appear in the state when +p(0),−p(0) is executed.

Becker in [11] argues that specifying an initial state for the verification of safety prop-

erties is a limitation. While Becker’s approach for evaluating the reachability of a property

requires a single initial state to be specified, his approach for evaluating a safety property

does not have such a requirement. Experimental results show that in the case of verifying

safety properties, theorem proving and model-checking may have better performance than

a planner. Planner performs considerably faster when a plan to the states that satisfy the

property exists.

Introducing only one single initial state is rather restrictive but eliminating the re-

quirement to specify the initial condition seems to be too liberal. In practice, we would

like to verify if all the states that are reachable from the states that satisfy the initial con-

dition also satisfy the safety property. Therefore, it is more desirable to consider a set of

initial states instead of a single state. Moreover for such definition of safety, the theorem

proving approach may produce false-negative results in some scenarios as the states sat-

isfying safety property may be legitimately reachable from some system states other than

the initial states. Comparing to our work in this thesis, DynPAL is unable to evaluate

dynamic policies against information leakage vulnerabilities as a result of reasoning.

2.2.6 Deontic logic for privacy policy

Aucher et al. [7] developed a framework for security policies to specify and reason about

epistemic properties and check if they comply with the policy. The privacy policies are de-

fined in terms of permitted or forbidden knowledge. A method for reasoning about privacy

policies using an extension of a modal logic framework for security policies is provided,

which also enables reasoning about confidentiality by expressing epistemic modalities [37].

Their approach uses deontic logic [90] with obligatory and permission modalities. In de-

ontic logic, the notation Oα means “it is obligatory (or it ought to be) that α”, and Pα

means “it is permitted that α”. Aucher et al. introduced dynamic and epistemic features

to the previously developed modal logic and proved the soundness and completeness of
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the new logic, named DEDL (Dynamic Epistemic Deontic Logic). The paper deals with

two agents as sender and receiver which communicate together. If sender transfers some

information to the receiver, then receiver knows the information. The paper deals with

verifying what information can be send from sender to the receiver so that the receiver

will not be able to use them to reason about confidential information in sender’s side, or

what information is required for the receiver in order to know the obligatory information.

The language uses modality operator Osα to say “it is obligatory for the sender that α”,

Krα to say “the receiver knows that α” and K ′rα similar as before for “the receiver knows

that α” while the second one always places in the scope of obligation modality and is

known as ideal knowledge of the recipient.

The dynamic part of the logic deals with sending or promulgating data. The language

adds the properties that describe what happens after recipient learns a fact or sender

promulgates some information. [send ψ] φ stands for “after recipient learns ψ, φ holds”

and [prom α] φ says “after sender promulgates α, φ holds.

The model in [7] only contains one sender and one receiver. Therefore, a multi-agent

system and the knowledge gained by interaction of the agents cannot be modelled in their

framework.

2.3 Model-checking for policy verification

Researchers may use different policy verification methods depending on their require-

ments, system properties and experience. Formal verification techniques contain the fol-

lowing main parts: (1) a formal specification language to describe the properties (2) a

model that is presented by a description language, and (3) a verification method to deter-

mine if the model satisfies the property. The verification method can be divided into the

two categories of proof-based and model-based techniques:

• The proof-based technique tries to find if the specification formula φ is derivable in

a logical system specified by a set of rules and axioms.

• In a model-based technique, the system is presented as a model M , and verification

computes whether the model satisfies the specification formula φ (denoted by M |=
φ).

Model-checking approach is simpler, easier to describe and automated for finite-state

models. Other interesting features of model-checking are fast verification, independence

of proof theory, producing counterexamples consisting of execution traces, and expressive

logic for concurrency properties. The main disadvantage of model-checking that motivated
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us to propose a method for abstraction refinement is the state explosion problem which

happens when the number of variables in the model increases.

The model-checking is based on verifying a temporal property over a model M which

is a finite-state transition system. Temporal logic describes the rules and symbolisms for

the presentation and reasoning about the properties in terms of time, i.e. the properties

that can be true in some states and false in some other states.

2.3.1 Linear-time and branching-time temporal logic

The specification languages in general fall into two categories of logics: linear-time logics

and branching-time logics. In linear-time logics, time is thought to be a set of paths of

time instances. Branching-time logic considers the time to be as a tree that branches

from current time to future.

Linear-time temporal logic (LTL) contains the modalities (also known as connectives)

that refer to the time in future. The syntax of LTL is built over the propositional atoms,

logical operators and modality operators X (neXt state), F (some Future state), G (Glob-

ally or all future states), U (Until), R (Release) and W (Weak-until). It is easy to show

that the {X, U} is an adequate set of modalities, meaning that the other modalities can

be expressed in terms of X and U. As an example for LTL logic, in a microwave oven it

is impossible to get a state where the microwave is working and the door is open. This

property is specified in LTL as G¬(started ∧ doorIsOpen). A state s in a model M

satisfies an LTL property if the property holds on all the paths that begin from s.

Computation Tree Logic (CTL) is a branching-time logic that allows existential and

universal quantifiers over paths. From the point of quantification over paths, CTL provides

more flexibility for defining specifications. On the other hand, LTL allows selecting a

range of paths by describing those paths with a formula, which is not possible in CTL.

CTL keeps the modalities U, F, G and X of LTL and adds universal path quantifier

that expresses “for all paths” and existential quantifiers that means “a path exists”. For

example AG(p → EFq) expresses the property that for all paths and for all the states

along the paths (denoted by G), if p holds in a state, then there exists a path that a state

along it satisfies q. CTL* is an expressive logic that combines the expressive powers of

CTL and LTL.

NuSMV (New Symbolic Model Verifier) [27, 26] is a well-known model-checking tools

which verifies the properties of type LTL and CTL. NuSMV accepts a model written in

its description or modelling language together with some specifications and checks if the

model satisfies the specifications. Another well-known model-checker for LTL is SPIN

[56]. The name SPIN stands for “Simple Promela (Process Meta Language) Interpreter”.
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SPIN uses Büchi automata as a part of model-checking algorithm.

A part of this research (chapter 4) deals with the properties that can not be expressed

in CTL or LTL. Therefore, we need to implement our own model-checking tool to verify

such properties. In chapter 5, we express our properties in CTLK, which is CTL logic

integrated with knowledge modality (refer to section 2.3.3 for more information).

2.3.2 Alternating-time temporal logic

Alur et al. [5] introduced alternating-time temporal logic (ATL) which generalises branching-

time temporal logic. ATL allows selective path quantifiers and defines a natural language

for open systems while LTL and CTL are specification languages for closed systems. In

closed systems, the system behaviour is determined by its own internal state, but in an

open system, the interaction between the external environment and the system affects

the behaviour of the system. Besides existential and universal quantifications over com-

putation paths, ATL deals with the question “can the system resolve the internal state

in such a way that the satisfaction of the specification in guaranteed, no matter how the

environment reacts?” [5].

ATL is suited for multi-agent or multi-process distributed systems as a concurrent

game structure. Each state transition is the result of the combination of movements

of the agents in each (time) step. To compare the properties in CTL and LTL, let’s

assume a property for the cache in a multi-processor system which states that deadlock

for the processor a should never happen (a cache-coherence property). The property

in CTL can be specified as (in modal logic notation): ∀2(∃3read ∧ ∃3write). The

property says “is it possible for all the processors to collaborate so that the processor a

can eventually read and write” which is called collaborative possibility. The ATL formula is

of the form ∀2(〈〈a〉〉3read∧〈〈a〉〉3write). The property specifies “always the processor

a can eventually access the memory, no matter what other processors do” which is known

as adversarial possibility.

Mocha [3, 2, 4] is the model-checker for ATL which supports modular specifications,

reasoning about synchronous and asynchronous heterogeneous systems, system execu-

tion simulation using randomization and manual techniques and requirement verification.

Some early experiences show that the capability of Mocha in verifying large systems is

limited [93].
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2.3.3 Model-checking epistemic properties

One of the most commonly used approaches in the concept of logic of knowledge is KT45n

or in some resources, S5n. Modal logic of knowledge KT45n is generally used in multi-

agent systems, where each agent has its own knowledge about the world. A multi-agent

system contains a fixed set of agents. The modality Ki where i is an agent denotes the

knowledge of the agent i. For example, K1p ∧K1¬K2p means that agent 1 knows p, and

also knows that agent 2 does not know p. KT45n also introduces modalities EG that means

everyone in group G knows and CG as the common knowledge that means everyone knows,

and everyone knows that everyone knows, and everyone knows that everyone knows that

everyone knows, and so on. Distributed knowledge DG means the knowledge is distributed

among the members of the group and they can work the value out together if they do not

have the knowledge individually.

The model that linear-time and branching-time temporal logic will be evaluated on is

a Kripke model [58], which defines temporal transitions between the states. Interpreted

systems [45, 46] are the state transition models with one local state assigned for each

agent. Interpreted systems are specifically designed to reason about distributed systems

in terms of knowledge. Interpreted systems are multi-agent frameworks where the global

states are the Cartesian product of the local states, and the local states represent the

accessible information for the agents. The system is synchronised with an external clock.

In each clock cycle, each agent submits an action that is permitted according to the

local state he is in (determined by the concept of protocols) and the joint action is the

Cartesian product of the actions each agent submit. We will discuss the framework in

detail in future sections and when we model reasoning about knowledge in access control

systems.

One of the well developed model-checkers that evaluates knowledge-based properties

over interpreted systems is MCMAS (Model-Checker for Multi-Agent Systems) [75, 72].

MCMAS accepts an input script file containing the model in a description language called

ISPL, together with the specification. The specification formula is in ATLK (Alternating-

time temporal logic with knowledge). As an example and in the bit transmission problem

[45], a sender sends the value of a bit over a noisy channel that may drop the message, but

does not tamper it. In the case that the message receives the other end of the channel,

receiver replies by sending back an acknowledgement. Therefore if the sender receives the

acknowledgement, it knows that the receiver knows the value of the transmitted bit. This

property is expressed in MCMAS by the following syntax:

AG(recack -> K(Sender,(K(Receiver,bit0) or K(Receiver,bit1))))

where recack is the proposition that shows the acknowledgement has received to the

sender and K(x,y) means x knows that y.
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The main trade-off for the expressiveness of the properties that can be verified in

interpreted systems is the large number of state space and high verification time specially

when verifying epistemic properties. Therefore to verify medium to large systems, we

need to adopt abstraction techniques to overcome state explosion problem. One of the

main contributions of the thesis is adopting abstraction techniques to verify temporal and

epistemic properties over interpreted systems. We will review the common abstraction

techniques in the next section.

2.4 Abstraction techniques

Clarke et al. introduced existential abstraction technique for model-checking large state-

space systems [31]. The concept of abstraction for temporal-logic model-checking is build

over the theory of abstract interpretation [34]. Introducing binary decision diagrams

(BDD) [23] in 1986 improved the capability of verifying specifications over medium-

scale finite-state models, but it was still unable to handle complex properties over large-

industrial designs. Although the model-checking algorithm for verifying branching time

temporal logic CTL [29] is linear in the size of transition system and the length of specifi-

cation, the size of transition system increases exponentially when the number of variables

increases. This problem is known as state explosion problem in model-checking.

While applying BDD techniques in 1990 significantly increased the size of models from

1020 to 10100 states [24], Clarke et al. in 1994 claimed that using abstraction techniques

enabled them to verify large systems with 101300 reachable states [31]. The first abstrac-

tion technique called existential abstraction [31] which overestimates the concrete model

with the abstract one. CTL* is an expressive logic that combines the expressive power

of branching-time and linear time logic (LTL) [80, 89]. In existential abstraction, if a

property in ACTL* holds in the abstract model, then it holds in the concrete (original)

one. ACTL* is the fragment of CTL* where only universal path quantifier and negation

over atomic formulas is used.

In [30], Clarke et al. propose a complimentary approach for the existential abstraction.

They used the feature of model-checking ACTL* that returns a counterexample in the

case that the property does not hold in order to refine the abstract model. In existential

abstraction, the states are partitioned into clusters that construct the states in the abstract

model. For the refinement, the clusters split up into different sets to make the model more

precise. The power of counterexample-guided refinement is the intelligent splitting of the

clusters, in a way that the previous counterexample does not occur in the refined model.
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2.4.1 Counterexample-guided abstract refinement (CEGAR)

Clarke et al. [30] proposed a method to refine an abstract Kripke model build by ex-

istentially abstracting the concrete model. They combined two techniques of symbolic

model-checking [43, 28] and abstraction to achieve the best results for overcoming state

explosion problem. Symbolic model-checking prevents explicit construction of the Kripke

structure by encoding the set of states and transition relation into Boolean formulas. Set

operations like union and intersection can be transformed into disjunction and conjunction

of Boolean formulas. BDD techniques traditionally play an important role in presenting

Boolean formulas.

Simulation relation relates the states in the concrete model with the abstract one.

Let the relation H ⊆ S × S ′ be a simulation relation between the two Kripke models M

and M ′ where S and S ′ are the set of states in M and M ′. If (s, s′) ∈ H and there is

a transition from s to s1 ∈ S in the model M , then there exists s′1 ∈ S ′ where s′ has a

transition to s′1 and (s1, s
′
1) ∈ H. There are some other constraints that make a relation

to become a simulation relation between Kripke models, but it will be discussed later in

technical sections. If such a relation exists, we say that model M ′ simulates M denoted

by M � M ′. The important property that will hold between the two models is that if

ϕ is an ACTL* property over the atomic propositions of M ′, M � M ′ and M ′ |= ϕ,

then M |= ϕ (the notation |= stands for the satisfaction relation). In practice, we use

an abstraction function that maps the states in the concrete model to the corresponding

states in the abstract model [30].

The process of counterexample-guided abstraction refinement consists of three steps:

(1) generating the initial abstraction, (2) model-checking abstract model, (3) refining the

abstraction. In a model described by a program like a hardware description language,

the states are the different valuations of the variables. It is assumed that the number of

variables and the domains in which the variables are associated are finite. Therefore, we

will have a finite state model. To have a symbolic approach for clustering the states, the

variable domains are split into the variable clusters. The initial abstracted model is built

in such a way that it simulates the original one.

The result of model-checking the abstract model falls in one of the following: (1) the

property holds in the abstract model, (2) the property does not hold in the abstract model

and therefore a counterexample is generated. In case (1) and by the above discussions,

if the property holds in the abstract model, it also holds in the concrete model. In the

case that the model-checking results is an counterexample, it should be checked in order

to find out if it corresponds to a counterexample in the concrete model or it is spurious.

Spurious counterexample identification: The counterexample generated by the

verification of an ACTL* specification is either a finite path when a safety property fails
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s0

s̃0

Figure 2.3: The generated counterexample may not be valid on the concrete one. In the
abstract model, s̃0 is the abstract initial state that can reach to the abstract goal state
through a path. As demonstrated in the figure, there is no path in the concrete model
that begins with the initial state s0.

in the model, or loop when a liveness property fails. Let S0 be the set of initial states in

the concrete model, s̃0 be the initial state in counterexample c̃e and h be the abstraction

function. The counterexample identification algorithm (SplitPATH) [30] begins from

the states of st0 = h−1(s̃0)∩S0. For all 0 < i < n where n−1 is the number of states over

c̃e, sti contains all the successor states (or images) of sti−1 that fall into the set h−1(s̃i).

It is proved that c̃e corresponds to a concrete counterexample if for all 0 < i < n we have

sti 6= ∅. In the case that i is the smallest index where sti = ∅, then the counterexample

c̃e is spurious and the state s̃i−1 is called failure state. If s̃i−1 is the failure state, then

dead-end states are the reachable states in sti−1 with no outgoing transition to another

state and bad states are unreachable states with outgoing transition to some states in

sti. The states that are not dead-end states or bad states are called irrelevant states.

To prevent the spurious counterexample to occur again, we separate the set of dead-end

states and bad states by splitting sti−1. Clarke et al. proved that finding the coarsest

refinement which separates the sets into the smallest size is NP-hard.

To identify spurious loop counterexamples, the loops will be unwinded and turned into

a finite path. In general, unwinding algorithm may become exponential time, but the

paper shows that only a polynomial time process is sufficient for spurious counterexample

identification. The algorithm SplitLOOP in the paper finds the appropriate index of the

failure state in the original counterexample.

CEGAR is used as the basic framework for many abstraction refinement techniques for

software and hardware verification [91, 67] and have been used in various model-checking

tools like SLAM [9, 8], BLAST [53, 54] and MAGIC [25]. The basic CEGAR framework is

restricted to finite or infinite path counterexamples. In 2002, Clarke et al. [32] proposed

a method for the generation of tree-like counterexamples for ACTL in such a way that

they can be easily handled in the process of abstraction refinement.
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2.4.2 Abstraction in model-checking multi-agent systems

In the recent years, several attempts have been made in the field of abstraction for multi-

agent systems [44, 40]. Cohen et al. [33] first adopted the existential abstraction for

interpreted systems. The specification is expressed in ACTLK, which is the ACTL logic

with knowledge modality K. They modified the simulation relation defined in [30] for

interpreted systems with respect to the epistemic possibility relation between the local

states. It is proved in the paper that if model Ĩ simulates I, ϕ is an ACTLK formula and

ϕ holds in Ĩ, then ϕ holds in I. In their paper, they have shown that a quotient of an

interpreted system which maps the local states, actions, local transitions and protocols

into the equivalent classes will simulates the original one.

The paper has the importance of introducing the concept of existential abstraction into

the multi-agent framework of interpreted systems. On the other hand, the abstraction

mechanism is not automated. Moreover, no refinement methods is proposed in the case

the abstract model does not satisfy the property.

2.4.3 Abstraction refinement for multi-agent systems

Maybe the first attempt to overcome the difficulties of abstraction refinement for the

verification of epistemic properties is the recent research done by Zhou et al. [96]. They

modified the tree-like counterexample generation method in [32] to cover the ACTLK

specifications. The paper adopts similar approach as in [33] to build up an abstract

model in which overestimates the concrete one. The main difference is that Cohen et al.

approach is to abstract the model by first abstracting the agent-specific components like

local states and local transitions, and then building up the abstract interpreted system.

In this paper of Zhou et al. the global states will be split into equivalent classes and the

global transition relation will get existentially quantified.

The main contribution of the paper more than abstraction and refinement is proposing

a method for tree-like counterexample generation for ACTLK. A counterexample gener-

ated by verifying the specification ϕ is defined as an interpreted system in which (1)

satisfies ¬ϕ (2) underestimates the concrete model or in the other words, the concrete

model simulates the counterexample. To find the counterexample, the mode-checker first

builds the parse tree of the formula ¬ϕ and traverses the tree in a depth-first manner.

This process is not simple in the case when ¬Ki appears in the formula. The authors

proposed the procedure print witnessK̄i to output the counterexample related to the

epistemic property. The paper have several major issues like (1) the authors consider a

system with single initial state by assuming the possibility of transforming every inter-

preted system to the one with a single initial state (2) the refinement approach is not
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well explained especially when the counterexample is the result of verifying an epistemic

property (3) case studies does not properly shows how the states are partitioned, what

are the valuation of the propositions in each partition, and how the process of refinement

proceeds.

In this thesis, we demonstrate a more detailed approach for the abstraction refinement

for ACTLK properties.
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CHAPTER 3

PRELIMINARIES

This chapter provides a policy language definition together with the materials and termi-

nologies that are used in chapters 4 and 5 for the verification of dynamic access control

systems.

3.1 Introduction

In a multi-agent system, the agents authenticate themselves by using the provided au-

thentication mechanisms, such as login by username and password, and it is assumed that

the mechanism is secure and reliable. Each agent is authorized to perform actions, which

can change the system state by changing the values of several system variables (in our

case, atomic propositions). Performing actions in the system encapsulates three aspects:

the agent request for the action, allowance by the system and system transition to another

state. In this thesis, we consider agents performing different actions asynchronously ; a

realistic approach in computer systems.

Asynchronous system: In synchronous systems agents can perform actions in parallel

in each clock cycle, whereas in an asynchronous systems only one of the agents performs

an action per clock cycle. One of the common problems in synchronous systems is the

race condition. Let us demonstrate this problem with an example:

Example 3.1. Imagine a conference paper review system and two agents Alice and Bob

as the reviewers of paper p. Consider the case where both the agents decide to assign

Tom as the sub-reviewer of paper p, which is not a reviewer or sub-reviewer of p. Further

assume that the security policy of the system contains the following rule:

• An agent can be assigned as the sub-reviewer of a paper if he is not already a

reviewer or sub-reviewer of that paper.
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If both Alice and Bob assign Tom as their sub-reviewer at the same time (same clock

cycle), the precondition for the assignment is satisfied for both the reviewers. But after

the assignment, Tom is assigned to the same paper by two reviewers, which is an unwanted

situation. This problem does not occur when actions are performed asynchronously.

In our approach, we are not interested in security breaches caused by race condition.

We consider that such issues are handled by memory locks or other application level

methods. In general and in real systems, different requests are held in a queue and

processed one at a time asynchronously. So, it is a realistic approach to model access

control systems in asynchronous manner.

3.2 Access control policy

We present a simple policy language that is expressive enough to handle integrity con-

straints which are the rules that must remain true to preserve integrity of data, and policy

invariants.

Syntax definition: Let T be a set of types which includes a special type Agent for

agents and Pred be a finite set of predicates such that each n-ary predicate has a type

t1 × · · · × tn → {>,⊥}, for some ti ∈ T , 1 ≤ i ≤ n. Let V be a finite set of typed

variables where the types are from the set T . We use the notation ~v to specify a sequence

of distinct variables. An atomic formula is a predicate that is applied to a sequence of

variables with the appropriate length and type.

The syntax of access control policy language is as follows:

L ::= > | ⊥ | w(~v) | L ∨ L | L ∧ L | L→ L | ¬L | ∀v : t [L] | ∃v : t [L]

W ::= + w(~v) | − w(~v) | ∀v : t. W

Ws ::= W | Ws,W

Action rule AR ::= id(~v) : {Ws} ← L

Read rule RR ::= id(~v) : w(~v)← L

In the above syntax, L is a logical formula and consists of atomic formulas combined

by logical connectives and existential and universal quantifiers, w ∈ Pred , and w(~v) is an

atomic formula. The formula L defines the condition for performing an action or reading

an atomic formula. {Ws} is the effect of the action rule that includes the updates. +w(~v)

in the effect means executing the action will set the value of w(~v) to true and −w(~v)

means setting the value to false. In the case of ∀v.W in the effect, the action updates

the signed atomic formula in W for all possible values of v. In the case that an atomic
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formula appears with different signs in multiple quantifications in the effect (for instance,

w(c, d) in ∀x. + w(c, x),∀y. − w(y, d)), then only the sign of the last quantification is

considered. The notation id indicates the rule identifier.

Let a(~v) : E ← L be an action rule. The free variables of the logical formula L are

denoted by fv(L) and are defined in the standard way. We also define fv(E) =
⋃
e∈E fv(e)

where fv(±w(~x)) = ~x and fv(∀x.W )=fv(W )\x. We stipulate: fv(E)∪fv(L) ⊆ ~v. If

r(~v) : w(~u)← L is a read rule, then ~u ∪fv(L) ⊆ ~v.

In an asynchronous multi-agent system, it is crucial to know the agent that performs

an action. Multi-agent system are any collection of interacting agents [46]. By definition,

the first argument of an action rule is the agent that performs the action. The first

argument of a read permission rule is the agent that reads the atomic formula to the left

of the arrow.

Example 3.2. A conference paper review system policy contains the following properties

for unassigning a reviewer from a paper:

• A chair is permitted to unassign the reviewers (rev).

• If a reviewer is removed, all the corresponding subreviewers (subRev) should be

removed from the system at the same time.

The unassignment action rule can be formalized as follows:

delRev(u, p, a) : {-rev(p, a),∀b : Agent. -subRev(p, a, b)} ← chair(u) ∧ rev(p, a)

Example 3.2 shows how updating several variables synchronously can preserve integrity

constraints. The RW framework is unable to handle such integrity constraint as it can

only update one proposition at a time.

3.3 Policy rule instantiation

Let Σ be a finite set of objects such that each object in Σ has a type. Σt ⊆ Σ is the set

of objects of type t. An atomic formula is ground if it is variable-free; i.e. its variables

are substituted with the objects of the same type in Σ. For instance, if reviewer∈ Pred

with two arities of type Agent, and Bob,Paper∈ ΣAgent, then reviewer(Bob,Paper) is a

ground atomic formula. In the context of this thesis, we call the ground atomic formulas

(atomic) propositions, since they only evaluate to true and false.

An action α : ε ← ` contains an identifier α together with the evolution rule ε ← `,

which is constructed by instantiating all the arguments in an action rule a(~v) : E ← L
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with the objects of the same type in Σ. We refer to the whole action by its identifier α.

Since the number of objects is finite, each quantified logical formula in L will be expanded

to a finite number of conjunctions (for ∀ quantifier) or disjunctions (for ∃ quantifier) of

logical formulas during the instantiation phase. The ground formula `, which is the

instantiation of L, determines the condition in which action α can be performed and is

called permission. During the instantiation, the universal quantifiers in the effect will be

expanded into a finite number of signed atomic propositions. If after instantiation, an

atomic formula appears in the effect with different signs, we only consider the sign of the

last occurrence.

For instance, if the policy contains the rule:

assignReviewer(x, y, p) : {+reviewer(y, p)} ← chair(x) ∧ pcMember(y) ∧ ¬author(p, y)

and Alice, Bob ∈ ΣAgent, Paper1 ∈ ΣPaper, then the following instantiation of the rule:

assignReviewer(Alice,Bob,Paper1) : {+reviewer(Bob,Paper1)}

← chair(Alice) ∧ pcMember(Bob) ∧ ¬author(Paper1,Bob)

denotes an action where Alice assigns Bob as the reviewer of Paper1. The right hand side

of the arrow is a ground formula produced by substituting the variables x, y and p which

is permission. If the permission is satisfied, then performing the action makes the system

evolve by setting the value of reviewer(Bob,Paper1) to true. During the evolution, the

values of all the propositions except the ones that appear in the effect remain the same.

A read permission ρ : p ← ` is constructed by instantiating the arguments in read

permission rule r(~v) : w(~u)← L with the objects of the same type in Σ. ρ is the identifier,

p is a proposition and ` is the condition for reading p.

Definition 3.1 (Active agent). If α is an action, then Ag(α) denotes the agent that

performs α. As previously stated, this agent is the first argument of an action. For

instance:

Ag(assignReviewer(Alice,Bob,Paper1)) = Alice

For a read permission ρ : p← `, Ag(ρ) denotes the agent that reads the proposition p.

Definition 3.2 (Policy). An access control policy denoted by C is a finite set of actions

and read permissions derived by instantiating a set of rules with a finite set of typed

objects.

Definition 3.3 (Action effect). Let α : ε← ` be an action. Then we define:
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effect+(α) = {p | + p ∈ ε}

effect−(α) = {p | − p ∈ ε}

effect(α) = effect+(α) ∪ effect−(α)

Example 3.3. In the action rule presented in example 3.2, assume we have 3 objects as

ΣAgent = {a1, a2} and Σpaper = {p1}. During instantiation phase, the action rule will be

compiled into four instances: delRev(a1, p1, a1), delRev(a1, p1, a2), delRev(a2, p1, a1) and

delRev(a2, p1, a2). The effect of the action delRev(a1, p1, a2) will be:

effect+(delRev(a1, p1, a2)) = {}

effect−(delRev(a1, p1, a2)) = {rev(p1, a2), subRev(p1, a2, a1), subRev(p1, a2, a2)}

effect(delRev(a1, p1, a2)) = {rev(p1, a2), subRev(p1, a2, a1), subRev(p1, a2, a2)}

3.4 Summary

In this chapter we first introduced a policy language and then described the process of

generating a set of actions and read permissions called policy, given a set of rules and

a finite set of objects. In chapters 4 and 5, we use the same policy language for the

description of access rules in order to build an access control model, but we evaluate the

properties of different types.
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CHAPTER 4

POLIVER: A KNOWLEDGE-BASED ACCESS
CONTROL VERIFICATION TOOL

In this chapter, a new approach for automated knowledge-based verification of dynamic

access control policies is presented. The verification method not only discovers if a vulner-

ability exists, but also produces the strategies that can be used by the attacker to exploit

the vulnerability. It investigates the information needed by the attacker to achieve the

goal and whether he acquires that information when he proceeds through the strategy or

not. The algorithm is implemented and released as an open source policy verification tool

called PoliVer.

The knowledge verification in PoliVer is limited to knowledge by readability. This

abstraction of knowledge enhances the verification speed and memory usage of the tool.

We argue that most - but not all - of the vulnerabilities can be investigated by this

simplified concept of knowledge. In the next chapter, we will extend the knowledge-based

verification to the knowledge by reasoning and present some vulnerabilities that can not

be discovered by PoliVer and other access control verification tools.

Given the policy language in chapter 3, in this chapter we provide a verification algo-

rithm which is able to find a strategy in a more efficient way than the guessing approach in

a similar knowledge-based verification framework called RW [94]. This is because unlike

RW which the verification algorithm is build around knowledge states and supports mem-

oryful knowledge, the knowledge in our algorithm is memoryless and it is build around

system states. But as our policy language supports variable bulk update, knowledge

variables can be easily incorporated into the policy when it is required.

The rest of this chapter is organized as follows. The transition system and query lan-

guage are introduced in Section 4.1. Model-checking strategy is explained in Section 4.2.

Knowledge evaluation of the strategies is presented in Section 4.3. Experimental results

are provided in section 4.5 and conclusions and future work are explained in Section 4.6.
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4.1 Definitions

In this section, we describe how to build a labelled transition system from a policy. We

also present a query language, which specifies the properties that we aim to verify over

the system.

4.1.1 Building a labelled transition system from a policy

Given an access control policy (see definition 3.2), we build a labelled transition system

as in the following definition.

Definition 4.1. Let C be a policy. Then the labelled transition system derived from C
is:

MC = 〈S,Act, S0, P, τ, γ〉

where (1) P is the set of atomic propositions that appear in C (2) S is the set of states

where each state is a valuation of the propositions in P (3) Act is the set of actions in C
(4) S0 ⊆ S is the set of initial states (5) γ : S × P → {>,⊥} is the labelling function (6)

τ : Act× S → S is the partial transition function. If α : ε← ` ∈ C and ` holds in s, then

τ(α, s) is defined as s′ such that

γ(s′, p) =


> if + p ∈ ε
⊥ if − p ∈ ε

γ(s, p) Otherwise

For the rest of this chapter, we use the shorthand notation s
α−→ s′ for stating τ(α, s) =

s′. Note that as the set of initial states is not determined by the policy, the number of

transition systems derivable from C is 2n where n = |S|. Also read permissions in C are

not involved in building the labelled transition system and will be considered in query

evaluation and knowledge verification over the system.

4.1.2 Query language

Verification of the policy deals with the reachability problem, one of the most common

properties arising in temporal logic verification. A state s is reachable if it can be reached

in a finite number of transitions from the initial states. In multi-agent access control

systems, the transitions are made by the agents performing actions.

The query language determines the initial condition and the specification. The syntax
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of the policy query is:

L ::= > | ⊥ | w(~v) | 〈w(~v)〉 | L ∨ L | L ∧ L | L→ L | ¬L | ∀v : t [L] | ∃v : t [L]

W ::= w(~v) | w(~v) ∗ | w(~v)! | w(~v)∗! | ¬W

Ws ::= null | Ws,W

G ::= C : (L) | C : (L THEN G)

Query ::= {Ws} → G

where w(~v) is an atomic formula and C is a set of variables of type Agent.

In the above definition, G is called a nested goal if it contains the keyword THEN,

otherwise it is called a simple goal. C is a coalition of agents interacting together to

achieve the goal in the system. Also the agents in a coalition share the knowledge gained

by reading system propositions or performing actions. The specification 〈w(~v)〉 means

w(~v) is readable by at least one of the agents in the coalition. The initial condition is

specified by the literals in {Ws}. Every literal W is optionally tagged with * when the

value of atomic formula is fixed during verification, and/or tagged with ! when the value

is initially known by at least one of the agents in the outermost coalition.

Example 4.1. One of the properties for a proper conference paper review system policy

is that the reviewers (rev) of a paper should not be able to read other submitted reviews

(submittedR) before they submit their own reviews. Consider the following query:

{chair(c)∗!,¬author(p, a)∗, submittedR(p, b), rev(p, a),¬submittedR(p, a)} →

{a} : (〈review(p, b)〉 ∧ ¬submittedR(p, a) THEN {a, c} : (submittedR(p, a)))

The query says “starting from the states satisfying the initial condition, is there any

reachable state that agent a can promote himself in such a way that he will be able to

read the review of the agent b for paper p while he has not submitted his own review

and after that, agent a and c collaborate together so that agent a can submit his review

of paper p?”. If the specification holds, then there exists a security hole in the policy

and should be fixed by policy designers. In the above query, the values of chair(c) and

author(p, a) are fixed and chair(c) is known to be true by the agent a at the beginning.

The above query is similar to the query 6.3 in RW [94] except the fact that in RW, the

readability of review(p, b) is memoryful (coalition memorizes the value of review(p, b)

whenever one of the agents reads its value), while in our case is memoryless.

Instantiation of the policy query: An instantiated query or simply query is the

policy query with the variables substituted with the objects of appropriate type.
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Definition 4.2 (Satisfaction relation). Let C be a ground policy, init → g a query, C

a coalition of agents, and MC a derived transition system from C with the set of initial

states S0 as defined by init . Let Ag be the function defined by the definition 3.1. For

any goal g, the notation (MC, s, C) |= g means that given the coalition C, g holds in state

s of the model MC. The satisfaction relation |= is defined inductively as follows:

(MC, s, C) |= p ⇔ γ(s, p) = >

(MC, s, C) |= ¬φ ⇔ (MC, s, C) 6|= φ

(MC, s, C) |= φ1 ∨ φ2 ⇔ (MC, s, C) |= φ1 or (MC, s, C) |= φ2

(MC, s, C) |= 〈p〉 ⇔ there exists a read permission ρ : p← ` ∈ C such that

Ag(ρ) ∈ C and (MC, s, C) |= `

(MC, s, C) |= C ′ : (φ) ⇔ there exists a path s1
α1−→ . . .

αn−1−−−→ sn such that s = s1 and

(1) For all 1 ≤ i < n: Ag(αi) ∈ C ′

(2) For all 1 ≤ i ≤ n: (MC, si, C
′) |= p if p∗ ∈ init and (MC, si, C

′) 6|= p if ¬p∗ ∈ init

(3) (MC, sn, C
′) |= φ

(MC, s, C) |= C ′ : (φ1 THEN φ2) ⇔ there exists a path s1
α1−→ . . .

αn−1−−−→ sn such that s = s1 and

(1) For all 1 ≤ i < n: Ag(αi) ∈ C ′

(2) For all 1 ≤ i ≤ n: (MC, si, C
′) |= p if p∗ ∈ init and (MC, si, C

′) 6|= p if ¬p∗ ∈ init

(3) (MC, sn, C
′) |= φ1 and (MC, sn, C

′) |= φ2

We use the notation MC |= g if for all s0 ∈ S0 : (MC, s0, ∅) |= g.

If a query is found to be positive in an access control system, then there exists a

conditional sequence of actions called strategy (defined below) that makes the agents

in the coalitions achieve the goal beginning from all the initial states. The strategy is

presented formally by the following syntax:

strategy ::=null | α; strategy | if(p) {strategy} else {strategy}

In the above syntax, p is an atomic proposition and α is an action. The value of p is

not defined in the initial condition and can be true in some initial states and false in the

others. If a strategy contains a condition over the proposition p, it means the value of p

determines the required sequence of actions to achieve the goal. p is known as an effective

proposition in our methodology.

Definition 4.3. (Transition relation). Given a labelled transition systemM , let s1, s2 ∈ S
where S is the set of states, and ξ be a strategy. We use s1 →ξ s2 to denote “strategy ξ

can be run in state s1 and result in s2”, which is defined inductively as follows:
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• s→null s.

• s→α;ξ1 s
′ if

– If ` is the permission of α, then (M, s, ∅) |= `, and

– s′′ →ξ1 s
′ where s

α−→ s′′.

• s→if(p){ξ1} else {ξ2} s
′ if:

– If γ(s, p) = > then s→ξ1 s
′ else s→ξ2 s

′.

A set of states st2 is reachable from the set of states st1 through strategy ξ (st1 →ξ st2)

if st1 contains all the states s1 which there exists s2 ∈ st2 such that s1 →ξ s2.

Definition 4.4. (State formula). If S is the set of states in labelled transition system M

and st ⊆ S then:

• fst is a propositional formula satisfying exactly the states in st:

s ∈ st ↔ (M, s, ∅) |= fst

• stf is the set of states satisfying f : s ∈ stf ↔ (M, s, ∅) |= f

4.2 Model-checking and strategy synthesis

Our method uses backward search to find a strategy. Given a query init → g and model

M with the initial states as defined by init , let goal states stg be the set of states that

satisfy the property of the innermost goal in g, and initials states be the states defined by

init . The algorithm begins from stg and finds all the states with transition to the current

state, called pre-states. The algorithm continues finding pre-states over all found states

until it gets all the initial states (success) or no new state could be found (fail).

The model-checking problem in this research is not a simple reachability question. As

illustrated in figure 4.1, the strategy is successful only if it works for all the outcomes

of reading or guessing a proposition in the model. Thus, reading/guessing behaviour

produces the need for a universal quantifier, while actions are existentially quantified.

The resulting requirement has an alternation of universal and existential quantifiers of

arbitrary length, and this cannot be expressed using standard temporal logics such as

CTL, LTL or ATL.

Notation 4.1. Assume f is a propositional formula. Then p ∈ prop(f) if proposition p

occurs in all formulas equivalent to f .
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S0 ∃a

∀p

states with p = >

st1

states with p = ⊥

st2

∃a

∃a

∃a

∃a

∃a
stg

Figure 4.1: Strategy finding method. Ovals represent sets of states. Solid lines show the
existence of an action that makes a transition between two sets of states. Dashed lines are
universally quantified over the outcome of reading or guessing the value of proposition p.

Definition 4.5. (Pre states). Let init → g be a query, MC be a labelled transition system

derived from policy C with the initial states as defined by init . If action α : ε← ` ∈ Act
and st ⊆ S, then PRE∃α(st) is the set of states in which action α is permitted to perform

and performing the action will make a transition to one of the states in st by changing

the values of the propositions in the effect of the action. Let Lit∗ be the set of literals

that are tagged by ∗ in init . Then:

PRE∃α(st) =
{
s ∈ S | (M, s, ∅) |= `, τ(α, s) = s′, s′ ∈ st and for all l ∈ Lit∗ : (M, s, ∅) |= l

}
The symbolic (BDD-based) presentation of PRE∃α is contained in appendix A.

4.2.1 Finding effective propositions

Definition 4.6. (Effective proposition). In labelled transition system M , atomic propo-

sition p is effective with respect to S0 as the set of initial states and stg as the set of goal

states if there exists a set of states st ⊆ S and strategies ξ0, ξ1 and ξ2 such that ξ1 6= ξ2

and:

• S0 →ξ0 st,

• st ∩ {s | γ(s, p) = >} →ξ1 stg,

• st ∩ {s | γ(s, p) = ⊥} →ξ2 stg and

• st ∩ {s | γ(s, p) = >} 6= ∅, st ∩ {s | γ(s, p) = ⊥} 6= ∅.

Effective propositions are important for the following reason:

The value of proposition p is not specified in the query and is not known by the agents

at the beginning. The agents need to know the value of p to select the appropriate strategy
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to achieve the goal. In the states of st, if the agent (or coalition of agents) knows the

value of p, he will perform the next action without taking any risk. Otherwise, he needs

to guess the value of p. This situation is risky and in the case of a wrong decision and

may not be repeatable.

The algorithm provided in this section is capable of finding effective propositions while

searching for strategies, and then, is able to verify the knowledge of the agents about

effective propositions in the decision states. The algorithm is guided by proposition 4.5

in order to detect effective propositions in backward search.

Proposition 4.1. Suppose that f is a well-formed first order logic formula, C is a coalition

of agents, p is a proposition and s is a state in labelled transition system M . Suppose

that (M, s, C) |= p and (M, s, C) |= f [>/p]. Then we have (M, s, C) |= f .

Proof. The proof proceeds by structural induction. Assume that f is in NNF (negation

normal form).

Base cases:

• f = p: By hypothesis, (M, s, C) |= p and (M, s, C) |= >. Then (M, s, C) |= p.

• f = q, q 6= p: By hypothesis, (M, s, C) |= p and (M, s, C) |= q. Then we have

(M, s, C) |= q.

• f = ¬p: By hypothesis, (M, s, C) |= p and (M, s, C) |= ⊥. This case is impossible.

• f = ¬q, q 6= p: By hypothesis, (M, s, C) |= p and (M, s, C) |= ¬q. Therefore

(M, s, C) |= ¬q.

Inductive cases:

Assume by inductive hypothesis that for two given well-formed logical formulas f1 and

f2 that are presented in NNF, if (M, s, C) |= p and (M, s, C) |= f1[>/p] then (M, s, C) |=
f1, and if (M, s, C) |= p and (M, s, C) |= f2[>/p] then (M, s, C) |= f2.

Case 1: We need to show that if (M, s, C) |= p and (M, s, C) |= (f1 ∧ f2)[>/p], then

(M, s, C) |= f1 ∧ f2.

If (M, s, C) |= (f1∧ f2)[>/p] then (M, s, C) |= f1[>/p] and (M, s, C) |= f2[>/p] holds.

By inductive hypothesis, we have (M, s, C) |= f1 and (M, s, C) |= f2, which is equivalent

to (M, s, C) |= f1 ∧ f2.

Case 2: For the second inductive case, we need to show that if (M, s, C) |= p and

(M, s, C) |= (f1 ∨ f2)[>/p], then (M, s, C) |= f1 ∨ f2.

If (M, s, C) |= (f1 ∨ f2)[>/p] then (M, s, C) |= f1[>/p] or (M, s, C) |= f2[>/p] holds.

By inductive hypothesis, we have (M, s, C) |= f1 or (M, s, C) |= f2, which is equivalent

to (M, s, C) |= f1 ∨ f2.

So, we can conclude that for every well-formed formula f , proposition 4.1 holds.
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Proposition 4.2. Suppose that f is a well-formed first order logic formula, C is a coalition

of agents, p is a proposition and s is a state in labelled transition system M . Suppose

that (M, s, C) |= ¬p and (M, s, C) |= f [⊥/p]. Then we can conclude that (M, s, C) |= f .

Proof. The proof is similar to the proof for the proposition 4.1.

Proposition 4.3. Let st1 be a set of states in labelled transition system M and p ∈
prop(fst1). Suppose s ∈ stfst1[>/p] and γ(s, p) = >, then s ∈ st1.

Proof. By definition 4.4, s ∈ stfst1[>/p] is equivalent to (M, s, C) |= fst1 [>/p]. Also

γ(s, p) = > is equivalent to (M, s, C) |= p. By proposition 4.1, (M, s, C) |= fst1 , which

allows us to conclude s ∈ st1.

Proposition 4.4. Let st1 be a set of states in labelled transition system M and p ∈
prop(fst1). Suppose s ∈ stfst1[⊥/p] and γ(s, p) = ⊥, then s ∈ st1.

Proof. The proof is similar to the proof for proposition 4.3.

Proposition 4.5. Let st1, st2 and stg be sets of states and ξ1 and ξ2 be strategies

such that st1 →ξ1 stg and st2 →ξ2 stg. Suppose p ∈ prop(fst1) ∩ prop(fst2), std =

stfst1[>/p] ∩ stfst2[⊥/p] and s ∈ std. Then if γ(s, p) = >, we conclude that s →ξ1 stg,

otherwise s→ξ2 stg will be concluded.

Proof. If s ∈ std then s ∈ stfst1 [>/p]. If γ(s, p) = > then by proposition 4.3, s ∈ st1 and

therefore s →ξ1 st. If γ(s, p) = ⊥, since s ∈ stfst2 [⊥/p], then by proposition 4.4 we have

s ∈ st2, resulting in s→ξ2 st.

Let stg in proposition 4.5 be the set of goal states, std the set of states found according

to the proposition 4.5 and S0 the set of initial states. If there exist a strategy ξ0 such that

S0 →ξ0 std, then by definition 4.6, the atomic proposition p is an effective proposition and

therefore std →if(p) {ξ1} else {ξ2} stg. The states in std are called decision states.

Example 4.2. Let the following be the policy rules for changing a password in a system

where the arguments of the predicates are of type Agent:

setTrick(a) : {+trick(a)} ← ¬permission(a),

changePass(a) : {+passChanged(a)} ← permission(a) ∨ trick(a)

In the above policy rules, the administrator of the system has defined permission for chang-

ing password. The permission declares that one of the atomic formulas permission(a)

or trick(a) is needed for changing password. permission(a) is write protected for the

agents and no action is defined for changing it. If an agent does not have permission
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to change his password, he can set trick(a) to true first and then, he will be able to

change the password. This can be seen as a mistake in the policy. We have excluded read

permission rules, as they are not required in this particular example for query verification

and will be considered only in knowledge verification phase.

Consider that we have just one object of type Agent in the system (ΣAgent = {a1}) and

we want to verify the query {} → {a} : (passChanged(a)). The only possible instantiation

of the query is when variable a is assigned to a1. As the initial condition is empty, no

condition is defined to specify the initial states and therefore they cover all the system

states. Let policy C be derived by instantiating the rules with agent a1 and MC be the

labelled transition system derived from C with S as the set of states where each state in

S is a valuation of the propositions trick(a1), permission(a1) and changePass(a1), and

S0 = S. The following procedures show how a strategy can be found:

fstg = passChanged(a1)

We can find one set of states as the pre-state of stg:

fPRE∃
changePass(a1)

(stg) = fst1 = permission(a1) ∨ trick(a1)

st1 →changePass(a1) stg

fstg and fst1 don’t share any proposition and hence, proposition 4.5 is not applicable.

For the set st1, we can find one pre-set:

fPRE∃
setTrick(a1)

(st1) = fst2 = ¬permission(a1)

st2 →setTrick(a1);changePass(a1) stg

Based on propositon 4.5 and for the states st1 and st2 and proposition p = permission(a1)

we have:

fst1 [>/p] = >, fst2 [⊥/p] = >, fst1 [>/p] ∧ fst2 [⊥/p] = >

st3 = st> = S st3 →ξ stg

ξ =if (permission(a1)){changePass(a1)} else {setTrick(a1); changePass(a1)}

Since S0 ⊆ st3, the goal is reachable and we output the strategy.

Backward search transition filtering: If an action changes a proposition, the

value of the proposition will be set and known for the rest of the strategy. So in backward

search algorithm, we filter out the transitions that alter effective propositions before their
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corresponding decision states are reached.

Definition 4.7. (State strategy). Consider stg as the set of goal states. State strategy is

the triple (st, ξ, efv) defined inductively as follows:

• (stg, null, ∅) is a state strategy.

• (st, α; ξ, efv) is a state strategy if:

– For all p ∈ effect(α): p 6∈ efv and

– (st′, ξ, efv) is a state strategy where st′ = {s′ | s α−→ s′, s ∈ st}.

• (st, if(p){ξ1} else {ξ2}, efv) is a state strategy if:

– p ∈ efv ,

– (stfst∧p, ξ1, efv\{p}) is a state strategy and

– (stfst∧¬p, ξ2, efv\{p}) is a state strategy.

In the above definition, st contains all the states that some states in stg are reachable

from them through the strategy ξ, and efv is the set of effective propositions in ξ. The

definition enforces a control condition in the verification process, preventing effective

propositions from being altered in previous steps.

4.2.2 Pseudocode for finding strategy

Let C be a policy, init → C(L) a simple query and M a derived labelled transition

system from C with the set of initial states S0 as defined by init . Let P be the set of

atomic propositions, AC ∈ Act the set of all the actions that the agents in coalition C

can perform, and stg the set of all the states s ∈ S where (M, s, C) |= L. KC contains

the propositions known by the agents in coalition C at the beginning (tagged with ! in

init). The triple (st, ξ, efv) is the state strategy, which keeps the set of states st found

during backward search, the strategy ξ to reach the goal from st and the set of effective

propositions efv occurring in ξ. The pseudocode for the strategy finding algorithm is

demonstrated in Algorithm 1.

In Algorithm 1, the outermost while loop checks the fixed point of the algorithm, where

no more state (or equivalently, state strategy) could be found in backward search. Inside

the while loop, the algorithm traverses the state strategy set that contains (stg, null, ∅)
at the beginning. For each state strategy (st, ξ, efv), it finds all the possible pre-states

for st and appends the corresponding state strategies to the set. It also finds effective

propositions and decision states by performing pairwise analysis between all the members
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Algorithm 1 Strategy finding algorithm

1: . Input: S0 is the set of initial states, stg is the set of goal states, P is the set of
atomic propositions, AC is the set of actions the coalition C can perform and KC is
the set of known propositions by the coalition C.

2: . Output: returns a set of strategies.
3:

4: state strategies :={(stg, null, ∅)}
5: states seen:=∅
6: old strategies :=∅
7:

8: while old strategies 6=state strategies do
9: old strategies :=state strategies

10: for all (st1, ξ1, efv 1) ∈ state strategies do
11: for all α ∈ AC do
12: if effect(α) ∩ efv 1 = ∅ then
13: PRE := PRE∃α(st1)
14: if PRE 6= ∅ and PRE 6⊆ states seen then
15: states seen := states seen ∪ PRE
16: ξ := “α; ” + ξ1

17: state strategies := state strategies ∪ {(PRE, ξ, efv 1)}
18: if S0 ⊆ PRE then
19: output ξ
20: end if
21: end if
22: end if
23: end for
24:

25: for all (st2, ξ2, efv 2) ∈ state strategies do
26: for all p ∈ P\KC do
27: if p ∈ prop(fst1) ∩ prop(fst2) then
28: PRE := stfst1[>/p] ∩ stfst2[⊥/p]
29: if PRE 6= ∅ and PRE 6⊆ states seen then
30: states seen := states seen ∪ PRE
31: ξ := “if(p)” + ξ1 + “else” + ξ2

32: state strategies := state strategies ∪ {(PRE, ξ, efv 1 ∪ efv 2 ∪
{p})}

33: if S0 ⊆ PRE then
34: output ξ
35: end if
36: end if
37: end if
38: end for
39: end for
40: end for
41: end while
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of the state strategy set based on the proposition 4.5. The strategy will be returned if

the initial states are found in backward search.

Proposition 4.6. (Termination) The algorithm eventually terminates.

Proof. The algorithm terminates when the while-loop terminates. The loop terminates

if: the inner for-loops terminate, and no new state strategy could be found. The for-loops

in lines 11 and 26 iterate over fixed size sets and will eventually terminate. The for-loops

in lines 10 and 25 iterate over the set state strategies that may increase in size in each

loop iteration. The loops add a new state strategy to the set if some states that were

not seen before are encountered (lines 13 and 28). By the fact that the number of states

are finite, the size of state strategies is bounded by the maximum number of states and

correspondingly, the number of for-loop iterations are bounded. By the same reason, we

can conclude that the number of newly found states is also bounded by the maximum

number of states and the while-loop terminating condition will eventually satisfy.

Proposition 4.7. For all (st, ξ, efv) ∈ state strategies , st contains all the states s in

which ξ can be run in s and result in s′ ∈ stg.

Proof. The proof proceeds by induction over the set state strategies .

Base case:

• state strategies = {(stg, null, ∅)}: The proposition trivially holds.

Inductive cases: We assume by inductive hypothesis that the proposition holds for all

(st, ξ, efv) ∈ state strategies . Then two different state strategies may be added to the set

in the next while loop iteration:

• (PRE∃α(st), α; ξ, efv) where (st, ξ, efv) ∈ state strategies :

The set PRE∃α(st) contains all the states s where s
α−→ s′ and s′ ∈ st. As st

contains all the states that can reach the states in stg though strategy ξ, therefore

PRE∃α(st) contains all the states that reach the states in stg through α; ξ. The

effective propositions in the two strategies are the same.

• (st′, if(p){ξ1} else {ξ2}, efv 1 ∪ efv 2 ∪ {p}) where

– (st1, ξ1, efv 1), (st2, ξ2, efv 2) ∈ state strategies , and

– st′ = stfst1[>/p] ∩ stfst2[⊥/p] .

Let s ∈ st′. If γ(s, p) = >, then by proposition 4.5, ξ1 can be run in s and result in

a state in stg. For the case of γ(s, p) = ⊥, the same is true with the strategy ξ2. So

the proposition holds for all the states in st′.
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Proposition 4.8. (Soundness) If the algorithm outputs a strategy, it can be run over S0

and results in stg.

Proof. The algorithm outputs a strategy whenever it finds a (st, ξ, efv) ∈ state strategies

such that S0 ⊆ st. By proposition 4.7, st contains all the states (icluding S0) which ξ can

be run on them and result in stg. Therefore, the proposition holds.

The following Lemma will be used in order to proof the completeness of the algorithm.

Lemma 4.1. Suppose Algorithm 1 is run with input stg and terminates with a value

for state strategies . Let st0 ⊆ S. If st0 →ξ stg, then there exists (PRE, ξ′, efv) ∈
state strategies such that st0 ⊆ PRE.

Proof. The proof proceeds by induction over height of ξ.

Base case: ξ = null and therefore st0 = stg. By default, (stg, null, ∅) ∈ state strategies

and therefore the statement trivially holds, with PRE = stg, ξ
′ = null and efv= ∅.

Inductive case: Assume by inductive hypothesis that the statement holds for all the

strategies of height up to n. Let st0 →ξ stg where ξ is a strategy of length n+ 1. Then

• ξ = α; ξ1 where ξ1 is of height n. So we have st0 →α st1 →ξ1 stg. By hypothesis,

there exists (PRE1, ξ
′
1, efv 1) ∈ state strategies such that st1 ⊆ PRE1. By definition

4.7 and st0 →α st1 →ξ1 stn, the condition on line 12 of the algorithm holds. Hence,

the algorithm finds the set PRE = PRE∃α(PRE1) which is the set of all the states

with a transition to some states in PRE1 as the result of performing action α in

them. Therefore we have st0 ⊆ PRE. The set PRE is not empty as it already

contains the states in st0. If the states of PRE are met before (line 14), then the

state strategy (PRE, α; ξ′1, efv 1) will be added to the set state strategies and the

statement holds. Otherwise, such a state strategy already exists.

• ξ = if(p){ξ1}else{ξ2} where the maximum height of ξ1 and ξ2 is n. By def-

inition 4.7, stfst0∧p →ξ1 stg and stfst0∧¬p →ξ2 stg. By hypothesis, there exists

(PRE1, ξ
′
1, efv 1), (PRE2, ξ

′
2, efv 2) ∈ state strategies such that stfst0∧p ⊆ PRE1 and

stfst0∧¬p ⊆ PRE2. As p is found to be an effective proposition in a strategy,

p 6∈ KC and therefore the algorithm enters the loop on line 26 for p. Consider

three cases for line 27: (1) p 6∈ prop(PRE1). Then stfst0∧p ⊆ stfst0 = st0 ⊆
PRE1 and therefore the statement holds for the state strategy (PRE1, ξ

′
1, efv 1) (2)

p 6∈ prop(PRE2). Similar to the previous case, the statement holds for the state

strategy (PRE2, ξ
′
2, efv 2). (3) p ∈ prop(PRE1) ∩ prop(PRE2), Then we have

st0 ⊆ PRE1[>/p]∩PRE2[⊥/p]. Using the same arguments as the first item for the
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conditions on line 29, (PRE1[>/p]∩PRE2[⊥/p], if(p){ξ′1}else{ξ′2}, efv 1∪efv 2∪{p})
will be added to the set state strategies and the statement holds for that state

strategy.

Proposition 4.9. (Completeness) If some strategy exists from S0 to stg, then the algo-

rithm will find one.

Proof. If such strategy exists (let us say ξ), then by Lemma 4.1, the algorithm will find

a state strategy (PRE, ξ′, efv) where S0 ⊆ PRE. In that case lines 19 and 34 of the

algorithm guarantee that the strategy ξ′ will be delivered. Note that ξ′ may be different

from ξ.

Verification of the nested goals: To verify a nested goal, we begin from the inner-

most goal. By backward search, all backward reachable states will be found and their

intersection with the states for the outer goal will construct the new set of goal states.

For the outer-most goal, we look for the initial states between backward reachable states.

If we find them, we output the strategy. Otherwise, the nested goal is unreachable.

4.3 Knowledge vs. guessing in strategy

Agents in a coalition know the value of a proposition if: they have read the value before,

or they have performed an action that has affected that proposition1. If a strategy is

found, we are able to verify the knowledge of the agents over the strategy and specifically

for effective propositions, using read permissions defined in the policy. Read permissions

don’t lead to any transition or action, and are used just to detect if an agent or coalition

of agents can find out the way to the goal with complete or partial knowledge of the

system. The knowledge is shared between the agents in a coalition.

To find agent knowledge over effective propositions, we begin from the initial states,

run the strategy and verify the ability of the coalition to read the effective propositions.

If at least one of the agents in the coalition can read an effective proposition before or

at the corresponding decision states, then the coalition can find the path without taking

any risk. In the lack of knowledge, agents should guess the value in order to find the next

required action along the strategy.

Pseudocode for knowledge verification over the strategy: Let C be a policy,

init → C(L) a simple query and MC a derived labelled transition system from C with

1In this research, we do not consider reasoning about knowledge like the one in interpreted systems.
This approach makes the concept of knowledge weaker, but more efficient to verify.
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Procedure 2 Knowledge verification function

1: function KnowledgeAlgo(st, ξ, efv , C, kC)
2: . Input: st is a set states, ξ is a strategy, efv is the set of effective propositions

occurring in ξ, C is the coalition of agents, and kC is the knowledge of the coalition.
3: . Output: returns the annotated strategy.
4:

5: if ξ=null then
6: return null
7: end if
8: for all p ∈ efv , u1 ∈ C do
9: for all read permissions ρ(u1, ~o) : p← ` ∈ C do

10: if for all s ∈ st : (MC, s, C) |= ` then
11: kC := kC ∪ {p}
12: end if
13: end for
14: end for
15:

16: if ξ = α; ξ1 then
17: st′ := {s′ | s α−→ s′, s ∈ st}
18: return “α;”+ KnowledgeAlgo(st′, ξ1, efv , C, kC ∪ effect(α))
19: else if ξ = if(p){ξ1} else {ξ2} then
20: if p ∈ kC then
21: str :=“”
22: else
23: str :=“Guess: ”
24: end if
25: return str+ “if(p){”+
26: KnowledgeAlgo(stfst∧p, ξ1, efv\{p}, C, kC) + “}else{”+
27: KnowledgeAlgo(stfst∧¬p, ξ2, efv\{p}, C, kC)+“}”
28: end if
29: end function
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the set of initial states S0 as defined by init . Let ξ be the strategy that found by the

Algorithm 1 with the state strategy (S0, ξ, efv). Therefore we have S0 →ξ stg where

stg is the set of all the states s ∈ S in which (MC, s) |= L. If KC contains the set of

propositions that are tagged with ! in init at the beginning, then the recursive function

KnowledgeAlgo(S0, ξ, efv , C,KC) returns an annotated strategy with a string Guess:

added to the beginning of every if statement in ξ, where the coalition does not know the

value of the proposition inside if statement.

Knowledge verification for nested goals: To handle knowledge verification over

the strategies found by nested goal verification, we begin from the outermost goal. We

traverse over the strategy until the goal states are reached. For the next goal, all the

accumulated knowledge will be transferred to the new coalition if there exists at least one

common agent between the two coalitions. The algorithm proceeds until the strategy is

fully traversed.

4.4 Implementation and case studies

PoliVer is implemented by modifying the model-checker AcPeg [95, 94]. We have kept

some useful syntactic and functional properties implemented in AcPeg like the structure

of policy definition and query statement. In the implementation, the syntax of action

rules and read permission rules presented in chapter 3 is modified in order to provide a

more user friendly language. PoliVer is implemented in Java and can be run over different

platforms. For symbolic model-checking, we have used BuDDy as a well-known binary

decision diagram library.

4.4.1 PoliVer input script

An access control model in PoliVer script is composed of a policy, a run-statement and a

query-statement.

policy definition

The policy begin with the keyword AccessControlSystem followed by an identifier as the

name of the model. Type-definition is the first block of the policy which begins with the

keyword Class followed by comma separated identifiers for the types. Type identifiers

must begin with capital letter. Type-definition ends with a semicolon. The next block is

predicate-definition. This block starts with the keyword Predicate followed by comma
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separated parametrized predicates. Parameter names begin with lower case letters, they

must be distinct and their types should be declared. For example, in example 4.2 the

predicate permission has only one argument of type Agent.

The next component of a policy is action-rule definitions. Action rules begin with the

keyword Action and use the similar syntax as in chapter 3 with some modifications to

make the policy definition user friendly:

• Agent is a predefined type and it is not required to be defined in the type definition

block.

• The agent that performs the action is syntactically abstracted as the first parameter

of the action rule. The keyword user is reserved to demonstrate the agent that

performs the action in the body of the action rule.

• The operator “=” is used to define the equivalence of two objects of the same type.

For example, user = a where a is a parameter denotes that a is the same agent as

user.

Each action rule ends with a semicolon. In PoliVer syntax, the operator ∧ is replaced

with & and and, ∨ is replaced with | and or, ¬ is replaced with ∼ and quantifiers ∀ and

∃ are substituted by E and A respectively.

The last component of a policy is read permission rules. Read permission rules start

with the keyword Read. Again for simplicity, we have abstracted the agent who can read

the truth value of the instanced predicate from the arguments. We have replaced that

agent with the keyword user in the body of the rule. This abstraction leads to a more

simplified form of read permission rules where the identifier is completely abstracted. For

example:

Read reviewer(p, a) <- pcmember(user) & ∼author(p, user);

defines the condition in which the agent user is able to read reviewer(p, a). Note

that user, p and a are place holders and will be replaced with the appropriate objects

during instantiation phase.

Policy definition terminates with the keyword end.

Run-statement

Instead of explicitly defining the set of objects with different types and declaring the

objects in each set, we can simply let PoliVer automatically generate the objects and

populate the policy with them to build the model. The run statement declares the number

of objects for each type and is specified before the query statement. It begins with the
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keyword run for followed by comma separated pairs if numbers and types. For instance:

run for 2 Agents, 3 Papers

informs PoliVer to assign 2 elements to the set Agents and three to the set Papers.

For the above run-statement, the predicate reviewer(p:Papers, a:Agents) will be in-

stantiated into six system propositions.

Query-statement

The query-statement begins with the keyword check and is of the form check {L ||
Query} where L contains quantified variables that occur in Query, and Query is of the

form defined in section 4.1.2. For example and for a query in a conference paper review

system, L can be of the form E disj a,c:Agent, p:Paper. The existential quantification

of (typed) variables in L informs PoliVer to check if the property holds for some instance

of the variables a, c and p. In the case of universal quantification, PoliVer checks if the

property holds for all possible instances of a quantified variable. The keyword disj is

also used to notify PoliVer not to assign the same object to the variables in the scope of

a quantifier (a and c in the example).

The syntax of the initial condition in the query is also remained similar to the

one in AcPeg for the implementation. Therefore instead of a set of literals, we use a

conjunction of the literals for the initial condition. For instance, the initial condition

{chair(c)*!,¬author(p,a)*!} is transformed to chair(c)*! & ∼author(p,a)*! in

the implementation.

4.4.2 Case studies

A conference paper review system (CRS) Assume a conference paper review

system with the following rules:

1. A chair can assign an agent as a PC member and a PC member can resign his

membership.

2. A chair can assign a PC member as a reviewer of a paper with the constraint that

the reviewer should not be the author of his assigned papers.

3. A reviewer can resign as the reviewer of a paper. At the same time, all the sub-

reviewers that he has appointed to that paper should get removed. A sub-reviewer

can resign if he has not submitted his review.
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4. A reviewer of a paper can allocate an agent to be a sub-reviewer of the paper if the

agent is not the author and a sub-reviewer of that paper.

5. A reviewer or sub-reviewer of a paper can submit his review if he has not submitted

the review before.

6. A reviewer or sub-reviewer of a paper can write or update his review before submis-

sion.

7. Whether or not an agent is a chair or PC member is readable by everyone. The

authors of submitted papers are only readable by PC members.

8. The reviewers and sub-reviewers of a paper and whether a review is submitted is

readable by all the PC members except the authors of that paper.

9. A PC member can read the review of paper p if (1) he is not the author of p (2) the

review is already submitted (3) in the case that he is a reviewer or sub-reviewer of

p, then he has submitted his own review.

The policy definition for the conference paper review system in PoliVer syntax is

defined in figure 4.2. In the following, we present several queries for the policy in figure

4.2 in PoliVer query syntax.

Query 4.1.

run for 3 Paper, 4 Agent

check {E a:Agent, p:Paper || ∼chair(a) -> {a}:(reviewer(p,a))}

The above run-statement declares that system contains 3 objects of type Paper and 4

objects of type Agent. The query asks if for some agent a which is not a chair, there exists

a strategy in which a can promote himself to become the reviewer of a paper. PoliVer

finds no strategy for this query.

Query 4.2.

run for 3 Paper, 4 Agent

check {E disj a,c:Agent, p:Paper || chair(c) & ∼author(p,a) ->

{c}:(reviewer(p,a))}

This query looks for the strategy in which for two disjoint agents a and c and paper

p, where c is a chair and a is not the author of p, agent c can allocate a as the reviewer

of paper p. The output strategy of PoliVer shows that c can assign a as the PC member,

and then appoint him as the reviewer of the paper p.
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AccessControlSystem Conference

Class Paper;

Predicate

author(paper: Paper, agent: Agent),

pcmember(agent: Agent), chair(agent: Agent),

reviewer(paper: Paper, agent: Agent),

subreviewer(paper: Paper, appointer:Agent, appointee:Agent),

submittedreview(paper: Paper, agent: Agent),

review(paper: Paper, agent: Agent);

Action addPcmember(a: Agent): {+pcmember(a)} <- chair(user);

Action delPcmember(a: Agent): {-pcmember(a)} <- pcmember(a) and a=user;

Action addReviewer(p: Paper, a: Agent):

{+reviewer(p, a)} <- chair(user) & pcmember(a) & ∼author(p,a);
Action delReviewer(p: Paper, a: Agent):

{-reviewer(p, a), A b: Agent.-subreviewer(p,user,b)} <-

(pcmember(user) & user=a & reviewer(p,user));

Action addSubreviewer(p: Paper, a: Agent, b: Agent):

{+subreviewer(p, a, b)} <- reviewer(p,a) & ∼author(p,b) & user=a &

∼(E d: Agent [subreviewer(p,a,d) | subreviewer(p,d,b)]);
Action delSubreviewer(p: Paper, a: Agent, b: Agent):

{-subreviewer(p, a, b)} <- subreviewer(p,a,b) &

∼submittedreview(p,b) & user=b;

Action submitreview(p: Paper, a: Agent):

{+submittedreview(p, a)} <- (user=a) &

((E b: Agent [subreviewer(p, b, user)]) |
reviewer(p, user)) & ∼submittedreview(p, user);

Action addReview(p: Paper, a: Agent):

{+review(p, a)} <- user=a & ((E b: Agent [subreviewer(p, b, user)]) |
reviewer(p,a)) & ∼submittedreview(p, user);

Read chair(a) <- true;

Read pcmember(a) <- true;

Read author(p, a) <- pcmember(user);

Read reviewer(p, a) <- pcmember(user) & ∼author(p, user);
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Read subreviewer(p, a, b) <- (pcmember(user) & ∼author(p,user)) |
user=b | user=a;

Read submittedreview(p, a) <- pcmember(user) & ∼author(p, user);

Read review(p, a) <- pcmember(user) & ∼author(p, user) &

submittedreview(p, a) &

(((reviewer(p, user) -> submittedreview(p, user)) and

(E b: Agent [subreviewer(p, b, user)] -> submittedreview(p, user))));

End

Figure 4.2: The policy definition for a conference paper review system. Note that PoliVer
syntax for the rules is a simplified version of the original syntax presented in chapter 3

Query 4.3.

run for 3 Paper, 4 Agent

check {E dist a,b,c:Agent, p:Paper || chair(c)*! & ∼author(p,a)*! &

submittedreview(p,b)*! & ∼submittedreview(p,a)! & pcmember(a)*! &

reviewer(p,a)! & ∼subreviewer(p,b,a)*! & ∼subreviewer(p,c,a)*! &

∼subreviewer(p,a,a)*! -> {a}:(<review(p,b)> THEN

{a,c}:(submittedreview(p,a)))}

This nested query checks if for three disjoint agents a, b and c and paper p and in the

case that c is a chair, a is the reviewer of p and b has submitted his review for p, it is

possible for a to read the review that b has written for p and then, a and c collaborate in

such a way that a submits his review for p.

Verification of the property by PoliVer results in a strategy that says: a first resigns

as the reviewer of p and now, he is allowed to read the review that b has submitted. Then

a allocates him as the reviewer of p again. In the next step, a submits his own review for

paper p.

The variable assignment and output strategy of PoliVer is of the following form:

Assignment: [a=1 b=2 c=3 p=1]

[1]:Agent 1 performs delReviewer(1,1);

[1, 3]:Agent 3 performs addReviewer(1,1);

Agent 1 performs submitreview(1,1);

Goal;

As for the policy and query language, the syntax of the strategy in the implementation

has some differences with the basic syntax in section 4.1.2. The output strategy consists
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of two sections as the query contains a nested goal. The agents in the square brackets are

the coalitions that collaborate to achieve the goal. As the agent that performs the action

is not included in the arguments, he is presented apart from the action in the strategy.

Query 4.4.

run for 1 Paper, 3 Agent

check {E dist a,c :Agent || chair(c)*! & ∼chair(a)*! & ∼pcmember(a)!)
-> c:(pcmember(a) THEN a:(∼pcmember(a) THEN c:(pcmember(a) THEN

a:(∼pcmember(a) THEN c:(pcmember(a))))))}

The main reason of presenting of the above query is to compare the efficiency with

AcPeg in verifying highly nested queries. The query asks for the existence of any strategy

that an agent can be assigned as a PC member and then resign, and this procedure

continues multiple times. PoliVer shows that such strategy exists. The comparison of the

time and memory usage between PoliVer and AcPeg will be presented in the next section.

A student information system (SIS) Figure 4.3 demonstrates the policy for a

simple student information system written in PoliVar syntax. The rules of the system are

as follows:

• A lecturer can appoint a student in a higher year as the demonstrator of a student

in a lower year.

• The demonstrator of a student s can resign as being the demonstrator of s.

• The lecturers and demonstrators have the right to mark the students that are ap-

pointed to them.

• Whether an agent is a lecturer, demonstrator or student is readable by all the agents.

Student marks are also readable by all the agents.

Query 4.5.

run for 8 Agents

check {E dist l, a1, a2: Agent || lecturer(l)*! & student(a1)*! &

student(a2)*! & higher(a1,a2)*! ->

{l}:(demonstrator of(a2,a1) & demonstrator of(a1,a2))}

The query checks if there it is possible for a lecturer to assign two agents as the

demonstrator of each other. Verifying this query in PoliVer returns no strategy.
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AccessControlSystem StudentInformationSystem

Class Agent;

Predicate

lecturer(agent: Agent), student(agent: Agent),

demonstrator of(demonstrator: Agent, student: Agent),

higher(senior: Agent, junior: Agent),

mark(student: Agent);

Action assignAsDem(d:Agent, s:Agent):

{+demonstrator of(d,s)} <- lecturer(user) & higher(d,s) & ∼higher(s,d);
Action resignAsDem(d:Agent, s:Agent):

{-demonstrator of(d,s)} <- demonstrator of(d,s) & user=d;

Action MarkStudent(s: Agent):

{+mark(s)} <- lecturer(user) | demonstrator of(user, s);

Read higher(s,j) <- true;

Read student(s) <- true;

Read lecturer(l) <- true;

Read mark(s) <- true;

End

Figure 4.3: The PoliVer policy script for student information system.
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AccessControlSystem EmployeeInformationSystem

Class Bonus;

Predicate

bonus(employee: Agent, bonus: Bonus), manager(employee: Agent),

director(employee: Agent),

advocate(appointer: Agent, appointee: Agent);

Action addBonus(a: Agent, b: Bonus):

{+bonus(a, b)} <- (manager(user) & ∼manager(a) & ∼director(a)) |
director(user);

Action delBonus(a: Agent, b: Bonus):

{-bonus(a, b)} <- (manager(user) & ∼manager(a) & ∼director(a)) |
director(user);

Action addManager(a: Agent):

{+manager(a)} <- director(user);

Action delManager(a: Agent):

{-manager(a)} <- user=a & manager(a) & ∼director(a);
Action addAdvocate(a1: Agent, a2: Agent):

{+advocate(a1,a2)} <- user=a1;

Action delAdvocate(a1: Agent, a2: Agent):

{-advocate(a1,a2)} <- user=a2 and advocate(a1,a2);

Read bonus(a, b) <- (user=a or director(user))

| (manager(user) & ∼manager(a) & ∼director(a))
| (advocate(a,user));

Read manager(a) <- true;

Read director(a) <- true;

Read advocate(a1, a2) <- true;

End

Figure 4.4: The PoliVer policy script for employee information system.
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An employee information system (EIS) The policy for an employee information

system in PoliVer syntax is presented in figure 4.4. In the employee information system, a

director can appoint an employee to become a manager. A manager can allocate bonuses

of different options to other employees that are not managers or directors. A director

can allocate bonuses to all the employees. The allocated bonuses is readable to the

directors. The managers are able to access the allocated bonuses of the employees except

the bonuses of other managers and directors. An employee can assign another employee

as his advocate. An employee has access to the bonus information of his advocates.

Query 4.6.

run for 6 Bonus, 12 Agent

check {E dist a1,a2: Agent, b: Bonus || ∼director(a1)*! &

∼director(a2)*! & manager(a1)! & manager(a2)! & ∼bonus(a1,b)! ->

{a1,a2}:(bonus(a1,b))}

The query checks if it is possible for two employees that are initially managers to

collaborate in such a way that one of them can set the bonus for the other. PoliVer

outputs a strategy that shows if one of the agents resigns as the manager, then the other

one can set the bonus for him.

Query 4.7.

run for 6 Bonus, 12 Agent

check {dist a1,a2: Agent, b: Bonus || ∼director(a1)*! &

∼director(a2)*! & manager(a1)! & manager(a2)! & ∼bonus(a1,b)! ->

a1,a2:(bonus(a1,b) & manager(a1))}

The query is similar to the query 4.6 except that it checks the case in which the

employee with the bonus remains a manager. PoliVer finds no strategy for this query.

A password changing policy We recall the password changing policy in example

4.2 (figure 4.5) and add several actions that demonstrate joining end exiting some role,

and make some dependencies between accessing some information and being the member

of the roles.

Query 4.8.

run for 1 P, 2 Agent

check {A p: P, a: Agent || ∼roleA(p) & ∼roleB(p) -> {a}:(changePass(p))}
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The output of the PoliVer contains two different strategies. In one of them, agent a

needs to guess the value of password permission variable in order to find the appropriate

path. In the other strategy, a can reach the goal without any risk. So, agent a is able

choose the strategy that does not contain the risk of guessing the path.

Assignment: [p=1 a=1]

[1]:Agent 1 performs roleBEnrol(1);Agent 1 performs roleAEnrol(1);

(Guess:) if (changePassPerm(1) is true){
Agent 1 performs setChangePass(1);Goal;}
else {Agent 1 performs setTrick(1);

Agent 1 performs setChangePass(1);Goal;}

[1]:Agent 1 performs roleAEnrol(1);Agent 1 performs roleBEnrol(1);

if (changePassPerm(1) is true){
Agent 1 performs setChangePass(1);Goal;}
else {Agent 1 performs setTrick(1);

Agent 1 performs setChangePass(1);Goal;}

4.5 Experimental results

One of the outcomes of the implementation was the considerable reduction of binary

decision diagram (BDD) variable size compared to RW. In RW, there are 7 knowledge

states per proposition and therefore, an access control system with n propositions contains

7n different states. Our simplification of knowledge-state variables results in 2n states.

The post-processing time for knowledge verification over found strategies is negligible

compared to the whole process of strategy finding, while produces more expressive results.

We encoded authorization policies for a conference review system (CRS), employee

information system (EIS) and student information system (SIS) into our policy language.

We compared the performance in terms of verification time and memory usage for the

queries: query 4.2 for CRS with 7 objects (3 papers and 4 agents) that looks for strategies

which an agent can promote himself to become a reviewer of a paper, query 4.3 for CRS

which is a nested query that asks if a reviewer can submit his review for a paper while

he has read the review of someone else before, query 4.4 with 4 objects for CRS with

five-level nested queries that checks if an agents can be assigned as a PC member by the

chair and then resign his membership, query 4.5 for SIS with 10 objects that asks if a
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AccessControlSystem PasswordPolicy

Class P;

Predicate

roleA(p: P), roleB(p: P),

changePassPerm(p: P), trick(p: P), changePass(p: P);

Action roleAEnrol(p: P) : {+roleA(p)} <- true;

Action roleAExit(p: P) :{-roleA(p)} <- true;

Action roleBEnrol(p: P) :{+roleB(p)} <- true;

Action roleBExit(p: P) :{-roleB(p)} <- true;

Action setTrick(p: P) :

{+trick(p)} <- ∼changePassPerm(p) & roleA(p) & roleB(p);

Action resetTrick(p: P) :

{-trick(p)} <- ∼changePassPerm(p) & roleA(p) & roleB(p);

Action setChangePass(p: P) :

{+changePass(p)} <- trick(p) | changePassPerm(p);

Read roleA(p) <- true;

Read roleB(p) <- true;

Read changePassPerm(p) <- roleA(p) & ∼roleB(p);
Read trick(p) <- true;

Read changePass(p) <- true;

End

Figure 4.5: The PoliVer policy script for changing password.
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RW(Algo-1) PoliVer algorithm

Query Time Memory Time Memory

Query 4.2 2.05 18.18 0.27 3.4

Query 4.3 0.46 9.01 0.162 6.68

Query 4.4 6.45 59.95 0.52 6.61

Query 4.5 20.44 222.02 0.488 7.30

Query 4.6 9.10 102.35 0.8 12.92

Figure 4.6: A comparison of query verification time (in second) and runtime memory
usage (in MB) between RW and PoliVer.

Figure 4.7: Verification time vs. number of agents for RW and PoliVer (query 4.5)

lecturer can assign two students as the demonstrator of each other, and query 5.4 with

18 objects for EIS which evaluates if two managers can collaborate to set a bonus for one

of them .

Figure 4.6 shows a considerable reduction in time and memory usage by the proposed

algorithm compared to Algo-1 in RW (Algo-1 has slightly better performance and similar

memory usage compared to Algo-0). As a disadvantage for both systems, the verification

time and state space grow exponentially when more objects are added. But this situation

in PoliVer is much better than RW. Our experimental results demonstrate the correctness

of our claim in practice by comparing the verification time of query 6.8 for different number

of agents. Figure 4.7 sketches the verification time for both algorithms for different number

of agents in logarithmic scale. The verification time in RW increases as 2.5n where n is

the number of agents added, while the time increases as 1.4n in PoliVer. Note that this

case study does not show the worst case behaviour when the number of agents increases1.

1The tool and case studies are accessible at: http://www.cs.bham.ac.uk/~mdr/research/projects/
11-AccessControl/poliver/
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4.6 Summary

Our language and tool is optimised for analysing the access control policies of web-based

collaborative systems such Facebook, LinkedIn and Easychair. These systems are likely

to become more and more critical in the future, so analysing them is important. More

specifically, in this work:

• We have developed a policy language and verification algorithm, which is also im-

plemented as a tool. The algorithm produces evidence (in the form of a strategy)

when the system satisfies a property.

• We remove the requirement to reason explicitly about knowledge, approximating

it with the simpler requirement to reason about readability as it is sufficient in

many cases. Compared to RW that has 7n states, we have only 2n states in our

approach (where n is the number of propositions). Also, complicated properties can

be evaluated over the policy by the query language provided.

• We detect the vulnerabilities in the policy that enable an attacker to discover the

strategy to achieve the goal, when some required information is not accessible. We

introduce the concept of effective propositions to detect such vulnerabilities.

• A set of propositions can be updated in one action. In the RW framework, each

write action can update only one proposition at a time.
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CHAPTER 5

REASONING ABOUT KNOWLEDGE IN ACCESS
CONTROL SYSTEMS

In chapter 4, an access control policy verification tool (PoliVer) was introduced and im-

plemented, which is able to verify agents’ knowledge gained by reading system variables.

This complies with one of the meanings of the knowledge in its ordinary language, which

means that the agent sees the truth of a sentence when the question is present. The

question that arises is: in a multi-agent system, does a principal gain knowledge only by

directly reading system information? The answer is negative. Agent also knows a sen-

tence when he consciously assents to it [76]. Reasoning is one of the ways that an agent

gains knowledge about the information. Let us have a simple example:

Example 5.1. Assume a conference paper review system in which all the PC members

have access to the number of the papers assigned to each reviewer. Further assume that

each PC member can see the list of the papers assigned to the reviewers which does not

contain the papers that he is the author of. Then if Alice is a PC member and the author

of a submitted paper, she can find who the reviewer of her paper is by comparing the

number of papers assigned to each reviewer with the number of the assigned papers of

the reviewer that she has access to.

In this chapter, a method that is able to verify information leakage vulnerabilities

through reasoning about agents’ knowledge is provided. We use the concept of knowledge

as in epistemic modal logic. Moreover, we propose an abstraction and refinement algorithm

in order to reduce the verification time and memory usage when verifying safety properties.

5.1 Overview

Let’s consider a conference paper review system like EasyChair or HotCRP. For the pri-

vacy and accountability requirement, the following properties need to hold in the policy:
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• If Alice is the author of a submitted paper in the conference, there must be no way

for her to find out who is the reviewer of her paper (privacy).

• If the profile information of a PC member is changed (by himself or someone else, like

the chair of the conference), he will always know that his information has changed

(accountability).

The above properties takes the knowledge of the agents into account. The knowledge

can be gained by directly accessing the information, or by reasoning. Reasoning uses

local accessible data to infer information. In section 5.6 we will show that there are some

circumstances that accessible data like the number of the papers assigned to each reviewer

in a conference paper review system may result in leaking unauthorized information.

Such information leakage cannot be detected by the tools designed for verifying temporal

properties or the tools that approximate knowledge by readability, like PoliVer and RW.

In this chapter, we explain how to use interpreted systems [45, 46] in order to model

the access control system described by a policy. Using interpreted systems enables the

verification of temporal and epistemic properties. Our modelling approach allows us to

verify the knowledge gained by both reading and reasoning about information, which does

not occur in other verification tools.

The price we pay for verifying epistemic properties is the large number of states and

therefore, the occurrence of state explosion even in medium size systems. As another

outcome of the research, we develop an automated method for abstraction and refinement

of safety properties in CTLK (CTL with knowledge modality K) [73]. Our method ap-

plies counterexample guided refinement when the generated counterexample is tree-like

[32]. In this work, we only discuss the counterexamples with finite length paths pro-

duced by verifying safety properties, but this approach can be extended to the paths of

infinite length using unfolding mechanisms [30]. The proposed counterexample guided

refinement method is generic, but we only demonstrate the applications in asynchronous

access control policies.

This chapter is organized as follows: Interpreted systems are introduced in section 5.2,

deriving an interpreted system from a policy is described in section 5.3, abstraction and

refinement technique is given in sections 5.4, 5.4.2 and 5.5. Case studies and experimental

results are included in section 5.6.
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5.2 Background

5.2.1 Interpreted systems

Fagin et al. [46] introduced interpreted systems as the framework to model multi-agent

systems in games scenarios. They introduced a detailed transition system which contains

agents, local states and actions. Such a framework enables reasoning about both tem-

poral and epistemic properties of the system. Lomuscio et al [75] have used a variant of

interpreted systems to verify ATLK (alternating time temporal logic [5] with knowledge)

properties over the interpreted systems. They have also developed a model-checker for in-

terpreted systems called MCMAS [74, 72] which we will use as the model-checking engine

in our implementation.

5.2.2 Definition of interpreted systems

The multi-agent system formalism known as interpreted systems (IS) [45, 46] contains a

set Ω = {e, 1, . . . , n} of agents including the environment e with the same specification

as the other agents. Interpreted systems contain the following elements:

• Local states: Each agent in a multi-agent framework has its own local state. The

set of local states for the agent i is denoted by Li. The local state of an agent

represents the information the agent has direct access to. The environment can be

seen as the agent which is capable of capturing or holding the information that is

inaccessible to the other agents. For example, the communication channel in a bit

transmission protocol can be modelled as the environment. The set of global states

is S = Le × L1 × · · · × Ln, representing the system at a specific time. The system

evolves as a function over the time. We also use the notation of Li as the function

that accepts a set of global states and returns the corresponding set of local states

for agent i. For each s ∈ S, li(s) denotes the local state of agent i in s.

• Actions: State transitions are the result of performing actions by different agents.

If i ∈ Ω, then ACTi is the set of actions accessible for the agent i. The set of joint

actions is defined as ACT = ACTe×ACT1× · · ·×ACTn. We also use ACTi as the

function that accepts a joint action and returns the action of agent i.

• Protocols: Protocols are defined as mappings from the set of local states to the

set of local actions and define the actions each agent can perform according to its

local state (Pi : Li → 2ACTi\{∅}, i ∈ Ω). In general, action performance is non-

deterministic.
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We now provide the formal definition of interpreted systems based one the fundamental

elements we have defined.

Definition 5.1 (Interpreted system). Let Φ be a set of propositions and Ω = {e, 1, . . . , n}
be a set of agents. An interpreted system I is a tuple:

I = 〈(Li)i∈Ω, (Pi)i∈Ω, (ACTi)i∈Ω, S0, τ, γ〉

where (1) Li is the set of local states of agent i, and the set of global states is defined

as S = Le × L1 × · · · × Ln (2) ACTi is the set of actions that agent i can perform, and

ACT = ACTe × ACT1 × · · · × ACTn is defined as the set of joint actions (3) S0 ⊆ S

is the set of initial states (4) γ : S × Φ → {>,⊥} is called the interpretation function

(5) Pi : Li → 2ACTi\{∅} is the protocol for agent i (6) τ : ACT × S → S is called

the partial transition function with the property that if τ(α, s) is defined, then for all

i ∈ Ω : ACTi(α) ∈ Pi(li(s)). We also write s1
α−→ s2 if τ(α, s1) = s2.

Definition 5.2 (Reachability). A global state s ∈ S is reachable in the interpreted

system I if there exists s0 ∈ S0, s1, . . . , sn ∈ S and α1, . . . , αn ∈ ACT such that for all

1 ≤ i ≤ n : si = τ(αi, si−1) and s = sn. In this chapter, we use G to denote the set of

reachable states.

For an interpreted system I and each agent i we define an epistemic accessibility

relation on the global states as follows:

Definition 5.3 (Epistemic accessibility relation). Let I be an interpreted system and i

be an agent. We define the Epistemic accessibility relation for agent i, written ∼i, on the

global states of I by

s ∼i s′ iff li(s) = li(s
′) and s and s′ are reachable

On the relation between interpreted systems and labelled transition systems:

Interpreted systems are a class of labelled transitions systems specifically designed as a

framework for formal verification of epistemic logic. To verify the temporal properties

introduced in chapter 4, a simple labelled transition system is the appropriate model,

which abstracts away the complexity of interpreted systems. We can prove that the

labelled transition system in chapter 4 can be modelled by a special case of interpreted

systems, which has the same semantic properties as the interpreted system which is derived

from the same policy (see section 5.3). The proof is presented in appendix C.
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5.2.3 CTLK logic

We use CTLK [73] as the specification language. CTL (Computational Tree Logic) is

a branching-time temporal logic which has tree-like time model structure and allows

quantification over paths, and CTLK adds the epistemic modality K to the CTL. CTLK

is defined as follows:

Definition 5.4. Let Φ be a set of atomic propositions and Ω be a set of agents. If p ∈ Φ

and i ∈ Ω, then CTLK formulae are defined by:

φ ::= p | ¬φ | φ ∨ φ | Kiφ | EXφ | EGφ | E(φUφ)

The symbol E is existential path quantifier which means “there exists at least one

path”’. Temporal connectives X, G and U mean “neXt state”, “all future states (Glob-

ally)” and “Until”’. EX, EG and EU provide the adequate set of CTLK connectives. For

instance, safety properties defined by AG(φ) (all future states (Globally)) where A is the

universal path quantifier, can be written as ¬E(>U¬φ), or the equivalence for liveness

properties AF (φ) (always for some future state) is ¬EG(¬φ). Epistemic connective Ki

means “agent i knows that”.

Example 5.2. Consider a conference paper review system. Assume that a1 is the author

of the paper p1. Then the safety property that says if all the papers are assigned to

the reviewers and a2 is the reviewer of p1, then a1 does not know the fact that a2 is the

reviewer of his paper can be defined as: AG(reviewer(p1, a2)→ ¬Ka1reviewer(p1, a2)).

In an student information system, the property that states no two students can be as-

signed as the demonstrator of each other is specified by: AG(¬(demonstratorOf(a2, a3)∧
demonstratorOf(a3, a2))).

Definition 5.5 (Satisfaction relation). Let I be an interpreted system, s ∈ G where G is

the set of reachable states and p ∈ Φ where Φ is the set of atomic propositions. For any

CTLK-formula φ, the notation (I, s) |= φ means φ holds at state s in interpreted system
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I. The relation |= is defined inductively as follows:

(I, s) |= p ⇔ γ(s, p) = >

(I, s) |= ¬φ ⇔ (I, s) 6|= φ

(I, s) |= φ1 ∨ φ2 ⇔ (I, s) |= φ1 or (I, s) |= φ2

(I, s) |= Kiφ ⇔ (I, s′) |= φ for all s′ ∈ G such that s ∼i s′

(I, s) |= EXφ ⇔ for some s′ such that s
α−→ s′ : (I, s′) |= φ

(I, s) |= EGφ ⇔ there exists a path s1
α−→ . . . such that s = s0 and for all

i ≥ 0 : (I, si) |= φ

(I, s) |= E(φ1Uφ2) ⇔ there exists a path s1
α−→ . . . such that s = s1, there is

some i ≥ 1 such that (I, si) |= φ2 and for all j < i we have (I, sj) |= φ1

We use the notation I |= φ if for all s0 ∈ S0 : (I, s0) |= φ.

5.3 Building an interpreted system from a policy

In access control systems, we deal with read and write access procedures. Write proce-

dures, which update a set of variables, are contained in interpreted systems as actions.

In interpreted systems, a principal knows a fact if it is included in his local state or he

can deduce it by applying logical reasoning. In access control systems and in addition to

the local information, agents may obtain permission to directly access some resources in

the system. This permission may be granted by the system or other agents (delegation

of authority). For instance, in a web application users always have access to their own

profile, but they cannot access other users’ profile unless the permission is granted by

the owners. When a read permission to a resource is granted, the resource will become

a part of agent’s local state. When the permission is denied, it will be removed from

agent’s directly accessible information. This behaviour is similar to a system which uses

dynamically changing local states to model permissions.

Interpreted systems formally contain local states which cannot change during execu-

tion of the system. In order to model temporary read permissions, we need to introduce

some locally accessible information, which simulates the temporary read access. In this

section, we explain how to introduce temporary read permissions when modelling access

control systems. Moreover and as was discussed in chapter 3, we model access control

systems in asynchronous manner using interpreted systems framework. An interpreted

system is asynchronous if all joint actions contain at most one non-Λ agent action where

Λ denotes no-operation.
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Given a policy, we build an access control system based on interpreted systems frame-

work by considering the requirements above. Incorporating temporary read permissions

requires introducing some information into the local states. We say the proposition p is

local to the agent i if its value only depends on the local state of i. In the other words,

for all s, s′ ∈ S where s ∼i s′ we have γ(s, p) = γ(s′, p).

Definition 5.6 (Local interpretation). Let Li be the set of local states of agent i in inter-

preted system I and Φi be the set of local propositions. We define the local interpretation

for agent i as a function γi : Li ×Φi → {>,⊥} such that γi(l, p) = γ(s, p) where li(s) = l

for some global state s. We require the set of local propositions to be pairwise disjoint.

The following lemma provides the theoretical background of modelling knowledge by

readability in an interpreted system.

Lemma 5.1. Let I be an interpreted system, G the set of reachable states, i an agent,

Φ the set of propositions and p ∈ Φ. Suppose that p′, p′′ ∈ Φi. If for all s ∈ G:

if γi(li(s), p
′′) = > then (I, s) |= p ⇔ γi(li(s), p

′) = > (5.1)

Then we have:

γi(li(s), p
′′) = > ⇒ (I, s) |= Kip ∨Ki¬p

Proof. We first prove that

γi(li(s), p
′′) = > and (I, s) |= p ⇒ (I, s) |= Kip (5.2)

Let us assume that γi(li(s), p
′′) = > and (I, s) |= p. By (5.1) we have γi(li(s), p

′) = >.

Consider any state s1 ∈ G such that s1 ∼i s. By the definition of ∼i, we have li(s1) = li(s).

Therefore, γi(li(s1), p′) = > and γi(li(s1), p′′) = > which implies (I, s1) |= p. Hence, by

the definition of Ki we are able to conclude that (I, s) |= Kip. The proof for the second

case:

γi(li(s), p
′′) = > and (I, s) |= ¬p⇒ (I, s) |= Ki¬p (5.3)

is similar to the first proof. Therefore, by (5.2) and (5.3) we have γi(li(s), p
′′) = > ⇒

(I, s) |= Kip ∨Ki¬p.

To model knowledge by readability, we incorporate all the atomic propositions that

appear in the policy into the environment. We call those propositions policy propositions.

Now for each policy proposition p and for each agent, we introduce two local atomic

propositions: pread (p′′ in Lemma 5.1) as the read permission of proposition p, and ploc (p′

in Lemma 5.1) as the local copy of p. We modify the transition function in order to satisfy
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the following property: for all reachable states, if pread is true (agent has read access to

p) in a state, then ploc is assigned the same value as p. This property guarantees agent’s

knowledge of proposition p whenever his access to p is granted.

Building the interpreted system Given a policy C with ΣAg as the set of agents,

we build up an interpreted system that models the access control system in the following

way:

Let ΦC be the set of propositions that appear in C (policy propositions), and AC and

RC the set of actions and read permissions in C respectively. For an interpreted system

that corresponds to the policy C, the knowledge gained by reading system information

need to be incorporated into the local states of the agents.

Procedure 3 adopts Lemma 5.1 which describes a method to model temporary read

permissions. The function incKnowledge in procedure 3 accepts AC, RC, ΦC and ΣAg as

the input. For each agent i in ΣAg, Procedure 3 generates a set of local propositions Φi.

The local state of agent i consists of all valuations of Φi. For each proposition p ∈ ΦC,

the set Φi contains two propositions ploc, pread where ploc is the copy of p and gets updated

whenever pread as the access permission for p is true (refer to Lemma 5.1 for the details).

The procedure modifies the actions and corresponding evolutions in AC into the set AuC
in order to update the propositions in Φi in the appropriate way. For each action and for

each agent, if p appears in the effect (if-conditions in lines 12 and 18), then the action

will replace with two freshly created actions: one sets pread to true and ploc to the same

value as p if the read permission of p evaluates to true in the next state (lines 13 and

19). Otherwise (read permission of p evaluates to false in the next state), pread will set

to false and ploc remains unchanged (lines 15 and 21). If p does not appear in the effect

(line 24), ploc and pread will only get updated whenever the read permission of p is affected

by the action.

Calculating the symbolic transition function: We provide the details for cal-

culating the symbolic transition function we use for traversing over a path in our system.

The symbolic transition function accepts a set of states as input and returns the result of

performing an action over the states of that set.

As a convention, we use s[p 7→ m] where s ∈ S to denote the state that is like s except

that it maps the proposition p to the value m. Let st ⊆ S be a set of states. When

performing the action α : ε ← ` in the states of st, the transition is only performed in

the states that satisfy the permission `. In the resulting states, the propositions that do

not appear in ε remain the same as in the states that the transition begins. Therefore,
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Procedure 3 Incorporating read permissions into evolution rules

1: function incKnowledge(AC,RC,ΦC,ΣAg)
2: . Input: AC is the set of actions, RC is the set of read permissions, ΦC the set of

policy propositions and ΣAg the set of agents
3: . Output: returns the updated set of actions and the set of local propositions
4: AuC := AC
5: for all i ∈ ΣAg do
6: Φi := ∅
7: for all p ∈ ΦC do
8: determine r : p← `r ∈ RC where Ag(r) = i
9: Φi := Φi ∪ {ploc, pread}

10: ÂuC := ∅
11: for all α : ε← ` ∈ AuC do
12: if +p ∈ ε then
13: construct α1 : ε ∪ {+ploc,+pread} ←
14: ` ∧ (`r[>/v |+ v ∈ ε][⊥/v′ | − v′ ∈ ε]) where Ag(α1) = Ag(α)
15: construct α2 : ε ∪ {−pread} ←
16: `∧¬(`r[>/v |+v ∈ ε][⊥/v′ |−v′ ∈ ε]) where Ag(α2) = Ag(α)
17: ÂuC := ÂuC ∪ {α1, α2}
18: else if −p ∈ ε then
19: construct α1 : ε ∪ {−ploc,+pread} ←
20: ` ∧ (`r[>/v |+ v ∈ ε][⊥/v′ | − v′ ∈ ε]) where Ag(α1) = Ag(α)
21: construct α2 : ε ∪ {−pread} ←
22: `∧¬(`r[>/v |+v ∈ ε][⊥/v′ |−v′ ∈ ε]) where Ag(α2) = Ag(α)
23: ÂuC := ÂuC ∪ {α1, α2}
24: else
25: if for all q ∈ fv(`r) : +q 6∈ ε and −q 6∈ ε then
26: ÂuC := ÂuC ∪ {α}
27: else
28: construct α1 : ε ∪ {+ploc,+pread} ← `∧
29: (`r[>/v |+v ∈ ε][⊥/v′ |−v′ ∈ ε])∧p where Ag(α1) = Ag(α)
30: construct α2 : ε ∪ {−ploc,+pread} ← `∧
31: (`r[>/v |+v ∈ ε][⊥/v′ |−v′ ∈ ε])∧¬p where Ag(α2) = Ag(α)
32: construct α3 : ε ∪ {−pread} ← `∧
33: ¬(`r[>/v |+ v ∈ ε][⊥/v′ | − v′ ∈ ε]) where Ag(α3) = Ag(α)
34: ÂuC := ÂuC ∪ {α1, α2, α3}
35: end if
36: end if
37: end for
38: AuC := ÂuC
39: end for
40: end for
41: return {Φi | i ∈ ΣAg}, AuC
42: end function
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we define:

Θα(st) =
{
s[p 7→ > | +p ∈ ε][p 7→ ⊥ | −p ∈ ε]

∣∣ s ∈ st, (I, s) |= `
}

The symbolic (BDD-based) presentation of Θα is contained in appendix B.

Definition 5.7 (Derived interpreted system). Let C be a policy with ΣAg as the set of

agents, ΦC the set of policy propositions, and AuC and Φi, i ∈ ΣAg derived from procedure

3. Let Ω = {e} ∪ ΣAg and Φ =
⋃
i∈Ω Φi where Φe = ΦC. Then the interpreted system

derived from policy C is:

IC = 〈(Li)i∈Ω, (Pi)i∈Ω, (ACTi)i∈Ω, S0, τ, γ〉

where

1. Li is the set of local states of agent i, where each local state is a valuation of the

propositions in Φi. The set of global states is defined as S = Le × L1 × · · · × Ln

2. ACTi = {α ∈ AuC | Ag(α) = i} ∪ {Λ} where Λ denotes no operation, and a joint

action is a |Ω|-tuple such that at most one of the elements is non-Λ (asynchronous

interpreted system). For simplicity, we denote a joint action with its non-Λ element

3. S0 ⊆ S is the set of initial states

4. γ is the interpretation function over S and Φ. If p ∈ Φi then we have γ(s, p) =

γi(li(s), p)

5. Pi is the protocol for agent i where for all l ∈ Li: Pi(l) = ACTi

6. τ is the transition function that is defined as follows: if α is a joint action (or simply,

an action) and s ∈ S, then τ(α, s) = s′ if Θα({s}) = {s′}.

The system that we derive from policy C is a special case of interpreted systems where

the local states are the valuation of local propositions that are generated by the procedure

incKnowledge.

5.4 Abstraction technique

In an interpreted system, the state space exponentially increases when extra propositions

are added into the system. Considering a fragment of CTLK properties known as ACTLK

as the specification language, we are able to apply abstraction and refinement techniques

in order to verify the properties. ACTLK is defined as follows:
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Definition 5.8. Let Φ be the set of atomic propositions and Ω set of agents. If p ∈ Φ

and i ∈ Ω, then ACTLK formulae are defined by:

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ | Kiφ | AXφ | A(φUφ) | A(φRφ)

where the symbol A is universal path quantifier which means “for all the paths”.

In this section, we provide a brief introduction to the abstraction and refinement

technique and the notations we use in this thesis. To provide a relation between the

concrete model and the abstract one, we extend the simulation relation introduced in

[31] to cover the epistemic relation between states. Using the abstraction technique that

preserves simulation relation between the concrete model and the abstract one, we are

able to verify ACTLK specification formulas over the model.

In this thesis and for abstraction and refinement, we focus on safety properties ex-

pressed in ACTLK. The advantages of safety properties are first, they are capable of

expressing policy invariants, and second, the generated counterexample contains finite

sequence of actions (or transitions). We can extend the abstraction refinement method to

the full ACTLK by unfolding the loops in the counterexamples into finite transitions as

described in [30], which is outside the scope of this chapter. Note that some properties

like the first epistemic property in example 5.2 does not reside in the category of ACTLK

and the abstraction and refinement procedure can not directly be applied to that formula.

Later, we provide a method to verify such properties in an interactive manner.

5.4.1 Existential abstraction

The general framework of existential abstraction was first introduced by Clark et. al in

[31]. Existential abstraction partitions the states of a model into clusters, or equivalence

classes. The clusters form the states of the abstract model. The transitions between

the clusters in the abstract model give rise to an over-approximation of the original (or

concrete) model that simulates the original one. So, when a specification in ACTL (or in

the context of this paper, ACTLK) logic is true in the over-approximated model, it will

be true in the concrete one. Otherwise, a counterexample will be generated which needs

to be verified over the concrete model.

Notation 5.1. For simplicity, we use the same notation (∼i) for the epistemic accessibility

relation in both the concrete and abstract interpreted systems.

Definition 5.9 (Simulation). Let I and Ĩ be two interpreted systems, Ω be the set of

agents in both systems, and Φ and Φ̃ the corresponding set of propositions where Φ̃ ⊆ Φ.

The relation H ⊆ S × S̃ is simulation relation between I and Ĩ if and only if:
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1. For all s0 ∈ S0, there exists s̃0 ∈ S̃0 such that (s0, s̃0) ∈ H.

and for all (s, s̃) ∈ H:

2. For all p ∈ Φ̃ : γ(s, p) = γ̃(s̃, p)

3. For each state s′ ∈ S such that τ(s, α) = s′ for some α ∈ ACT , there exists s̃′ ∈ S̃
and α̃ ∈ ÃCT such that τ̃(s̃, α̃) = s̃′ and (s′, s̃′) ∈ H.

4. For each state s′ ∈ S such that s ∼i s′, there exists s̃′ ∈ S̃ such that s̃ ∼i s̃′ and

(s′, s̃′) ∈ H.

The above definition for simulation relation over the interpreted systems is similar

to the one for Kripke model [30], except that the relation for the epistemic relation is

introduced. If such simulation relation exists, we say that Ĩ simulates I (denoted by

I � Ĩ).

If H is a function, that is, for each s ∈ S there is a unique s̃ ∈ S̃ such that (s, s̃) ∈ H,

we write h(s) = s̃ instead of (s, s̃) ∈ H.

Lemma 5.2. Let I � Ĩ, s1 ∈ S, s̃1 ∈ S̃ and (s1, s̃1) ∈ H whereH is the simulation relation

between I and Ĩ. Then for each path s1
α2−→ . . . in I, there exists a path s̃1

α̃2−→ . . . in Ĩ

such that for all i ≥ 1, (si, s̃i) ∈ H holds.

Proof. The proof is trivial by item 3 in definition 5.9 and induction over the state tran-

sitions.

Proposition 5.1. For every ACTLK formula ϕ over propositions Φ̃, if I � Ĩ and Ĩ |= ϕ,

then I |= ϕ.

Proof. To prove the proposition, we first prove if I � Ĩ and H is the simulation relation,

then for all s̃ ∈ S̃ and s ∈ S where (s, s̃) ∈ H, (Ĩ , s̃) |= ϕ implies (I, s) |= ϕ. We assume

ϕ is in NNF. The proof proceeds by induction over the structure of ϕ. Let s ∈ S, s̃ ∈ S̃
and (s, s̃) ∈ H.

• If (Ĩ , s̃) |= p where p an atomic formula, then γ(s̃, p) = >. By item 2 in definition

5.9 we have γ(s, p) = > which implies (I, s) |= p. The case is similar for ϕ = ¬p.

• If (Ĩ , s̃) |= ϕ1 ∧ ϕ2, then (Ĩ , s̃) |= ϕ1 and (Ĩ , s̃) |= ϕ2. By induction hypothesis we

have (I, s) |= ϕ1 and (I, s) |= ϕ2. Therefore, (I, s) |= ϕ1 ∧ ϕ2. The case is similar

for ϕ = ϕ1 ∨ ϕ2.

• Assume (Ĩ , s̃) |= AXϕ1. If s
α−→ s′ is a path in I, then by Lemma 5.2 there exists

a path s̃
α̃−→ s̃′ in Ĩ where (s′, s̃′) ∈ H. By the assumption we have (Ĩ , s̃′) |= ϕ1.

Then the induction hypothesis implies (I, s′) |= ϕ1. Thus we can conclude that

(I, s) |= AXϕ1.
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• Assume (Ĩ , s̃) |= A(ϕ1Uϕ2). Let s1
α2−→ . . . be a path in I where s1 = s and

s̃1
α̃2−→ . . . the corresponding path in Ĩ where s̃1 = s̃. By the assumption, there

exists some i ≥ 1 where (Ĩ , s̃i) |= ϕ2 and (Ĩ , s̃i) |= ϕ1 for all j < i. By induction

hypothesis and Lemma 5.2, (I, s) |= ϕ1Uϕ2. As this property holds for all the path

starting at s, we can conclude (I, s) |= A(ϕ1Uϕ2).

• Assume (Ĩ , s̃) |= A(ϕ1Rϕ2). The proof is similar to the case for (Ĩ , s̃) |= A(ϕ1Uϕ2).

• Assume (Ĩ , s̃) |= Kiϕ. We pick a state s′ ∈ S where s′ ∼i s. By item 4 in

definition 5.9, there exists s̃′ ∈ S̃ where s̃′ ∼i s̃ and (s′, s̃′) ∈ H. By the assumption,

(Ĩ , s̃′) |= ϕ. Induction hypothesis implies that (I, s′) |= ϕ. As this property holds

for all the states with accessibility relation ∼i to s, we have (I, s′) |= Kiϕ.

Now, if Ĩ |= ϕ or in the other words, for all s̃0 ∈ S̃0: (Ĩ , s̃) |= ϕ, then by item 1 in

definition 5.9 and the above proof we have for all s0 ∈ S0: (I, s) |= ϕ or equivalently

I |= ϕ.

5.4.2 Variable hiding abstraction

Variable hiding is a popular technique in the category of existential abstraction. In our

methodology, we consider factorizing the concrete state space into equivalence classes that

act as abstract states by abstracting away a set of system propositions. In our approach,

the states in each equivalence class are only different in the valuation of the hidden

propositions. Also the transitions between the states of the abstract model are defined in

such a way that the abstract model simulates the concrete one. Our refinement procedure

will be splitting the abstract states by putting back some of the atomic proportions that

were hidden in the abstract model. We refine the model by analysing the counterexample

generated when verifying safety properties described in ACTLK logic. The model checker

will output a counterexample if the property does not hold.

Definition 5.10. (Local state relation) Let IC be an interpreted system derived from

policy C, Li and Φi be the set of local states and local propositions for the agent i, and

Φ̃i ⊆ Φi. The local relation <i is defined as:

for all l1, l2 ∈ Li : l1<il2 iff for all p ∈ Φ̃i : γi(l1, p) = γi(l2, p)

where γi is the local interpretation for the agent i. The function hi : Li → Li/<i is the

surjection which maps elements of Li into equivalence classes of <i.
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Definition 5.11 (Action classification). Let α : ε ← ` ∈ ACT and Φ̃ ⊆ Φ. We define

α′ : ε′ ← `′ ∈ [α] iff {±p ∈ ε′ | p ∈ Φ̃} = {±p ∈ ε | p ∈ Φ̃}, ∃(Φ\Φ̃).`′ ≡ ∃(Φ\Φ̃).` and

Ag(α′) = Ag(α).

In the above definition, the infix notation ≡ denotes the semantically equivalence

relation. Formally ∃x.f for a Boolean function f is defined as f [0/x] ∨ f [1/x] which

means f could be made to true by putting x to 0 or to 1. If X = {x1, . . . , xn}, then

∃X.f = ∃x1 . . . ∃xn.f .

Definition 5.12 (Abstract interpreted system). Given a policy C, let Ω,Φ and AuC be

deduced as described in section 5.3 and IC be the derived interpreted system. Let Φ̃ ⊆ Φ

and Ω̃ = Ω. We define Interpreted system ĨC as:

ĨC = 〈(L̃i)i∈Ω̃, (P̃i)i∈Ω̃, (ÃCT i)i∈Ω̃, S̃0, τ̃ , γ̃〉

where

1. L̃i = Li/<i where <i is defined in definition 5.10 over Li, and S̃ = L̃e× L̃1×· · ·× L̃n

2. ÃCT i = {[α] | α ∈ AuC and Ag(α) = i} and a joint action is a |Ω̃|-tuple such that

at most one of the elements is non-Λ - i.e. the system is asynchronous. As before,

each joint action is shown by its non-Λ element. If α̃ = [α], then the evolution rule

for α̃ is ε̃← ˜̀where ε̃ = {±p ∈ ε | p ∈ Φ̃} and ˜̀= ∃(Φ\Φ̃).`

3. S̃0 = {(hi(li(s)))i∈Ω̃ | s ∈ S0} where hi as in definition 5.10 maps the elements of Li

to L̃i

4. For all l̃ ∈ L̃i and for all p ∈ Φ̃i we have γ̃i(l̃, p) = γi(l, p) where l̃ = hi(l)

5. P̃i is the protocol for agent i where for all l̃ ∈ L̃i: P̃i(l̃) = ÃCT i

6. τ̃ is the transition function defined as follows: If α̃ is a joint action, s̃ ∈ S̃ and

Θ̃α̃ is the symbolic transition function for interpreted system ĨC and action α̃, then

τ̃(α̃, s̃) = s̃′ if Θ̃α̃({s̃}) = {s̃′}

Proposition 5.2. If IC is the interpreted system derived from policy C and ĨC is defined

as in definition 5.12, then IC � ĨC.

Proof. Let h : S → S̃ be a function where h(s) = (hi(li(s)))i∈Ω̃ and hi is defined as in

definition 5.10. We show that ĨC simulates IC under h. Item 1 in definition 5.9 trivially

holds by property (3). Item 2 holds by property (4) and the fact that if p ∈ Φ̃, then there

is an agent i where p ∈ Φ̃i and we have γ̃(s̃, p) = γ̃i(l̃i(s̃), p).
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α11 αn1

α12
αn2

α̃1 α̃n

Figure 5.1: The counterexample provided by the abstract model may not be valid on the
concrete one. The labels represent the actions that result in the transitions.

Now assume that h(s) = s̃ and τ(α, s) = s′, which is equivalent to Θα({s}) = {s′}.
If α : ε ← ` can be performed in s, then we have (I, s) |= `. It is trivial to show that

(I, s) |= ∃(Φ\Φ̃).` using structural induction. Since the formula ∃(Φ\Φ̃).` only contains

the propositions in Φ̃, then by item 2 in definition 5.9 we have (Ĩ , s̃) |= ∃(Φ\Φ̃).`. Let

α̃ = [α]. By definition 5.11, α̃ can be performed in s̃. From ε̃ ⊆ ε we infer that the

performance of α̃ on s̃ results in a state s̃′ where all the propositions in Φ̃ have the same

value in s̃′ as in s′. Hence, h(s′) = s̃′ as required for item 3 in definition 5.9.

Let us assume that h(s) = s̃ and s ∼i s′. Therefore li(s) = li(s
′) which means that

for all p ∈ Φi : γ(s, p) = γ(s′, p). Since Φ̃ ⊆ Φ, then Φ̃i ⊆ Φi. By item 2 in definition

5.9, for all p ∈ Φ̃i : γ(s, p) = γ̃(s̃, p). Let us assume that h(s′) = s̃′. Then for all

p ∈ Φ̃i : γ(s′, p) = γ̃(s̃′, p). Hence we have for all p ∈ Φ̃i : γ̃(s̃, p) = γ̃(s̃′, p). Therefore

s̃ ∼i s̃′ as required for item 4.

Definition 5.13. We define hA : ACT → ÃCT as the surjection that maps the actions

in the concrete model to the actions in the abstract one.

Given a policy, by using Proposition 5.2 we can build up an abstract access control

system by hiding a set of propositions and abstracting the evolution rules. Now by

proposition 5.1, it is possible to verify ACTLK properties over the abstract model, and

refine the abstraction, if the property does not hold and the counterexample is found to

be spurious.

5.5 Automated Refinement

Our counterexample based abstraction refinement method consists of three steps:

• Generating the initial abstraction: It is done by examining transition blocks corre-

sponding to the variables and constructing clusters of variables which interfere with

each other via transition conditions. In our approach, we build the simplest possible
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initial abstract model by only retaining only the propositions appear in specification

ϕ that we aim to verify.

• Model-checking the abstract structure: Model-checking will be performed on the

abstract model for a specification ϕ. If the abstract model satisfies ϕ, then it can be

concluded that the concrete model also satisfies ϕ. If the abstract model checking

generates a counterexample, it should be checked if the counterexample is an actual

counterexample for the concrete model. If it is a spurious counterexample in the

concrete model as in figure 5.1, the abstract system should be refined by proceeding

to the next step.

• Refining the abstraction: The counterexample guided framework refines the abstract

model by partitioning the states in abstract model in such a way that the refined

model does not admit the same counterexample. For the refinement, we turn some

of the invisible variables into visible. After refinement of the abstract model, step 2

will be proceeded.

The process of abstraction and refinement will eventually terminate, as in the worst

case, the refined model becomes the same as the concrete one, which is a finite state

model. Therefore in the worst case, the verification will turn into the verification of the

concretised model.

5.5.1 Generating the initial abstraction

For automatic abstraction refinement, we build the initial model as simple as possible.

For an ACTLK formula ϕ, we keep all the atomic propositions that appear in ϕ visible in

the abstract model and hide the rest. The abstract model is built up by definition 5.12.

5.5.2 Validation of counterexamples

The structure of a counterexample created by the verification of an ACTLK formula is

different from the counterexample generated in the absence of knowledge modality. In an

ACTLK counterexample, we have epistemic relations as well as temporal ones. Analysis

of such counterexamples is more complicated than the counterexamples for temporal

properties.

A counterexample for a safety property in ACTLK is a loop-free tree-like graph with

states as vertices, and temporal and epistemic transitions as edges. Every counterexample

has an initial state as the root. A temporal transition in the graph is labelled with its

84



s̃0

α̃1

s̃1

α̃2

s̃3

s̃′0α̃′1

s̃′1
α̃′2 s̃′2

α̃′3
s̃′3

∼a

Figure 5.2: A tree-like counterexample generated by the verification of an ACTLK safety
property over the abstract model. In the diagram, s̃0, s̃

′
0 ∈ S0 and s̃1 ∼a s̃′2. As reachability

is a requirement for s̃1 ∼a s̃′2 and s̃1 is already reachable, the temporal path s̃′0
α̃′1−→ s̃′1

α̃′2−→ s̃′2
provides the witness for the reachability of s̃′2. Considering this witness is required in
counterexample checking.

corresponding action and epistemic transition is labelled with the corresponding epistemic

relation. We define a temporal path as a path that contains only temporal transitions. An

epistemic path contains at least one epistemic transition. Every state in the counterex-

ample is reachable from an initial state in the model, which may differ from the root. For

any state s, we write also s for the empty path which starts and finishes in s.

Counterexample formalism: A tree is a finite set of temporal and epistemic paths

with an initial state as the root. Each path begins from the root and finishes at a leaf. For

an epistemic transition over a path, we use the same notation as the epistemic relation

while we consider the transition to be from left to the right. For instance, the tree in the

figure 5.2 is formally presented by:

{s̃0
α̃1−→ s̃1

α̃2−→ s̃3, s̃0
α̃1−→ s̃1 ∼a s̃′2

α̃′3−→ s̃′3}

To verify a tree-like counterexample, we traverse the tree in a depth-first manner. An

abstract counterexample is valid in the concrete model if a real counterexample in the

concrete model corresponds to it.

We use the notation s→ s′ when the type of the transition from s to s′ is not known.

Definition 5.14 (Vertices, root). Let c̃e be a counterexample. Then Vert(c̃e) denotes

the set of all the states that appear in c̃e. Root(c̃e) denotes the root of c̃e. For a path π̃,

Root(π̃) denotes the state that π̃ starts with.

Definition 5.15 (Corresponding paths). Let Ĩ be an abstract model of the interpreted

system I, h be the abstraction function, and hA be the function that maps the actions in I

to the ones in Ĩ. The concrete path π = s1 → · · · → sn in the concrete model corresponds

to the path π̃ = s̃1 → · · · → s̃n in the abstract model, if
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TemporalCheck
h−1
A (α̃) = {α1, . . . , αn}

(s̃
α̃−→ s̃′ ||π, st)⇒t (π,

n⋃
i=1

Θαi(st) ∩ h−1(s̃′))

EpistemicCheck

π′ = s̃′0
α̃′1−→ . . .

α̃′m−−→ s̃′ is a temporal path to s̃′ where s̃′0 ∈ S̃0

(π′, S0 ∩ h−1(s̃′0))⇒∗t (s̃′, st′) ŝt = {s ∈ st′ | la(s) ∈ La(st)}
(s̃ ∼a s̃′ ||π, st)⇒e (π, ŝt)

Figure 5.3: Temporal and epistemic transition rules. In EpistemicCheck rule, π′ is the
witness for the reachability of s̃′ in the abstract model, and st′ is the concrete states
that are reachable through the concrete paths corresponding to π′. In the case that the
model-checker returns all the abstract paths to s̃′, let us say Π̃′, then st′ will be calculated
as st′ =

⋃
{st | π′ = s̃′0 → · · · → s̃′ ∈ Π̃′, s̃′0 ∈ S̃0 and (π′, S0 ∩ h−1(s̃′0))⇒∗t (s̃′, st)}.

• For all 1 ≤ i ≤ n : s̃i = h(si)

• If s̃i
α̃i+1−−→ s̃i+1 is a temporal transition, we have si

αi+1−−→ si+1 where hA(αi+1) = α̃i+1.

• If s̃i ∼a s̃i+1 is an epistemic transition, we have si ∼a si+1 and si+1 is reachable in

the concrete model.

Definition 5.16 (Concrete counterexample). Let c̃e be a tree-like counterexample in the

abstract model where Root(c̃e) ∈ S̃0. A concrete counterexample ce corresponds to c̃e if

Root(ce) ∈ S0 and there exists a one-to-one correspondence between the states and the

paths of the counterexamples ce and c̃e according to the definition 5.15.

To verify a path in the counterexample, we define two transition rules TemporalCheck

and EpistemicCheck denoted by ⇒t and ⇒e as in figure 5.3. For a path with the

transition s̃
α̃−→ s̃′ as the head and for the concrete states st, the rule ⇒t finds all the

successors of the states in st which reside in h−1(s̃′). If the head of the path is the

epistemic transition s̃ ∼a s̃′, then the rule ⇒e extracts all the reachable states in h−1(s̃′)

corresponding to π′ as the witness of reachability of s̃′, which has common local states

with some states in st ⊆ h−1(s̃). Both the temporal and epistemic rules are deterministic.

Definition 5.17. We write⇒∗t to denote a sequence of temporal transitions⇒t. We use

⇒∗ to denote a sequence of the transitions ⇒t or ⇒e.

Proposition 5.3 (Soundness of ⇒∗t ). Let π̃ be a temporal path in the abstract model

which starts at s̃1 and ends in s̃n. If st1 ⊆ h−1(s̃1) and (π̃, st1) ⇒∗t (s̃n, stn) for some

∅ ⊂ stn ⊆ S, then there exists a concrete path that starts from a state in st1 and ends in

a state in stn.
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Proof. We use induction over the length of the path.

Base case: π̃ = s̃1. Then there is no transition from (s̃1, st1) and therefore, the

concrete path is a state in st1.

Inductive case: Assume by inductive hypothesis that for all π̃ = s̃i
α̃i+1−−→ . . .

α̃i+k−−→
s̃i+k of length k, if (π̃, sti) ⇒∗t (s̃i+k, sti+k) for some sti, sti+k ⊆ S, then there exists a

concrete path which begins at a state in sti and ends in a state in sti+k. Consider that

π̃′ = s̃i−1
α̃i−→ s̃i || π̃ is a path of the length k+1 where (s̃i−1

α̃i−→ s̃i || π̃, sti−1)⇒t (π̃, sti)⇒∗t
(s̃i+k, sti+k). By induction hypothesis, there exists a concrete path that begins at some

state si ∈ sti and ends in si+k ∈ sti+k. By the definition of ⇒t, every state in sti is the

successor of some states in sti−1. Therefore, there exists si−1 ∈ sti−1 and αi ∈ h−1
A (α̃i)

such that {si} = Θαi({si−1}). So we select the corresponding transition in the concrete

model to be si−1
αi−→ si which allows si−1 to reach si+k by the existence of a concrete path

from si to si+k.

By proposition 5.3 and definition 5.16, if π̃ = s̃0
α̃1−→ . . .

α̃n−→ s̃n is a path in the

counterexample where (π̃, S0 ∩ h−1(s̃0)) ⇒∗t (s̃n, stn), then there exists a corresponding

concrete path beginning at an initial state s0 ∈ S0 ∩ h−1(s̃0) which ends at some state

sn ∈ stn.

Proposition 5.4 (Soundness of ⇒∗). Let π̃ = s̃1 → · · · → s̃n be a path in the abstract

model. If st1 ⊆ h−1(s̃1) and (π̃, st1)⇒∗ (s̃n, stn) for some ∅ ⊂ stn ⊆ S, then there exists

a concrete path that starts from a state in st1 and ends in a state in stn.

Proof. For the general form of a path that contains both temporal and epistemic transi-

tions, we use the similar approach as in proposition 5.3.

Base case: π̃ = s̃1. Then there is no transition from (s̃1, st1) and therefore, the

concrete path is a state in st1.

Inductive case: Assume by inductive hypothesis that for all π̃ = s̃i → · · · → s̃i+k

of length k, if (π̃, sti)⇒∗ (s̃i+k, sti+k) for some sti, sti+k ⊆ S, then π̃ has a corresponding

concrete path which begins at a state in sti and ends in a state in sti+k.

• Consider that π̃′ = s̃i−1
α̃i−→ s̃i || π̃ is a path of length k + 1 where (s̃i−1

α̃i−→
s̃i || π̃, sti−1) ⇒t (π̃, sti) ⇒∗ (s̃i+k, sti+k). By induction hypothesis, there exists a

concrete path that begins at some state si ∈ sti and ends in si+k ∈ sti+k. By

the same analysis as in the proof of proposition 5.3, there exists si−1 ∈ sti−1 and

αi ∈ h−1
A (α̃i) such that si−1

αi−→ si. Hence, there exists a concrete path from si−1 to

si+k.

• Consider that π̃′ = s̃i−1 ∼a s̃i || π̃ is a path of length k+1 where (s̃i−1 ∼a s̃i || π̃, sti−1)⇒e

(π̃, sti)⇒∗ (s̃i+k, sti+k). By induction hypothesis, there exists a concrete path that
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begins at some state si ∈ sti and ends in si+k ∈ sti+k. By the definition of ⇒e and

proposition 5.3, si is reachable from some initial states in the concrete model, which

is a requirement by definition 5.15. From la(si) ∈ La(sti−1) we conclude that there

exists si−1 ∈ sti−1 such that la(si) = la(si−1). Hence we select si−1 ∼a si as the

corresponding epistemic transition in the concrete model. Therefore, there exists a

concrete path from si−1 to si+k.

In the case that π̃ = s̃0 → · · · → s̃n is a path in the counterexample and (π̃, S0 ∩
h−1(s̃0))⇒∗ (s̃n, stn), then there exists a corresponding concrete path beginning at some

initial state s0 ∈ S0 ∩ h−1(s̃0) which ends at some state sn ∈ stn.

Proposition 5.5 (Completeness of ⇒∗). Let π̃ = s̃1 → · · · → s̃n be a path in the

abstract model. If there exists a concrete path π = s1 → · · · → sn corresponding to π̃

and s1 ∈ st1 ⊆ h−1(s̃1), then (π̃, st1)⇒∗ (s̃n, stn) for some ∅ ⊂ stn ⊆ S.

Proof. For the completeness proof, we use induction over the length of the counterexam-

ples.

Base case: π̃ = s̃1 and π = s1. Then we will have no transition and the proposition

automatically holds.

Inductive case: Assume by inductive hypothesis that for all π̃ = s̃i → · · · → s̃i+k

of length k, if there exists a path π = si → · · · → si+k which corresponds to π̃ and

si ∈ sti ⊆ h−1(s̃i), then (π̃, sti)⇒∗ (s̃i+k, sti+k) for some ∅ ⊂ sti+k ⊆ S.

• Consider that s̃i−1
α̃i−→ s̃i || π̃ is a path of length k + 1 which has the corresponding

concrete path si−1
αi−→ si || π. Let sti−1 ∈ h−1(s̃i−1) be a set of states where si−1 ∈

sti−1. Then the transition (s̃i−1
α̃i−→ s̃i || π̃, sti−1) ⇒t (π̃, sti) leads to the set sti

as the successors of the states in sti−1 with respect to the actions in h−1
A (α̃i). As

αi ∈ h−1
A (α̃i), we have si ∈ sti. Therefore by inductive hypothesis, we have (s̃i−1

α̃i−→
s̃i || π̃, sti−1) ⇒t (π̃, sti) ⇒∗ (s̃i+k, sti+k) or equivalently (s̃i−1

α̃i−→ s̃i || π̃, sti−1) ⇒∗

(s̃i+k, sti+k).

• Consider that s̃i−1 ∼a s̃i || π̃ is a path of length k + 1 which has the corresponding

concrete path si−1 ∼a si || π. Let sti−1 ∈ h−1(s̃i−1) be a set of states where si−1 ∈
sti−1. Then the transition (s̃i−1 ∼a s̃i || π̃, sti−1) ⇒e (π̃, sti) leads to the set sti

which contains the reachable states with the same local states as the states in sti−1.

Therefore, si ∈ sti and by inductive hypothesis we have (s̃i−1 ∼a s̃i || π̃, sti−1) ⇒e

(π̃, sti)⇒∗ (s̃i+k, sti+k) or equivalently (s̃i−1 ∼a s̃i || π̃, sti−1)⇒∗ (s̃i+k, sti+k).
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(sp̄ql, srt̄) (spql, srt) (spq̄l, srt)

(spql̄, sr̄t)

(sp̄q̄l, sr̄t̄)

(sp̄ql, sr̄t)

S0

α11

α12

α2

α3

∼a

(sp̄q, st̄) (spq, st) (spq̄, st)

(sp̄q̄, st̄)

(sp̄q, st)

S̃0

α̃1 α̃2

α̃3

∼a

Figure 5.4: The transition system on the top is the concrete model and on the bottom is
the abstract one obtained by making the propositions l and r invisible.

Forward transition rules in figure 5.3 are sufficient to check linear counterexamples or

equivalently, paths. To extend the counterexample checking to tree-like counterexample,

extra procedures are required. We show the problem in the following example:

Example 5.3. Figure 5.4 demonstrates the transition system for a concrete interpreted

system on top, and the abstract system on the bottom. The model contains two agents,

e as the environment and a as regular agent. States are shown as tuples where the

first element is the local state of e and the second is the local state of a. The diagram

distinguishes the states by using the value of local propositions as the subscript. The

abstract model is generated by making the local proposition l of environment and r of

agent a invisible.

We aim to verify AG(p→ (Kap∨AGq)) over the concrete model. This property holds

for the original model, while it does not hold for the abstract one. The counterexample

generated is:

c̃e = {(sp̄q, st̄)
α̃1−→ (spq, st)

α̃2−→ (spq̄, st), (sp̄q, st̄)
α̃1−→ (spq, st) ∼a (sp̄q, st)}

To find out if there exists any concrete counterexample that corresponds to c̃e, we

check the paths in c̃e one by one. We show the paths in c̃e by π̃1 and π̃2. The paths π̃1

and π̃2 correspond to the concrete paths π1 = (sp̄ql, srt̄)
α11−−→ (spql, srt)

α2−→ (spq̄l, srt) and

π2 = (sp̄ql, srt̄)
α12−−→ (spql̄, sr̄t) ∼a (sp̄ql, sr̄t). Although all the paths in the counterexample

have corresponding concrete paths, the tree does not correspond to a concrete tree. This is

because if we select (spql, srt) as the corresponding state for (spq, st), then the leaf (sp̄ql, sr̄t)

is not reachable from it. A similar situation happens when we select (spql̄, sr̄t). Therefore,

the tree-like counterexample is spurious.

To verify a tree-like counterexample, we introduce two transition rules BackwardTCheck
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BackwardTCheck

(π, S0 ∩ h−1(Root(π)))⇒∗ (s̃, st′)

h−1
A (α̃) = {α1, . . . , αn} rs =

n⋃
i=1

Θ−1
αi

(st) ∩ st′

(π || s̃ α̃−→ s̃′, st)⇐t (π, rs) rs̃ := rs

BackwardECheck

(π, S0 ∩ h−1(Root(π)))⇒∗ (s̃, st′′)

π′ = s̃′0
α̃′1−→ . . .

α̃′m−−→ s̃′ is the temporal path to s̃′ where s̃′0 ∈ S̃0

(π′, S0 ∩ h−1(s̃′0))⇒∗ (s̃′, st′)
ŝt = {s ∈ st′′ | la(s) ∈ La(st ∩ st′)}

(π || s̃ ∼a s̃′, st)⇐e (π, ŝt) rs̃ := ŝt

Figure 5.5: Backward temporal and epistemic transition traversal. Θ−1
α (st) computes the

set of predecessors of the states in st with respect to the transitions made by action α.

and BackwardECheck denoted by ⇐t and ⇐e. The transition rules find all the prede-

cessors of the states in st (figure 5.5) with respect to the temporal or epistemic transitions

in a backward manner which reside in the set of reachable states through the path. We

write ⇐∗ to denote a sequence of backward transitions ⇐t and ⇐e.

Assume that π̃ = s̃0 → · · · → s̃n is a path in the counterexample c̃e which (π̃, S0 ∩
h−1(s̃0)) ⇒∗ (s̃n, stn) for some ∅ ⊂ stn ⊆ S. stn contains all the states in the leaves of

the concrete paths corresponding to π̃. The point is not all the concrete states that are

traveresed in ⇒∗ can reach the states in stn. If s̃ ∈ Vert(π̃), then (π̃, stn) ⇐∗ (s̃0, st0)

finds the set of states rs̃ which contains the reachable states in h−1(s̃) that lead to some

states in stn along the concrete paths corresponding to π̃. st0 contains the initial states

that lead to the states in stn. We use the notation rπ̃s̃ to relate rs̃ with the path π̃. Note

that to find rπ̃s̃ , we first need to find stn through ⇒∗ transition.

Assume that Π̃ ⊆ c̃e. If s̃ ∈ Vert(c̃e) then we define rΠ̃
s̃ = ∩π̃∈Π̃r

π̃
s̃ . If s̃ 6∈ Vert(π̃),

then we stipulate rπ̃s̃ = h−1(s̃). We also stipulate r∅s̃0 = S0 ∩ h−1(s̃0) where s̃0 = Root(c̃e)

and r∅s̃ = h−1(s̃) for all s̃ ∈ Vert(c̃e) where s̃ 6= s̃0.

Proposition 5.6 (Soundness of counterexample checking). A counterexample c̃e in the

abstract model has a corresponding concrete one if:

1. for each path π̃ ∈ c̃e, there exists ∅ ⊂ st ⊆ S such that (π̃, S0 ∩ h−1(s̃0))⇒∗ (s̃′, st)

where s̃0 = Root(c̃e) and π̃ ends in s̃′.

2. for all s̃ ∈ Vert(c̃e) : rc̃es̃ 6= ∅.

Proof. By the soundness of⇒∗, all the paths in π̃ correspond to some concrete paths which

satisfy the requirements in the definitions 5.15 and 5.16. Now for each s̃ ∈ Vert(c̃e), we
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pick a state s ∈ rc̃es̃ as the corresponding state. For each path in c̃e and between all the

corresponding concrete paths, we pick the one which contains the selected states as its

vertices. The union of the selected paths builds a concrete counterexample that satisfies

the requirements in definition 5.16.

Procedure 4 Counterexample checking algorithm

function CheckCE(c̃e, I, h)
. Input: c̃e is the counterexample, I is the concrete model and h is the abstraction

function
. Output: returns true if a concrete counterexample exists. Returns false other-

wise.
{s̃0, . . . , s̃n} = Vert(c̃e) . s̃0 = Root(c̃e)

Π̃ = ∅
rΠ̃
s̃0

= S0 ∩ h−1(s̃0), rΠ̃
s̃1

= h−1(s̃1), . . . , rΠ̃
s̃n

= h−1(s̃n)
for all π̃ ∈ c̃e do

if (π̃, rΠ̃
s̃0

)⇒∗ (s̃′, st) and st 6= ∅ then . π̃ ends at the state s̃′

. there exists some concrete path corresponding to π̃
for all s̃ ∈ Vert(c̃e) do

determine r̂π̃s̃ from (π̃, st)⇐∗ (s̃0, st
′)

. determine the concrete states corresponding to s̃

r
Π̃∪{π̃}
s̃ := rΠ̃

s̃ ∩ rπ̃s̃
if r

Π̃∪{π̃}
s̃ = ∅ then
. no common concrete state for s̃ between concrete paths exists
return false

end if
end for
Π̃ := Π̃ ∪ {π̃}

else
return false

end if
end for
return true

end function

Proposition 5.7 (Completeness of counterexample checking). Assume that c̃e corre-

sponds to a concrete counterexample ce. Then both the items 1 and 2 in proposition 5.6

hold.

Proof. By definition 5.16, there is a one-to-one correspondence between the paths of the

two counterexamples. By completeness of ⇒∗, item 1 holds for all the paths in c̃e. Now

Assume that s̃ ∈ Vert(c̃e) and s is the corresponding state in ce. Then for all π̃ ∈ c̃e, we

have s ∈ rπ̃s̃ , and therefore s ∈ rc̃es̃ . Hence we have rc̃es̃ 6= ∅, as required for item 2.

91



Procedure 4 expresses the tree-like counterexample checking method in a more refined

manner. CheckCE iterates over the paths in c̃e and checks if they corresponds to some

paths in the concrete model by using proposition 5.4 and the transition rule ⇒∗. If π̃

corresponds to some concrete paths, then for each state s̃ in π̃, the algorithm finds all

the concrete states rπ̃s̃ in h−1(s̃) that lead to the leaf states of the concrete paths by

applying⇐∗ over π̃. In each loop iteration, Π̃ stores the paths in c̃e that are processed in

previous iterations. The set rΠ̃
s̃ stores the concrete states that are common between the

paths in Π̃ and should remain non-empty during the process of counterexample checking.

The procedure returns false if no corresponding tree-like counterexample for c̃e exists.

Otherwise it returns true.

Example 5.4. We recall the transition system in example 5.3. As also discovered in

the example, the paths π̃1 and π̃2 correspond to the concrete paths π1 = (sp̄ql, srt̄)
α11−−→

(spql, srt)
α2−→ (spq̄l, srt) and π2 = (sp̄ql, srt̄)

α12−−→ (spql̄, sr̄t) ∼a (sp̄ql, sr̄t). By backward

traversing through the first path and for the states in h−1((spq, st)), we find that only

the state (spql, srt) leads to the final state on π1 and so, rπ̃1(spq ,st)
= {(spql, srt)}. The same

approach for π2 results in rπ̃2(spq ,st)
= {(spql̄, sr̄t)}. As rπ̃1(spq ,st)

∩rπ̃2(spq ,st)
= ∅, the state (spq, st)

can not be assigned to a concrete single state. Therefore, c̃e is spurious.

5.5.3 Refinement of the abstraction

If the counterexample is found to be spurious, then the abstraction should be refined. The

abstract model is generated by making some propositions in the concrete model invisible.

For the refinement, we split some states in the abstract model by putting some of the

invisible propositions back into the model. These propositions should be selected in such

a way that when verifying the refined model, the same counterexample does not appear

again. In this section, we provide the mechanism for refining the abstraction.

Let c̃e be a spurious counterexample. We define two transition rules TemporalTree

which is denoted by ⇒Π̃
t and EpistemicTree denoted by ⇒Π̃

e where Π̃ ⊆ c̃e in figure

5.6. As before, ⇒Π̃
∗ denotes a sequence of temporal and epistemic transitions of the type

⇒Π̃
t and ⇒Π̃

e . We use the following technique in order to find the state in the spurious

counterexample which needs to be split:

The state s̃i ∈ Vert(c̃e) is a failure state if there exists Π̃ ⊆ c̃e and π̃ ∈ c̃e\Π̃ such

that:

1. For all s̃ ∈ Vert(Π̃) : rΠ̃
s̃ 6= ∅

2. π̃ = π̃1 || s̃i(
α̃i+1−−→ | ∼a)s̃i+1 || π̃2 such that (π̃, rΠ̃

s̃0
) ⇒Π̃

∗ (π̃1, std) ⇒Π̃
(t|e) (π̃2, ∅) for

some std 6= ∅.

92



TemporalTree
h−1
A (α̃) = {α1, . . . , αn}

(s̃
α̃−→ s̃′ ||π, st)⇒Π̃

t (π,
n⋃
i=1

Θαi(st) ∩ rΠ̃
s̃′)

EpistemicTree

π′ = s̃′0
α̃′1−→ . . .

α̃′m−−→ s̃′ is a temporal path to s̃′ where s̃′0 ∈ S̃0

(π′, S0 ∩ h−1(s̃′0))⇒∗t (s̃′, st′) ŝt = {s ∈ st′ ∩ rΠ̃
s̃′ | la(s) ∈ La(st)}

(s̃ ∼a s̃′ ||π, st)⇒Π̃
e (π, ŝt)

Figure 5.6: Transition rules for finding failure state in a tree-like counterexample.

For a spurious counterexample, such Π̃ and π̃ exists. Otherwise, we will have rc̃es̃ 6= ∅
for all s̃ ∈ Vert(c̃e), which contradicts proposition 5.6.

Based on Item 1), the sub-tree Π̃ has a corresponding counterexample in the concrete

model. In item 2), π̃ traverses over the concrete states that belong to the set of concrete

trees corresponding to Π̃ and gets to the set of states std ⊆ h−1(s̃i) with no transition

to a state in rΠ̃
s̃i+1

. In the standard terminology as in [30], s̃i is called failure state. We

use the term dead end state for the states in std which the concrete paths end up with

and can not go further. Bad states are the states in h−1(s̃i) that have transition to some

states in rΠ̃
s̃i+1

. Note that in a path counterexample, we have that rΠ̃
s̃i+1

= h−1(s̃i+1).

The process of finding a failure state in the counterexample c̃e proceeds as follows:

1. Set Π̃ to empty set at the beginning

2. Find rΠ̃
s̃ for all s̃ ∈ Vert(c̃e) (as also mentioned in section 5.5.2, r∅s̃0 = S0 ∩ h−1(s̃0)

where s̃0 = Root(c̃e) and r∅s̃ = h−1(s̃) for all s̃ ∈ Vert(c̃e) where s̃ 6= s̃0)

3. Pick a path π̃ ∈ c̃e that does not exist in Π̃

4. Apply⇒Π̃
∗ over (π̃, rΠ̃

s̃0
) to find failure state. If a failure state exists over π̃, then exit

and refine the model

5. Add π̃ to Π̃ and return to step 2. Note that we are considering that the counterex-

ample is found to be spurious (by the procedure 4) and therefore, such failure state

will be found before all the paths in c̃e are added to Π̃.

For the implementation, the above process can be easily incorporated into the proce-

dure 4.

To refine the model, we find the propositions that having them invisible results in

generating spurious counterexample. First assume that the transition from s̃i to s̃i+1 is
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temporal, say s̃i
α̃i+1−−→ s̃i+1. Two situations can result in a transition of type ⇒Π̃

t from std

to an empty set of states:

• There exists no αi+1 ∈ h−1(α̃i+1) such that Θαi+1
(std) 6= ∅. Therefore, no action

has the permission to be performed on the states of std. Assume that φd is the

formula that represents the set of states std. As the state space is finite, the formula

representing the states always exists. Therefore, for all αi+1 ∈ h−1
A (α̃i+1) with `i+1

as the permission, we have φd ∧ `i+1 ≡ ⊥. We call `i+1 conflict formula and φd base

formula.

• For some αi+1 ∈ h−1(α̃i+1) we have Θαi+1
(std) 6= ∅. By the definition of⇒t we have

Θαi+1
(std) ∩ rΠ̃

s̃′i+1
= ∅ where rΠ̃

s̃′i+1
6= ∅. If φ is the formula representing Θαi+1

(std)

and ψ the formula representing rΠ̃
s̃′i+1

, then we have ψ ∧ φ ≡ ⊥. We call φ conflict

formula and ψ base formula.

The other situation is when the transition s̃i and s̃i+1 is epistemic, say s̃i ∼a s̃i+1.

Three situations can result in the epistemic transition ⇒Π̃
e to an empty set of states:

• π′ as the witness of the reachability of s̃i+1 in ⇒Π̃
e is spurious. Then the refinement

should be guided by analysing π′ instead of the main spurious path.

• Suppose that π′ has corresponding concrete paths, i.e. (π′, S0∩h−1(s̃′0))⇒∗t (s̃i+1, st
′)

where st′ 6= ∅. By the definition of ⇒e, the epistemic transition results in an empty

set of states if st′ ∩ rΠ̃
s̃′i+1

= ∅. If φ is the formula representing st′ and ψ the formula

representing rΠ̃
s̃′i+1

, then we call φ conflict formula and ψ base formula.

• The third reason for the epistemic transition to an empty set is when no shared local

state exists between the states of std and st′ ∩ rΠ̃
s̃′i+1

where st′ is the set of reachable

states according to the previous item and both the sets are non-empty. In the other

words, La(std)∩La(st′ ∩ rΠ̃
s̃′i+1

) = ∅. The formula representing the local states in std

with respect to the agent a is called base formula, and the formula representing the

local states of st′ ∩ rΠ̃
s̃′i+1

is the conflict formula.

To refine the model, we return some hidden propositions to separate the set of dead end

states from the rest of the states. This can simply be done by adding all the propositions

occurring in conflict clauses to the abstract model.

Definition 5.18. (conflict clause) Let φ be the base formula and ψ the conflict formula.

Let cnf(ψ) denote the set containing all the conjuncts appear in conjunctive normal form

of ψ. Then c ∈ cnf(ψ) is a conflict clause if c ∧ φ ≡ ⊥.
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If the propositions that occur in one of the conflict clauses become visible, then the

spurious strategy will not happen in the refined model again. In the case of temporal

transition, we add the propositions in the conflict clauses for all the conflicting actions.

To have the smallest possible refinement, we should look for the conflict classes with the

smallest number of literals.

5.5.4 An example of student information system

We illustrate our abstraction refinement method by the example of student information

system (SIS) presented in chapter 4. In this section, the approach for finding conflict

clauses and the refinement of the abstract model is demonstrated using the same temporal

property as in query 4.5. This example is interesting for us as it is also used in [94] and [11]

to demonstrate the verification time and memory usage in their verification approach. The

refinement method for the case of epistemic properties similarly follows the instructions

in section 5.5.3.

Let Σ = ΣAg = {a1, . . . , a5}. We use the convention that the first parameter of an

action is the agent that performs it. The action rules in SIS simple policy are as follows:

assignDemonstrator(u, d, s) :

{+demonstratorOf(d, s)} ← lecturer(u) ∧ higher(d, s)∧¬higher(s, d)

resignAsDemonstrator(u, s) :

{-demonstratorOf(u, s)} ← demonstratorOf(u, s)

The first action rule states that if u is a lecturer and d is in higher level than s,

then u can assign d as the demonstrator of s. The second one stipulates that if u is the

demonstrator of s, then u can resign as the demonstrator.

The policy C is the set of actions derived by instantiating the above rules with the ob-

jects in ΣAg. Assume that at the beginning, the agents a1 and a2 are not the demonstrator

of each other. Then IC is the interpreted system derived from C where

(IC, s0) |= ¬demonstratorOf(a2, a3) ∧ ¬demonstratorOf(a3, a2)

The safety property we are interested in verifying is “is it not possible to get into a

state where a2 and a3 are allocated as the demonstrators of each other?”, represented by

the CTL formula AG(¬(demonstratorOf(a2, a3) ∧ demonstratorOf(a3, a2))).

For the initial abstraction, we only keep the propositions demonstratorOf(a2, a3) and

demonstratorOf(a3, a2) in the system. Substituting the parameters in the rules with the

appropriate objects creates the set of actions. For instance and in the following action in

(IC, agent a1 assigns a2 as the demonstrator of a3:
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assignDemonstrator(a1, a2, a3) :

{+demonstratorOf(a2, a3)} ← lecturer(a1) ∧higher(a2, a3) ∧ ¬higher(a3, a2)

Hiding the propositions lecturer(a1), higher(a2, a3) and higher(a3, a2) will turn the

evolution rule into {+demonstratorOf(a2, a3)}← >.

As the initial abstraction hides lecturer(a1), . . . , lecturer(a5), then all the actions

assignDemonstrator(a1, a2, a3), . . . , assignDemonstrator(a5, a2, a3) have the same per-

mission and the same effect, and therefore they belong to the same equivalence class. Now

we build up the abstract model using the rules in section 5.3 and verify the abstract model.

The verification produces the following counterexample:

c̃e = { s̃0
[assignDemonstrator(a1,a2,a3)]−−−−−−−−−−−−−−−−−→ s̃1

[assignDemonstrator(a1,a3,a2)]−−−−−−−−−−−−−−−−−→ s̃3}

where

(ĨC, s̃0) |= ¬demonstratorOf(a2, a3) ∧ ¬demonstratorOf(a3, a2)

(ĨC, s̃1) |= demonstratorOf(a2, a3) ∧ ¬demonstratorOf(a3, a2)

(ĨC, s̃2) |= demonstratorOf(a2, a3) ∧ demonstratorOf(a3, a2)

The first transition in c̃e has five corresponding transition as the result of performing

the concrete actions in [assignDemonstrator(a1, a2, a3)]. For the next step and from the

successor set of states, none of the actions in the equivalence class of assignDemonstrator

(a1, a3, a2) can be performed. We can see that the conflict clause higher(a3, a2) is com-

mon between all the actions in that equivalence class. Addition of the proposition

higher(a3, a2) prevents the same counterexample to occur in the refined model. Only

one refinement step is sufficient to show that the safety property is true in the abstract

model and hence, is true in the concrete one.

5.5.5 Going beyond ACTLK

While this section develops a fully automated abstraction refinement method for the ver-

ification of temporal-epistemic properties that reside the category of ACTLK over an

access control system which is modelled by an interpreted system, some important epis-

temic safety properties does not reside in this category. For instance and in a conference

paper review system, it is valuable for policy designers to verify that for all reachable

states, an author of a paper cannot find out (¬K) who is the reviewer of his own paper

(see the first property in example 5.2). Although we are able to verify such properties in

the concrete model, we cannot apply automated counterexample-guided abstraction and

96



refinement for such properties.

Let us explore the problem. Assume that for the abstract system Ĩ, abstract state s̃

and agent a, (Ĩ , s̃) |= ¬Kaϕ. That means there exists a state s̃′ such that s̃′ ∼a s̃ and

(Ĩ , s̃′) |= ¬ϕ. If s is a state in the concrete model where h(s) = s̃, then the satisfaction

relation (Ĩ , s̃) |= ¬Kaϕ implies (I, s) |= ¬Kaϕ if it guarantees the existence of a reachable

state s′ ∈ h−1(s̃′) such that s′ ∼a s and (I, s′) |= ¬ϕ.

First of all, if such s′ exists, the satisfaction relation (Ĩ , s̃′) |= ¬ϕ still does not imply

(I, s′) |= ¬ϕ when ϕ is ACTLK except if ϕ is simply a propositional formula which

is the case for many of the properties that we are interested in. Second, the relation

s̃′ ∼a s̃ in the abstract model does not imply s′ ∼a s in the concrete model for some

reachable state s′ ∈ h−1(s̃′). In the case that (Ĩ , s̃′) 6|= ¬ϕ, the model-checker produces a

counterexample that can be checked using the method that is developed in this section

and then the abstract model can be refined. In the case that the satisfaction relation

holds, the model-checker does not produce any witness.

To complete our work for the properties that deal with the negation of knowledge

operator, we restrict the formula in scope of the knowledge operators to propositional

formulas. Then we use an interactive refinement procedure in the following way: we

abstract the interpreted system in the standard way that we described. If the property

does not hold in the abstract model, the counterexample will be checked in the concrete

model and the abstract model will be refined if it is required. If the property turned

to be true in the abstract model as a result of the satisfaction of ¬Ka (for which there

is no witness in the abstract model), then we refine the local state of the agent a in

an interactive manner. In this way, the tool asks the user to selects a set of invisible

local propositions to be added in the next round if required. This process will continue

until a valid counterexample is found, or the local state becomes concretized. In the case

that the safety property does not hold in the concrete model (where information leakage

vulnerability exists), then there is a chance to find it out with the abstract model when

the local states are still abstract.

Query 5.6 in section 5.6 demonstrates such an approach. Our experimental results

show that while the verification time in interactive approach depends on the choices of

the user, in general, the whole verification process is still much lower than verifying the

concrete model at the beginning. Moreover, this interactive approach can turn to a fully

automated way if the tool can use a heuristics based on the policy which can identify the

hidden propositions with higher dependencies to the property and add them automatically

to the abstract model for the refinement.

In our implementation and in the cases when the knowledge is the result of reading

system information and not reasoning, it is sufficient to keep only the local state propo-
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sitions which support the readability of that information. Therefore, the local state will

remain in the least possible abstract form and is not required to be refined when the

property does not hold. Query 5.3 in section 5.6 demonstrates such a property.

5.6 Case studies and experimental results

The policy verification method is implemented in Microsoft F#. The implementation

uses MCMAS as the model checker for interpreted systems. A policy written in the

language proposed in chapter 3 will be translated into ISPL (MCMAS script language)

and verified. In the case of applying abstraction and refinement, an abstract interpreted

system is generated in ISPL and then, MCMAS is invoked to verify the model. If MCMAS

produces a counterexample as the witness of a failing property, the counterexample is

checked to have a corresponding one in the concrete model. If it is spurious, a refined

abstract model will be generated automatically. To find conflict clauses for the refinement,

we use Microsoft Z3 SMT Solver [39].

We use the query of the form init : ϕ where init is the formula representing the initial

states and ϕ is the property we aim to verify. We compare runtime and memory usage

for different case studies and queries with and without applying abstraction. We also

compare the results with other verification methods (RW and PoliVer) when the property

allows us.

5.6.1 Case study: a student information system (SIS)

We recall the student information system policy introduced in section 5.5.4 as the case

study. For such a system, it is important to ensure that no two students can be assigned

as each other’s demonstrator. If a2, a3 ∈ ΣAg, then query 5.1 checks the safety property

that states no two students can be assigned as the demonstrator of each other.

Query 5.1.

¬demonstratorOf(a2, a3) ∧ ¬demonstratorOf(a3, a2) :

AG(¬(demonstratorOf(a2, a3) ∧ demonstratorOf(a3, a2)))

As described in section 5.5.4, only the propositions demonstratorOf(a2, a3) and

demonstratorOf(a3, a2) remain visible in the initial abstract model. Our method proves

the correctness of the property for 10 agents in only one refinement round and by the

addition of proposition higher(a3, a2) to the initial abstract model.
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This query is similar to the query 6.8 in [94]. Becker [11] has compared the verification

time between a planner, theorem prover and RW for this query for 10 agents and we will

do the same comparison in experimental results section. As also mentioned in [11], it may

not be a right comparison as the RW takes knowledge states into account and MCMAS is

also somehow slower than conventional LTL/CTL model-checkers or planners. But still

the comparison provides a view of how abstraction and refinement dramatically reduces

the amount of memory and time in most of applications.

5.6.2 Case study: a conference paper review system (CRS)

We recall the conference paper review system example in chapter 4. Comparing to chap-

ter 4, we apply the abstraction and refinement when verifying temporal and epistemic

properties. In query 5.2, we verify the temporal property as in query 4.1 in the presence

of abstraction refinement. Query 5.3 evaluates a non-ACTLK epistemic property using

automated abstraction by approximating knowledge by the readability. This query is

similar to the query 4.3 in the previous chapter. In section 5.6.4, we will verify several

epistemic properties over the conference paper review system which can not be evaluated

by PoliVer, RW or similar verification tools.

Assume that in the system, a1 ∈ ΣAg and p1 ∈ Σ is a paper. We aim to get sure that

if a principal is the author of a paper, then it is not possible for him to be assigned as the

reviewer of his own paper. Query 5.2 asks if such safety condition holds in CRS:

Query 5.2.

author(p1, a1) ∧ ¬reviewer(p1, a1) : AG(¬reviewer(p1, a1))

The initial abstract model contains only the proposition reviewer(p1, a1). Our tool

finds the satisfaction of the property in one refinement step and by making the proposition

author(p1, a1) visible.

Another interesting query is the one that verifies if an agent has read the review of a

paper, then it is not possible for him to submit a review for that paper later. Query 5.3

asks such question:

Query 5.3.

¬submittedreview(p1, a1) ∧ reviewer(p1, a2) :

AG(Ka1review(p1, a2)→ AG(¬submittedreview(p1, a1))

The above epistemic property is not ACTLK. But we are still able to use abstraction
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and refinement over the model. Firstly, knowledge about a review in the context of our

system is derived by reading the review as a PC member knows the content of a review if

he has already read the review. By this assumption, we only need to keep the supporting

local propositions of agent a1 for reading review(p1, a2). Therefore, we do not need to

apply abstraction over the local state of a1. Hence by the discussion in section 5.5.5, the

automated abstraction and refinement method still works for the query 5.3.

This property does not hold in the system. For this query, the initial abstract model

contains the propositions review(p1, a2) and submittedreview(p1, a1). The initial ab-

straction results in a spurious counterexample, and the verification in total contains five

refinement steps (in our implementation). Finally, we will have the following counterex-

ample, which also holds in the concrete model: a1 as a PC member first reads the review

submitted by a2 when he is not the reviewer of p1. Then the chair (a3) allocates a1 as the

reviewer of p1. At the end, a1 submits his review of the paper.

5.6.3 Case study: an employee information system (EIS)

We demonstrate the abstraction refinement technique when verifying temporal properties

of employee information system presented in chapter 4.

Assume that in the system a1 ∈ ΣAg and a1 is a manager. Query 5.4 checks if in the

case that there is no director at the beginning, none of the agents can set a bonus for a1:

Query 5.4.∧
i

¬director(ai) ∧ manager(a1) ∧ ¬bonus(a1, b1) : AG(¬bonus(a1, b1))

The initial abstract model only contains the proposition bonus(a1, b1) which appears

in the query. The verification requires only one refinement round which makes the propo-

sitions manager(a1), director(a1), . . . , director(an) visible (n is the number of agents).

The counterexample is: a1 resigns as a manager, and then a2, which is already a manager,

allocates him the bonus b1.

The following query asks if it is impossible that some agent allocates a bonus to a1

and a1 remains a manager, assuming that no director exists in the system:

Query 5.5.∧
i

¬director(ai) ∧ manager(a1) ∧ ¬bonus(a1, b1) : AG(¬(bonus(a1, b1) ∧ manager(a1)))

The refinement has only one round. At first, the propositions bonus(a1, b1) and

manager(a1) remain visible. For the refinement, the propositions director(a1), . . . ,
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director(an) will be added to the initial abstract model. This property does not hold

in the system because if a1 resigns as manager and a2 allocates a bonus to him, then no

agent in EIS is able to promote him again as a manager.

5.6.4 Case studies for reasoning about knowledge

We recall the conference paper review system in section 5.6.2 and add some extra rules

to the policy. Let us add the following rules:

• All the PC members have access to the list of the papers assigned to other reviewers

except the papers that they are the authors.

• The number of papers assigned to each reviewer is publicly available to all the PC

members.

Query 5.6 investigates if it is possible for an agent, which is also an author of a paper

in the conference to find out which reviewer is assigned to his paper after all the papers

are assigned:

Query 5.6.

author(p1, a1) : AG(AllPapersAssigned ∧ reviewer(p1, a2)→ ¬Ka1reviewer(p1, a2))

The proposition AllPapersAssigned in query 5.6 denotes a propositional formula that

when evaluates to true, it shows all the papers are assigned to the reviewers. For a reader,

it may look trivial that the property in query 5.6 does not hold in the system. Human

brain uses reasoning to analyse the situation: reviewer a1 has access to the number of

papers assigned to reviewer a2 and the list of assigned papers. So, if the papers of a2

that show up for a1 is less than the total number assigned to a2, then a1 knows that a2 is

the reviewer of p1. In the above, the property holds when the knowledge modality K is

treated as the knowledge gained by accessing the information. But when the knowledge

is treated as reasoning about information, the property does not hold in the system.

Query 5.6 is not ACTLK as it contains the negation of knowledge modality. Therefore

we apply an interactive refinement for the verification. In this approach, we build up

the abstract model and refine it whenever a spurious strategy is found. Each time the

property holds in the abstract model, the tool checks the local state of the agent a1. If the

local state is still abstract, we can not be sure that the property also holds in the concrete

model. Hence, the tool returns the list of invisible local propositions for a1. In each

interactive refinement step, the user can select one or more propositions that he believes
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may help the agent in finding if reviewer(p1, a2) is true. Our interactive verification of

query 5.6 proves that the property does not hold in the model. The final abstract model

contained 28 Boolean variables compared to the 71 variable for the concrete one.

The concept of knowledge by reasoning can not be modelled by temporal properties.

In the above query, a1 does not have direct access to the reviewer of his own paper. So,

the verification frameworks like RW, PoliVer and DynPAL fail to show that the property

in query 5.6 does not hold. Using interpreted systems make verifying such properties

possible, which shows the value of the proposed approach.

The following query shows that reasoning about the assigned reviewer is always pos-

sible in our CRS:

Query 5.7.

author(p1, a1) : AG(AllPapersAssigned ∧ reviewer(p1, a2)→ Ka1reviewer(p1, a2))

Our tool proves that the property holds in the model in 10 refinement rounds. The

initial abstraction begins with the proposition reviewer(p1, a2) and all the propositions

included in the propositional formula of AllPapersAssigned. Each refinement step adds

at least one proposition to the model. For 3 agents and 2 papers, the final abstract model

contains 19 Boolean variables, while the number of variables in the concrete model is

71. This difference demonstrates the huge reduction of state space in the abstract model

compared to the concrete one.

Some safety properties deal with detectability of an evidence in the system. As a prac-

tical example, in EasyChair conference paper review system, a PC member can update

his profile information like email address. Updating user information is also possible by

the chairs and can be done in a legal or illegal way. In all the cases, it is crucial that PC

members can find out if their profile information in updated in order to trace illegal ac-

tivities. This is a weakness in EasyChair implementation as the following safety property

does not hold in easy chair:

Query 5.8.

PCMember(a1) ∧ ¬profileUpdated(a1) : AG(profileUpdated(a1)→ Ka1profileUpdated(a1))

This property is ACTLK and abstraction and refinement algorithm is applicable for

its verification1.

1We have not modelled easyChair in our implementation.
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10 Agents 3 Papers, 7 Agents 2 Papers, 4 Agents 6 Bonus, 12 Agents 6 Bonus, 12 Agents

Query 5.1 Query 5.2 Query 5.3 Query 5.4 Query 5.5

Figure 5.7: Comparison of the verification time for the queries 1 to 5 between MCMAS
with abstraction, PoliVer and RW. Verification time for abstraction and refinement with
MCMAS contains the time for model generation, invoking MCMAS (under Cygwin) and
generating output. Queries 5.6 and 5.7 are not applicable for PoliVer and RW as they are
not concerned about reasoning.

Concrete model Abstraction and refinement

time(s) BDD vars time(s) Max BDD vars last ref time

Query 5.6 6576.5 180 148.3 80 3.28

Query 5.7 6546.4 180 174.1 98 21

Figure 5.8: A comparison of query verification time (in second) and runtime memory usage
(in MB) between the concrete model and automated abstraction refinement method. last
ref time reflects the verification time for the last refined model.

5.6.5 Experimental results

One of the main motivations is to compare the memory usage and verification time in the

concrete model and in the presence of abstraction. We performed the experiments on an

Intel Core2 Dou 2.40GHz workstation with 2GB RAM running windows 7 64-bit.

Figure 5.7 demonstrates the comparison between interpreted systems model using

abstraction and refinement, PoliVer and RW in a logarithmic scale. Except query 5.3, all

the queries deal with temporal properties. Query 5.3 contains knowledge modality which

we treat as knowledge by reading. Therefore, it is still possible to compare the tools

for such a query. It is important to note that in abstraction and refinement method, a

high percentage of evaluation time spends on generating the whole concrete model at the

beginning, invoking executable MCMAS which also invokes Cygwin library, generating

abstract model and verifying the counterexample. In most of our experiments, verification

of the final abstract model by MCMAS takes less than 10ms.

Verification of the queries 5.6 and 5.7 by PoliVer and RW returns different results
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comparing with the interpreted systems model. PoliVer and RW are unable to detect

information leakage in CRS policy because author(p1, a1) is always true in the model,

and the agent a1 never finds a chance to sample reviewer(p1, a2). Therefore for the

query 5.6, safety property holds in the system. Modelling in interpreted systems reveals

that a1 can reason who is the reviewer of his paper. For query 5.6, the tool also outputs

the counterexample which demonstrates the sequence of actions that allows the author to

reason about the reviewer of his paper.

The unique feature of incorporating temporary read permissions into the interpreted

systems and verifying with MCMAS has a big limitation: the number of evolution lines

in MCMAS input script grows exponentially when knowledge for extra propositions is

introduced. We have compared the memory usage and verification time for the queries 5.6

and 5.7 in the concrete model and the abstract one in figure 5.8. Comparing to the concrete

model verification, the results show the considerable reduction in time and memory usage

when applying the proposed abstraction and refinement method which shows its practical

importance (fully automated refinement for the query 5.6 and interactive refinement for

the query 5.7).

5.7 Summary

In this chapter, we introduced a framework for verifying temporal and epistemic prop-

erties over access control policies. In order to verify knowledge by reasoning, we used

interpreted systems as the basic framework and MCMAS (model-checker for multi-agent

systems) as the model-checking engine. Although we are able to find information leak-

age vulnerabilities in this approach, our experiments show that verifying the knowledge

gained by reasoning increases the time and memory usage. In order to make the verifica-

tion more practical for medium to large systems, we perform fully automated abstraction

and refinement when dealing with safety properties. Our optimization method adopts

counterexample-guided refinement known as CEGAR and extends it for ACTLK prop-

erties. Case studies and experimental results show a considerable reduction in time and

space when abstraction and refinement is in use. We also apply an interactive refinement

for some useful safety properties that does not reside in ACTLK like the ones that contain

the negation of knowledge modality.

Most of the required properties that need to be verified are temporal or deal with

the knowledge that is the result of reading system information. Those properties can

be verified much more efficiently with PoliVer or DynPAL. This part of the research

is the complimentary of our approach in chapter 4 i.e. we can find information leakage
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vulnerabilities that is difficult or impossible to be captured by PoliVer but uses more

resources. We believe that both the approaches should be used together in order to prove

that the policy complies with organization security requirements.

When defining the equivalence classes for the actions, we consider the agent that

performs the action as a parameter for classification (definition 5.11). In general and

when the model is too abstract, there may exists other agent’s action resulting in a

similar transition in the system which can be bundled in the same equivalence class

and make the model simpler. Our approach makes the whole process of abstraction

and refinement faster in practice, while it results in a bigger abstract model in model-

checker’s scripting language. But our experimental results show that the verification

time of the abstract models construct a small portion of the whole verification process.

Therefore, our approach results in faster process of abstract model generation, verification

and refinement.

When the abstract model is small, there may exist several agents with similar be-

haviour in the system. As a possible enhancement, we can remove the redundant agents

using symmetry reduction techniques. These techniques may also enable us in verifying

models with unbounded number of agents. We leave this approach as future work. We

would also like to work on a more intelligent heuristic when we find several candidates as

the conflict clauses in future.
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CHAPTER 6

INFORMATION LEAKAGE VERIFICATION IN
DATALOG-BASED POLICIES

This chapter contains research on information leakage verification of access control policies

which is done during my internship at Microsoft Research Cambridge as a part of my PhD.

This research is done in collaboration with Moritz Becker, my supervisor in Microsoft

Research. In this research, we were interested in verifying information leakage in stateless

credential-based access control policies. We adopt Datalog as the policy language, which

is the basis of various policy languages [70, 50, 51, 13]. We proposed the first sound and

complete algorithm to find if a property is opaque (or detectable) in Datalog-based trust

management system.

In 2009, Becker [12] introduced probing attacks in Datalog-based trust management

systems, where an attacker submits a set of credentials together with access requests called

probes and by analysing the response, reasons about confidential information. Becker

proposed an inference system to verify the detectability of properties in a policy. There

are some problems with the approach in [12]: (1) The detectability verification method is

sound, but not provably complete (2) The method is found to be difficult to implement.

Considering the previous approach, we work on a verification method that fixes the

problem of completeness and is feasible to automate. So, we design on a new approach

which deals with opacity (also known as non-detectability). The inference system that we

propose is not only sound (can detect if a property is opaque in the policy), but is also

complete (if a property is opaque in a policy, the inference system will detect it). The

algorithm is also simple enough to be automated. We have implemented the tool in F#

functional language and introduced several optimization methods that effectively reduce

the memory usage and calculation time of the algorithm.

This chapter is structured as follows: section 6.1 introduces the concept of probing

attack in credential-based policies, section 6.2 provides the formal definitions, section 6.3

explains the structure of Datalog-based policies, in section 6.4, a delegation policy will

be introduced, which will be the basis of out case studies, section 6.5 contains the opac-
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ity verification algorithm and corresponding lemmas and theorems, section 6.6 describes

the implementation and optimization methods, section 6.7 is experimental results and

summary is provided in section 6.8.

6.1 Introduction

To show how probing attacks work, consider a banking service which contains the follow-

ing assertions in SecPAL policy syntax [13]:

Bank says x canAccessTransactions if x isClerk.

Bank says centralCA canSay x isClerk.

In the banking system, the central certificate authority is a trusted party, which can

state (in practice by issuing a certificate) that a principal is a clerk. The keyword canSay

in the second assertion states that bank has delegated the authority over the predicate

isClerk to the centralCA.

The fact that an agent is an inspector in the banking system is confidential and not

visible to the bank clerks. Now assume that Eve is interested in finding whether Bob is

an inspector or not. Eve follows the following procedure:

1. By collaborating with centralCA, Eve owns two credentials:

centralCA says Eve isClerk if Bob isInspector.

centralCA says Bank canSay Bob isInspector.

2. For the first probe, Eve submits the two credentials together with the query “centralCA

says Eve canAccessTransactions?”, which is granted.

3. For the second probe, Eve submits the second credential together with the same

query. The access is denied in this case.

Based on the above observations, Eve can find that the first credential is crucial for

the successful access request. The credential affects the evaluation of the query only if

the left hand side evaluates to true, which is only possible if Bank says Bob isInspector.

Therefore by cleverly selecting the probes, an attacker may be able to reason about some

confidential facts in the system.

In this research, we present a formal framework for probing attacks in credential

systems. Similar to the work in this thesis for dynamic access control policies, we use the

concept of observational equivalence to define opacity and detectability in access control
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policies. Given the set of available probes for an adversary, we present an algorithm to

verify if a given query is opaque in a policy to the adversary. The algorithm is provably

sound and complete.

Another important feature of the algorithm is that it provides the witness when the

property is found to be opaque. Only the existence of a witness, which may be a non-

logical policy is enough for a property to be opaque. But in the case of non-realistic

witness, the attacker can ignore the witness or assign a probability which is an informal

degree of likelihood, to the opacity of the property. The algorithm allows enumerating all

possible witnesses for the opacity.

6.2 Probing attacks framework

Definition 6.1 (Policy, language, probe). A policy language is a triple (Pol, Prb,`),

where Pol and Prb are sets called policies and probes, respectively, and ` is a binary infix

relation from Pol × Prb, called decision relation.

Let A ∈ Pol and π ∈ Prb. If A ` π we say that π is positive in A; otherwise (A 6` π),

π is negative in A.

This definition is abstract and does not enforce any restriction on the structure of

policy and probe languages. A probe is a pair that contains a set of credentials and an

access request, called query. A positive probe leads to an access grant, and a negative

one leads to access denial.

Different policy languages like SecPAL [13], DKAL2 [51] and XACML [77] have dif-

ferent policy formats. For example, SecPAL policy is a set of assertions of the form

〈Principal〉 says 〈Fact〉 (see section 2.2.3 for more details). A probe π is of the form

〈A,ϕ〉 where A is the set of assertions and ϕ is the query. If A0 is the system policy, then

we say A0 ` π iff ϕ is deducible from A0 ∪ A.

The access queries in credential systems like DKAL2 and XACML are not easily

evaluated against the union of system policy and submitted credentials. in DKAL2, the

credentials called infon terms first will be modified into another form of credentials, and

then will be added to the system policy. Also DKAL may filter out some of the credentials

submitted by the user to the system according to the permissions. XACML policies have a

hierarchical structure of policy-sets, policies and rules (refer to the section 2.2.1). Hence,

the submitted credentials need to be transformed into the hierarchical structure before

adding up to the policy.

To abstract away the language-dependent details like filtering assertions and translat-

ing the queries into other forms, we define the concept of available probes.
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Definition 6.2 (Alikeness and available probes). An adversary is defined by an equiva-

lence relation ' ⊆ Pol × Pol and a set Avail ⊆ Prb of available probes. If A1 ' A2 for

two policies A1 and A2, we say that A1 and A2 are alike.

The definition of alikeness states that two policies are alike if the visible assertions

are syntactically equivalent. There could be another definition of the alikeness which

considers the semantically equivalence of the visible assertions.

Definition 6.3 (Observational equivalence). Two policies A1 and A2 are observationally

equivalent (A1 ≡ A2) iff

1. A1 ' A2, and

2. ∀π ∈ Avail : A1 ` π ⇐⇒ A2 ` π

An attack to a policy can be of the type passive and active. A passive adversary only

reads the visible assertions of system policy and can not distinguish between the policies

that are alike. An active adversary is able to distinguish the policies not only by reading

the visible assertions, but by evaluating his available probes against them. The two active

and passive attacks over the policy provide a partial knowledge for the attacker, which

can enable him to reason about confidential facts or rules in the system.

Definition 6.4 (Detectability, opacity). A predicate Φ ⊆ Pol is detectable in A ∈ Pol iff

∀A′ ∈ Pol : A ≡ A′ ⇒ Φ(A′)

A predicate Φ ⊆ Pol is opaque in A ∈ Pol iff it is not detectable in A, or in the other

words, iff

∃A′ ∈ Pol : A ≡ A′ ∧ ¬Φ(A′)

By the above definition, a property Φ is detectable is a policy A if Φ holds in all possible

policies which behave the same against submitted probes. Otherwise, Φ is opaque in A.

Opacity is the negation of detectability. A property is opaque in a policy if there exists

another policy which is observationally equivalent to the first one, but Φ does not hold.

On the similarities between the knowledge-based verification of state-based

policies and opacity verification in Datalog-based policies

The concept of alikeness and observational equivalence in credential-based systems is

similar to the epistemic accessibility relation ∼i introduced in section 5.2.2. If s1 and s2

are two global states, then s1 ∼i s2 if the observational part of s1 and s2 for agent i, which
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is called local state of i, is the same. In other words, agent i can not distinguish between

the states s1 and s2.

The definition of detectability in trust management systems is closely related to the

definition of knowledge which is denoted by operator Ki. Agent i knows if Φ in state s

is true (KiΦ) if all the reachable states (similar to availability) that have the same local

state as in s (observationally equivalent) satisfy the property Φ.

6.3 Datalog-based policies

Many existing policy languages including SecPAL [13], RT [70], Cassandra [17], SD3 [62]

and Binder [41] use Datalog as their semantic bases. Datalog can be seen as Prolog

without function symbols (see section 2.2.2 for more details).

The language is parameterized by a function-less first-order signature containing a

countable set of predicate names and a countable set of constants. This gives rise to

atoms P of the form p(~e), where p is a predicate symbol and ~e a sequence of expressions

or terms (i.e., first-order variables or constants) of p’s arity.

The central construct in Datalog is a clause. A clause a is of the form

P0 ← P1, . . . , Pn

where n ≥ 0. The atom P0 is called the head and the sequence of atoms ~P =

〈P1, . . . , Pn〉 the body. The arrow ← is usually omitted if n = 0. We write Cls to denote

the set of all clauses. We write hd(a) to denote a’s head and bd(a) to denote its body.

Given a set of clauses A ⊆ Cls , we write hds(A) to denote the atom set {hd(a) | a ∈ A}.
A query ϕ is either true, false or a ground (i.e., variable-free) boolean formula (i.e.,

involving connectives ¬, ∧ and ∨) over atoms. We write Qry to denote the set of all

queries.

Given a query ϕ ⊆ Qry and set of assertions A, we write A ` ϕ if ϕ evaluates to

true in A, and A 6` ϕ or equivalently A ` ¬ϕ otherwise. In Datalog, ` is the smallest

relation such that the following holds:

• A ` true.

• A ` P0 if there exists atoms P1, . . . , Pn (for some n ≥ 0) such that P0 ← P1, . . . , Pn

is a ground instance of some clause in A and A ` Pi for all i ∈ {1, . . . , n}.

• A ` ¬ϕ if A ` ϕ does not hold.

• A ` Φ ∧ Φ′ if A ` ϕ and A ` ϕ′.
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• A ` Φ ∨ Φ′ if A ` ϕ or A ` ϕ′.

For our proofs, a more operational definition is useful that is based on the intuition

that Datalog clauses are inductive definitions.

Definition 6.5 (Consequence operator). Given a policy A, we define the consequence

operator TA as a monotonic mapping between sets S of ground atoms. In the following

definition, let γ be a ground substitution (a total mapping from variables to constants).

TA(S) = { P ′0 | ∃γ ∃(P0 < −P1, ..., Pn) ∈ A,
γ({P1, ..., Pn}) ⊆ S,

P ′0 = γ(P0) }

The following definition introduces a number of terms that are fundamental to the al-

gorithm described in Section 6.5. Lemma 6.1 establishes an important connection between

probes and clause containment.

Definition 6.6 (Monotonicity, containment, equivalence). A query is monotonic iff it is

equivalent to one without negation. A probe 〈A,ϕ〉 ∈ Prb is monotonic iff ϕ is monotonic.

A policy A is contained in a policy A′ (we write A � A′) iff for all ground atoms P and all

sets S of ground atoms: A ` 〈S, P 〉 ⇒ A′ ` 〈S, P 〉. Two policies A and A′ are equivalent

(we write A
.
= A′) iff A � A′ and A′ � A.

Lemma 6.1. Let A ⊆ Cls , ~P be a set of ground atoms and P a ground atom. A ` 〈~P , P 〉
iff {P ← ~P} � A.

Proof.

(⇐) This direction is straightforward.

(⇒) Suppose the contrary. Let n > 0 be the smallest integer such that there exists a

set S of ground atoms and a ground atom Q with Q ∈ Tn
{P←~P}∪S(∅) and Q 6∈ Tw

A∪S(∅).
Then there must be a ground instance Q ← ~Q of a clause in {P ← ~P} ∪ S such that
~Q ⊆ Tn−1

{P←~P}∪S(∅) ⊆ Tw
A∪S(∅). This clause cannot be in S, or else Q ∈ Tw

A∪S(∅).

Therefore, the ground instance is P ← ~P , and thus ~P ⊆ Tn−1

{P←~P}∪S(∅) ⊆ Tw
A∪S(∅).

Hence Tw
A∪S(∅) = Tw

A∪S∪~P (∅). But from A ` 〈~P , P 〉 it follows that P ∈ Tw
A∪S∪~P (∅), and

hence P = Q ∈ Tw
A∪S(∅), which contradicts the initial assumption.

Now we can instantiate the abstract Definitions 6.1 and 6.2. For evaluating probes,

we adopt the simple model where the query of a probe is evaluated against the union of

the service’s policy and the credentials (i.e., clauses) of the probe.
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Definition 6.7 (Datalog instantiation). We instantiate Polto the powerset of clauses,

℘(Cls). A (Datalog) policy is hence a set A0 ⊆ Cls . A (Datalog) probe π is a pair

〈A,ϕ〉, where A ⊆ Cls and ϕ ∈ Qry. Hence Prbis instantiated to the set of all such

probes. A probe is ground iff it does not contain any variables. We write ¬〈A,ϕ〉 to

denote the probe 〈A,¬ϕ〉. The decision relation `⊆ Pol × Prb is defined as follows:

A0 ` 〈A,ϕ〉 ⇐⇒ A0 ∪ A ` ϕ

Definition 6.8 (Adversary, Datalog alikeness). An adversary is defined by a set Avail ⊆
Prb and a unary predicate Visible ⊆ Cls . If Visible(a) for some a a ∈ Cls , we say that

a is visible.

We extend Visible to policies by defining the visible part of A, Visible(A), as {a ∈
A | Visible(a)}, for all A ⊆ Cls .

Two policies A1, A2 ⊆ Cls are alike (A1 ' A2) iff Visible(A1) = Visible(A2).

Definition 6.9 (Probe detectability and opacity). A probe π ∈ Prb is detectable in

A ∈ Pol iff

∀A′ ∈ Pol : A ≡ A′ ⇒ A′ ` π

A probe π ∈ Prb is opaque in A ∈ Pol iff it is not detectable in A, or equivalently, iff

∃A′ ∈ Pol : A ≡ A′ ∧ A′ 6` π

This definition is a specialization of the definition 6.4 where Φ is instantiated with

{A ⊆ Cls | A ` π}.

6.4 Example: a delegation policy

We define a realistic example of an authorization policy in Datalog, which also is used

for our test cases later.

The example uses a grid computing scenario. The scenario consists of a compute

cluster that allows users to run computing jobs. To execute a job, it may be required to

access some data stored in a data centre. Both the policies of cluster and data centre,

which govern who can run a job or access data delegate authority to a trusted third party.

The following is the set of assertions which represent the policy of the grid, where the

first parameter of the predicate is the principal that “says” or in the other word, signs a

fact. For instance, canExec(Cluster,x,j) means Cluster says principal x can execute

the job j.
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The first rule explains that principal x can execute job j on Cluster if x is member

of cluster, x owns the job j (signed or accepted by Cluster), and data centre Data allows

Cluster to read the job j:

canExec(Cluster,x,j) ←
isMem(Cluster,x),

owns(Cluster,x,j), (1)

canRead(Data,Cluster,j).

Cluster can delegate the authority over ownership and also membership to a trusted

third party:

owns(Cluster,x,j) ← (2)

owns(y,x,j),isTTP(Cluster,y).

isMember(Cluster,x) ← (3)

isMember(y,x),isTTP(Cluster,y).

The data centre Data delegates the authority over the reading of data to the owner of

the data:

canRead(Data,x,j) ← (4)

canRead(y,x,j),owns(Data,y,j).

Data can delegate the authority over ownership to a trusted third party:

owns(Data,x,j) ← (5)

owns(y,x,j),isTTP(Data,y).

In the scenario of grid policy, CA is known as a trusted third party. Therefore, the

following facts also belong to the policy:

isTTP(Cluster,CA). (6)

isTTP(Data,CA). (7)

The policy A0 consists of the assertions (1) - (7).

Now, assume that Eve possesses the following credentials issued by CA:

owns(CA,Eve,Job). (8)

isMem(CA,Eve). (9)

and Eve issued a credential (self-issued) that allows Cluster to read Job:

canRead(Eve,Cluster,Job). (10)
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Now, the mission of Eve is to find out if Bob is a member of the Cluster. Hence, she

issues another self-issued credential to which allows Cluster to read the job Job with the

condition that Bob is a member of Cluster:

canRead(Eve,Cluster,Job) ← (11)

isMem(Cluster,Bob).

The set of credentials that is possessed by Eve denoted by AEve is the credentials (8)

- (11). The set of available probes that Eve can run against A0 is

Avail = {〈A,ϕEve〉 | A ⊆ AEve}

where ϕEve = canExec(Cluster,Eve,Job).

We assume that no assertion in the policy is visible for Eve, or equivalently visible = ∅.
The observations of Eve are as follows:

1. The probe 〈AEve, ϕEve〉 is positive in A0. In the other words A0 ` 〈AEve, ϕEve〉. The

derivation goes in the following way:

(a) isMem(Cluster,Eve) which denotes the membership of Eve in Cluster is

deducible from (6), (9) and (3).

(b) owns(Cluster,Eve,Job) is deducible from (6), (8) and (2).

(c) owns(Data,Eve,Job) is implied from (8), (7) and (5).

(d) canRead(Data,Cluster,Job) is deducible from (10), (c) and (4).

(e) The query canExec(Cluster,Eve,Job) implies from (a), (b) and (d).

2. A0 ` 〈{(8) − (10)}, ϕEve〉. In the context of this thesis, a probe similar to this one

is called minimally positive, where any strictly smaller set of assertions result in a

negative probe.

3. A0 6` 〈A,ϕEve〉 for all A ⊆ {(8), (9), (11)}. In the other words, replacing probe (10)

in item 2) with (11) results in a negative probe.

4. All the policies A′0 that are observationally equivalent to A0 satisfy the property A′0 6`
isMem(Cluster,Bob). Assume the contrary where A′0 ` isMem(Cluster,Bob). By

item 2, we know that ϕEve holds in A′0 ∪ {(8)− (10)}. If we replace the clause (10)

with (11), ϕEve still holds in A′0 ∪ {(8), (9), (11)} as the body of the clause (11) is

true in A′0 and therefore, the replacement does not make any difference. But this

contradicts item 3).
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5. It is clear that the probe 〈∅,¬isMem(Cluster,Bob)〉 is detectable in A0. Note that

this probe is not available for Eve.

6. The probe π = 〈{(9), (11)}, canRead(Data,Cluster,Job)〉 is opaque in A0. The

opacity of π is not trivial as A0 ` π. But there exists a policy A′0 build by removing

clause (4) and replacing Data in clause (1) by x, which A′0 6` π.

6.5 Opacity verification algorithm

Given a Datalog policy A0 ⊆ Cls and an adversary which is defined by a set of avail-

able probes Avail ⊆ Prb and visibility function Visible where Visible(A0) ⊆ A0, the

algorithm determines if a given ground probe π0 ∈ Prb is opaque (or detectable) in A0.

The limitation of the algorithm is the ground input probes, which is reasonable in real

applications as the probes are generally issued for a specific principal and purpose.

As discussed before, a probe π is opaque in A0 iff there exists a policy A′0 which is

observationally equivalent to A0 and π is negative in A′0. Therefore, to prove the opacity

of a probe, we attempt to construct A′0 as the witness. To prove if π is detectable, we

show that no such A′0 exists.

6.5.1 Query decomposition

Consider a probe π = 〈A,ϕ1∨ϕ2〉 ∈ Avail which is positive in A0. We look for the policy

A′0 such that A′0 ` π or equivalently A′0 ∪ A ` ϕ1 ∨ ϕ2. Therefore, it is equivalent to

finding A′0 such that A′0 ` 〈A,ϕ1〉 or the one in which A′0 ` 〈A,ϕ2〉. So, a disjunction

in the query of a probe results is a branch in the search of A′0. In the case of negative

probes in A0, since A0 6` π is equivalent to A0 ` ¬π, we convert all the negative probes

to positive ones and then deal with the disjunctions.

The algorithm starts by computing all disjunctive branches by first computing the

equivalent disjunctive normal form of the queries in the set of available probes. Then the

algorithm constructs a Cartesian product of the disjuncts.

Definition 6.10 (Disjunctive normal form). Let dnf(ϕ) denote the disjunctive normal

form of the query ϕ, encoded as a set of pairs (S+, S−) of sets of atoms. So

ϕ ⇐⇒
∨

(S+,S−)∈dnf(ϕ)

(
∧

S+ ∧ ¬
∨

S−)

Example 6.1. Let ϕ = (p∧q∧¬s)∨(¬p∧¬q∧s). Then dnf(ϕ) = {({p, p}, s), ({s}, {p, q})}.
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Lemma 6.2. Let 〈A,ϕ〉 ∈ Prb. Then A0 ` 〈A,ϕ〉 iff

∃(S+, S−) ∈ dnf(ϕ) : A0 ` 〈A,
∧

S+〉 and A0 6` 〈A,
∨

S−〉

The function flattenA0 accepts a set of probes. For each probe in the set, if the probe

is negative in A0, it converts it to a positive probe by negating the query inside the probe.

flattenA0 constructs a set of pairs of probe sets, where each pair corresponds to a set of

disjunctive search branch.

Definition 6.11 (Flatten). Let Π ⊆ Prb. Then flattenA0(Π) is a set of pairs (Π+,Π−)

of sets of probes defined inductively as follows:

flattenA0(∅) = {(∅, ∅)}.

flattenA0(Π ∪ {〈A,ϕ〉}) = {(Π+,Π−) |

∃(Π+
0 ,Π

−
0 ) ∈ flattenA0(Π), (S+, S−) ∈ dnf(ϕ̃) :

Π+ = Π+
0 ∪ {〈A,

∧
S+〉} and

Π− = Π−0 ∪ {〈A,
∨

S−〉}}

where ϕ̃ = ϕ if A0 ` 〈A,ϕ〉, and ϕ̃ = ¬ϕ otherwise.

Lemma 6.3. Let A′0 ⊂ Cls and Π ⊆ Prb.

∀π ∈ Π : A′0 ` π ⇐⇒ A0 ` π iff

∃(Π+
0 ,Π

−
0 ) ∈ flattenA0(Π) : (∀π ∈ Π+

0 : A′0 ` π) and (∀π ∈ Π−0 : A′0 6` π)

Proof. (⇒) Assume ∀π ∈ Π : A′0 ` π ⇐⇒ A0 ` π. For the sake of contradiction, suppose

the negation of the right hand side where true. By the definition of flatten, there exits

π = 〈Aπ, ϕ〉 and (S+, S−) ∈ dnf(ϕ̃) (where ϕ̃ = ϕ if A0 ` 〈A,ϕ〉, and ϕ̃ = ¬ϕ otherwise)

such that A′0 6` 〈Aπ,
∧
S+〉 or A′0 ` 〈Aπ,

∨
S−〉.

If A0 |= π, then by Lemma 6.2 we have A′0 6|= π which contradicts the initial assump-

tion. If A0 6|= π then by Lemma 6.2 we have A′0 6` 〈Aπ,¬ϕ〉 and hence A′0 ` π, which is

again a contradiction. Therefore, the right hand side of the equivalence holds.

(⇐) Assume that the right hand side of the equivalence is correct. Let π = 〈Aπ, ϕ〉 ∈
Π. Suppose A0 ` π. Then by the assumption and the definition of flatten, there exists

(S+, S−) ∈ dnf(ϕ) such that A′0 ` 〈Aπ,
∧
S+〉 and A′0 6` 〈Aπ,

∨
S−〉. From Lemma

6.2 it follows that A′0 ` π as required. Now suppose A0 6` π. Then we can show that

A′0 ` 〈Aπ,¬ϕ〉 and hence A′0 6` π as required.

Example 6.2. Suppose Avail = {π1, π2} where π1 = 〈A1,¬p ∨ q〉 and π2 = 〈A2,¬p ∧ q〉.
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Suppose further that A0 ` π1 and A0 6` π2. Let πp1 = 〈A1, p〉, πq1 = 〈A1, q〉, πp2 =

〈A2, p〉 and πq2 = 〈A2, q〉. Then flattenA0(Avail) contains four pairs of the probe sets:

({πp2}, {π
p
1}), (∅, {πp1, π

q
2}), ({πq1, π

p
2}, ∅), ({πq1}, {π

q
2})

Apart from observational equivalence, opacity also requires that π0 = 〈A,ϕ〉 be nega-

tive in A′0. By Lemma 6.2, this is equivalent to picking a pair (S+, S−) ∈ dnf(¬ϕ) such

that A′0 ` 〈A,
∧
S+〉 and A′0 6` 〈A,

∨
S−〉.

Let π0 = 〈A,ϕ〉 be a probe and (S+, S−) ∈ dnf(¬ϕ). The probe π0 is opaque in the

policy A0 if there exists A′0 such that:

1. A′0 ' A0

2. There exists a pair (Π+
0 ,Π

−
0 ) ∈ flattenA0(Avail) such that:

(a) all probes in Π+
0 ∪ {〈A,

∧
S+〉} are positive, and

(b) all probes in Π−0 ∪ {〈A,
∨
S−〉} are negative.

If such A′0 exists, then we call A′0 as witness for the opacity of π0 in A0.

The high level overview of the search strategy is as follows: taking the requirement

of policy alikeness, the algorithm starts with the policy Visible(A0). To satisfy the

requirement (a), we go through each probe in Π+ one by one and for each probe and we

add one or more clauses to the witness candidate. Monotonicity of ` guarantees that

addition of the clauses does not violate (a). To satisfy the requirement (b), after each

addition, we check if (b) still holds. If not, we need to backtrack and try a different way

to satisfy (a). When all probes of Π+ have been considered, the candidate is guaranteed

to be a witness.

6.5.2 Preserving alikeness

Addition of clauses may violate the alikeness requirement A′0 ' A0 when the newly

added clause a 6∈ A0 while Visible(a) = >. To ensure that only invisible clauses are

added, we use a nullary predicate pHi that does not occur in A0, nor in π0 nor in Avail .

Therefore, if pHi occurs in clause a ∈ Cls , then ¬Visible(a). Addition of pHi as a freshly

chosen predicate to the witness does not make any difference in terms of observationally

equivalence. Therefore, instead of adding P ← ~P to the witness, we add P ← pHi, ~P

which preserves the alikeness. The following Lemma formalizes the discussion:

Lemma 6.4. Let A ⊆ Cls such that pHi does not occur in A. Then there exists Â ⊆ Cls

such that Â
.
= A ∪ {pHi} and Visible(Â) = ∅.
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(Init)

(Π+
0 ,Π

−
0 ) ∈ flattenA0(Π0) π0 = 〈A,ϕ〉

(S+, S−) ∈ dnf(¬ϕ) ∀π ∈ Π− ∪ {〈A,
∨

S−〉} : Visible(A0) 6` π

〈Π+ ∪ {〈A,
∧

S+〉},Π− ∪ {〈A,
∨

S−〉},Visible(A0)〉 ∈ Init(Π0)

(Probe)

Ã ⊆ A

〈a1, . . . , an〉 ∈ perms(Ã) ∀i ∈ {1, . . . , n} : ~Pi = bd(ai) ~Pn+1 = ~P

A′′ =
n+1⋃
k=1

⋃
Pk∈~Pk

{Pk ← hds({a1, . . . , ak−1})} ∀π ∈ Π− : A′ ∪ A′′ 6` π

〈Π+ ∪ {〈A,
∧

~P 〉},Π−, A′〉 〈A,
∧ ~P 〉−−−−→ 〈Π+,Π−, A′ ∪ A′′〉

Figure 6.1: Transition system for verifying opacity

Proof. Let Â = {(P ← pHi, ~P ) | (P ← ~P ) ∈ A} ∪ {pHi}. Consider any atom P and

set of atoms ~P , and let A1 = {P ← pHi, ~P} ∪ {pHi} and A2 = {P ← ~P} ∪ {pHi}. A

simple induction on n shows that for all sets S of ground atoms, Tn
A1∪S(∅) = Tn

A2∪S(∅),
and hence, A1

.
= A2. Therefore, Â

.
= A ∪ {pHi}.

6.5.3 Initial states

The algorithm is presented in a non-deterministic state transition system where a state

is a triple 〈Π+,Π−, A〉. Π+ and Π− are sets of ground probes and A is the policy. Π+

is the set of positive probes that are not considered yet, Π− are the set of probes that

should be negative in the witness and A is the witness candidate. Each state transition

(non-deterministically) removes a positive probe from Π+ and adds the resulting clauses

to the witness. A final state is of the form 〈∅,Π−, A′0〉. If the final state is produced by

a series of transitions starting from an initial state, the policy A′0 is guaranteed to be a

witness for the opacity of π0 in A0, and such a final state exists iff π0 is opaque in A0.

Definition 6.12 (Initial state). The rule (Init) in Fig. 6.1 defines a set Init(Π0) of

states, parametrised by a set of probes Π0. We write Init to denote Init(Avail), the set

of initial states.

Lemma 6.5 (Soundness and completeness of (Init)). The following two statements are

equivalent:

1. π0 is opaque in A0.
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2. There exists 〈Π+,Π−,Visible(A0)〉 ∈ Init and A′0 ⊆ Cls such that pHi does not

occur in A′0 and Visible(A0) � A′0 and

∀π ∈ Π+ : A′0 ` π and ∀π ∈ Π− : A′0 6` π

Proof. (1 ⇒ 2) If A0 6` π0 then the statement holds for A′0 = A0. Now assume that

A0 ` π0 and let π0 = 〈Aπ, ϕπ〉. Then there exists A′0 ∈ Cls such that pHi does not occur

in A′0 and Visible(A0) � A′0 and

∀π ∈ Avail : A′0 ` π ⇐⇒ A0 ` π and

A′0 ` ¬π0

By the definition of opacity and Lemma 6.3:

∃(Π+
0 ,Π

−
0 ) ∈ flattenA0(Avail) : (∀π ∈ Π+

0 : A′0 ` π) and (∀π ∈ Π−0 : A′0 6` π)

By Lemma 6.2, there exists (S+, S−) ∈ dnf(¬ϕπ) such that A′0 ` {〈Aπ,
∧
S+〉} and

A′0 6` {〈Aπ,
∨
S−〉}. By (Init), 〈Π+ ∪ {〈Aπ,

∧
S+〉},Π− ∪ {〈Aπ,

∨
S−〉},Visible(A0)〉 ∈

Init as required by 2).

(2 ⇒ 1) If A0 6` π0, then 1) is trivially true. Now assume A0 ` π0. Then by (Init)

and Lemmas 6.3 and 6.2:

∀π ∈ Avail : A′0 ` π ⇐⇒ A0 ` π and

A′0 ` ¬π0

Since pHi occurs neither in Avail nor in ¬π0, there exists Â0 ⊆ Cls such that, by

Lemma 6.4, Â0
.
= A′0 ∪ pHi and Visible(Â0) = ∅.

Now consider Â′0 = Â0∪Visible(A0). Clearly, Â′0 ' A0. By (Init), A = Visible(Â0),

so by assumption, Visible(A0) � A′0 � Â0. Therefore, Â′0
.
= Â0.

Since pHi occurs neither in A′0 nor in π0 nor in Avail l, we have

∀π ∈ Avail : Â′0 ` π ⇐⇒ A0 ` π and

Â′0 ` ¬π0

Hence Â′0 ≡ A0 and Â′0 6` π0, as required.

6.5.4 Algorithm termination: minimal witnesses

Potentially, for every probe 〈Π+,Π−,Visible(A0)〉 ∈ Init there are infinitely many A′0 �
Visible(A0) such that all the probes in Π+ are positive. To prove the termination of

algorithm, we need to get sure there is finite number of searches for proving that π0 is not

opaque.
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Our algorithm computes a finite set of minimal witness candidates that is sufficient

to prove the opacity. The candidates are minimal in the sense that for every policy A′0

that makes the probes in Π+ positive, there exists a policy A′′0 in the set of computed

witnesses in which A′′0 � A′0. By the anti-monotonicity of 6`, if A′0 makes the probes in

Π− negative, A′′0 also makes them negative. This property is the basis for the prove of

completeness and termination of the algorithm.

6.5.5 Computing the witnesses

The transition system considers one positive probe in each state transition. Consider a

state 〈Π+∪{π},Π−, A′〉. We aim to find all minimal ways of extending A′ to some A′∪A′′

such that A′ ∪ A′′ ` π. By the monotonic construction of positive probes, we can ignore

A′ and simply find all minimal A′′ such that A′′ ` π.

Assume that π = 〈A,ϕ〉 is positive in A′′. Then there should exists a subset of clauses

Ã ⊆ A which are relevant in making the probe positive. To build up the witness, we

need to consider all 2|A| possible cases, since each Ã results in a different witness that

are incomparable by the relation �. The choice of the subset in each state results in a

different state. Therefore, the transition system is non-deterministic.

Now assume the positive probe π = 〈A,
∧ ~P 〉 ∈ Π+. We look for the minimal clauses

A′′ under the assumption that Ã ⊆ A is relevant. Since Ã is relevant, all the clauses

P0 ← P1, . . . , Pn ∈ Ã are actively involved in the derivation of A′′ ∪ Ã `
∧ ~P . This is

possible if the body atoms are derivable, and derivation of
∧ ~P depends on all the heads

of clauses in Ã. Lets demonstrate the process with an example:

Example 6.3. Suppose that ~P = z and Ã = {p ← q., r ← s., u ← v.}. We aim to find

all minimal A′′ such that A′′ ∪ Ã ` z.

The simplest case is when all the body atoms in Ã is true in A′′ and z is derived from

the heads in Ã (stage 1):

A′′1 = {q., s., v., z ← p, r, u}

For the next stage, we assume all the configurations in which A′′ contains the body

atoms of Ã’ clauses, and the heads of the clauses combine with the clauses in A′′ to make

the body atoms in Ã true.

We have six other solutions, where in three of them, A′′ contains only one body atom,

and in other three, A′′ contains two body atoms. Two of the solutions are as follows:

A′′2 = {q., s← p., v ← p., z ← p, r, u}
A′′5 = {q., s., v ← p, r., z ← p, r, u}
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For our example, we have the following six solutions for different permutations of Ã,

in which are contained in all other candidates for A′′:

A′′8 = {q., s← p., v ← p, r., z ← p, r, u}

A′′9 = {q., v ← p., s← p, u., z ← p, r, u}

A′′10 = {s., q ← r., v ← p, r., z ← p, r, u}

A′′11 = {s., v ← r., q ← r, u., z ← p, r, u}

A′′12 = {v., q ← u., s← p, u., z ← p, r, u}

A′′13 = {v., s← u., q ← r, u., z ← p, r, u}

The solution A′′8 is contained in (�) A′′1, A′′2 and A′′5. For each solution in {A′′1, . . . , A′′7},
there exists a solution from {A′′8, . . . , A′′13} which is contained in the first one. So, we only

require considering the solutions in stage three. This is because if one of the clause in

the other solutions makes all the probes in Π− negative, then this will be the case for the

corresponding solution in stage three. It is possible to show that this observation holds

in the general case [14].

Lemma 6.6 (Soundness of
π−→). If 〈Π+ ∪ {π},Π−, A′〉 π−→ 〈Π+,Π−, A′ ∪A′′〉, then A′′ ` π.

Proof. By (Probe), π must be of the form 〈A,
∧ ~P 〉. We will prove the following, stronger,

statement.

For all Ã ⊆ A, 〈a1, . . . , an〉 ∈ Perm(Ã) and

A′′0 =
n⋃
k=1

⋃
Pk∈bd(ak)

{Pk ← hds({a1, ..., ak−1})} (6.1)

we have A′′0 ∪ Ã `
∧

hds(Ã).

This implies the statement of the lemma since, by the definition of (Probe), A′′ =

A′′0 ∪{P ← hds(Ã)} is precisely the set of assertions added to the state in a
π−→ transition;

furthermore, for all P ∈ ~P : (P ← hds(Ã)) ∈ A′′ and Ã ⊆ A, and therefore:

A′′ ∪ Ã `
∧

hds(Ã)⇒ A′′ ∪ A `
∧

~P ⇒ A′′ ` π. (6.2)

The proof proceeds by induction on n. In the base case, Ã = hds(Ã) = ∅. Then hds(Ã) =

∅, so the statement trivially holds.

In the inductive case, n = |Ã| > 0. Consider any 〈a1, . . . , an〉 ∈ Perm(Ã). Let A′′0 be
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defined as in (6.1). Then we have A′′0 = A′′1 ∪ A′′2, where

A′′1 =
n−1⋃
k=1

⋃
Pk∈bd(ak)

{Pk ← hds({a1, ..., ak−1})},

A′′2 =
⋃

Pk∈bd(an)

{Pk ← hds({a1, ..., an−1}})}.

By the induction hypothesis, A′′1 ∪{a1, . . . , an−1} `
∧

hds({a1, . . . , an−1}). By monotonic-

ity of `, it also holds that

A′′0 ∪ Ã `
∧

hds({a1, . . . , an−1}). (6.3)

It remains to show that A′′0 ∪ Ã ` hd(an).

By the definition of A′′2 and by (6.3), and since A′′2 ⊆ A′′0, we have A′′0 ∪ Ã `
∧

bd(an).

Since an = (hd(an)← bd(an)) ∈ Ã, this implies A′′0 ∪ Ã′ ` hd(an), as required.

Lemma 6.7 (Completeness of
π−→). Let A1 and A2 be the policies with n = |A2|, and ~P a

set of ground atoms. If A1 ` 〈A2,
∧ ~P 〉 and for all A′2 ( A2 : A1 6` 〈A′2,

∧ ~P 〉, then there

exists 〈a1, . . . , an〉 ∈ perms(A2) and

• ~Pi = bd(ai), for i ∈ {1, . . . , n}, and

• ~Pn+1 = ~P

such that for all i ∈ {1, . . . , n+ 1}:

∀Pi ∈ ~Pi : (Pi ← hds({a1, . . . , ai−1})) � A1

Proof. Let Φ(A1, A2, ~P ) denote the parametrized statement of the lemma. The proof

proceeds by induction on n = |A2|. If n = 0, the statement trivially holds.

Now assume n > 0. By assumption, A2 is minimal. Therefore, there exists a smallest

integer m such that hds(A2) ⊆ Tm
A1∪A2

(∅). Furthermore, m ≥ 1, since n > 0. Hence

there exists Ã2, the largest subset of A2 such that hds(Ã2)∩Tm−1
A1∪A2

(∅) = ∅, and such that

k = |Ã2| ≥ 1.

Let ~P ′ be the set of all body atoms of clauses in Ã2. By construction of Ã2 and

since hds(Ã2) ⊆ hds(A2) ⊆ Tm
A1∪A2

(∅), we have that ~P ′ ⊆ Tm−1
A1∪A2

(∅), and again by

construction of Ã2, we also have ~P ′ ⊆ Tm−1

A1∪(A2\Ã2)
(∅). Since |A2 \ Ã2| = n − k < n, we

can assume the inductive hypothesis Φ(A1, A2 \ Ã2, ~P
′), and in particular, the existence

of 〈a1, ..., an−k〉 ∈ Perm(A2 \ Ã2) with the stated properties.

Let 〈an−k+1, ..., an〉 be any permutation of Ã2. We thus have constructed a permutation

〈a1, ..., an〉 ∈ Perm(A2). This permutation gives rise to sets S0, ..., Sn and ~P1, ..., ~Pn+1 as
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defined in the lemma.

For i ∈ {1, ..., n− k}, the desired property follows directly from the inductive hypoth-

esis. Furthermore, the inductive hypothesis states that

∀P ′ ∈ ~P ′ : (P ′ ← hds({a1, ..., an−k})) � A1.

Then for i ∈ {n− k + 1, ..., n}, we get (since ~Pi ⊆ ~P ′):

∀Pi ∈ ~Pi : (Pi ← hds({a1, ..., ai−1})) � (Pi ← hds({a1, ..., an−k})) � A1.

It thus remains to consider the case i = n + 1. From A1 ` 〈A2,
∧ ~Pn+1〉 and A2 �

hds(A2) we get ∀Pn+1 ∈ ~Pn+1 : A1 ` 〈hds(A2), Pn+1〉, and hence by Lemma 6.1,

(Pn+1 ← hds({a1, ..., an})) � A1,

as required.

6.5.6 Example

Let

A = {p← q., r ← s., u← v.},
Avail = {〈A′, z〉 | A′ ⊆ A},
A0 = {q., s., v., z ← p, r, u.},
Visible(A0) = ∅, and

π0 = 〈∅, q ∨ s〉.

We are interested in finding if π0 is opaque or detectable in A0. It is clear that the

only probe that is positive in A0 is π = 〈A, z〉 and all other probes in Avail are negative.

Since the queries in the available probes do not have any disjunction, flattenA0(Avail)

contains one pair of probe sets ({π},Avail\{π}). Also dnf(¬(q ∨ s)) = {(∅, {q, s})}.
Therefore, Init contains one initial state σ0 = 〈Π+,Π−, ∅〉 where Π+ = {π} and Π− =

Avail\{π} ∪ {〈∅, q ∨ s〉}.
Beginning for σ0, the only possible transition is when Ã = A, as for all Ã ( A,

〈Ã, z〉 ∈ Π−. For all six different permutations of Ã, we have the candidates A′′8 − A′′13.

The first four fail to make 〈∅, q ∨ s〉 ∈ Π− negative. But A′′12 − A′′13 pass the test. Hence,

〈∅,Π−, A′′12〉 (in the case of selecting A′′12) is a final state and therefore π0 is opaque. To

make A′′12 observationally equivalent to A0, we can easily inject the atom pHi into the

bodies of the clauses in A′′12.
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6.5.7 Soundness and completeness of the algorithm

In this section, we provide the soundness and completeness of the algorithm. The proofs

are fully presented in [14].

Definition 6.13 (Reachability). We write σ → σ′ to denote σ
π−→ σ′ for some π ∈ Prb

and states σ, σ′. We write σ∗ for the reflexive-transitive closure of →. We write ` σ if

σ0 →∗ σ for some σ0 ∈ Init.

Lemma 6.8 (Soundness). If ` 〈∅,Π−0 , A〉, then π0 is opaque in A0.

Proof. If ` 〈∅,Π−0 , A〉, their exists σI = 〈Π+,Π−,Visible(A0)〉 ∈ Init such that σI →∗

〈∅,Π−0 , A〉, where Π+,Π− are specified as in (init), and Π− = Π−0 .

There is a series of (Probe) applications starting from σI , with one
π−→ transition

for each π ∈ Π+, leading to 〈∅,Π−0 , A〉. Hence by repeated application of Lemma 6.6,

we have ∀π ∈ Π+ : A ` π. From the definitions of (init) and (Probe) it follows that

∀π ∈ Π− : A 6` π, and that pHi does not occur in A. Furthermore, Visible(A0) ⊆ A.

Therefore, by Lemma 6.5, π0 is opaque in A0.

Lemma 6.9 (Completeness). If π0 is opaque in A0, then there exists Π−0 ⊆ Prb and

A ⊆ Cls such that

` 〈∅,Π−0 , A〉

Proof. If π0 is opaque in A0, then by Lemma 6.5, there exists σI = 〈Π+
0 ,Π

−
0 , AI〉 ∈ Init

and A′ ⊆ Cls such that AI � A′ and ∀π ∈ Π+ : A′ ` π and ∀π ∈ Π− : A′ 0 π.

By Lemma 6.3, there exists (Π+,Π−) ∈ flattenA0(Avail) such that ∀π ∈ Π+ : A′ ` π
and ∀π ∈ Π− : A′ 0 π. Furthermore, by Lemma 6.2, there exists (Π+

S ,Π
−
S ) as defined

in (init) such that ∀π ∈ Π+
S : A′ ` π and ∀π ∈ Π−S : A′ 0 π. Let Π+

0 = Π+ ∪ Π+
S and

Π−0 = Π− ∪ Π−S . Then σI = 〈Π+
0 ,Π

−
0 , ∅〉 ∈ Init.

We now prove that for all Π+
1 ⊆ Π+

0 , there exists A � A′ such that

〈Π+
1 ,Π

−
0 , AI〉 →∗ 〈∅,Π−0 , A〉.

The proof proceeds by induction on m = |Π+
1 |. If m = 0, the statement holds trivially.

If m > 0, there exists π = 〈Aπ,
∧ ~P 〉 ∈ Π+

1 . By the inductive hypothesis, there exists

A1 � A′ such that 〈Π+
1 \ {π},Π−0 , AI〉 →∗ 〈∅,Π−0 , A1〉. By inspection of (Probe), we also

have 〈Π+
1 ,Π

−
0 , AI〉 →∗ σ = 〈{π},Π−0 , A1〉. It remains to show that there exists A � A′

such that σ
π−→ 〈∅,Π−0 , A〉.

Since π ∈ Π+
0 , we have A′ ` π. Then there exists a minimal Ã such that Ã ⊆ Aπ and

A′ ` 〈Ã,
∧ ~P 〉. Let n = |Ã|. Then by Lemma 6.7, there exists 〈a1, ..., an〉 ∈ Perm(Aπ) and
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there exist
~Pi = bd(ai), for i ∈ {1, ..., n}, and
~Pn+1= ~P

such that for all k ∈ {1, ..., n+ 1} and all Pk ∈ ~Pk

(Pk ← hds({a1, ..., ak−1})) � A′.

Hence A′′ =
⋃n+1
k=1

⋃
Pk∈~Pk{Pk ← hds({a1, ..., ak−1})} � A′, and thus there exists A =

A1 ∪A′′ � A′. By anti-monotonicity of 0, we get ∀π′ ∈ Π−0 : A 0 π′. Hence all conditions

of (Probe) are satisfied.

Therefore, σi →∗ σ
π−→ 〈∅,Π−0 , A〉.

The above lemmas allow us to prove the following soundness and completeness theo-

rem:

Theorem 6.1 (Soundness and completeness). π0 is opaque in A0 iff there exists Π− ⊆ Prb

and A ⊆ Cls such that ` 〈∅,Π−, A〉.

Proof. This follows directly from Lemmas 6.8 and 6.9.

We are also able to find an upper bound for the number of transitions.

Theorem 6.2. The number of
〈A,

∧ ~P 〉−−−−→ transitions from any state is bounded by

n∑
m=0

n!

(n−m)!

where n = |A|.

Proof. The number of Ã ⊆ A of size m is
(
n
m

)
, and for each such Ã, there are m! per-

mutations. The size m runs from 0 to m, hence the number of transitions is bounded

by
n∑

m=0

m!

(
n

m

)
=

n∑
m=0

n!

(n−m)!

6.6 Implementation and optimizations

We implemented the algorithm based on the state transition system in figure 6.1 in F#

functional programming language. We compute Init in lazy enumeration and then per-
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form depth first search based on the transition rule (Probe). The back end is a Datalog

engine, which computes the evaluation relation `. The front end contains a parser for the

problem which includes four blocks for A0, Visible(A0), Avail and π0. The GUI displays

the witness, in the case that the probe is found to be opaque. In our implementation, it

is possible for the users to go through all the witnesses one after each other.

What does the feature of enumerating over the witnesses buy us? In our experiments,

there were several cases when we expected a property to be detectable in a policy, but

the algorithm reported opacity. When we investigated the witnesses, we found that they

are all “improbable” cases. Therefore, this constructive method allows us to detect a

property in a policy with a rather high likelihood.

Theorem 6.2 shows that the number of transitions and therefore, search space is very

high. This makes the algorithm to be practically infeasible even for small policies. There-

fore, we need to come up with implementing some optimization methods to reduce the

search space.

6.6.1 Order independence

One of the important features of the algorithm that significantly reduces the search state

is that the order of processing the probes in Π+ is irrelevant. This feature reduces the

search space by the order of |Π+|!. Hence, it is sufficient to fix a particular order for the

probes at the initial state.

Lemma 6.10 (Order independence). If σ0
π1−→ σ1

π2−→ σ2 then three exists σ′1 such that

σ0
π2−→ σ′1

π1−→ σ2.

Proof. The proof of the lemma directly follows from the definition of (Probe).

6.6.2 Redundant probes

If π = 〈A,ϕ〉 ∈ Avail , it is possible for the adversary to send all the probes of the form

{〈A′, ϕ〉 | A′ ⊆ A〉}. We call π a downward closed probe and simply mark it by a plus sign

in the specification of Avail .

Definition 6.14. Let π = 〈A,ϕ〉 and π′ = 〈A′, ϕ′〉. We write π ⊆ π′ iff ϕ = ϕ′ and

A ⊆ A′. Similarly, we write π ( π′ iff π ⊆ π′ and π 6= π′.

If π1 ⊆ π2, by the monotonicity of `, it is clear that if π1 is a positive probe, then π2 is

also positive. A similar argument exits for the probes in Π−. We formalize this intuition

by the following lemma.
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Lemma 6.11. Let π1, π2 be two monotonic probes such that π1 ⊆ π2.

• ∃A′ : 〈Π+ ∪ {π1, π2},Π−, A〉 →∗ 〈∅,Π−, A′〉 iff

∃A′′ : 〈Π+ ∪ {π1},Π−, A〉 →∗ 〈∅,Π−, A′′〉 and A′′ ` π2.

• ∃A′ : 〈Π+,Π− ∪ {π1, π2}, A〉 →∗ 〈∅,Π− ∪ {π1, π2}, A′〉 iff

∃A′′ : 〈Π+,Π− ∪ {π2}, A〉 →∗ 〈∅,Π− ∪ {π2}, A′′〉 and A′′ 6` π1.

Proof. The lemma is trivially true if π1 = π2. We now assume π1 ( π2.

1. (⇒) From the definition of (Probe) and the left hand side of the equivalence, the

existence of A′′, such that the first part of the right hand side holds, is clear. By

Lemma 6.6, we have A′′ ` π1, which, by monotonicity of ` and π1 and π2, implies

A′′ ` π2.

(⇐) The right hand side of the equivalence implies 〈Π+ ∪ {π1, π2},Π−, A〉 →∗

〈{π2},Π−, A′′〉, and in particular, within this chain there exists a transition σ
π1,~a−−→

σ′ for some states σ, σ′,~a. Since π1 ( π2, we have 〈{π2},Π−, A′′〉
π2,~a−−→ 〈∅,Π−, A′〉,

where A′ = A′′.

2. (⇒) Assuming the left hand side of the equivalence, the existence of A′′, such that

the first part of the right hand side holds, is clear. From the definition of (Probe),

we have A′′ 0 π2, which, by antimonotonicity of 0 and the monotonicity of π1 and

π2, implies A′′ 0 π1.

(⇐) The right hand side of the equivalence implies that A′′ 0 π1 and A′′ 0 π2, and

hence 〈Π+,Π− ∪ {π1, π2}, A〉 →∗ 〈∅,Π− ∪ {π1, π2}, A′〉, where A′ = A′′.

We use Lemma 6.11 to eliminate redundant probes from the initial states. If 〈Π+
0 ,Π

−
0 , A〉 ∈

Init, then it will be transformed to the state 〈Π+
1 ,Π

−
1 , A〉 where

• Π+
1 = {π ∈ Π+

0 | ¬∃π′ ∈ Π+
0 : π′ ( π}, and

• Π−1 = {π ∈ Π−0 | ¬∃π′ ∈ Π−0 : π ( π′}.

6.6.3 Conflicting probes

We can discard the initial states σ0 = 〈Π+,Π−, A〉 ∈ Init in which there exists monotonic

probes π1 ∈ Π+, π2 ∈ Π− such that π1 ⊆ π2. The following lemma proves that no

transition from this initial state exists.
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Lemma 6.12. Let π1, π2 be monotonic probes such that π1 ⊆ π2. There exists no state

σ such that 〈Π+ ∪ {π1},Π−{π2}, A〉
π1−→ σ.

Proof. Suppose the contrary. Then there exists σ = 〈Π+,Π−∪{π2}, A′〉 with the property

as stated. Moreover, A′ ` π1, by Lemma 6.6, and A′ 0 π2, by (Probe). Since π1 ⊆ π2,

the former implies A′ ` π2, which contradicts the latter.

6.6.4 Minimally positive probes

We first define the concept of minimally positive probes in our algorithm.

Definition 6.15 (Minimally positive). A probe π = 〈A,ϕ〉 ∈ Prb is minimally positive

in A′ ⊆ Cls iff ϕ is monotonic and A′ ` π and for all π′ ( π : A′ 6` π.

We use to notation σ
π,~a−→ σ′ to parameterize the transition with the corresponding

permutation of clauses in Ã (~a ∈ perms(Ã)). Lets assume that π+ is a minimally positive

probe. The definition of minimally positive shows that the only possible transition for

σ
π+,~a−−→ σ′ is when a ∈ perms(A), or in the other words Ã = A.

Therefore, if a probe π+ is marked as minimally positive probe in the set Avail , the rule

(Probe) will be replaced with a much simpler one, when the selection of Ã is deterministic

and Ã = A. This optimization reduces the number of transition from a particular state

by the factor of 2|A|.

6.7 Experimental results

We compared the computational time for the opacity verification algorithm for several test

cases, and compared the results when applying the three different optimization methods.

6.7.1 Test cases

We performed our tests based on the delegation policy introduced in section 6.4. We

derived six test cases (TC1-TC6) from the policy and measured the computation times

and the number of calls to Datalog engine. Our experiments show that the verification

time is directly related to the number of calls to the Datalog engine. We run our exper-

iments in four different configurations: (1) verification without applying any optimization

method (2) eliminating conflicting probes (section 6.6.3) (3) eliminating redundant probes

(section 6.6.2) (4) applying both optimizations in (2) and (3) together. We performed the
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experiments on an Intel Core2 Dou P9500 2.53GHz workstation with 4GB RAM running

windows 7 32-bit.

TC1. We consider the policy A0 to be the basic delegation policy (clauses (1) - (7))

and Visible(A0) = ∅. The adversary possesses the credentials AEve = {(8) − (11)} and

the query is:

ϕEve = canExec(Cluster,Eve,Job)

The set of available probes contain 24 probes: Avail = {〈A,ϕEve | A ⊆ AEve〉}. We are

interested weather Eve can detect if Bob is a member of Cluster. The input probe π0 is

specified as

π0 = 〈∅,¬isMem(Cluster,Bob)〉

which allows us to conclude A0 ` ¬isMem(Cluster,Bob). The probe π0 is detectable

in A0.

TC2. We add the atomic clause isMem(Cluster,Bob) to A0. Therefore, Bob is now

a member of Cluster. We change π0 to 〈∅, isMem(Cluster,Bob)〉. Our experiments

show that the probe containing the clauses (8), (9) and (11) is positive, while the probe

containing the clauses (8) and (9) is negative. Therefore, the probe (11) is relevant. It is

only possible if its body atom isMem(Cluster,Bob) is derivable.

The tool reports the probe π0 is (correctly) opaque. In the witnesses, there is a clause

which is rather unlikely:

isMem(Cluster,Bob)←
isMem(CA,Eve), owns(CA,Eve,Job).

Therefore, we can conclude that isMem(Cluster,Bob) in the policy with a high prob-

ability.

TC3. We add three irrelevant clauses {p1., p2., p3.} to AEve in order to increase the

number of probes in Avail by the factor of 8.

TC4. We manually prune the set Avail in TC3 in order to build the sufficient set of

probes for detecting π0:
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Figure 6.2: Verification time (striped) and number of calls to the Datalog engine (plain)
on log scales. Numbers above bars denote the number of initial states.

〈{(8), (9), (10)}, ϕEve〉∗

〈{(8), (9), (11), p1., p2., p3.}, ϕEve〉
〈{(9), (10), (11), p1., p2., p3.}, ϕEve〉
〈{(8), (10), (11), p1., p2., p3.}, ϕEve〉

Only the first of the above probes is positive. The structure of the probes 2-4 allow us

to select the first probe as the minimally positive, which makes the verification process

more efficient.

TC5. We use the same policy as in TC1, but change the query to

ϕEve = canExec(Cluster,Eve,Job) ∧ ¬isBanned(Cluster,Eve).

π0 is still detectable in A0.

TC6. We prune the probes in TC5 to the sufficient set for proving detectability:

〈{(8), (9), (10)}, ϕEve〉
〈{(8), (9)}, ϕEve〉
〈{(8), (9), (11)}, ϕEve〉

From the above probes, only the first one is positive. As ϕEve is not monotonic, we

can not use the minimally positive probe optimization.
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The query ϕEve in TC1-TC4 does not contain negation and therefore, no conflicting

probe exists after flattening process. This is clearly shown in figure 6.2 that conflicting

probe optimization does not have any effect on verification time and Datalog engine

calls.

TC2 runs 40% faster than TC1. This is because the property in TC1 is detectable.

Therefore, the program traverses all the possible states to prove its detectability. For

TC2, the program stops when it finds the first witness.

TC3 shows how the number of available probes dramatically increases the verification

time (here by the factor of 8) when no optimization is used. Optimization increases the

performance by the factor of 8.

The most effective strategy to decrease the verification time is manually picking the

relevant probes, or in the other words, manually pruning the set of available probes. TC4

and TC5 are the cases that demonstrate such an intuition. TC4 decreases the time by

the factor of 3,150 compared to TC3 in non-optimized configuration. TC6 decreases the

time by the factor of 19,000 compared to non-optimized TC5 and 150 non-optimized

configurations.

TC5 shows for non-monotonic probes, applying the conflicting probes optimization

significantly reduces the number of initial states (in our case, from 16,384 to only 1).

This will result in considerable increase in performance.

Our last experiment demonstrates the effect of the size of Avail in verification time.

We created two set of available probes, one created by adding a number of trivially

positive probes, and the other one by adding negative ones. The verification time increases

exponentially when the number of positive probes increases (which is predictable, as it

increases the number of states), but increases linearly when the number of negative probes

increases. This is also expected, as the negative probes do not result in branching.

6.8 Summary

In this research, we first proposed a general framework of probing attacks, and formalized

the notions of policy, probe and adversary. We instantiated our framework into Datalog,

which is the basis of many existing policy languages.

The main contribution of the research is the answer for the following open question:

Is the problem of opacity in Datalog policies decidable?

We answered this question in the positive by presenting a complete decision procedure

for opacity. The algorithm tries to find the witnesses to prove the opacity of a property
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(or in general, a probe) in the policy. The witnesses masquerade the original policy the

way that they behave the same against submitted probes, but the property is not true in

them.

We also provide the opportunity to consider possibilistic information flow in a policy.

The algorithm and the implementation is designed in a way that it can enumerate over all

possible witnesses for the opacity. The adversary can verify the possibility that a witness

contain realistic assertions. Therefore, with a specific probability, an adversary can detect

a property in a policy, which is reported as opaque.

The algorithm has two limitations: (1) the set of available probes contain only ground

probes. Although it is a realistic assumption, there may be some cases where the attacker

self-issues non-ground credentials. (2) The set of available probes is finite. As before, this

assumption is realistic in many cases, but it should be useful to prove the opacity in the

cases that adversary has access to infinitely many probes. We consider solving the above

limitations as the future work.
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CHAPTER 7

CONCLUSION

Confidentiality of sensitive data and prevention of unauthorized access to the resources

is one of the main concerns in multi-agent collaborative systems. Access control is the

mechanism to enforce the security requirements for accessing information in the system.

To provide the assurance that the security requirements are correctly enforced, the system

should be evaluated against required properties.

In this thesis, we developed several techniques that enable us to investigate temporal-

epistemic properties of access control systems in an automated way. The key contributions

are:

• We implemented a model-checking method in order to verify properties of access

control systems considering the knowledge of the coalition of agents which is gained

by reading system information. The output of this research is implemented as a

verification tool called PoliVer [66, 65] which comparing to the similar verification

framework RW [94] has increased verification time and memory efficiency. This

improvement is achieved by replacing the knowledge states in RW (which are used

to introduce a memoryful approach) with system states. Although PoliVer does not

retain memory (history of reading), extra variables for storing the history of reading

information can be simply incorporated into the policy when it is required.

• The abstraction of the knowledge in PoliVer increases the efficiency of model-

checking while there is still a category of information leakage vulnerabilities that

PoliVer is not able to detect. Therefore, we introduce a complimentary framework

in order to identify information leakage as a result of reasoning in dynamic policies

which is based on the interpreted systems. To increase the efficiency, we devel-

oped a counterexample-guided abstraction refinement technique for the verification

of temporal and epistemic properties.

• We finally and as a research on stateless policies, proposed a sound and complete

method for detecting information leakage in Datalog-based policies [15, 16].
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This chapter discusses the outcomes of this research and future work.

7.1 Summary

We have divided the research of temporal-epistemic evaluation of dynamic access control

policies into two major parts: first, we estimate knowledge with the information that is

gained by reading system information, and second, we study the verification of knowledge

which is gained by reasoning.

7.1.1 PoliVer

We developed PoliVer based on the model-checking method we proposed for the verifica-

tion of temporal-epistemic properties in chapter 4. Given a set of rules, initial condition

and a goal, PoliVer checks if a coalition of agents can achieve the goal through a finite

sequence of actions. The specifications of PoliVer are categorized as follows:

• Expressive policy language: Action rules and read permission rules in PoliVer

policy language can express the laws in a wide variety of access control systems.

Compared to RW [94, 95], the policy language allows updating a group of propo-

sitional variables when executing an action. The permission for an action allows

quantification and negation and therefore is flexible enough to express separation of

duty, mutual exclusion between the roles and role inheritance. Variable bulk update

plays an important role to support integrity of constraints.

• Query language: The query asks if a set of agents can collaborate to achieve a

goal, defined as a property, through a sequence of actions beginning from a set of

initial states. The query language is also flexible from the point of collaborative

goals, temporal properties and epistemic properties in the form of reading system

propositions. For instance, a goal that contains 〈review(p, b)〉 looks if the coalition

in the goal can reach to a state that at least one of them is able to read the value

of review(p, b). Nested goals are also supported by the query language.

• Model-checking algorithm: The model-checking formalism of PoliVer finds the

reachability of a goal, together with evaluating the knowledge of the agents over the

information they require to know in order to be able to achieve the goal. The initial

knowledge of the coalition is determined in the query and the knowledge in each

state is the accumulation of the knowledge gained by performing actions or reading

system information along the strategy.
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In general, PoliVer verifies epistemic properties by approximating the knowledge by

readability. Our experimental results show that the time and memory efficiency increases

by this approximation, which is sufficient to detect a high percentage of vulnerabilities.

7.1.2 Reasoning about knowledge in access control systems

To cover the evaluation of information leakage vulnerability that can not be detected by

PoliVer, this thesis introduces a complimentary formalization based on interpreted sys-

tems. Using interpreted systems allows us to verify the knowledge expressed by the modal

logic KT45n. We have shown that there are some information leakage vulnerabilities that

can not be detected by the state of art verification tools line RW, DynPAL [11] and Po-

liVer. The major obstacle of modelling an access control system using interpreted systems

framework is the state explosion problem. In order to make the verification more efficient,

we introduced a fully automated abstraction and refinement technique when the property

is ACTLK. The method is an extension of CEGAR (Counterexample guided abstraction

refinement) [30]. Using this method, we are able to check a tree-like counterexample

generated by the model-checker in order to find if it is also valid in the concrete model.

While the original CEGAR only supports linear counterexamples produced by verifying

temporal properties, our method covers tree-like counterexamples produced by verifying

temporal-epistemic properties. The method is implemented in Microsoft F# and uses the

model-checker for multi-agent systems MCMAS as the model-checking engine.

Some important safety properties that include the negation of knowledge modality do

not fit into the category of ACTLK. For such cases, our tool uses an interactive refine-

ment which is described in chapter 5. Therefore, it is valuable to automate abstraction

refinement such for such safety properties together with appropriate refinement heuristics.

7.1.3 Information leakage in Datalog-based policies

In the category of stateless policies and as an independent research in Microsoft Research

Cambridge, we looked at information leakage vulnerability of Datalog-based credential

systems. The problem of opacity in Datalog-based policies was an open problem [12]. In

our research, we proposed a sound, complete and terminating algorithm that given a set

of available probes (refer to chapter 6), it is able to decide whether a property is opaque

in the policy or detectable. The algorithm uses the concept of observational equivalence

similar to the one we used for dynamic policies. When a property is found to be opaque,

our implementation allows the security analyst to traverse through all the witnesses. This
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may informally judge the likelihood of opacity of a property as some witnesses may be

far from a practically real policy.

7.2 Future work

In this thesis, we demonstrated the effectiveness and efficiency of the developed techniques

using small size case studies that were used by other researchers. But it is very important

to evaluate large size real systems like Facebook, EasyChair and Google docs, which we

will consider for the future work. Evaluating such systems also requires overcoming the

limitations of the model-checker for multi-agent systems to handle large scale models.

In the general case, Access control systems can have unbounded numbers of states,

since objects can be created dynamically. Unfortunately, unbounded state model-checking

in general is undecidable, therefore we can model-check only finite systems. To address

this problem, in this thesis and for evaluating dynamic policies, we adopt the “small

scope hypothesis” defined by the authors of Alloy [61] that is suitable for finding a high

proportion of errors and can be expanded to the large model. Also experimental results

show that a sufficient scope can be found in order to provide the confidence of having no

bug in the system [6]. So, by selecting a sufficient scope, we are able to simulate an access

control system with unbounded numbers of states with a finite state one and verify the

required properties over it.

But still evaluating a system with unbounded number of objects is valuable and more

promising. To study the evaluation of access control systems for unbounded number of

objects through model-checking, we need to apply the appropriate abstraction techniques.

One of the techniques that can possibly help in achieving such a goal is symmetry reduction

technique. Using such technique, we will be able to remove the agents that behave in a

similar way, which may be potentially infinite. Therefore, the original model will be

reduced to a finite state model and model-checking problem becomes decidable.

Furthermore and as we discussed before, another work that is left for the future in this

thesis is the appropriate heuristics for abstraction refinement when verifying the properties

with the negation of knowledge modality. Improving the heuristics for the cases that we

have more than one candidate for the refinement is also an interesting work for the future.
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APPENDIX A

CALCULATING BDD-BASED TRANSITION
FUNCTION IN POLIVER

In section 4.2, the pre-states are defined as a set of states that satisfy the properties in

the definition 4.5. For the implementation, we need to find the transition function based

on binary decision diagram presentation.

A.1 An overview of binary decision diagrams

Binary decision diagrams are a method of representing Boolean functions. Boolean func-

tions are the functions with the arguments of type Boolean variables, and return a Boolean

value. BDDs are a class of binary decision trees where the non-terminal nodes represent

Boolean variables and terminal nodes are Boolean values (0 and 1). Each binary decision

tree represents a Boolean function of the variables that appear as non-terminal nodes.

BDDs are capable of getting compact by removing of duplicated terminal nodes, and

removing redundant and duplicate non-terminals. We call these compact diagrams as

reduced BDDs.

Ordered binary decision diagrams (OBDD) are the diagrams that are imposed by a

variable ordering. The ordering prevents a variable to occur several times along a path.

Another important feature of OBDDs is that the reduced OBDD (denoted by ROBDD)

that represents a Boolean function is unique.

Several algorithms are defined for ROBDDs: the algorithm reduce applies the re-

duction rules over a BDD. The algorithm apply implements the operations ∧, ∨ and

⊕ (XOR) on binary decision diagrams. If Bf is a BDD representing formula f , then

restrict(0, x, Bf ) is equivalent to f [0/x] and restrict(1, x, Bf ) is equivalent to f [1/x].

The algorithm exists removes the constraints on a subset of variables. If f is a Boolean

formula, then ∃.f is defined as f [0/x]∨ f [1/x]. Therefore, the algorithm exists is equiv-
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alent to:

apply(∨, restrict(0, x, Bf ), restrict(1, x, Bf ))

In symbolic model-checking, sets of states are presented by BDDs. In a transition

system, each state is assigned by a vector of Boolean variables. Note that in our policy

verification method, the states are represented by the valuation of system propositions,

which are Boolean variables by themselves.

In CTL model-checking and in our approach, we need set operations like intersection,

union and complementation. These set operations are equivalent to ∧, ∨ and ¬ in BDD

operations using the algorithm apply (note that negation is implementable via ⊕1). The

core function that we use in our algorithm is PRE∃α(X). This function is a special case of

the standard function pre∃(X) which takes a subset X of states and returns all the states

that have transition to some states in X. PRE∃a is dedicated for the transitions made by

performing action α in our action-based transition system.

Let p̂ denote the vector of Boolean variables (p1, . . . , pn). If B→ is the OBDD repre-

senting transition relation, BX is the OBDD for the set of states X, and primed version

of the variables denote the variables in the successor states in the transitions, then the

OBDD exists(p̂′, apply(∧, B→, BX′)) computes the pre∃(X) where BX′ is the OBDD of

BX where all the variables are replaced with their primed versions.

A.2 Transition relation calculation

We use the conventional method of finding pre-states in order to calculate PRE∃a . We

represent the Boolean formula to show how the general calculation works. This formula

will be encoded to OBDD in implementation phase.

Let action a be defined as α : ε← ` and X be a set of states. Consider fPRE∃α(X) as the

formula satisfying PRE∃α(X) and {p1, . . . , pn} = prop(fX). fPRE∃α(X) can be calculated

by the following method:

fPRE∃α(X) = ∃p′1 . . . ∃p′n.(θα ∧ fX [p′i/pi : 1 ≤ i ≤ n])

fX [p′i/pi : 1 ≤ i ≤ n] is the primed version of the formula representing the set of states X

and θα is the transition formula defined as:

θα =
( ∧
pi∈effect+(α)

p′i

)
∧
( ∧
qi∈effect−(α)

¬q′i
)
∧
( ∧
r∈prop(fX)\effect(α)

r ↔ r′
)
∧ ` ∧

∧
li∈Lit∗

li

where Lit∗ be the set of literals that are tagged by ∗ in the query. The last conjunction
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dictates the constraint of fixed literals in the query.
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APPENDIX B

CALCULATING FORWARD BDD-BASED
TRANSITION FUNCTION

In chapter 5 section 5.3, we introduced a symbolic transition function for forward traver-

sal of the paths in the counterexamples returned by the model-checker. For the im-

plementation, we need to find the transition function based on binary decision diagram

presentation.

If ψ is a formula, then ψ′ denotes the primed version of ψ if all the propositions in ψ

are substituted with the primed ones (ψ′ = ψ[p′i/pi : pi ∈ prop(ψ)]). When performing

the action α : ε ← ` in the states stφ (using the same notation as in chapter 4), the

transition only performs on the states of stφ ∩ st` = stφ∧`. In the resulting states, the

propositions that do not appear in ε remain the same as in the states that the transition

begins. If {p1, . . . , pn} = prop(φ ∧ `), the transition function Θα is calculated in the

following way:

Θα(stφ) = st∃p′1,...,p′n. η(α,φ)

where

η(α, φ) = (φ ∧ `)′ ∧ (
∧

+p∈ε

p) ∧ (
∧
−q∈ε

¬q) ∧ (
∧

r∈prop(φ∧`),±r 6∈ε

r ↔ r′)
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APPENDIX C

LABELLED TRANSITION SYSTEMS AND
INTERPRETED SYSTEMS

In this appendix, we show that the labelled transition system described in chapter 4 is a

special case of interpreted systems.

Consider that MC = 〈S lts , Actlts , S lts
0 , P lts , τ lts , γlts〉 is a labelled transition system de-

rived from policy C with ΣAgent as the set of agents. Given Ω = e ∪ ΣAgent, we define

a special case of interpreted systems IM = 〈(LMi )i∈Ω, (P
M
i )i∈Ω, (ACT

M
i )i∈Ω, S

M
0 , τM , γM〉

where

• LMe = S lts and LMi = {l} for all i ∈ ΣAgent where l is a single local state, and the

set of states SM is the Cartesian product of the local states

• SM0 = {(s, l, . . . , l) | s ∈ S lts
0 }

• For all sM = (sMe , l, . . . , l) ∈ SM , p ∈ P lts : γM(sM , p) = γMe (sMe , p) = γlts(sMe , p)

• ACTMe = {Λ} and ACTMi = {α ∈ Actlts | Ag(α) = i} for all i ∈ ΣAgent. The joint

action ACTM is the set of any Ω-tuple in the Cartesian product of the local actions

with only one non-Λ action

• PM
i (lMi ) = ACTMi for all i ∈ Ω and lMi ∈ Li

• For all sM ∈ SM and αM ∈ ACTM , if s = lMe (sM) and α is the non-Λ ele-

ment of αM , then τM(sM , αM) is defined if τ lts(s, α) is defined, and τM(sM , αM) =

(τ lts(s, α), l, . . . , l).

Given policy C and the query init → φ as defined in section 4.1.2, we define the

satisfaction relation for interpreted system I as follows:
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(I, s, C) |= p ⇔ γe(le(s), p) = >

(I, s, C) |= ¬φ ⇔ (I, s, C) 6|= φ

(I, s, C) |= φ1 ∨ φ2 ⇔ (I, s, C) |= φ1 or (I, s, C) |= φ2

(I, s, C) |= 〈p〉 ⇔ there exists a read permission ρ : p← ` ∈ C

such that Ag(ρ) ∈ C and (IC, s, C) |= `

(I, s, C) |= C ′ : (φ) ⇔

there exists a path s1
α1−→ . . .

αn−1−−−→ sn such that s = s1 and

(1) For all 1 ≤ i < n: Ag(αi) ∈ C ′

(2) For all 1 ≤ i ≤ n: (IC, si, C
′) |= p if p∗ ∈ init and (I, si, C

′) 6|= p if ¬p∗ ∈ init

(3) (I, sn, C
′) |= φ

(I, s, C) |= C ′ : (φ1 THEN φ2) ⇔

there exists a path s1
α1−→ . . .

αn−1−−−→ sn such that s = s1 and

(1) For all 1 ≤ i < n: Ag(αi) ∈ C ′

(2) For all 1 ≤ i ≤ n: (I, si, C
′) |= p if p∗ ∈ init and (I, si, C

′) 6|= p if ¬p∗ ∈ init

(3) (I, sn, C
′) |= φ1 and (I, sn, C

′) |= φ2

We use the notation I |= g if for all s0 ∈ S0 : (I, s0, ∅) |= g.

Lemma C.1. Given the query init → g, let IC be an interpreted system derived from

policy C as in definition 5.7 where the set of initial states contains all the states with the

environment local state defined by init . If MC is the labelled transition system derived

from C with the local states defined by init , then IC |= g iff IM |= g.

Proof. We first prove that for all s ∈ S and sM ∈ SM where le(s) = lMe (sM), if C is a

coalition of agents, then (IC, s, C) |= g iff (IM , sM , C) |= g.

The set of propositions P lts in MC contains all the policy propositions and therefore

P lts = ΦC = Φe (see definition 5.7). So, as the local states are specified by the valuation

of the local propositions, the relation le(s) = lMe (sM) implies γe(le(s), p) = γMe (lMe (sM), p).

If p ∈ Φe (g is defined over Φe), then the proof proceeds by structural induction over the

structure of g.

Base case:

• (⇒) (IC, s, C) |= p iff (IM , sM , C) |= p From (IC, s, C) |= p we have γe(le(s), p) = >.

By le(s) = lMe (sM) we have γMe (lMe (sM), p) = > which implies (IM , sM , C) |= p.

(⇐) Similar.
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Inductive cases:

Assume that (IC, s, C) |= ϕ iff (IM , sM , C) |= ϕ for all s ∈ S and sM ∈ SM where

le(s) = lMe (sM). Also assume the same for ϕ1 and ϕ2.

• The proof is trivial for the cases ¬ϕ and ϕ1 ∨ ϕ2 and 〈p〉.

• (⇒) Assume that (IC, s, C) |= C ′ : (ϕ). We prove that (IM , sM , C) |= C ′ : (ϕ) where

le(s) = lMe (sM).

By the definition of satisfaction relation, there exists a path s1
α1−→ . . .

αn−1−−−→ sn

such that s = s1 where the conditions (1) - (3) hold. We first prove that given

the above path, there exists a path sM1
αM1−−→ . . .

αMn−1−−−→ sMn such that sM = sM1 and

le(sn) = lMe (sMn ), and the path complies with the conditions (1) and (2).

Let us consider the labelled transition system MC. Let slts1 = lMe (sM1 ) which implies

slts1 = le(s1). We start from the first transition along the path, which is s1
α1−→ s2.

By procedure 3, action α1 is one of the actions generated from some action αlts
1 in

policy C where

– Ag(α1) = Ag(αlts
1 ),

– If the permission of α1 holds in le(s1), then the permission of αlts
1 also holds

on le(s1) (note that action permissions in the policy are defined over policy

propositions which are the same as environment propositions in IC), and

– α1 updates the environment propositions in the same way as in αlts
1 .

By item 2 and slts1 = le(s1), the permission of αlts
1 holds on slts1 . By item 3, slts1

evolves to a state slts2 where the values of the propositions are the same as in le(s2)

(in the other words, slts2 = le(s2)) if the transition is allowed.

The transition slts1

αlts
1−−→ slts2 has another requirement which states that (MC, s

lts
2 , C) |=

p if p∗ ∈ init and (MC, s
lts
2 , C) 6|= p if ¬p∗ ∈ init . This follows by condition (2) in

satisfaction relation for IC and the base case.

The path slts1

αlts
1−−→ . . .

αlts
n−1−−−→ sltsn can be constructed inductively using the same

procedure. By the same discussion we have sltsn = le(sn). This proves the existence

of a path sM1
αM1−−→ . . .

αMn−1−−−→ sMn in IM where sMi = (sltsi , l, . . . , l), and αMi is an Ω-tuple

with Ag(αlts
i )-th element to be αlts

i and the rest are Λ, which satisfies the conditions

(1) and (2) in satisfaction relation. Condition (3) holds by inductive hypothesis.

(⇐) Assume that (IM , sM , C) |= C ′ : (ϕ). We prove that (IC, s, C) |= C ′ : (ϕ) where

le(s) = lMe (sM).
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By the definition of satisfaction relation, there exists a path sM1
αM1−−→ . . .

αMn−1−−−→ sMn

in IM such that sM = sM1 where the conditions (1) - (3) hold. We prove that given

the above path, there exists a path s1
α1−→ . . .

αn−1−−−→ sn in IC such that s = s1 and

le(sn) = lMe (sMn ), and the path complies with the conditions (1) and (2).

We start from the first transition sM1
αM1−−→ sM2 . Assume that policy action αlts

1 is the

non-Λ element of αM1 . Procedure 3 generates a set of actions from αlts
1 that will be

used in constructing the joint actions in IC. The actions are generated from αlts
1 in

a tree-like manner. Starting from αlts
1 as the root, each node has one branch (when

the proposition to be read and its read permission are not affected by the action),

two branches (when the proposition to be read is affected by the action) or three

branches (when only the read permission is affected by the action). In the case of one

branch, action remains unchanged. In the case of three branches (also applicable

to the cases with two branches), if α : ε ← ` is the parent and αc1 : εc1 ← `c1,

αc2 : εc2 ← `c2 and αc3 : εc3 ← `c3 are the children, then `c1 ∨ `c2 ∨ `c3 ≡ `.

Moreover, pairwise conjunctions of `c1, `c2 and `c3 are equivalent to ⊥. Hence, the

permission of exactly one of the child actions holds in le(s
M
1 ), and as the permissions

are independent of other agents’ local states, the permission of that child holds in

any global state s1 where le(s1) = lMe (sM1 ). As ε1, ε2, ε3 ⊆ ε, the children update the

environment local variables the same as α.

So, there exists an action α1 in IC where the Ag(αlts
1 )-th element is one of leaf

actions generated form αlts
1 in which the permission holds in s1. Moreover, if the

transition s1
α1−→ s2 is allowed, then le(s2) = lMe (sM2 ).

It is also trivial to show that the last requirement for the transition s1
α1−→ s2, which is

condition (2) in satisfaction relation, also holds. Therefore the path s1
α1−→ . . .

αn−1−−−→
sn can be constructed inductively using the same procedure, where le(sn) = lMe (sMn )

and the path complies with the conditions (1) and (2). Condition (3) holds by

inductive hypothesis.

• The proof for (IC, s, C) |= C ′ : (ϕ1 THEN ϕ2) iff (IM , sM , C) |= C ′ : (ϕ1 THEN ϕ2) is

similar to the proof for the previous item.

As the environment initial local states in both IC and IM are defined by the same

rule, for all s0 ∈ S0 there exists sM0 ∈ SM0 where le(s0) = lMe (sM0 ), and vice versa. Since

satisfaction of goal g in its general form is independent of the coalition parameter in the

left hand side of the satisfaction relation, then for all s0 and sM0 where le(s0) = lMe (sM0 )

we have (IC, s0, ∅) |= g iff (IM , sM0 , ∅) |= g, which implies IC |= g iff IM |= g.
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