
HAL Id: hal-01247770
https://hal.inria.fr/hal-01247770

Submitted on 22 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting sequential composition in process calculi
Hubert Garavel

To cite this version:
Hubert Garavel. Revisiting sequential composition in process calculi. Journal of Logical and Algebraic
Methods in Programming, Elsevier, 2015, �10.1016/j.jlamp.2015.08.001�. �hal-01247770�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49442106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01247770
https://hal.archives-ouvertes.fr

Revisiting Sequential Composition in Process Calculi

Hubert Garavela,b,c,d

aINRIA, Grenoble, France1

bUniv. Grenoble Alpes, LIG, F-38000 Grenoble, France
cCNRS, LIG, F-38000 Grenoble, France

dSaarland University, Saarbrücken, Germany

Abstract

The article reviews the various ways sequential composition is defined in tra-
ditional process calculi, and shows that such definitions are not optimal, thus
limiting the dissemination of concurrency theory ideas among computer scien-
tists. An alternative approach is proposed, based on a symmetric binary op-
erator and write-many variables. This approach, which generalizes traditional
process calculi, has been used to define the new LNT language implemented
in the CADP toolbox. Feedback gained from university lectures and real-life
case studies shows a high acceptance by computer-science students and industry
engineers.

Keywords: ACP, concurrency theory, CCS, CSP, E-LOTOS, formal
specification, formal semantics, LOTOS, LNT, modelling language, muCRL,
OCCAM, process algebra, process calculus, programming language, PSF,
sequential composition, software engineering, specification language

1. Introduction

Process calculi (or process algebras) are a corner stone of concurrency the-
ory and exist under many variants, among which CCS [1, 2], CSP [3, 4, 5],
MEIJE [6], ACP2 [7, 8, 9], LOTOS [10, 11], PSF [12, 13, 14], µCRL [15, 16],
and mCRL2 [17], to name only a few. From a theoretical point of view, process
calculi are mathematical models for the study of concurrency. To this aim, they
are expected to be of manageable complexity, i.e., have a minimal number of
constructs or, at least, a small set of core constructs to which other constructs
can be translated.

In practice, however, this definition is too narrow and process calculi clearly
have another role. They are often used as modelling languages to formally de-
scribe the behavior of complex concurrent systems, including telecommunication

1E-mail: hubert.garavel@inria.fr – Web: http://convecs.inria.fr
2For simplicity we will systematically use the name ACP rather than its sub-algebra

acronyms, BPA (Basic Process Algebra) and PA (Process Algebra), even if parallel com-
position and interprocess communication are not the prime focus of the present article.

Preprint — Journal of Logical and Algebraic Methods in Programming — September 2, 2015

http://convecs.inria.fr

protocols, distributed software, and hardware circuits. The intent of applying
process calculi to real-life problems can be traced back at least to the mid-80s,
when LOTOS was defined as an international standard to formally describe
OSI protocols and services. Moreover, many compilers and software verification
tools have been developed to implement process calculi, e.g., CWB [18] and
CWB-NB [19] for CCS, FDR [20, 21] and PAT [22, 23] for CSP, CADP [24]
for LOTOS, the mCRL tools [25, 26] for µCRL and mCRL2, etc. All in one,
this is a clear indication that more is expected from process calculi than merely
providing a theoretical framework for abstractly reasoning about concurrency.

Whether a given process calculus can conveniently play these two roles is
very much an open question. For instance, Milner believed that CCS was meant
for theory only and he proposed, to describe more concrete systems, another
language named M [2, Chapter 8] based on shared variables and algorithmic
programming constructs, together with a translation algorithm from M to CCS.
Although there have been follow-ups to this idea, e.g., [27] [28] [5, Chapter 18],
one may wonder if having two languages instead of one is a true benefit. More-
over, most of the aforementioned process calculi claim to be modelling languages
for concurrent systems as well as formalisms supporting mathematical reason-
ing, therefore indicating a general trend towards a single-language approach.

To describe and analyze real systems, process calculi have genuine advan-
tages: they provide built-in parallel composition operators, they are equipped
with formal semantics, and they have compositionality properties (e.g., congru-
ence results) for scaling to large component-based systems. Despite a growing
number of success stories, the practical impact of process calculi is not as high
as it should be: formal approaches are not widely used in industry and few re-
cent languages for modelling or programming take inspiration from concurrency
theory.

There are several reasons for this situation [29]: fragmentation (multiple,
similar yet incompatible process calculi), lack of expressiveness, and lack of
user-friendliness, all resulting in a steep learning curve that discourages poten-
tial users. The aforementioned dichotomy between mathematical models and
modelling languages also contributed to creating a gap: the simplicity and el-
egance of CCS, reinforced by the algebraic approach of ACP, shifted the focus
towards mathematical models, weakening the links with mainstream program-
ming languages.

We believe it is important to disseminate concurrency theory results to a
wider audience, and that process calculi can be an essential vector for this. It
is high time to reconsider the dichotomy between process calculi and program-
ming languages, and to come up with enhanced process calculi acceptable by
professionals. As part of this agenda, we review the way sequential composition
is handled in process calculi. This topic is often seen as a matter of secondary
importance with respect to concurrency and mobility, but the present article
reopens the case by considering sequential composition as a major subject that
almost entirely shapes a process calculus and determines its compatibility with
mainstream programming languages. The core of the issue is not so much ex-
pressiveness — most process calculi provide the same expressiveness whatever

2

the approach chosen for sequential composition — but conciseness (objective)
and convenience (subjective).

The present article is organized as follows. Sec. 2 sets a few definitions that
will be used throughout the article. Sec. 3 reviews and gives a critical evaluation
of the sequential composition operators available in traditional process calculi.
Sec. 4 proposes an enhanced definition of sequential composition, which has
been integrated in LNT [30], the most recent specification language supported
by the CADP toolbox [24]. Sec. 5 discusses the expressiveness of LNT and
proposes encodings that map large fragments of former process calculi (CCS,
ACP, LOTOS, and CSP) to LNT. Sec. 6 illustrates the advantages of LNT
on several design patterns that cannot be concisely expressed using traditional
process calculi. Finally, Sec. 7 gives concluding remarks and perspectives for
future work.

2. Preliminary definitions

The present article assumes that the reader has some basic familiarity with
the general concepts of process calculi, but no extensive knowledge is required.
As the various process calculi use different vocabulary and notations to define
their syntax and semantics, we introduce here common terminology and nota-
tions that will be used for all languages throughout the article.

In the following, terminal symbols (i.e., identifiers or constants) are noted
in lower case, while non-terminal symbols (defined by BNF rules) are noted in
upper case. If y (resp. Y) is a symbol of a given category, then y′, y′′, y0, y1, y2,
etc. (resp. Y ′, Y ′′, Y0, Y1, Y2, etc.) are also symbols of that same category.

We note t a data type, x a variable, and v a constant. Variables and constants
are typed and we note “v ∈ t” the fact that v is a constant of type t. We note
V an expression (also: data expression, value expression, or value term), i.e., a
syntactic term which is built using variables, constants, and function symbols
and that computes a typed value.

We note a an action (also: atomic action or atom), i.e., a communication
event proposed by the system under study or its environment. Any action
a can be decomposed as a tuple a = g o1 ... on, where g is a gate (also:
channel or communication port) and o1 ... on a possibly empty list of offers
(also: experiment offers or action parameters). Each offer is either an emission
(noted “!V ”) of some expression V , or a reception (noted “?x:t”, or simply
“?x”) of some constant value to be stored in variable x of type t. We note
gate(a) the gate of action a. There exists an internal (also: invisible or hidden)
gate noted either “τ” or “i”, which must be used without offer (and is thus also
considered to be an action).

We note B a behavior (also: behavior expression or process term), i.e., a syn-
tactic term built using actions and the various operators of the process calculi
being considered. Most of our attention focuses on sequential composition op-
erators, so that other kinds of operators (e.g., parallel composition, disruption,
etc.) will only be mentioned when needed. We note “[v1/x1...vn/xn]B” the be-
havior obtained from B by replacing all free occurrences of variables x1, ..., xn

3

by constants v1, ..., vn, respectively. We note p a process identifier (also: agent
name), i.e., a symbolic name that can be associated to a behavior (this is needed
to define recursive behaviors).

3. Sequential composition in traditional process calculi

3.1. The “action prefix” operator and its drawbacks
The most widespread means of expressing sequentiality in process calculi

is the action prefix operator (also called prefixing), which is present in many
process calculi. This operator will be noted here “.”, as in CCS; it is also noted
“:” in MEIJE, “→” in CSP, and “;” in LOTOS. Its syntax is defined by the
BNF rule “B ::= a.B” and its semantics by the SOS rule:

–

a.B
a−→ B

meaning that “a.B” first performs action a and then behaves as B.
Action prefix is simple, suitable for proofs, and well accepted by (most of)

the concurrency theory community. In practice, however, action prefix suffers
from several drawbacks:

1. It is non-standard with respect to mainstream programming languages. Ac-
tion prefix is asymmetric in the sense that its left-hand and right-hand
sides require different syntactic objects (an action must come first, fol-
lowed by a behavior) whereas sequential composition is symmetric in most
programming languages (a statement is followed by another statement).
Asymmetry proves to be confusing to those that learn process calculi,
and students always tend to write symmetric sequential composition by
default.

2. It does not support loops directly. With action prefix, the standard way
of expressing iterative behaviors is to use recursion, by introducing extra
process identifiers and inserting a recursive process call at each loop-back
point. There have been attempts at defining iteration operators in the
presence of action prefix (e.g., [5, p. 134]), but their usefulness is limited
(the values computed at some iteration cannot be passed to the next
iterations) and such proposals are usually not implemented in software
tools.

3. It is incompatible with regular expressions. Quite often, the components
of concurrent systems can be described as automata. Regular expressions
are a standard means to express automata and most industry engineers
are familiar with regular expressions, which are routinely used in text edi-
tors and script languages, for instance. Unfortunately, regular expressions
cannot be easily expressed using action prefix, because it is asymmetric
and a “loop” (Kleene star) operator is missing.

4. It prohibits control-flow sharing. Often in programming, a choice must
be made between two computations B1 and B2, only one of which can

4

be executed, and afterwards a third computation B3 has to be exe-
cuted, whatever which branch B1 or B2 was taken before. In sequen-
tial programming, the choice between B1 or B2 usually depends on
some deterministic condition v, so that the whole pattern can be writ-
ten “if v then B1 else B2 end if ;B3”. So doing, the computation B3

is shared, i.e. written only once. Action prefix makes sharing of B3

impossible because prefixing favors tree-like patterns [31] and prohibits
dag3-like patterns. For instance, in CCS, it is syntactically illegal to write
“(a1 + a2).B3”, where the “+” operator denotes nondeterministic choice;
one must write instead “(a1.B3) + (a2.B3)” at the expense of duplicating
B3. Such undesirable unfolding can be avoided by defining an auxiliary
process identifier p = B3 in order to write “(a1.p) + (a2.p)” without du-
plicating B3; however, this solution is questionable, because each call to p
is similar to a “goto p” and decreases the readability of the specification
by transferring the control elsewhere.

5. It prohibits data-flow sharing. The syntax of action prefix also forbids
terms of the form “(g1?x + g2?x).B3”, where the variable x is received
on either gate g1 or gate g2 and its value passed to B3. Such data-flow
sharing is standard in sequential programming, where the variables as-
signed in the branches of an “if” or “case” statement can be reused after-
wards. Unfortunately, action prefix forces either the duplication of B3 (as
in “(g1?x.B3) + (g2?x.B3)”) or the introduction of an auxiliary process
identifier p (as in “(g1?x.p(x)) + (g2?x.p(x))”) with the aforementioned
drawbacks.

6. It is not well-adapted to action refinement, i.e., program transformations
based on the replacement of individual actions by more complex behav-
iors. For such transformations, symmetric sequential composition is usu-
ally preferred, e.g. [32] [33, 34] [35, 36, 37].

3.2. The “enable” operator and its drawbacks
The limitations of action prefix have been recognized for long — at least

as early as the mid-80s. The usual remedy is to introducing a new sequential
composition operator that complements action prefix and tries palliating its
shortcomings. Such operator is called enable in LOTOS and is noted “>>” (it
also exists in CSP, where it is called sequential composition and is noted “;”).
The behavior “B1 >> B2” expresses that B1 executes first and is followed by
B2, which only starts after B1 is done. The enable operator is used together
with another operator called successful termination (noted “exit” in LOTOS
and “SKIP” in CSP), which differs from the inaction or deadlock operator
(noted “nil” in CCS, “STOP” in CSP, and “stop” in LOTOS).

We consider here the LOTOS “>>” and “exit” operators, which are the
most flexible ones, as they support the passing of values. We note “

√
” a

3Directed Acyclic Graph.

5

special termination gate4 that is different from any other gate, including “τ”.
The BNF rule defining the syntax of the “exit” operator is:

B ::= exit(R1, ..., Rn)

where R1, ..., Rn is a (possibly empty) list of results, each Ri being a syntactic
term that is either an expression Vi or a clause “any ti”. We note “vi ∈ Ri”
the fact that expression Vi evaluates to constant vi (if Ri has the form Vi) or
the fact that vi ∈ ti (if Ri has the form “any ti”). The semantics of the “exit”
operator is defined by the following SOS rule:

v1 ∈ R1 ∧ ... ∧ vn ∈ Rn

exit(R1, ..., Rn)
√

v1...vn−→ stop

The BNF rule defining the syntax of the enable operator is:

B ::= B1 >> [accept x1:t1 ... xn:tn in] B2

where x1:t1, ..., xn:tn declares a (possibly empty) list of variables xi of type ti,
which are visible in B2 only — if the list is empty, the “accept...in” clause is
omitted. When B1 terminates by invoking an “exit(R1, ..., Rn)” operator, each
variable xi captures the value returned by the corresponding result Ri. Typing
constraints ensure that the type of each Ri is the same as ti. The semantics of
the “>>” operator is defined by two SOS rules:

B1
a−→ B′

1 ∧ gate(a) 6=
√

B1 >> accept x1:t1 ... xn:tn in B2
a−→ B′

1 >> accept x1:t1 ... xn:tn in B2

B1

√
v1...vn−→ B′

1

B1 >> accept x1:t1 ... xn:tn in B2
τ−→ [v1/x1...vn/xn]B2

The enable operator has been used in many formal models described using
LOTOS or CSP. However, it presents several drawbacks:

1. Each occurrence of an “exit” operator creates a
√

-transition that is
turned into a τ -transition when caught by an enable operator — as pointed
out in [2, pp. 191], the enable operator relies on concurrency, synchroniza-
tion, and communication to perform sequential composition. In practice,
the introduction of such extra transitions is a nuisance because it makes
labelled transition systems larger, causing or worsening state explosion
issues. Another worrying consequence is that the enable operator lacks a
neutral element modulo strong bisimulation (the extra τ -transitions can
only be ignored if a weaker bisimulation is used), which is different from
mainstream programming languages, most of which provide some “empty”
statement that does nothing and is a neutral element with respect to se-
quential composition.

4The “
√

” gate was noted “δ” in the official definition of LOTOS [10], but we adopt here
the CSP notation to avoid any confusion with ACP, where “δ” means inaction.

6

2. Keeping action prefix and introducing the enable operator leads to two dif-
ferent operators for almost the same purpose: one sequential composition
operator that is asymmetric and another one that is symmetric — at least,
if one forgets about the “accept...in” clause. This goes against Occam’s
razor law5, and against the idea that a process calculus should contain a
minimal set of operators expressing independent (“orthogonal”) concepts.
For instance, the same sequence of actions can be written in many dif-
ferent ways, e.g. “(a1; a2; exit) >> (a3; a4;B)” vs. “a1; a2; τ ; a3; a4;B”.
This problem was acknowledged in [38, Sec. 3.4 and 6.5], which proposed
a syntactic (yet not semantic) unification of both operators into a single
construct noted “seq ...endseq”; an assessment of this proposal can be
found in [39, Sec. 12 and 13].

3. Control-flow sharing is supported by the enable operator, but quite heavy
in practice, e.g., “((a1; exit)[](a2; exit)) >> B3”, where “[]” is the non-
deterministic choice operator (noted “+” in CCS).

4. Data-flow sharing is not possible in CSP, as the values of variables do not
pass left-to-right over sequential composition [5, p. 132–133]. In LOTOS,
values can pass over sequential composition, e.g.:

g?x:t ; exit(x) >> accept x′:t in B(x′)

making data-flow sharing feasible, yet cumbersome, e.g.:

(g1?x1:t ; exit(x1) [] g2?x2:t ; exit(x2)) >> accept x3:t in B3(x3)

A lighter syntax for the first example above was proposed in [38, Sec. 6.5],
but never implemented and assessed on large-size examples.

3.3. The “product” operator and its drawbacks
The action prefix and enable operators are not the only possible approach.

From the beginning, ACP explored a different way by adopting a symmetric
sequential composition operator, called product and noted “·”. Its syntax is
thus defined by the BNF rule “B ::= B1 ·B2”. Following the tradition of ACP,
the semantics of this operator is usually given by algebraic axioms, but it can
alternatively be defined using SOS rules [12, 9]:

B1
a−→ B′

1

B1 ·B2
a−→ B′

1 ·B2

B1
a−→

√

B1 ·B2
a−→ B2

where “
√

” is a special behavior (distinguishable from all other behaviors) with
an associated SOS rule “a

a−→
√

” applicable to each action a, including “τ”.
Clearly, this product operator avoids many of the aforementioned pitfalls of
action prefix and enable operators: there is a unique symmetric sequential com-
position, as in mainstream programming languages; it does not create extra

5“Entities must not be multiplied beyond necessity”.

7

τ -transitions; it can be equipped with a neutral element (usually noted “ε”)
[40, 41]; it can be extended with iteration operators to express loops [42];
it subsumes regular expressions and context-free languages [43]; finally, it al-
lows control-flow sharing, which is explicitly permitted by axiom A4 of ACP:
(B1 + B2) · B3 = (B1 · B3) + (B2 · B3) — notice that there is no “dual” axiom
B1 ·(B2+B3) = (B1 ·B2)+(B1 ·B3) in order to preserve the branching structure.

It remains to examine whether this product operator also supports data-
flow sharing. This question cannot be directly answered within ACP, which
is a pure process algebra (i.e., does not handle data). Moreover, there is an
impossibility claim [44] stating that variable-binding actions are incompatible
with associativity of sequential composition; indeed, assuming the existence of
a variable-binding action (e.g., an action “g?x” that declares variable x and
assigns to it an input value), then the term “g?x ·B1 ·B2” would be ambiguous,
as it can be parsed either as “(g?x · B1) · B2” or “g?x · (B1 · B2)”, which gives
two incompatible scopes for x (either B1 or B1 · B2); thus, variable binding in
ACP should only be achieved by means of unary “prefix” operators.

This principle is followed by the two value-passing languages based on ACP:
PSF [12, 13, 14] and µCRL [15, 16], which both rely on abstract data types
and are similar enough to be considered as the consensual (if not official) value-
passing extension of ACP. PSF introduces variables and expressions in ACP
behaviors at four different places:

B ::= ...
| g (V1, ..., Vn) (parameterized action)
| [V]→ B0 (boolean guard)
| sum (x in t, B0) (summation over data)
| p (V1, ..., Vn) (parameterized process call)

The syntax of µCRL is almost identical, the main difference being that PSF uses
(unary) boolean guards whereas µCRL uses (binary) “then-if-else” conditionals
“B1 / V . B2” that can also be expressed as “[V]→ B1 + [¬V]→ B2”.

The PSF/µCRL approach to data handling is simpler than its coun-
terparts in CSP and LOTOS. Precisely, it is a strict subset of LO-
TOS, “g (V1, ..., Vn)” denoting “g!V1...!Vn”, “sum (x in t, B0)” denoting
“choice x:t[]B0”, PSF/µCRL guards and process calls having the same syn-
tax as in LOTOS. Even if this restricted set of PSF/µCRL operators provides
the same expressiveness as LOTOS (in the sense that it can generate the same
set of labelled transition systems), it has several limitations with respect to
convenience and conciseness:

1. Contrary to CCS, CSP, and LOTOS, there is no dedicated syntac-
tic notation to distinguish between emissions and receptions, thus cre-
ating omnipresent ambiguities that significantly degrade the readabil-
ity of behavioral specifications. For instance, a reader confronted to
“sum (x in t, g(x))” must rely on some intuitive understanding of the
specification to decide whether the writer intended to model the input of
x on gate g (noted “g?x:t ; ...” in LOTOS) or the output of some non-
deterministic value of type t on gate g (noted “choice x:t[]g!x ; ...” in

8

LOTOS). Paradoxically, LOTOS has been often reproached for having
untyped gates [45], an issue that does not exist in PSF/µCRL, where the
types of action parameters must be explicitly declared; but LOTOS pro-
vides different syntax for inputs and outputs, whereas PSF and µCRL
cannot express in which direction communications take place.

2. In PSF and µCRL, data values can pass from left to right over the product
operator, but only to some limited extent. For instance, it is not possible to
directly specify “g1?x:t ·g2!x”, as the lack of difference between emissions
and receptions is equivalent to having emissions only. Instead, one must
specify “sum (x in t, g1(x) · g2(x))”, with the difference that x is not
assigned during an input on g1 but before, in the summation operator
— said differently, a choice that should be external (i.e., determined by
the environment) has to be syntactically written as internal (i.e., locally
decided by the current process).

3. PSF and µCRL permit simple forms of data-flow sharing. For instance,
the aforementioned behavior “(g1?x:t + g2?x:t) · B3”, where variable x is
visible in B3, can be written “sum (x in t, (g1(x)+g2(x)) ·B3)” — again,
a single internal choice is used to model two different external choices.
However, data-flow sharing ceases to be possible as soon as the behavior
becomes slightly more complex, e.g., when at least one reception is not
an initial action. For instance, “(g1?x:t + τ · g2?x:t) · B3” must not be
written “sum (x in t, (g1(x) + τ · g2(x)) ·B3)”, as the summation cannot
be moved before the τ -transition without altering the branching structure.
One has no other option than writing this behavior “sum (x in t, g1(x) ·
B3)+ τ · sum (x in t, g2(x) ·B3)”, thus duplicating B3, or introducing an
auxiliary process that avoids duplicating B3 but degrades the readability
of the specification.

4. Rationale for enhancing sequential composition

From the previous section, it is clear that none of the widespread process
calculi (namely, CCS, CSP, MEIJE, LOTOS, ACP, PSF, and µCRL) provides an
optimal approach to sequential composition. The present section addresses this
problem and proposes rationale for a better solution, which has been retained
for the LNT language [30] implemented in the CADP toolbox [24]. The purpose
of this section is not to describe LNT in full detail, but to explain how sequential
composition should be handled in a modern language.

4.1. Forerunner languages
Certain design ideas behind LNT have been put forward in a few precursor

languages, which never reached the same level of audience as the widespread
process calculi listed above. We pay here a tribute to these almost-forgotten yet
inspiring languages by mentioning their contributions and limitations:

• ACPε is a variant of ACP defined in [40, 41] and mentioned in [46] [8] and
[42, Chp. 5 Sec. 7.2]. ACPε extends ACP with a new “empty process”

9

constant noted “ε” that is the neutral element for sequential composition.
SOS rules for ACPε can be found in, e.g., [47, Tab. 1] and [48, Tab. 1] as
examples of general rule formats; slightly different rules are given in [8,
Tab. 11] and discussed in [49, Sec. 6.1]. Value-passing issues for ACPε are
not addressed in the aforementioned references. It seems that ACPε was
never implemented, and its “ε” operator is absent from the value-passing
extensions of ACP (namely PSF, µCRL, and mCRL2).

• ACPG (Algebra of Communicating Processes with Guards) [50, 51, 52] is
a process calculus based on ACPε; it assumes the existence of global vari-
ables, the values of which can be consulted using guards (e.g., Boolean
conditions) and modified using nondeterministic state transformers (e.g.,
assignments). The semantics of ACPG is carefully defined, both alge-
braically and operationally, but in a context of open terms (i.e., with
free variables only), so that issues related to uninitialized variables (see
Sec. 4.4 below) do not show up. Although the work on ACPG was some-
what eclipsed by the research on µCRL by the same authors and had no
immediate continuation (excepted perhaps [53]), it provides a convincing
treatment of value passing in the presence of symmetric sequential compo-
sition, attempts at making process calculi closer to existing specification
and programming languages, and investigates the relationships between
Hoare logic, on the one hand, and algebraic and operational semantics, on
the other hand.

• ACBS& (Algebra of Broadcasting Systems with Fork) [54] is a process
calculus based on ACPε in which parallel composition and handshake
communication are replaced by forking and (asymmetric) broadcasting,
respectively. This design choice impacts the sequential composition oper-
ator “B1 ·B2”, as B2 can start executing while the processes forked by B1

are still running as background tasks. Value-passing issues for symmet-
ric sequential composition are discussed, but the problem of uninitialized
variables is not mentioned. The conclusion sounds quite pessimistic, stat-
ing that symmetric sequential composition has no obvious advantage over
action prefix in the presence of value passing.

• Extended LOTOS is a language defined by Ed Brinksma in his PhD thesis
[38]. Brinksma, who headed the ISO committee that designed the LOTOS
standard, proposed in his thesis a different language bringing ideas and
extensions not included in the official version of LOTOS. With respect to
the present article, the two most relevant features of Extended LOTOS
are its bracketed syntax for n-ary behavioral operators and its tentative
merging of LOTOS action prefix and enable operators into a single, com-
pound operator — these features are summarized and discussed in [39,
Sec. 9, 12, and 13].

• E-LOTOS (or Enhanced LOTOS) [55] is an ISO international standard
designed between 1992 and 2001. Undertaking a revision of LOTOS to

10

increase its expressiveness and usability, the E-LOTOS committee eventu-
ally produced a new formal language significantly different from LOTOS
in many respects, including symmetric sequential composition [56]. Be-
cause of its complexity, E-LOTOS has never been implemented, but gave
birth to a simplified version named LOTOS NT [57, 58], which itself pro-
gressively evolved into LNT.

• OCCAM is a concurrent programming language derived from the origi-
nal version of CSP [59] [60]. An interesting trait of OCCAM is that its
successive versions (1.0 [61], 2.0 [62, 63], 2.1 [64], and 3.0 [65]) were pri-
marily driven by industrial needs, developed away from the theoretical
influence of the CCS and ACP schools, and focused on language usability
and implementation issues rather than formal semantics. Yet, academia
bridged the gap by proposing various semantics for OCCAM, either deno-
tational [66] [67], algebraical [68] [69], or operational [70] [71]. OCCAM
made valuable suggestions for symmetric sequential composition and n-
ary behavioral operators; unfortunately, the language has been abandoned
after the Transputer project was cancelled, so that the place left by OC-
CAM has been taken by the (more traditional) Theoretical CSP process
calculus.

In addition to these general-purpose languages, one can also mention a few
domain-specific process calculi that also depart from traditional process calculi
regarding value passing and sequential composition, e.g., CHP (Communicating
Hardware Processes) [72], for which an operational semantics is given in [73],
MoDeST (Modeling and Description Language for Stochastic Timed Systems)
[74, 75, 76], Chi [77, 78, 79], and AWN (Algebra for Wireless Networks) [80].

4.2. Design decision #1: Have symmetric sequential composition
In spite of its simplicity and its adoption in most process calculi, action

prefix has too many drawbacks that cannot be solved. It is actually a limiting
factor that hampers a wider dissemination and acceptance of process calculi.
One should thus get rid of action prefix and use instead one single symmetric
sequential composition operator, for which the product operator of ACP and
the enable operator of LOTOS and CSP provide healthy inspiration. Therefore,
LNT includes a binary operator noted “;”6 and two constant operators. So
doing, LNT follows the tracks of E-LOTOS and ACPε. The corresponding
BNF rules are the following ones:

B ::= stop (inaction)
| null (successful termination)
| a (action)
| B1;B2

| ...

6The semicolon in LNT is a statement separator rather than a statement terminator.

11

• Operator “stop” is the same as “nil” in CCS, “STOP” in CSP, “δ” in
ACP, and “stop” in LOTOS. It has no associated SOS rule.

• Operator “null” (the name of which was borrowed from Ada) is the same
as “SKIP” in CSP, “exit” in LOTOS, “null” in E-LOTOS, and “ε” in
ACPε. Its operational semantics is given by the following rule:

–

null
√
−→ stop

Notice that “
√

” is a special action in LNT, rather than a special behav-
ior as in ACP. So doing, LNT follows the choice of CSP, LOTOS, and
ACPε not to have distinguished states and to put all information on tran-
sition labels only. Having two different classes of states with respect to
termination brings undesirable complexity in software implementations.
For instance, equivalence checking and model checking algorithms have to
consider information attached not only to transitions but also to states,
i.e., operate on Kripke transition systems rather than labelled transition
systems. This would also break the expected backward compatibility be-
tween LNT and LOTOS.

• In LNT, each action a (different from “
√

”) is also a behavior, and its
semantics is given (as in ACP and ACPε) by the following SOS rule:

–

a
a−→ null

• The sequential composition operator of LNT is defined by two SOS rules
similar to those for the enable and product operators. The first rule is the
same as in CSP, LOTOS, and ACPε. The second rule is borrowed from
ACPε and differs from CSP and LOTOS by not creating a τ -transition
when the control flow passes over sequential composition:

B1
a−→ B′

1 ∧ a 6=
√

B1;B2
a−→ B′

1;B2

B1

√
−→ B′

1 ∧ B2
a−→ B′

2

B1;B2
a−→ B′

2

4.3. Design decision #2: Have “true” (i.e., write-many) variables
Another feature that isolates process calculi from mainstream programming

languages is the status of variables. Following the leading influence of CCS,
most process calculi use exclusively immutable variables (also: dynamic con-
stants), which are assigned only once, at the point they are declared, and whose
values cannot change afterwards — unless by creating new, distinct instances
of the variables (e.g., parameter instantiation). This functional style sharply
contrasts with mainstream programming languages, in which imperative style
with multiple assignments to variables is the norm.

The main advantage of the functional style is a slight simplification of syn-
tax (as declarations and initializations of variables occur at the same place)

12

and operational semantics (as assignments to variables can be expressed using
substitutions). But, from a practical point of view, the functional style is not
flexible enough to let values naturally pass from left-to-right over sequential
composition and permit data-flow sharing.

Below are given six desirable value-passing examples; the four latter ones
cannot be properly specified without departing from the functional style in
two key points: (i) declarations of variables and assignments to variables must
be syntactically dissociated, and (ii) it must be possible to assign the same
variable at different places, e.g., in the various branches of deterministic and
nondeterministic choices:

g1?x where x > 0 ; g2!(x + 1)
g1?x1 ; g2?x2 ; g3!(x1 + x2)
(g1?x[]g2?x) ; g3!(x + 1)

((g1?x1 ; g2?x2)[](g2?x2 ; g1?x1)) ; g3!(x1 + x2)
if x2 > 0 then g1?x1 else x1 := 0 end if ; g2!(x1 + x2)

case x2 in 0 → g1?x1 | 1 → x1 := 0 end case ; g2!(x1 + x2)

In the four latter examples, assignments to the same variables are alternative,
as they occur on mutually exclusive branches. One may go further by permitting
successive assignments, so that the values of variables can evolve in time; this
is clearly needed to directly express loops (i.e., without using recursive process
definitions), as the values computed at some iteration must be passed to the
next iterations.

So far, very few process calculi dared to deviate from the functional style set
by CCS. Interestingly, the original version of CSP [59] was imperative, as well as
its descendents CHP and OCCAM, but CSP later adopted the functional style
with Theoretical CSP [3] and shows no intention to switch back [5, p. 132–133].
Extended LOTOS proposed a mixed approach, in which locally imperative se-
quential code fragments are immersed in a globally functional process calculus
[38, chapter 6]. The E-LOTOS standard went further by introducing a unique
symmetric sequential composition operator and implementing points (i) and (ii)
above: dissociation between variable declarations and assignments, and possi-
bility of alternative assignments; however, E-LOTOS only featured “write-once”
variables, explicitly deferring “write-many” variables to a future revision of the
standard.

In the realm of mobile processes, the update calculus [81] proposes a similar
dissociation between, on the one hand, the declaration of a name x local to
behavior P (which is done using a scope operator noted “(x)P”) and, on the
other hand, the substitution of all occurrences of x by y (noted “[y/x]”) or by
some value received on port a (noted “ax”); such dissociation is a key difference
with the π-calculus where declarations and input actions are bound together;
notice however that the update calculus is based on action prefix and uses name
substitutions rather than genuine assignments.

Actually, write-many variables are only used in a handful of process calculi.

13

Beside CHP and OCCAM, one can mention ACBS&, ACPG (where modifica-
tions of state variables, such as assignments, must be attached to visible or “τ”
transitions), AWN and Chi (where each assignment systematically creates a po-
tentially undesirable τ -transition), and MoDeST (where assignments may only
occur as operands of a probabilistic choice taking place after a visible or “τ” ac-
tion). LNT does not have such restrictions and handles “write-many” variables
in the same way as most imperative programming languages do. Focusing on
the places where variables are declared and modified, the BNF rules for LNT
behaviors are extended as follows (brackets “[...]” meaning optional):

B ::= ...
| var x:t in B0 end var variable declaration
| x := V (deterministic) assignment
| x := any t [where V] nondeterministic assignment
| g (O1, ..., On) [where V] value-passing action
| p [g1, ..., gm] (N1, ..., Nn) process call
| ...

O ::= [!]V emission offer
| ?x [where V] reception offer

N ::= V “in” parameter
| ?x “out” parameter
| !?x “in-out” parameter

These rules deserve a few comments:

• The “var” operator declares a variable that only exists in the scope of
behavior B0. This operator (similar to, e.g., the “var” operator of Esterel)
is the dual of the “hide” operator of LOTOS, which declares a gate only
visible in the scope of a given behavior; such duality between variables and
gates goes further because the only other places where variables (resp.
gates) can be declared are the formal variable (resp. gate) parameters
of process definitions. Notice that the ability to declare local variables
does not exist in all process calculi; for instance, ACPG only allows global
variables.

• The “where V ” optional clauses (called selection predicates in LOTOS)
are Boolean constraints specifying the acceptable values for nondetermin-
istic assignments and value receptions.

• To follow Ross’s uniform referents principle [82] and to pave the way for
action refinement [37], the syntax adopted for value-passing actions in
LNT is a mix between CCS (the “?” symbol is kept and the “!” symbol
becomes optional) and PSF/µCRL (value-passing actions are written with
the same conventions as function and procedure calls in programming
languages).

• In the imperative style of LNT, processes can have “in” parameters (call
by value), “out” parameters (call by result), and “in out” parameters
(call by value-result). The evaluation strategy is strict.

14

Notice that the dissociation between variable declarations (using the “var”
operator) and variable modifications (i.e., assignments or receptions) is the only
way to defeat the impossibility claim of [44] recalled in Sec. 3.3 above: sequential
composition can indeed be associative as expected if its operands do not declare
variables but only modify them.

The syntax proposed for LNT behaviors is permissive enough to express all
aforementioned examples. However, it is not free from difficulties, which we
consider in the next sections.

4.4. Design decision #3: Prohibit uninitialized variables
Unfortunately, certain behaviors accepted by the syntax of LNT

have no obvious semantics. For instance, the behavior B defined as
“(g1?x1[]g2?x2) ; g3!(x1 + x2)” is problematic because, depending on which
execution branch is taken, either x1 or x2 is not assigned, and thus the sum
(x1 + x2) may be undefined. However, this behavior B becomes trouble-free
if inserted in some larger behavior, such as “x1 := 0 ;x2 := 0 ;B”. Various
approaches can be considered for this problem:

1. The semantics could (explicitly or implicitly) state that reading uninitial-
ized variables has “undefined” (i.e., implementation-dependent) effects.
This is a usual solution for imperative languages (e.g., C) and sometimes
for process calculi as well (e.g., CHP and, to some extent, the early ver-
sions of Chi in which undefined variables are said to remain symbolic
when evaluating expressions [83, pp. 54 and 250] [77, p. 375]). However,
this solution is unacceptable in the context of formal methods; moreover,
determining whether a behavior is “undefined” or not is undecidable in
general — this is equivalent to the halting problem.

2. The semantics could implicitly initialize each variable to some default
value when the variable is declared. This is the approach taken in Eiffel,
which automatically sets integers to zero, Booleans to false, etc. Such a
semantics is formal, but presents the risk of silently hiding user mistakes,
namely all forgotten assignments with values different from the default
ones.

3. The semantics could state that reading an uninitialized variable triggers
some particular behavior. For instance, the various definitions of OCCAM
are not very precise on this matter, but it seems that any behavior requir-
ing the evaluation of an expression containing some uninitialized variable
should behave like “STOP” [63, pp. 17 and 215], although the OCCAM
compiler can also be instructed to halt the whole system in such event
[62, Annex E]. Alternatively, a catchable exception [84] could be raised.
In such approaches, the detection of user mistakes is postponed at run
time, which is not advisable for safety- and security-critical designs.

4. The semantics could state that reading an uninitialized variable provokes
a nondeterministic assignment (“x := any t”) to this variable. Such a
semantics would be formal, but it would be non-standard (although it has
been implemented in a CHP-to-LOTOS translator [73]) and would also

15

hide user mistakes (yet, complexity explosions occurring during state-
space generation could indirectly inform the user about potential mis-
takes).

5. Our idea consists in adding static semantics constraints that reject syntac-
tically correct, yet semantically problematic behaviors. This is standard
practice in programming languages, where static semantics rules out pro-
grams containing, e.g., undefined identifiers, mistyped expressions, etc.
This way, one can introduce restrictions to ensure that all variables are
properly initialized; this idea was first experimented in IBM’s NIL and
Hermes languages [85] and later adopted in Java.

LNT follows the fifth approach. The LNT compiler implements data-flow
analysis techniques to statically detect and reject “dubious” specifications in
which some variables might be used before set.

Of course, it is not possible to decide, for all specifications, whether all
variables are set before used, but one can check instead sufficient conditions
that only accept those specifications in which a proper initialization of variables
can be proven, and reject all other specifications in which such initialization is
uncertain. There is obviously a risk of rejecting specifications that make sense;
for instance, the current LNT compiler front-end does not accept the following
behavior:

if x1 ≤ x2 then x3 := 0 end if ; if x2 > x1 then g (x3) end if

because the analysis is not involved enough to discover that the second condition
is implied by the first one. In practice, such false positives are not too frequent,
and it is not so difficult to modify an LNT specification to get it accepted by
the compiler. Moreover, the experience with Java indicates that data-flow con-
straints uncover many mistakes and are appreciated by programmers. Finally,
the data-flow algorithms are always perfectible and will certainly benefit, for
instance, from recent advances in static analysis and SAT/SMT solvers; the set
of accepted LNT specifications is thus expected to grow as time passes.

Looking retrospectively at traditional process calculi, it is clear they also
set constraints to rule out unwanted behaviors. For instance, action prefix in
CCS and “input-only” actions in PSF/µCRL are two different means to forbid
problematic behaviors such as “(g1?x1[]g2?x2) ; g3!(x1 + x2)”. But these are
syntactic restrictions, i.e., very primitive defense means that bluntly reject many
meaningful and useful behaviors. To the contrary, the LNT approach has a
more permissive syntax combined with static semantics restrictions, leading to
a language that is more flexible and closer to end-user intuition and expectations.

4.5. Design decision #4: Prohibit shared variables
The dissociation between declarations of variables and assignments to vari-

ables, together with the introduction of “write-many” variables creates new
issues with parallel composition as well. For instance, it allows behaviors of the
form “var x:t in (g1(?x) || g2(?x)) ; g3(x) end var”, where “||” denotes some

16

parallel composition operator, so that x is actually a shared variable, whose
semantics depends on the possible interleavings.

This issue has been diversely addressed in the various forerunner languages
that permit variable assignment. In CHP, for instance, such situation cannot
occur due to a restrictive syntax: there is no explicit parallel composition op-
erator, so that concurrent processes operate in disjoint memory spaces without
shared variables. In OCCAM, a parallel composition is considered to be invalid
if any of its branches may change the value of a variable used in another branch;
this situation is handled at run time: in such case the parallel composition may
stop (while other parts of the system continue their execution) or halt the entire
system. In ACBS&, each parallel branch forks to execute in its own memory
space that contains copies of shared variables; race-condition issues are thus
deferred until join points when forked processes return, with several possible
semantics to merge once-separate memory spaces [54, Sec. 6.4].

LNT follows a similar approach to OCCAM, but ensures the existence of
a formal semantics. Rather than stopping or halting at run time, LNT adds
static semantic constraints that forbid at compile time all (syntactically cor-
rect) behaviors involving shared variables. Namely, all parallel branches can see
the variables declared in an enclosing scope; by default, all parallel branches
can read such shared variables, but if a branch writes to a shared variable, the
other branches can neither write nor read this variable. When parallel compo-
sition terminates, the disjoint variables computed by each branch are merged
into a single memory space, e.g., “var x1, x2:t in (g1(?x1) || g2(?x2)) ; g3(x1 +
x2) end var” — actually, this corresponds to the “combine” semantics of
ACBS& [54, Sec. 6.4.3].

With such a design decision, LNT remains in the strict message-passing
framework of traditional process calculi, as the most direct motivation behind
LNT was the need for a better language to replace LOTOS in academia and
industry. On the longer term, static semantics restrictions on shared variables
could be relaxed, giving a nice opportunity to combine message-passing and
shared-memory paradigms in the same formal language. Work in this direction
already exists, such as ACPG, which allows shared variables without restric-
tion (race conditions leading to nondeterminism, as each variable keeps the last
value it was assigned during the interleaved execution of parallel branches). The
aforementioned shared-variable languages that translate to traditional process
calculi [2, Chapter 8] [27] [28] [5, Chapter 18] also provide a basis for reflection.
However, given the multiplicity and complexity of shared-memory models, ma-
chines, and languages, a deep reflection is needed if one wants to produce a
language general enough to accurately model a variety of parallel hardware and
software.

4.6. Design decision #5: Prohibit complex forms of process recursion
It is well-known from the ACP body of knowledge that symmetric sequential

composition opens the way to context-free recursion, e.g., process definitions of
the form “p = (a1 · p · a2) + a3”, a situation syntactically prohibited by action

17

prefix operator. Also, “write-many” variables may lead to problematic behaviors
when combined with recursion and other operators.

Such issues have not yet been fully explored in LNT, for two reasons. First,
such forms of process recursion are not so useful in practice, as the desired behav-
iors can be described in a different way, using regular processes with additional
variables to encode recursion stacks. Second, LNT is currently implemented by
translation to LOTOS, and the LOTOS compiler of CADP [86] does not accept
recursion through parallel composition operators, nor on the left-hand side of
the enable and disable operators.

Therefore, restrictions have been added to the static semantics of LNT in
order to disallow such forms of recursion. Relaxing these restrictions should
trigger future investigation, based on existing work to automatically eliminate
non-tail process recursion [87]. Notice that no similar restrictions exist for
recursive functions, because LNT functions are translated to C functions, thus
deferring the handling of recursion to the C compiler.

4.7. Design decision #6: Have structured programming constructs
Most of the discussion above is about sequential composition. Regarding the

remaining behavioral operators, the following remarks can be made:

1. With traditional process calculi, it was sometimes tricky to introduce cer-
tain operators, such as the empty process or loops. These difficulties van-
ish once symmetric sequential composition and “write-many” variables are
adopted. Introducing the usual structured programming constructs then
becomes straightforward. LNT has thus most Ada-like constructs, includ-
ing “if-then-else” with “elsif”, “case”, forever “loop” with “break”,
“while” loop, “for” loop, etc. Notice that the “case” operator of LNT
supports ML-like pattern matching, whereas traditional process calculi
have no “case” operator at all in their control part, partly compensated
with algebraic equations in their data part only. Nearly 70% of LNT be-
havioral operators look familiar to average computer scientists; this favors
the acceptance of the language.

2. Opting for such imperative programming constructs (disciplined by static
semantics constraints on variable initialization) brings a proper solution
to another problem faced by most specification languages based on pro-
cess calculi: the coexistence of two different languages, one to describe
the control part (namely, communication channels and processes), and
another one to describe the data part (namely, types and functions). For
the latter part, algebraic data types have been often used (e.g., in LOTOS,
ACP/SDF, ACP/COLD, PSF, µCRL, mCRL2, etc.), but functional lan-
guage are also possible, as in LCS (which combines CCS and ML) [88] or
CSPM (which combines CSP and Haskell) [89, Appendix B]. Whatever the
approach chosen, juxtaposing two languages increases complexity and of-
ten violates the uniform referents principle: in most process calculi, for in-
stance, “if-then-else” conditionals are expressed very differently whether

18

they occur in the control part or in the data part, causing much confusion
among beginners.
To our knowledge, the ISO committee that designed E-LOTOS was the
first to state this problem and propose a unifying approach in which the
language to describe functions is a subset of the language to describe pro-
cesses. LNT follows the same inspiration, by considering a function as
a restricted form of process that is deterministic, cannot perform (visi-
ble nor internal) actions, and in which only sequential programming con-
structs can be used — to be complete, there is a minor exception to this
rule at the moment: functions can return a result using a “return” con-
struct that processes do not have, but this could easily be addressed by
allowing processes as well to (optionally) return results when they termi-
nate, keeping in mind that processes already have “out” and “in out”
parameters.

3. The remaining behavioral operators that can be used in processes (but
not in functions) are: nondeterministic choice (noted “select” as in Ada),
nondeterministic assignment (“x := any t”), parallel composition (which,
in LNT, is based on the so-called graphical parallel operators [90]), action
hiding, and disruption (i.e., the disable operator noted “[>” in LOTOS).

4. Process calculi were originally designed to reason about small yet salient
examples but have been later used to model increasingly large systems.
At this point, the algebraic syntax becomes a nuisance for readability,
leading to (LISP-like) excessive nestings of parentheses. LOTOS tried to
address this issue by defining eight levels of precedence between behavioral
operators, but these levels are not intuitive and provoke mistakes that are
difficult to catch.
A better solution was proposed by OCCAM, which replaced binary oper-
ators by n-ary operators (“SEQ B1...Bn” for sequential composition, “ALT
B1...Bn” for choice, “PAR B1...Bn” for parallel composition, etc.), while
relying on indentation levels7 to disambiguate nested behaviors. Such a
proposal actually conveyed the hidden yet subversive message that a lan-
guage for concurrency could choose the most appropriate syntax and was
not fatally bound to imitate arithmetics.
The OCCAM solution was improved in Extended LOTOS, which sup-
pressed the questionable reliance on indentation levels by introduc-
ing fully bracketed n-ary constructs, e.g., “seq B1 ; ... ;Bn endseq”
for sequential composition, “sel B1[]...[]Bn endsel” for choice,
“par B1||...||Bn endpar” for parallel composition, etc. This idea, re-
tained for E-LOTOS, was also adopted for LNT with two differences in-
spired from Ada: removing the “seq” and “endseq” keywords (which are
not needed if all other constructs are properly bracketed), and splitting
each keyword “endxxx” into “end xxx” to reduce the overall number
of keywords. MoDeST chose a similar approach, using instead a C-like

7Namely, the so-called off-side rule.

19

syntax with braces. Notice that bracketed n-ary operators are the most
sensible option to introduce “case”, graphical parallel composition [90],
and probabilistic choice operators, at least.

4.8. Formal definition of LNT
The definition of traditional process calculi consists of two parts: syntax and

dynamic semantics, the latter being specified algebraically (axioms) or opera-
tionally (SOS rules). Due to the design choices for LNT, a third part must be
added, static semantics, which is usually absent from traditional process calculi
or kept to a minimum (e.g., a few rules stating that value expressions must be
well-typed). In LNT, static semantics is larger and cannot be overlooked, as it
is a condition for the soundness of dynamic semantics.

In practice, one observes that new users learn the syntax and static semantics
of LNT, but tend to ignore the dynamic semantics, based upon the (reasonable)
assumption that anything permitted by the syntax and not forbidden by the
static semantics should work simply just as expected. Although such a situa-
tion is annoying from a semanticist’s point of view, it is in line with mainstream
programming languages, the formal semantics of which is only studied by stan-
dardization committees, compiler writers, and test-suite producers, rather than
being a prerequisite to start using the language.

The syntax, static semantics, and dynamic semantics of LNT are given in
[30]. Formalized by Frédéric Lang, the dynamic semantics is defined opera-
tionally [30, Annex B] and comprises two parts:

• For LNT functions, each memory state is represented as a store, i.e., a
mapping from variables to their current values; the execution of LNT
constructs defines transitions between these states (i.e., store updates).

• For LNT processes, the dynamic semantics is given in terms of labelled
transition systems. Following a minoritarian yet longstanding tradition
[91, 92] [93] [94] [50, 51, 52] [54] [95] [96, 97], each state is defined as a pair8

〈B, σ〉, where B is a behavior and σ a store, rather than a behavior only9.
SOS rules define transitions between states; static semantics restrictions
avoid complications, ensuring that each variable read has a defined value
and avoiding race conditions when the store is accessed.

The dynamic semantics of LNT being too large (17 pages) to be entirely
reproduced here, we only give a few salient SOS rules and compare them with
the rules of ACPG [51, Fig. 3 and 9]. Let “〈V, σ〉−→ v” denote that a value
expression V evaluates to v in store σ, and let “〈B, σ〉 a−→ 〈B′, σ′〉” denote that
it exists a transition labelled a from state 〈B, σ〉 to state 〈B′, σ′〉. The two first
rules extend, by adding stores, those already given in Sec. 4.2:

8Such a pair is often called a configuration in the literature.
9Systematic conversion from the former to the latter approach is studied in [98].

20

–

〈null, σ〉
√
−→ 〈stop, σ〉

–

〈g, σ〉 g−→ 〈null, σ〉

The two next rules consider actions with emission and reception offers (these
are not supported in ACPG):

〈V, σ〉−→ v

〈g (V), σ〉 g (v)−→ 〈null, σ〉

v ∈ type(x) ∧ σ′ = σ[x/v] ∧ 〈V, σ′〉−→ true

〈g (?x) where V , σ〉 g (v)−→ 〈null, σ′〉

where type(x) denotes the type of variable x, and where σ[x/v] is the store
obtained from σ by assigning value v to variable x. The two next rules define
deterministic and nondeterministic assignments:

〈V, σ〉−→ v

〈x := V , σ〉
√
−→ 〈stop, σ[x/v]〉

v ∈ t ∧ σ′ = σ[x/v] ∧ 〈V, σ′〉−→ true

〈x := any t where V , σ〉
√
−→ 〈stop, σ′〉

Although such assignments can also be expressed in ACPG (by means of state
transformers), they must be attached to visible or “τ” transitions, whereas
LNT is more general by attaching them to

√
-transitions; as a consequence,√

-transitions never modify the store in ACPG, whereas they can in LNT. An-
other difference is that ACPG requires state transformers to have at least one
solution, whereas LNT does not — namely, the condition V used in a Boolean
guard “where V ” is allowed to be always false, in which case the assignment
or reception containing this guard is simply equivalent to “stop”.
Finally, the two main rules for value-passing sequential composition are the
following ones (a third rule is actually needed to model the “break” statements
used to exit from loops):

〈B1, σ〉
a−→〈B′

1, σ
′〉 ∧ a 6=

√

〈B1;B2, σ〉
a−→ 〈B′

1;B2, σ′〉
〈B1, σ〉

√
−→〈B′

1, σ
′〉 ∧ 〈B2, σ

′〉 a−→〈B′
2, σ

′′〉
〈B1;B2, σ〉

a−→ 〈B′
2, σ

′′〉

These rules are similar to those of ACPG, except that the second premiss of
the second rule differs: ACPG uses 〈B2, σ〉

a−→ 〈B′
2, σ

′′〉 whereas LNT uses
〈B2, σ

′〉 a−→ 〈B′
2, σ

′′〉 because
√

-transitions can modify the store in LNT but
not in ACPG.

5. Comparison with traditional process calculi

In this section, we discuss the relationship between LNT and established
process calculi, focusing on sequential composition and excluding from the com-
parison the well-known differences arising from parallel composition, binary vs.
multiway synchronization, hiding and/or renaming of actions, etc.

As a preliminary remark, it is worth noticing that LNT without its choice,
parallel, hiding, and disabling operators, provides a small yet powerful language
offering a combination of imperative and functional traits. This allows LNT to
be taught in successive steps, starting from well-known sequential aspects, then
progressively introducing concurrency-related features.

21

5.1. Expressiveness of LNT
The design of LNT is not driven by the desire to increase theoretical ex-

pressiveness, but by pragmatic considerations about the wide applicability of
the language. At present, LNT is implemented by translation to LOTOS, so as
to reuse the compilers already available in the CADP toolbox. More precisely,
LNT is translated into a combination of LOTOS (slightly extended by allow-
ing the enable operator “>>” not to create extra τ -transitions) and C (which
serves to efficiently implement certain LNT types that do not exist in LOTOS,
e.g., floating-point numbers and character strings). Despite these extensions, we
conclude that the expressiveness of LNT is roughly the same as that of LOTOS.

5.2. Encoding of regular expressions in LNT
To start with a simple example, the following function T translates a regular

expression R to an LNT behavior such that the automaton obtained from the
labelled transition system of T (R) by considering as accepting states all states
having an outgoing

√
-transition recognizes the language of R; the two last

equations extend the definition of T to ω-regular expressions:

T (ε) = null

T (g) = g

T (B1 ·B2) = T (B1) ; T (B2)
T (B1 + B2) = select T (B1) [] T (B2) end select

T (B∗) = loop select T (B) [] break end select end loop

T (B∞) = loop T (B) end loop

T (Bω) = select T (B∗) [] T (B∞) end select

Studies of the correspondences between regular expressions and process cal-
culi when considering stronger relations rather than language equivalence can
be found in [99, 100, 101] and [102, 103].

5.3. Encoding of CCS in LNT
Migrating from CCS to LNT can easily be done using the following function

T that translates a CCS term to an LNT behavior:

T (nil) = stop

T (g.B) = g ; T (B)
T (g(V).B) = g(V) ; T (B)
T (g(x).B) = g(?x) ; T (B)

T (τ.B) = i ; T (B)
T (B1 + B2) = select T (B1) [] T (B2) end select

T (if V then B) = only if V then T (B) end if

22

The “only” keyword before the “if” implicitly adds a blocking “else stop”
rather than the default clause “else null” added by default when “only” is
absent. Also, each CCS process call is translated to a corresponding LNT
process call, but it is also possible to express recursive CCS processes using
the “loop” operators of LNT. As stated above, the parallel, relabelling, and
restriction operators are left out of the discussion. The same remarks will also
apply to the next sections.

5.4. Encoding of (value-passing) ACP in LNT
Similarly, many operators of ACP, PSF, and µCRL have a simple counterpart

in LNT, given by the following function T that translates an ACP term to an
LNT behavior:

T (δ) = stop

T (ε) = null

T (g) = g

T (g(V 1, ..., V n)) = g(V 1, ..., V n)
T (τ) = i

T (B1 ·B2) = T (B1) ; T (B2)
T (B1 + B2) = select T (B1) [] T (B2) end select

T ([V]→ B) = only if V then T (B) end if

T (B1 / V . B2) = if V then T (B1) else T (B2) end if

T (sum (x in t, B)) = var x:t in x := any t ; T (B) end var

One should of course keep in mind that “
√

” is a state in ACP and a transition
in LNT, leading to minor differences in the labelled transition systems: for
instance, the LTS of “ε” in ACP has one state and no transition, whereas the
LTS of “null” in LNT has two states and one

√
-transition; similarly, the LTS

of an action in ACP has two states and one transition, whereas the LTS of that
same action in LNT has three states and two transitions (the last one being a√

-transition).

5.5. Encoding of LOTOS and CSP in LNT
As mentioned above, LNT is currently implemented by translation to LO-

TOS. But the reverse translation from LOTOS to LNT is possible — and much
simpler. It is given by the following function T that translates a LOTOS term
to an LNT behavior; this translation also holds (modulo notational changes) for

23

a large fragment of CSP:

T (stop) = stop

T (exit) = null

T (g ;B) = g ; T (B)
T (g!V ;B) = g(V) ; T (B)
T (g?x:t ;B) = var x:t in g(?x); T (B) end var

T (g?x:t [V] ;B) = var x:t in g(?x) where V ; T (B) end var

T (i ;B) = i ; T (B)
T (B1[]B2) = select T (B1) [] T (B2) end select

T ([V]→ B) = only if V then T (B) end if

T (let x:t = V in B) = var x:t in x := V ; T (B) end var

T (choice x:t []B) = var x:t in x := any t ; T (B) end var

T (B1>>B2) = T (B1) ; i ; T (B2)
T (B1[>B2) = disrupt T (B1) by T (B2) end disrupt

Despite their apparent simplicity, certain equations above are not trivial.
For instance, the third equation converts an asymmetric action prefix operator
into a symmetric sequential composition operator. The two next equations are
given only for the emission/reception of a single offer, but naturally extend to
the case of multiple offers.

The translation of value-passing “exit” and “>> accept” operators is more
involved and not described by the above equations. The key idea is that LNT
totally suppresses the need for such complex operators, which have been (for
good reasons) introduced in LOTOS long ago. In essence, the elimination of
these operators is summarized by the two following equations:

T (... exit(V) >> accept x:t in B) =
... i ;var x:t in x := V ; T (B) end var

T (... exit(any t) >> accept x:t in B) =
... i ;var x:t in x := any t ; T (B) end var

6. Assessment on design patterns

In Sec. 3, several examples have been given that cannot be conveniently
expressed in traditional process calculi. The present section goes further by
providing larger examples (borrowed from typical design patterns) that can
clearly be better expressed in LNT than with former process calculi.

6.1. Design pattern #1: Control-flow sharing
The benefits of control-flow sharing (i.e., the ability to specify dag-like pat-

terns and not only tree-like patterns) have already been demonstrated on small

24

examples. Here is a more involved LNT example featuring a sequence of “if-
then” conditionals — similar examples could be built using sequences of “if-
then-else”, “case”, or “select” operators:

–– here, let x1, x2, ..., xn be initialized integer variables
if x1 = 0 then g (?x1) end if ;
if x2 = 0 then g (?x2) end if ;
...
if xn = 0 then g (?xn) end if ;
g′ (x1 + x2 + ... + xn)

Traditional process calculi do not allow to concisely express this example:
they require a quadratic complexity in the number of variables, whereas LNT
permits a linear complexity. Using LOTOS would be the best option: a se-
quence of (n− 1) enable operators could be used, the (i+1)-th operator having
an “accept” clause to get all variables x1, ..., xi; therefore, n(n − 1)/2 auxil-
iary variables would be needed. For other languages based on action prefix,
the only option to avoid unfolding 2n branches would be to introduce (n − 1)
auxiliary processes, the (i + 1)-th process having i parameters to get the values
of x1, ..., xi; again, n(n− 1)/2 auxiliary variables would be needed (in addition
to the processes themselves). For the ACP-based languages PSF and µCRL,
despite symmetric sequential composition, the introduction of (n− 1) auxiliary
processes totalling n(n− 1)/2 parameters is also unavoidable, given that input
actions are not allowed, and that summations and process calls are the only
places where variables can be bound to values. No need to emphasize that
quadratic-size specifications are error prone, and tedious to write, read, and
maintain.

6.2. Design pattern #2: Guarded commands
A second class of patterns that are easier to express using LNT than tradi-

tional process calculi are Dijkstra’s guarded commands [104], which many model
checkers adopted as their input language. LNT can express guarded commands
naturally and concisely, e.g.:

var x1, x2, ..., xn:int in
x1 := 0 ;x2 := 0 ; ... ;xn := 0 ;
loop

select
only if x1 < 10 then x1 := x1 + 1 ;B1 end if
[]
only if x2 < 10 then x2 := x2 + 1 ;B2 end if
[]...[]
only if xn < 10 then xn := xn + 1 ;Bn end if

end select
end loop

end var

25

where B1, B2, ..., Bn can be arbitrary behaviors. Using traditional process cal-
culi that lack a “loop” operator, one must introduce a recursive process with
n parameters x1, x2, ..., xn. Because this process is called n times (once per
branch), n2 actual parameters are passed. Therefore, the size of the code, linear
in LNT, becomes quadratic. The need to extend ACP-like value-passing process
calculi to properly express guarded commands was acknowledged in [51, Sec. 6].

6.3. Design pattern #3: Map-Reduce
In distributed computing, the map-reduce pattern is a means to divide a

task between parallel workers. For instance, given n inputs x1, x2, ..., xn and
an expression “f(f1(x1), f2(x2), ..., fn(xn))” to compute, where f, f1, f2, ..., fn

are function symbols, one can ask n workers to compute the partial results
“yi = fi(xi)” in parallel. This pattern can easily be expressed in LNT, where
parallel branches can assign variables declared in their enclosing scope(s):

–– here, let x1, x2, ..., xn be initialized variables
var y1, y2, ..., yn:t in

par
y1 := f1(x1)
||
y2 := f2(x2)
||...||
yn := fn(xn)

end par ;
g (f(y1, y2, ..., yn))

end var

Among traditional process calculi, LOTOS is probably the one that can
most concisely express this pattern. This can be done using the “>> accept”
operator, but with a quadratic complexity as n “exit” operators (each with n
arguments) are needed:

–– here, let x1, x2, ..., xn be initialized variables
(
exit(f1(x1),any t, ...,any t)
|||
exit(any t, f2(x2), ...,any t)
|||...|||
exit(any t,any t, ..., fn(xn))
) >> accept y1, y2, ..., yn:t in g !f(y1, y2, ..., yn) ; ...

It is worth noticing that the above LOTOS fragment is not compositional,
as each branch must be aware of its own position in the parallel composition
to properly pass arguments to “exit”. Moreover, the addition of an (n + 1)-th
branch would require to modify all the branches.

Other traditional process calculi than LOTOS lack a native synchronized
termination in which each parallel branch could contribute by passing its locally

26

computed results. The map-reduce pattern can still be expressed in these calculi
by introducing auxiliary gates to mimic LOTOS “exit” and “>>” operators; the
complexity is also quadratic (counting the number of offers passed to these gates)
and the modelling remains not compositional.

6.4. Beyond condition/actions models
Close in essence to guarded commands, condition-action transition systems

are often used in model checkers and academic lectures on automated verifica-
tion. Such systems have states, variables, and transitions; a transition can be
fired if its associated Boolean condition is true; firing a transition triggers its
associated action, i.e., a set of assignments that modify variables.

Condition/action models have the merit of simplicity, but lead to transition
systems larger than actually needed. For this reason, they have been sharply
criticized in [105], where an alternative model named NTIF is proposed. LNT
follows the principles of NTIF: in particular, it features blocks of sequential code
(deterministic and nondeterministic assignments, conditionals, iterations) that
execute atomically, i.e., without creating any visible or τ -transition. This is
implemented by the definition of sequential composition in LNT: for instance,
each assignment creates one

√
-transition but a sequence of assignments only

creates one single
√

-transition, as the LNT sequential composition operator
merges two successive

√
-transitions in one.

The flexible style permitted by LNT can be illustrated on the small excerpt
below, which was taken from a much larger specification. The structure of
the code shows that what is needed in practice is far more involved than mere
conditions/actions. For instance, the second “select” is used to enumerate a
finite number of values from an infinite type domain — notice that there are no
visible or τ actions at all in the branches of this choice. Also, the “while” loop
corresponds to a statically unbounded number of assignments.

–– let x and x′ be two lists of integers
x := {} ;
loop

select
g (?x′) ;x := insert (x, x′)

[]
select

x′ := {} [] x′ := {0, 1} [] x′ := {1, 0, 2}
end select ;
g′ (x′) ;
while x′ 6= {} loop

x := remove (x, head(x′)) ; x′ := tail(x′)
end loop

end select
end loop

27

7. Conclusion

7.1. Summary of Contributions
Process calculi are the prime vehicle for disseminating concurrency theory

knowledge to other branches of computer science and to industry as well. Ques-
tioning tradition and designing better languages is an essential part of this
agenda. Sequential composition is often overlooked as an easy problem of sec-
ondary importance. But, as discussed in Sec. 3, the various approaches to
sequential composition adopted by mainstream process calculi (namely, CCS,
CSP, ACP, LOTOS, PSF, µCRL, and mCRL2) all suffer from serious shortcom-
ings. A few other process calculi mentioned in Sec. 4.1 (namely, ACPε, ACPG,
ACBS&, Extended LOTOS, E-LOTOS, and OCCAM) tried to propose better
approaches, but had little success and are almost forgotten.

Considering sequential composition as a central topic in the design of modern
process calculi, the present article has presented a carefully-motivated solution,
which features a unique sequential composition operator, together with “write-
many” variables and static semantics data-flow constraints ensuring, among
other suitable properties, that all variables are properly set before use.

The advantages of the proposed solution, which has been retained for the
LNT language [30], are fourfold: (i) it is simple and easy to learn, as it matches
the knowledge and intuition of software engineers; (ii) it allows to describe data
and control using the same language (functions being a subset of processes)
rather than two different sub-languages; (iii) it unifies and supersedes the various
sequential composition operators that exist in traditional calculi, which can be
“upgraded” to LNT using simple translation functions given in Sec. 5; (iv) it
enables useful design patterns to be expressed in LNT with a linear complexity,
where traditional process calculi require a quadratic complexity as shown in
Sec. 6.

7.2. Implementation and Feedback
From 2005 to 2014, the proposed solution has been fully implemented in

the LNT→LOTOS translator that is part of the CADP toolbox [24]. Since
2011, LNT has been successfully taught at ENSIMAG (Grenoble INP), the first
French engineering school in computer science, and appears significantly faster
to learn than LOTOS: lectures can indeed focus on “important” operators (e.g.,
choice, parallel composition, and hiding) rather than spending time explaining
the intricacies of action prefix and enable. Quoting Hoare’s remark [60] about
the design of the “ALT” operator in OCCAM, and hoping that the same remark
also holds for sequential composition in LNT: “as in all branches of engineering,
the user of a product should never have to notice the skill with which the engineer
has improved the design; true skill is that which conceals itself ”.

LNT is also used in a growing number of case studies10 and receives positive
feedback from industry partners noticing major productivity boosts; quoting

10These case studies are too many to be exhaustively cited here; please refer to the CADP
web site (http://cadp.inria.fr) or search for LNT-related publications in venues such

28

http://cadp.inria.fr

STMicroelectronics [106]: “although modeling the DTD [Dynamic Task Dis-
patcher] in LOTOS is theoretically possible, using LNT made the development
of a formal model practically feasible”. This reinforces our conviction that LNT
is the right kind of approach for transferring concurrency theory results to in-
dustry.

7.3. Further Work
We believe that long standing issues with sequential composition in value-

passing process calculi are satisfactorily solved by the approach proposed in the
present article, which also brings a new vision of how modern process calculi
should be defined. From a language-design point of view, this approach could
be expanded and refined into three directions:

• Data-flow constraints in the static semantics constraints of LNT could be
enhanced, e.g., with abstract interpretation techniques, to accept more
specifications (see Sec. 4.4) and also provide users with accurate warnings
about questionable code fragments.

• One could try relaxing some constraints currently in the dynamic seman-
tics of LNT, such as the prohibition of non-tail recursion (see Sec. 4.6)
and of shared variables in parallel branches (see Sec. 4.5).

• Finally, LNT could be extended with quantitative aspects (time, proba-
bilities, distributions, etc.); much has been done in Chi [77, 78, 79] and
MoDeST [74, 75, 76], the latter having already symmetric sequential com-
position, bracketed n-ary operators, and write-many variables, but still
with residual action prefix and syntactic constraints associated to proba-
bilistic choice.

From a language-implementation perspective, verification techniques based
on state-space exploration (namely, model checking and equivalence checking)
are crucial topics, as no other technique today seems better capable of analyz-
ing complex specifications of concurrent systems. It would therefore be worth
designing a direct compiling scheme for LNT in order to replace the existing
multi-step translation chain (LNT → LOTOS → interpreted Petri nets → la-
belled transition systems).

Keeping in mind that process calculi have originally been designed for prov-
ing concurrent systems formally [1], and putting aside the fact that state-space
exploration techniques nowadays predominate over proof techniques for the ver-
ification of industrial systems, one may wonder whether the proposed approach
to sequential composition is still compatible with the needs of formal proofs.
Indeed, a large body of knowledge has been developed for value-passing calculi

as ATVA’13, CBSE’14, EICS’14, EICS’15, FMICS’13, FMICS’14, FORTE’13, FORTE’14,
ICEFM’14, IFM’13, ISSE’13, PDP’15, SAC’14, SCICO’13, SCICO’14, TACAS’13, TACAS’15,
VMCAI’15, etc.

29

with action prefix (e.g., [107, 108] [109, 110] [111] in the case of CCS) and one
may wonder whether the same would be possible for LNT. We conjecture that
the answer to this question is positive, for at least two reasons: (i) When lan-
guages with symmetric sequential composition and “write-many” variables can
be translated to process calculi with action prefix (which is the case for LNT
and CHP [73], both of which translate to LOTOS), one can reuse conventional
proof techniques by applying them to the translated specifications; (ii) Prior
work exists that gives algebraic semantics to forerunner languages sharing sim-
ilar traits with LNT: in this respect, one can get inspiration from the algebraic
laws for OCCAM [68, 60] and from the ACPG theory [50, 51, 52], the latter pro-
viding a sound and complete axiom system combining Hoare logic and process
algebra. Anyway, formal specifications being a prerequisite for proofs, it is likely
that proof techniques will adapt to match the style of specifications produced
by system designers. Moreover, making process calculi closer to programming
languages will enable reusing, for sequential processes at least, state-of-the-art
verification approaches based on theorem proving and abstract interpretation.

Acknowledgements
This work benefited from scientific exchanges spanning over the last twenty

years. Acknowledgements are due to the members of the ISO E-LOTOS commit-
tee (with particular thanks to Mihaela Sighireanu), to all colleagues at INRIA
Grenoble who contributed to the design and implementation of LNT (especially
Wendelin Serwe, who designed the translation algorithms for the control part
and Frédéric Lang, who designed the translation algorithms for the data part
and formalized the semantics of LNT), and to the users of LNT for their feed-
back (with a special mention to Bull and STMicroelectronics for their financial
support). Comments from the anonymous reviewers, exchanges with Jan Friso
Groote and Sjouke Mauw on ACPG and PSF, and discussions during the IFIP
meeting on Open Problems in Concurrency Theory (Bertinoro, June 2014) and
the SENSATION European project meeting (Aachen, September 2014) have
been helpful in improving the present article.

Bibliography
[1] R. Milner, A Calculus of Communicating Systems, Vol. 92 of Lecture

Notes in Computer Science, Springer, 1980.

[2] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

[3] S. D. Brookes, C. A. R. Hoare, A. W. Roscoe, A Theory of Communicating
Sequential Processes, J. ACM 31 (3) (1984) 560–599.

[4] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[5] A. W. Roscoe, Understanding Concurrent Systems, Texts in Computer
Science, Springer, 2010.

[6] D. Austry, G. Boudol, Algèbre de Processus et Synchronisation, Theoret-
ical Computer Science 30 (1984) 91–131.

30

[7] J. A. Bergstra, J. W. Klop, Algebra of Communicating Processes with
Abstraction, Theoretical Computer Science 37 (1985) 77–121.

[8] J. Baeten, W. Weijland, Process Algebra, Vol. 18 of Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 1990.

[9] W. Fokkink, Introduction to Process Algebra, Texts in Theoretical Com-
puter Science, Springer, 2000.

[10] ISO/IEC, LOTOS — A Formal Description Technique Based on the Tem-
poral Ordering of Observational Behaviour, International Standard 8807,
International Organization for Standardization — Information Processing
Systems — Open Systems Interconnection, Geneva (Sep. 1989).

[11] T. Bolognesi, E. Brinksma, Introduction to the ISO Specification Lan-
guage LOTOS, Computer Networks and ISDN Systems 14 (1) (1988) 25–
59.

[12] S. Mauw, G. J. Veltink, An Introduction to PSFd, in: J. Dı́az, F. Orejas
(Eds.), Proceedings of the International Joint Conference on Theory and
Practice of Software Development (TAPSOFT’89), Barcelona, Spain, Vol.
352 of Lecture Notes in Computer Science, Springer, 1989, pp. 272–285.

[13] S. Mauw, G. J. Veltink, A Process Specification Formalism, Fundamenta
Informaticae XIII (1990) 85–139.

[14] G. J. Veltink, PSF – A Retrospective, Fundamenta Informaticae 100 (1-4)
(2010) 181–227.

[15] J. Groote, A. Ponse, The Syntax and Semantics of µCRL, CS-R 9076,
Centrum voor Wiskunde en Informatica, Amsterdam (1990).

[16] J. Groote, A. Ponse, The Syntax and Semantics of µCRL, in: A. Ponse,
C. Verhoef, S. Vlijmen (Eds.), Proceedings of the 1st Workshop on the Al-
gebra of Communicating Processes (ACP’94), Utrecht, The Netherlands,
Workshops in Computing Series, Springer, 1995, pp. 26–62.

[17] J. Groote, M. Mousavi, Modeling and Analysis of Communicating Sys-
tems, The MIT Press, 2014.

[18] R. Cleaveland, J. Parrow, B. Steffen, The Concurrency Workbench, in:
J. Sifakis (Ed.), Proceedings of the 1st Workshop on Automatic Verifi-
cation Methods for Finite State Systems, Grenoble, France, Vol. 407 of
Lecture Notes in Computer Science, Springer, 1989, pp. 24–37.

[19] R. Cleaveland, T. Li, S. Sims, The Concurrency Workbench of the New
Century (Version 1.2) – User’s Manual, State University of New York at
Stony Brook (Jul. 2000).

31

[20] Formal Systems (Europe) Ltd, Oxford University Computing Laboratory,
Failures-Divergence Refinement – FDR2 User Manual, 9th edition (Oct.
2010).

[21] T. Gibson-Robinson, P. J. Armstrong, A. Boulgakov, A. W. Roscoe, FDR3
– A Modern Refinement Checker for CSP, in: E. Ábrahám, K. Havelund
(Eds.), Proceedings of the 20th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’14),
Grenoble, France, Vol. 8413 of Lecture Notes in Computer Science,
Springer, 2014, pp. 187–201.

[22] J. Sun, Y. Liu, J. S. Dong, Model Checking CSP Revisited: Introduc-
ing a Process Analysis Toolkit, in: T. Margaria, B. Steffen (Eds.), Pro-
ceedings of the 3rd International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA’08), Porto Sani,
Greece, Vol. 17 of Communications in Computer and Information Science,
Springer, 2008, pp. 307–322.

[23] L. Shi, Y. Liu, J. Sun, J. S. Dong, G. Carvalho, An Analytical and Experi-
mental Comparison of CSP Extensions and Tools, in: T. Aoki, K. Taguchi
(Eds.), Proceedings of the 14th International Conference on Formal Engi-
neering Methods (ICFEM’12), Kyoto, Japan, Vol. 7635 of Lecture Notes
in Computer Science, Springer, 2012, pp. 381–397.

[24] H. Garavel, F. Lang, R. Mateescu, W. Serwe, CADP 2011: A Toolbox for
the Construction and Analysis of Distributed Processes, Springer Interna-
tional Journal on Software Tools for Technology Transfer (STTT) 15 (2)
(2013) 89–107.

[25] D. Dams, J. F. Groote, Specification and Implementation of Components
of a µCRL Toolbox, Technical Report Logic Group Preprint Series 152,
Utrecht University (Dec. 1995).

[26] S. Cranen, J. Groote, J. Keiren, F. Stappers, E. de Vink, W. Wesselink,
T. Willemse, An Overview of the mCRL2 Toolset and Its Recent Ad-
vances, in: N. Piterman, S. A. Smolka (Eds.), Proceedings of the 19th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’13), Rome, Italy, Vol. 7795 of Lecture
Notes in Computer Science, Springer, 2013, pp. 199–213.

[27] O. Sokolsky, Efficient Graph-based Algorithms for Model Checking in the
Modal Mu-calculus, Ph.D. thesis, State University of New York at Stony
Brook (May 1996).

[28] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufil-
let, F. Lang, F. Vernadat, FIACRE: An Intermediate Language for Model
Verification in the TOPCASED Environment, in: J.-C. Laprie (Ed.), Pro-
ceedings of the 4th European Congress on Embedded Real-Time Software
(ERTS’08), Toulouse, France, 2008.

32

[29] H. Garavel, Reflections on the Future of Concurrency Theory in Gen-
eral and Process Calculi in Particular, in: C. Palamidessi, F. D. Valencia
(Eds.), Proceedings of the LIX Colloquium on Emerging Trends in Con-
currency Theory, Ecole Polytechnique de Paris, France, November 13–
15, 2006, Vol. 209 of Electronic Notes in Theoretical Computer Science,
Elsevier Science Publishers, 2008, pp. 149–164, also available as INRIA
Research Report RR-6368.

[30] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, C. McKinty,
V. Powazny, F. Lang, W. Serwe, G. Smeding, Reference Manual of
the LNT to LOTOS Translator (Version 6.2), INRIA/VASY and IN-
RIA/CONVECS, 130 pages (Mar. 2015).

[31] R. Milner, A Complete Inference System for a Class of Regular Behaviours,
ournal of Computer and System Sciences 28 (3) (1984) 439–466.

[32] W. Janssen, M. Poel, J. Zwiers, Action Systems and Action Refine-
ment in the Development of Parallel Systems – An Algebraic Approach,
in: J. C. M. Baeten, J. F. Groote (Eds.), Proceedings of the 2nd In-
ternational Conference on Concurrency Theory (CONCUR’91), Amster-
dam, The Netherlands, Vol. 527 of Lecture Notes in Computer Science,
Springer, 1991, pp. 298–316.

[33] L. Aceto, M. Hennessy, Towards Action-Refinement in Process Algebras,
Information and Computation 103 (2) (1993) 204–269.

[34] L. Aceto, M. Hennessy, Adding Action Refinement to a Finite Process
Algebra, Information and Computation 115 (2) (1994) 179–247.

[35] U. Goltz, R. Gorrieri, A. Rensink, Comparing Syntactic and Semantic
Action Refinement, Information and Computation 125 (2) (1996) 118–
143.

[36] T. Gehrke, A. Rensink, Process Creation and Full Sequential Composition
in a Name-passing Calculus, in: Proceedings of the 4th Workshop on
Expressiveness in Concurrency (EXPRESS’97), Santa Margherita Ligure,
Italy, Vol. 7 of Electronic Notes in Theoretical Computer Science, 1997,
pp. 141–160.

[37] R. Gorrieri, A. Rensink, Action Refinement, in: J. Bergstra, A. Ponse,
S. Smolka (Eds.), Handbook of Process Algebra, North-Holland, 2001,
Ch. 16, pp. 1047–1147.

[38] E. Brinksma, On the Design of Extended LOTOS — A Specification Lan-
guage for Open Distributed Systems, Ph.D. thesis, University of Twente
(Nov. 1988).

[39] H. Garavel, A Wish List for the Behaviour Part of E-LOTOS, Input Doc-
ument [LG5] to the ISO/IEC JTC1/SC21/WG7 Meeting on Enhance-
ments to LOTOS, Liège, Belgium. Available from http://vasy.inria.
fr/elotos (Dec. 1995).

33

http://vasy.inria.fr/elotos
http://vasy.inria.fr/elotos

[40] C. Koymans, J. Vrancken, Extending Process Algebra with the Empty
Process, Logic Group Preprint Series, CIF Nr. 1, Department of Philoso-
phy, Utrecht University (1985).

[41] J. Vrancken, The Algebra of Communicating Processes With Empty Pro-
cess, Theoretical Computer Science 177 (2) (1997) 287–328.

[42] J. Bergstra, W. Fokkink, A. Ponse, Process Algebra with Recursive Op-
erations, in: J. A. Bergstra, A. Ponse, S. A. Smolka (Eds.), Handbook of
Process Algebra, North Holland, 2001, Ch. 5, pp. 333–389.

[43] J. A. Bergstra, J. W. Klop, The Algebra of Recursively Defined Processes
and the Algebra of Regular Processes, in: J. Paredaens (Ed.), Proceed-
ings of the 11th Colloquium on Automata, Languages and Programming
(ICALP’84), Antwerp, Belgium,, Vol. 172 of Lecture Notes in Computer
Science, Springer, 1984, pp. 82–94.

[44] J. C. M. Baeten, J. A. Bergstra, On Sequential Composition, Action Pre-
fixes and Process Prefixes, Formal Aspects of Computing 6 (3) (1994)
250–268.

[45] H. Garavel, On the Introduction of Gate Typing in E-LOTOS, in: P. Dem-
binski, M. Sredniawa (Eds.), Proceedings of the 15th IFIP International
Workshop on Protocol Specification, Testing and Verification (PSTV’95),
Warsaw, Poland, Chapman & Hall, 1995, pp. 283–298.

[46] J. C. M. Baeten, R. J. van Glabbeek, Merge and Termination in Pro-
cess Algebra, in: K. V. Nori (Ed.), Proceedings of the 7th Conference
on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS’87), Pune, India, Vol. 287 of Lecture Notes in Computer
Science, Springer, 1987, pp. 153–172.

[47] J. F. Groote, F. W. Vaandrager, Structural Operational Semantics and
Bisimulation as a Congruence (Extended Abstract), in: G. Ausiello,
M. Dezani-Ciancaglini, S. Ronchi Della Rocca (Eds.), Proceedings of the
16th International Colloquium on Automata, Languages and Program-
ming (ICALP’89), Stresa, Italy, Vol. 372 of Lecture Notes in Computer
Science, Springer, 1989, pp. 423–438.

[48] B. Bloom, W. Fokkink, R. J. van Glabbeek, Precongruence Formats for
Decorated Trace Preorders, in: Proceedings of the 15th Annual IEEE
Symposium on Logic in Computer Science (LICS’00), Santa Barbara, Cal-
ifornia, USA, IEEE Computer Society, 2000, pp. 107–118.

[49] P. R. D’Argenio, C. Verhoef, A General Conservative Extension Theo-
rem in Process Algebras with Inequalities, Theoretical Computer Science
177 (2) (1997) 351–380.

34

[50] J. F. Groote, A. Ponse, Process Algebra with Guards: Combining Hoare
Logic with Process Algebra (Extended Abstract), in: J. C. M. Baeten,
J. F. Groote (Eds.), Proceedings of the 2nd International Conference on
Concurrency Theory (CONCUR’91), Amsterdam, The Netherlands, Vol.
527 of Lecture Notes in Computer Science, Springer, 1991, pp. 235–249.

[51] J. F. Groote, A. Ponse, Process Algebra with Guards: Combining Hoare
Logic with Process Algebra, Formal Aspects of Computing 6 (2) (1994)
115–164.

[52] A. Ponse, Process Algebra and Dynamic Logic, in: J. van Eijck, A. Visser
(Eds.), Logic and Information Flow, MIT Press, 1994, pp. 125–148.

[53] J. C. M. Baeten, V. Bos, Formalizing Programming Variables in Process
Algebra, TUCS Technical Report 493, Turku Centre for Computer Sci-
ence, Turku, Finland (Dec. 2002).

[54] M. Weichert, Algebra of Broadcasting Systems: Value Passing, Sequential
Composition, and Fork, in: U. H. Engberg, K. G. Larsen, P. D. Mosses
(Eds.), Proceedings of the 6th Nordic Workshop on Programming Theory,
Aarhus, Denmark, 1994, pp. 428–443, BRICS Note Series NS-94-6.

[55] ISO/IEC, Enhancements to LOTOS (E-LOTOS), International Standard
15437:2001, International Organization for Standardization — Informa-
tion Technology, Geneva (Sep. 2001).

[56] H. Garavel, M. Sighireanu, French-Romanian Integrated Proposal for the
User Language of E-LOTOS, Rapport SPECTRE 96-05, VERIMAG,
Grenoble, Input Document [KC3] to the ISO/IEC JTC1/SC21/WG7
Meeting on Enhancements to LOTOS (1.21.20.2.3), Kansas City, Mis-
souri, USA, May, 12–21, 1996 (May 1996).

[57] H. Garavel, M. Sighireanu, Towards a Second Generation of Formal De-
scription Techniques – Rationale for the Design of E-LOTOS, in: J.-F.
Groote, B. Luttik, J. Wamel (Eds.), Proceedings of the 3rd International
Workshop on Formal Methods for Industrial Critical Systems (FMICS’98),
Amsterdam, The Netherlands, CWI, Amsterdam, 1998, pp. 187–230, in-
vited lecture.

[58] H. Garavel, F. Lang, R. Mateescu, Compiler Construction using LOTOS
NT, in: N. Horspool (Ed.), Proceedings of the 11th International Confer-
ence on Compiler Construction (CC’02), Grenoble, France, Vol. 2304 of
Lecture Notes in Computer Science, Springer, 2002, pp. 9–13.

[59] C. A. R. Hoare, Communicating Sequential Processes, Commun. ACM
21 (8) (1978) 666–677.

[60] C. A. R. Hoare, The Transputer and Occam: A Personal Story, Concur-
rency – Practice and Experience 3 (4) (1991) 249–264.

35

[61] D. May, OCCAM, SIGPLAN Notices 18 (4) (1983) 69–79.

[62] INMOS Limited, OCCAM 2 Reference Manual, International Series in
Computer Science, Prentice-Hall, 1988.

[63] G. Jones, M. Goldsmith, Programming in occam2, Prentice-Hall, 1988,
out of print; web edition available from http://www.cs.ox.ac.uk/
geraint.jones/publications/book/Pio2.

[64] INMOS Limited, OCCAM 2.1 Reference Manual, SGS-THOMSON Mi-
croelectronics Ltd (May 1995).

[65] G. Barrett, OCCAM 3 Reference Manual, iNMOS Limited, Draft (Mar.
1992).

[66] A. W. Roscoe, Denotational Semantics for Occam, in: S. D. Brookes,
A. W. Roscoe, G. Winskel (Eds.), Proceedings of the Seminar on Con-
currency, Carnegie-Mellon University, Pittsburgh, PA, USA, Vol. 197 of
Lecture Notes in Computer Science, Springer, 1984, pp. 306–329.

[67] M. H. Goldsmith, A. W. Roscoe, B. G. O. Scott, Denotational Semantics
for Occam2, Technical Monography PRG-108, Oxford University Com-
puting Laboratory (Jun. 1993).

[68] A. W. Roscoe, C. Hoare, The Laws of Occam Programming, Theoretical
Computer Science 60 (1988) 177–229.

[69] Y. Gurevich, L. S. Moss, Algebraic Operational Semantics and Occam, in:
E. Börger, H. K. Büning, M. M. Richter (Eds.), Proceedings of the 3rd
Workshop on Computer Science Logic (CSL’89), Kaiserslautern, Germany,
Vol. 440 of Lecture Notes in Computer Science, Springer, 1989, pp. 176–
192.

[70] J. Camilleri, An Operational Semantics for Occam, International Journal
of Parallel Programming 18 (5) (1989) 365–400.

[71] G. Barrett, The Semantics of Priority and Fairness in Occam, in: M. G.
Main, A. Melton, M. W. Mislove, D. A. Schmidt (Eds.), Proceedings of
5th International Conference on the Mathematical Foundations of Pro-
gramming Semantics (MFPS’89), Tulane University, New Orleans, LA,
USA, Vol. 442 of Lecture Notes in Computer Science, Springer, 1989, pp.
194–208.

[72] A. J. Martin, Compiling Communicating Processes into Delay-Insensitive
VLSI Circuits, Distributed Computing 1 (4) (1986) 226–234.

[73] H. Garavel, G. Salaün, W. Serwe, On the Semantics of Communicating
Hardware Processes and their Translation into LOTOS for the Verification
of Asynchronous Circuits with CADP, Science of Computer Programming
74 (3) (2009) 100–127.

36

http://www.cs.ox.ac.uk/geraint.jones/publications/book/Pio2
http://www.cs.ox.ac.uk/geraint.jones/publications/book/Pio2

[74] P. R. D’Argenio, H. Hermanns, J. Katoen, R. Klaren, MoDeST – A
Modelling and Description Language for Stochastic Timed Systems, in:
Proceedings of the Joint International Workshop on Process Algebra and
Probabilistic Methods, Performance Modeling and Verification (PAPM-
PROBMIV’01), Aachen, Germany, 2001, pp. 87–104.

[75] H. Bohnenkamp, Pedro R. d’Argenio, H. Hermanns, J.-P. Katoen, MoD-
eST: A Compositional Modeling Formalism for Real-Time and Stochastic
Systems, IEEE Transactions on Software Engineering 32 (10) (2006) 812–
830.

[76] E. Hahn, A. Hartmanns, H. Hermanns, J. Katoen, A Compositional Mod-
elling and Analysis Framework for Stochastic Hybrid Systems, Formal
Methods in System Design 43 (2) (2013) 191–232.

[77] V. Bos, J. J. T. Kleijn, Redesign of a Systems Engineering Language:
Formalisation of χ, Formal Aspects of Computing 15 (4) (2003) 370–389.

[78] R. R. H. Schiffelers, D. A. van Beek, K. L. Man, M. A. Reniers, J. E.
Rooda, Formal Semantics of Hybrid Chi, in: K. G. Larsen, P. Niebert
(Eds.), Proceedings of the 1st International Workshop on Formal Modeling
and Analysis of Timed Systems (FORMATS’03), Marseille, France, Vol.
2791 of Lecture Notes in Computer Science, Springer, 2003, pp. 151–165.

[79] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, R. R. H. Schif-
felers, Syntax and Consistent Equation Semantics of Hybrid Chi, Journal
of Logic and Algebraic Programming 68 (1-2) (2006) 129–210.

[80] A. Fehnker, R. Glabbeek, P. Höfner, A. McIver, M. Portmann, W. L.
Tan, A Process Algebra for Wireless Mesh Networks, in: H. Seidl
(Ed.), Proceedings of the 21st European Symposium on Programming
(ESOP’12),Tallinn, Estonia, Vol. 7211 of Lecture Notes in Computer Sci-
ence, Springer, 2012, pp. 295–315.

[81] J. Parrow, B. Victor, The Update Calculus (Extended Abstract), in:
M. Johnson (Ed.), Proceedings of the 6th International Conference on
Algebraic Methodology and Software Technology (AMAST’97), Sydney,
Australia, Vol. 1349 of Lecture Notes in Computer Science, Springer, 1997,
pp. 409–423.

[82] D. T. Ross, Uniform Referents: An Essential Property for a Software
Engineering Language, in: J. Tou (Ed.), Software Engineering, Vol. 1,
Academic Press, 1970, pp. 91–101.

[83] V. Bos, J. J. T. Kleijn, Formal Specification and Analysis of Industrial
Systems, Ph.D. thesis, Eindhoven University of Technology (Mar. 2002).

[84] H. Garavel, M. Sighireanu, On the Introduction of Exceptions in LO-
TOS, in: R. Gotzhein, J. Bredereke (Eds.), Proceedings of the IFIP

37

Joint International Conference on Formal Description Techniques for Dis-
tributed Systems and Communication Protocols, and Protocol Specifica-
tion, Testing, and Verification (FORTE/PSTV’96), Kaiserslautern, Ger-
many, Chapman & Hall, 1996, pp. 469–484.

[85] R. E. Strom, S. Yemini, Typestate: A Programming Language Concept
for Enhancing Software Reliability, IEEE Transactions on Software Engi-
neering 12 (1) (1986) 157–171.

[86] H. Garavel, J. Sifakis, Compilation and Verification of LOTOS Specifi-
cations, in: L. Logrippo, R. L. Probert, H. Ural (Eds.), Proceedings of
the 10th IFIP International Symposium on Protocol Specification, Test-
ing and Verification (PSTV’90), Ottawa, Canada, North-Holland, 1990,
pp. 379–394.

[87] J. F. Groote, A. Ponse, Y. S. Usenko, Linearization in Parallel pCRL,
Journal of Logic and Algebraic Programming 48 (1–2) (2001) 39–70.

[88] B. Berthomieu, T. Le Sergent, Programming with Behaviors in an ML
Framework – The Syntax and Semantics of LCS, in: D. Sannella (Ed.),
Proceedings of the 5th European Symposium on Programming Languages
and Systems (ESOP’94), Edinburgh, U.K, Vol. 788 of Lecture Notes in
Computer Science, Springer, 1994, pp. 89–104.

[89] A. W. Roscoe, C. Hoare, R. Bird, The Theory and Practice of Concur-
rency, Prentice Hall, 1997.

[90] H. Garavel, M. Sighireanu, A Graphical Parallel Composition Operator
for Process Algebras, in: J. Wu, Q. Gao, S. T. Chanson (Eds.), Proceed-
ings of the IFIP Joint International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols, and
Protocol Specification, Testing, and Verification (FORTE/PSTV’99), Bei-
jing, China, Kluwer Academic Publishers, 1999, pp. 185–202.

[91] G. Plotkin, A Structural Approach to Operational Semantics, Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University,
Denmark (1981).

[92] G. D. Plotkin, A Structural Approach to Operational Semantics, Journal
of Logic and Algebraic Programming 60–61 (2004) 17–139.

[93] G. Plotkin, An Operational Semantics for CSP, in: A. Salwicki (Ed.),
Proceedings of the 1980 Conference on Logics of Programs and Their
Applications, Poznan, Poland, Vol. 148 of Lecture Notes in Computer
Science, Springer, 1983, pp. 250–252, extended version available from
http://homepages.inf.ed.ac.uk/gdp/publications/An_Op_Sem_CSP.pdf.

[94] G. D. Plotkin, The Origins of Structural Operational Semantics, Journal
of Logic and Algebraic Programming 60–61 (2004) 3–15.

38

http://homepages.inf.ed.ac.uk/gdp/publications/An_Op_Sem_CSP.pdf

[95] B. Bloom, F. Vaandrager, SOS Rule Formats for Parameterized and State-
Bearing Processes, Unpublished manuscript available from http://www.cs.

ru.nl/ita/publications/papers/fvaan/bardfrits.ps (Jul. 1994).

[96] M. Mousavi, M. A. Reniers, J. Groote, Congruence for SOS with Data, in:
Proceedings of the 19th IEEE Symposium on Logic in Computer Science
(LICS’04), Turku, Finland, IEEE Computer Society, 2004, pp. 303–312.

[97] M. Mousavi, M. A. Reniers, J. Groote, Notions of Bisimulation and
Congruence Formats for SOS with Data, Information and Computation
200 (1) (2005) 107–147.

[98] D. Gebler, E. Goriac, M. Mousavi, Algebraic Meta-Theory of Processes
with Data, in: J. Borgström, B. Luttik (Eds.), Proceedings of the
Combined 20th International Workshop on Expressiveness in Concur-
rency and 10th Workshop on Structural Operational Semantics (EX-
PRESS/SOS’13), Buenos Aires, Argentina, Vol. 120 of Electronic Pro-
ceedings in Theoretical Computer Science, 2013, pp. 63–77.

[99] R. De Nicola, A. Labella, A Completeness Theorem for Nondeterministic
Kleene Algebras, in: I. Pŕıvara, B. Rovan, P. Ruzicka (Eds.), Proceedings
of the 19th International Symposium on Mathematical Foundations of
Computer Science (MFCS’94), Kosice, Slovakia, Vol. 841 of Lecture Notes
in Computer Science, Springer, 1994, pp. 536–545.

[100] F. Corradini, R. De Nicola, A. Labella, Fully Abstract Models for Nonde-
terministic Regular Expressions, in: I. Lee, S. A. Smolka (Eds.), Proceed-
ings of the 6th International Conference on Concurrency Theory (CON-
CUR’95), Philadelphia, PA, USA, Vol. 962 of Lecture Notes in Computer
Science, Springer, 1995, pp. 130–144.

[101] F. Corradini, R. De Nicola, A. Labella, Models of Nondeterministic Reg-
ular Expressions, Journal of Computer and System Sciences 59 (3) (1999)
412–449.

[102] J. C. M. Baeten, F. Corradini, Regular Expressions in Process Algebra, in:
Proceedings of the 20th IEEE Symposium on Logic in Computer Science
(LICS’05), Chicago, IL, USA, IEEE Computer Society, 2005, pp. 12–19.

[103] J. C. M. Baeten, F. Corradini, C. Grabmayer, A Characterization of Reg-
ular Expressions Under Bisimulation, Journal of the ACM 54 (2).

[104] E. W. Dijkstra, Guarded Commands, Non-determinacy and Formal
Derivation of Programs, Communication of the ACM 18 (8) (1975) 453–
457.

[105] H. Garavel, F. Lang, NTIF: A General Symbolic Model for Communicat-
ing Sequential Processes with Data, in: D. Peled, M. Vardi (Eds.), Pro-
ceedings of the 22nd IFIP WG 6.1 International Conference on Formal

39

http://www.cs.ru.nl/ita/publications/papers/fvaan/bardfrits.ps
http://www.cs.ru.nl/ita/publications/papers/fvaan/bardfrits.ps

Techniques for Networked and Distributed Systems (FORTE’02), Hous-
ton, TX, USA, Vol. 2529 of Lecture Notes in Computer Science, Springer,
2002, pp. 276–291, full version available as INRIA Research Report RR-
4666.

[106] E. Lantreibecq, W. Serwe, Model Checking and Co-simulation of a Dy-
namic Task Dispatcher Circuit Using CADP, in: G. Salaün, B. Schätz
(Eds.), Proceedings of the 16th International Workshop on Formal Meth-
ods for Industrial Critical Systems (FMICS’11), Trento, Italy, Vol. 6959
of Lecture Notes in Computer Science, Springer, 2011, pp. 180–195.

[107] M. Hennessy, A Proof System for Communicating Processes with Value-
passing (Extended Abstract), in: C. E. V. Madhavan (Ed.), Proceedings
of the 9th Conference on the Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’89), Bangalore, India, Vol. 405
of Lecture Notes in Computer Science, Springer, 1989, pp. 325–339.

[108] M. Hennessy, A Proof Sustem for Communicating Processes with Value-
Passing, Formal Aspects of Computing 3 (4) (1991) 346–366.

[109] M. Hennessy, A. Ingólfsdóttir, A Theory of Communicating Processes
with Value-Passing, in: M. Paterson (Ed.), Proceedings of the 17th
International Colloquium on Automata, Languages and Programming
(ICALP’90), Warwick University, England, Vol. 443 of Lecture Notes in
Computer Science, Springer, 1990, pp. 209–219.

[110] M. Hennessy, A. Ingólfsdóttir, A Theory of Communicating Processes with
Value Passing, Information and Computation 107 (2) (1993) 202–236.

[111] M. Hennessy, H. Lin, Proof Systems for Message-Passing Process Alge-
bras, Formal Aspects of Computing 8 (4) (1996) 379–407.

40

	Introduction
	Preliminary definitions
	Sequential composition in traditional process calculi
	The ``action prefix'' operator and its drawbacks
	The ``enable'' operator and its drawbacks
	The ``product'' operator and its drawbacks

	Rationale for enhancing sequential composition
	Forerunner languages
	Design decision #1: Have symmetric sequential composition
	Design decision #2: Have ``true'' (i.e., write-many) variables
	Design decision #3: Prohibit uninitialized variables
	Design decision #4: Prohibit shared variables
	Design decision #5: Prohibit complex forms of process recursion
	Design decision #6: Have structured programming constructs
	Formal definition of LNT

	Comparison with traditional process calculi
	Expressiveness of LNT
	Encoding of regular expressions in LNT
	Encoding of CCS in LNT
	Encoding of (value-passing) ACP in LNT
	Encoding of LOTOS and CSP in LNT

	Assessment on design patterns
	Design pattern #1: Control-flow sharing
	Design pattern #2: Guarded commands
	Design pattern #3: Map-Reduce
	Beyond condition/actions models

	Conclusion
	Summary of Contributions
	Implementation and Feedback
	Further Work

