287 research outputs found

    How to say greedy in fork algebras

    Get PDF
    Because of their expressive power, binary relations are widely used in program specification and development within formal calculi. The existence of a finite equational axiomatization for algebras of binary relations with a fork operation guarantees that the heuristic power coming from binary relations is captured inside an abstract equational calculus. In this paper we show how to express the greedy program design strategy into the first order theory of fork algebras.Eje: TeoríaRed de Universidades con Carreras en Informática (RedUNCI

    How to say greedy in fork algebras

    Get PDF
    Because of their expressive power, binary relations are widely used in program specification and development within formal calculi. The existence of a finite equational axiomatization for algebras of binary relations with a fork operation guarantees that the heuristic power coming from binary relations is captured inside an abstract equational calculus. In this paper we show how to express the greedy program design strategy into the first order theory of fork algebras.Eje: TeoríaRed de Universidades con Carreras en Informática (RedUNCI

    Satisfiability Calculus: An Abstract Formulation of Semantic Proof Systems

    Get PDF
    The theory of institutions, introduced by Goguen and Burstall in 1984, can be thought of as an abstract formulation of model theory. This theory has been shown to be particularly useful in computer science, as a mathematical foundation for formal approaches to software construction. Institution theory was extended by a number of researchers, José Meseguer among them, who, in 1989, presented General Logics, wherein the model theoretical view of institutions is complemented by providing (categorical) structures supporting the proof theory of any given logic. In other words, Meseguer introduced the notion of proof calculus as a formalisation of syntactical deduction, thus ?implementing? the entailment relation of a given logic. In this paper we follow the approach initiated by Goguen and introduce the concept of Satisfiability Calculus. This concept can be regarded as the semantical counterpart of Meseguer?s notion of proof calculus, as it provides the formal foundations for those proof systems that resort to model construction techniques to prove or disprove a given formula, thus ?implementing? the satisfiability relation of an institution. These kinds of semantic proof methods have gained a great amount of interest in computer science over the years, as they provide the basic means for many automated theorem proving techniques.Fil: Lopez Pombo, Carlos Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Castro, Pablo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Computación; ArgentinaFil: Aguirre, Nazareno M.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Computación; ArgentinaFil: Maibaum, Thomas S.E.. Mc Master University; Canad

    Rigorous Development of Composite Grid Services

    Get PDF
    CRESS (Communication Representation Employing Systematic Specification) is introduced as notation, a methodology and a toolset for service development. The article focuses on rigorous development of composite grid services, with particular emphasis on the principles behind the methodology. A straightforward graphical notation is used to describe grid services. These are then automatically specified, analysed and implemented. Analysis includes formal verification of desirable service properties, formal validation of test scenarios, testing of implementation functionality, and evaluation of implementation performance. The case study that illustrates the approach is document content analysis to compare two pieces of text. This involves two composite services supported by two partner services. The usability of the service design notation is assessed, and a comparison is made of the approach with similar ones. These show that the CRESS approach to developing services is usable and more complete than other comparable approaches

    A Logical Verification Methodology for Service-Oriented Computing

    Get PDF
    We introduce a logical verification methodology for checking behavioural properties of service-oriented computing systems. Service properties are described by means of SocL, a branching-time temporal logic that we have specifically designed to express in an effective way distinctive aspects of services, such as, e.g., acceptance of a request, provision of a response, and correlation among service requests and responses. Our approach allows service properties to be expressed in such a way that they can be independent of service domains and specifications. We show an instantiation of our general methodology that uses the formal language COWS to conveniently specify services and the expressly developed software tool CMC to assist the user in the task of verifying SocL formulae over service specifications. We demonstrate feasibility and effectiveness of our methodology by means of the specification and the analysis of a case study in the automotive domain

    Revisiting sequential composition in process calculi

    Get PDF
    International audienceThe article reviews the various ways sequential composition is defined in traditional process calculi, and shows that such definitions are not optimal, thus limiting the dissemination of concurrency theory ideas among computer scientists. An alternative approach is proposed, based on a symmetric binary operator and write-many variables. This approach, which generalizes traditional process calculi, has been used to define the new LNT language implemented in the CADP toolbox. Feedback gained from university lectures and real-life case studies shows a high acceptance by computer-science students and industry engineers

    Workflows for Quantitative Data Analysis in The Social Sciences

    Get PDF
    The background is given to how statistical analysis is used by quantitative social scientists. Developing statistical analyses requires substantial effort, yet there are important limitations in current practice. This has motivated the authors to create a more systematic and effective methodology with supporting tools. The approach to modelling quantitative data analysis in the social sciences is presented. Analysis scripts are treated abstractly as mathematical functions and concretely as web services. This allows individual scripts to be combined into high-level workflows. A comprehensive set of tools allows workflows to be defined, automatically validated and verified, and automatically implemented. The workflows expose opportunities for parallel execution, can define support for proper fault handling, and can be realised by non-technical users. Services, workflows and datasets can also be readily shared. The approach is illustrated with a realistic case study that analyses occupational position in relation to health

    Concrete process algebra

    Get PDF
    corecore