

How to say Greedy in Fork Algebras

Marcelo F. Frias∗ Gabriel A. Baum†

Esteban de la Canal†

∗ Departamento de Computación
F.C.E.yN., Universidad de Buenos Aires

mfrias@sol.info.unlp.edu.ar

∗ † L.I.F.I.A.
Facultad de Informática

Universidad Nacional de La Plata
CC 11,1900 - La Plata, Buenos Aires, Argentina

Tel/Fax: +54 221 4228252
URL: http://www-lifia.info.unlp.edu.ar/
{gbaum,steve}@sol.info.unlp.edu.ar

Abstract

Because of their expressive power, binary relations are widely used in

program specification and development within formal calculi. The exis-

tence of a finite equational axiomatization for algebras of binary relations

with a fork operation guarantees that the heuristic power coming from

binary relations is captured inside an abstract equational calculus.

In this paper we show how to express the greedy program design strat-

egy into the first order theory of fork algebras.

1 Introduction

In the field of program specification and development within programming cal-
culi, relational calculi are gaining more interest with the passing of time. As
an example of this, calculi formerly based only in functions have been extended
with relational operators [5, 18]. The reason to do so, is that even though
calculi based on functions have shown to be fruitful for program development
from functional specifications [3, 4], finding such specifications requires still a
big effort, since the bridge between the problem and its functional specification
may be difficult to be crossed. On the other hand, relational frameworks allow
to define new operators adequate for relations but not for functions.

From the previous remarks, the process of program construction within re-
lational calculi can be represented — in a simplified vision — by the diagram
in Fig. 1.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301043944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Problem

(Informally specified)

❄
Relational specification

(Involving relational operators)

❄
Algorithmic specification

(Non optimal program)

❄
Optimized specification

(Optimized program)

Figure 1: The stages in the relational development of algorithms.

Fork algebras were devised as a relational framework for program specifica-
tion and construction by formal calculations [2, 6, 7, 9, 16, 17]. Fork algebras
were also used in algebraic logic, as a framework for equational axiomatization of
theories coming from both classical and non classical logics [8, 12, 13, 14, 24, 25].
Among the algebraic properties of fork algebras, their representability originated
a lot of work [8, 12, 13, 20, 21]. The representability of fork algebras has been
always misunderstood regarding its applications in program construction. Its
application was always described as “the portability of properties of the problem
domain into the abstract calculus of fork algebras”. In this paper we show that
the results provided by the representation theorem are by far more important.
We show that not only the heuristic power coming from concrete binary relations
is captured inside the abstract calculus, but also design strategies for program
development can be successfully expressed. This result makes fork algebras a
programming calculus by far more powerful than it was previously thought. In
Section 2 we will present basic definitions to be used throughout the paper. In
Section 3 we define fork algebras as an algebraic class, and present arithmetical
properties of fork algebras useful in the process of program development. In
Section 4 the expressive power of fork algebras is analyzed, and the finitiza-
tion theorem for fork algebras is presented. In Section 5, the methodology for
program derivation and a formalization of the Greedy strategy are presented.
Finally, in Section 6 we present the final comments about this work.

2 Basic Definitions and Results

Along this section and the rest of the paper we will assume the reader has a
nodding acquaintance with elementary concepts of set-theory and first-order
logic. As a reference text in both areas we refer the reader to [23]. Given a
binary relation X in a set A, and a, b ∈ A, we will denote the fact that a and b
are related via the relation X by 〈a, b〉 ∈ X or aXb indistinctly.

Definition 2.1 Let E be a binary relation on a set A, and let R be a set of
binary relations satisfying:

2

1.
⋃

R ⊆ E,

2. If by Id we denote the identity relation on the set A, then ∅, E and Id
belong to R,

3. R is closed under set union, intersection and complement relative to E,

4. R is closed under relational composition (denoted by |) and converse (de-
noted by)̆. These two operations are defined by

X |Y = {〈a, b〉 : ∃c such that aXc ∧ cY b}

X̆ = {〈a, b〉 : bXa} .

Then, the structure 〈R,∪,∩, –, ∅, E, |, Id, 〉̆ is called an algebra of binary

relations.

Definition 2.2 A relation algebra (RA for short) is an algebraic structure of
type 〈A, +, ·, –, 0, 1, ;, 1′, 〉̆, where +, · and ; are binary operations, – and ˘
are unary, and 0, 1 and 1′ are distinguished elements. Furthermore, the reduct
〈A, +, ·, –, 0, 1〉 is a Boolean algebra, and the following identities are satisfied
for all x, y, z ∈ A:

x; (y ;z) = (x;y) ;z, (Ax. 1)

(x+y) ;z = x;z + y ;z, (Ax. 2)

(x+y)̆ = x̆+ y̆, (Ax. 3)

˘̆x = x, (Ax. 4)

x;1′ = 1′ ;x = x, (Ax. 5)

(x;y)̆ = y̆ ;x̆, (Ax. 6)

x;y · z = 0 iff z ; y̆ · x = 0 iff x̆;z · y = 0. (Ax. 7)

Alternative axiomatizations for the calculus of relations can be obtained by
replacing Ax. 7 in Def. 2.2 by any of the two following formulas1:

(x;y) ·z ¹ (x · z ; y̆) ; (y · x̆;z) , (1)

x;y ¹ z ⇐⇒ x̆;z ¹ y ⇐⇒ z ; y̆ ¹ x. (2)

This axiomatization is not complete, i.e., there are properties (even equa-
tions) of algebras of binary relations which cannot be derived from de axioms.

In Def. 2.3 below we introduce some terminology to be used in further sec-
tions.

1The symbol ¹ in formulas (1) and (2), stands for the ordering induced by the Boolean
algebra substructure.

3

Definition 2.3 A relation F is called functional if it satisfies the formula

F̆ ;F ¹ 1′.

A relation I is called injective if it satisfies the formula

I ; Ĭ ¹ 1′.

A relation S is called symmetric if it satisfies the condition

S̆ = S.

A relation T is called transitive if it satisfies the formula

T ;T ¹ T.

A relation D is called a left-ideal if it satisfies the condition

D = 1;D,

and a right-ideal if it satisfies

D = D ;1.

A relation C is called a constant if C is functional, left-ideal and satisfies
the condition

C ;1 = 1.

By Dom (R) we denote the term
(

R ;R̆
)

·1′ (the domain of the relation R),

and by Ran (R) we denote the term
(

R̆ ;R
)

·1′ (the range of the relation R).

Notice that when restricted to algebra of binary relations, the conditions in
Def. 2.3 characterize familiar notions. For example, a binary relation satisfying
the condition T ;T ¹ T will in effect be transitive.

3 Proper and Abstract Fork Algebras

Proper fork algebras (PFAs for short) are extensions of algebras of binary rela-
tions with a new operator called fork , and denoted by ∇ . This new operator
induces a structure on the underlying domain of PFAs. The objects, instead
of being binary relations on a plain set, are binary relations on a structured
domain 〈A, ⋆〉, where ⋆ fulfills some simple conditions. Fig. 2 shows the rela-
tionship existing between fork and ⋆, namely, that fork is defined in terms of ⋆
by the condition:

xR∇Sy ⇐⇒ ∃u, v(y = ⋆(u, v) ∧ xRu ∧ xSv). (3)

In order to define PFAs, we will first define the class of ⋆PFAs by

Definition 3.1 A ⋆PFA is a two–sorted structure with domains P (V) and U

4

x
��

��✒

❅❅

❅❅❘

u

v

∇ ⋆

R

S

✲

✲

x

⋆

y

u

v

⊗ ⋆

R

S

Figure 2: The operators fork and cross

〈P (V) , U,∪,∩, ’, ∅, V, |, Id, ,̆∇ , ⋆〉

such that

1. V is an equivalence relation on the set U ,

2. |, Id and˘ stand respectively for composition between binary relations, the
diagonal relation on U and the converse of binary relations, thus making
the reduct 〈P (V) ,∪,∩, ’, ∅, V, |, Id, 〉̆ an algebra of binary relations,

3. ⋆ : U ×U → U is an injective function when its domain is restricted to V ,

4. whenever xV y and xV z, also xV ⋆ (y, z),

5. R∇S = {〈x, ⋆ (y, z)〉 : xRy ∧ xSz}.

If by S we denote the operator on classes of algebras that closes a given class
under subalgebras, and by Rd we denote the operator that obtains reducts to
the similarity type 〈∪,∩, ’, ∅, V, |, Id, ,̆∇〉, we obtain the following definition.

Definition 3.2 The class of PFAs is defined as S Rd ⋆PFA.

In Defs. 3.1 and 3.2, the function ⋆ performs the role of pairing, encoding
pairs of objects into single objects. It is important to notice that there are ⋆
functions which are far from being set-theoretical pair formation, i.e., there are
models in which ⋆(x, y) is not the same as 〈x, y〉.

Once we have a complete definition of fork, there is another operation that is
of interest in the specification and development of programs, and whose useful-
ness will be evident in further sections. This operation, called cross, given a pair
of binary relations performs a kind of parallel product. A graphic representation
of cross is given in Fig. 2. Its set theoretical definition is given by

R⊗ S = {〈⋆(x, y), ⋆(u, v)〉 : xRu ∧ ySv}.

It is not difficult to check that cross is definable from the other relational
operators with the use of fork. It is a trivial exercise to show that

R⊗ S = ((Id∇V)̆ |R)∇((V ∇Id)̆ |S).

If we keep in mind the set theoretical definition of the relational operators,
the elementary theory of binary relations [22] extended with the axiom (3) defin-
ing fork is a reasonable framework for software specification. Since it contains

5

❅❅
❅

❅❘

��

��✒

x

⋆

y

∇ x

1′

1

❅❅

❅❅❘

��
�

�✒

x

⋆

y

∇ y

1

1′

Figure 3: The projections π and ρ.

all first-order logic, it is clearly expressive enough. Programs could be specified
as the relation established between input and output data. In doing so, we
should work with variables ranging over two different kinds of objects. Vari-
ables ranging over relations would represent programs, while variables ranging
over individuals represent data to be used by those programs. This controver-
sial situation is not new in program construction, for it was already suffered
by people working in functional frameworks. Their solution, in order to obtain
simple frameworks, was to look for more abstract calculi on which everything
be a function (variables ranging over individuals, often called dummy variables,
were eliminated).

It is in the search of an abstract framework for relational calculi, that ab-
stract fork algebras (to be introduced next) appear.

Definition 3.3 An abstract fork algebra is an algebraic structure

〈R, +, ·, –, 0, 1, ;, 1′, ,̆∇〉

satisfying the following axioms.
Axioms stating that the reduct 〈R, +, ·, –, 0, 1, ;, 1′, 〉̆ is a relation algebra

in which 〈R, +, ·, –, 0, 1〉 is the Boolean reduct (where ¹ denotes the induced
partial ordering), 〈R, ;, 1′〉 is the monoid reduct, and ˘ stands for relational
converse,

r∇s = (r ; (1′∇1)) · (s; (1∇1′)) , (Ax. 8)

(r∇s) ;(t∇q)̆ =
(

r ; t̆
)

· (s; q̆) , (Ax. 9)

(1′∇1)̆ ∇(1∇1′)̆ ¹ 1′. (Ax. 10)

From the abstract definition of fork induced by the axioms in Def. 3.3, it is
possible to define cross by the equation

R⊗ S = ((1′∇1)̆ ;R)∇((1∇1′)̆ ;S). (4)

There are two relations that, because of their meaning in the standard models
of fork algebras, behave as projections (see Fig. 3). These relations, namely,
(1′∇1)̆ and (1∇1′)̆ , are named respectively π and ρ.

6

�
�

�
�

��✒

❅
❅

❅
❅

❅❘ ❤✖✕
✗✔

✫✪
✬✩

✧✦
★✥

✧✦
★✥

✻

C

A

B

R → S

x

y

R

S

Figure 4: The relational implication.

Along the paper many times we will use a two-dimensional notation which
simplifies the understanding of long terms and equations. For example, instead
of writing (a+b)∇(c+d), we may write





a+b
∇

c+d



 .

The two-dimensional notation is particularly adequate for operations like
fork and cross (see Fig. 2).

3.1 The Relational Implication

We define another operation on binary relations called relational implication.
We define the relational implication of relations R and S, in terms of the rela-
tional operators previously defined, by

R → S = R ;S̆, (5)

The set theoretical definition (see Fig. 4 for a graphical interpretation) is given
by

R → S = {〈x, y〉 : ∀z (xRz ⇒ ySz)}.

4 Expressiveness and Finitization

In this section we analyze two important characteristics of fork algebras, namely,
their expressiveness and their finite axiomatizability. We will present results
stating that first-order theories can be interpreted into equational theories in
abstract fork algebras, and also that the class of PFAs has a finitely axiomatiz-
able theory. Finally, we will show the relationship existing between these results
and the development of programs within fork algebras.

7

In order to describe shortly the relationship existing between first-order logic
with equality and fork algebras, we can say that first-order theories can be
interpreted as equational theories in fork algebras. More formally, let L be a
first-order language. Let us denote by 〈A,L′〉 the extension of the similarity
type of abstract fork algebras with a sequence of constant symbols whose names
are sequentially assigned from the symbols in L. Then the following theorem
(whose proof is given in [14]) holds.

Theorem 4.1 There exists a recursively defined mapping T translating formu-

las in L into equations in 〈A,L′〉 satisfying

Γ ⊢ α ⇐⇒ {T (γ) = 1 : γ ∈ Γ} ⊢∇ T (α) = 1.

The symbol ⊢∇ in Thm. 4.1 stands for provability in fork algebras, i.e.,
proofs are made in equational logic and the extralogical axioms defining the
fork algebra operators are assumed to hold.

Theorem 4.1 has a strong application in program development within the
framework of abstract fork algebras. If we use as our primitive specification
language some first-order theories (assumption more than reasonable since first-
order languages are simple and expressive formal languages), Thm. 4.1 guaran-
tees that by applying the mapping T to a first-order specification of a given
problem, we obtain a faithful abstract relational specification of it.

Fork algebras’ expressiveness theorems establish that the specifications and
the properties of the application domain which may be expressed in first-order
logic can also be expressed in the equational theory of abstract fork algebras.
However, this expressibility is insufficient for one to formulate, within the the-
ory, many of the fundamental aspects of the program construction process. The
process of program construction by calculations within relational calculi requires
more than the possibility to express the specification of requirements, it is neces-
sary to be able to check their correctness and termination, supply general rules,
strategies and heuristics, and demonstrate their validity.

By now, no relationship has been established between PFAs and AFAs, de-
spite of the more or less obvious fact that every PFA satisfies the axioms of AFA,
and thus is an AFA itself. This means that some of the AFAs are algebras where
the objects are binary relations, but their could be some other AFAs where this
property does not hold. The consequence of the existence of such AFA is that
our calculus, even though simple and expressive, would be of little heuristic
value because of the lack of intuition about the objects being manipulated. For-
tunately, as will be shown in the following paragraphs, this is not the case and
abstract fork algebras are algebras of binary relations.

The finitization theorem, which establishes that the axioms defining AFAs
give an axiomatization for PFAs [8, 10, 12], provides important arguments for
overcoming the limitations of the equational theory of fork algebras in program
construction, as well as guarantees that fork algebras are algebras of binary
relations.

If we want to show that the axioms characterizing AFAs offer an axiomati-
zation of PFAs, we can proceed as follows. First, it is easy to show that the
axioms characterizing AFAs hold in the class of PFAs. If as a second step we
prove a representation theorem, asserting that every AFA is isomorphic to some
PFA, we are done, since both results together guarantee that AFAs offer a finite
axiomatization for PFAs.

8

Theorem 4.2 Every abstract fork algebra is isomorphic to a proper fork alge-

bra.

A complete proof of this theorem is given in [11, 15],As a corollary of Thm. 4.2,
we obtain the following result.

Theorem 4.3 Th(AFA) = Th(PFA), i.e., AFAs and PFAs are elementarily

equivalent classes of algebras.

This elementary equivalence between AFAs and PFAs is extremely useful in
our setting, since first-order formulas in the language of fork algebras now have
a clear meaning when being considered as assertions about binary relations
(or programs). It will be shown in Section 5 that, while equations suffice to
express algorithms, first order formulas about relations can be used to describe
design strategies for program development. This adds a new dimension to the
development of algorithms within fork algebras.

5 Program Construction within Fork Algebras

— The greedy strategy

A programming calculus can be viewed as a set of rules to obtain, in a more or
less systematic way, programs out of specifications.

A very interesting and popular approach, is the one based on functional
programming languages [4]. In these functional frameworks, specifications and
programs are expressed in the same language, and transformation rules are
defined in a suitable, frequently ad-hoc, metalanguage. A main drawback of
functional settings, is the lack of expressiveness of their specification languages
which are confined to functional expressions. These functional specifications,
though inefficient when viewed as programs, are running programs, and thus,
when specifying a problem, we previously need to have some algorithm solving
it.

On the other hand, relational calculi have a more expressive specification
language (because of the existence of the converse and complement of rela-
tions), allowing for more declarative specifications. However, choosing a re-
lational framework is not a guarantee for a calculus to be totally adequate.
These frameworks, as for instance the one proposed by Möller in [19], even
though having a powerful specification language, also have some methodologi-
cal drawbacks. The process of program derivation is aimed to use only abstract
properties of relations, on which variables ranging over individuals (often called
dummy variables) are avoided. Nevertheless, since no complete set of abstract
rules exists capturing all the information of the relational (semantical) frame-
work, the process goes back and forth between abstract and concrete properties
of relations.

When using fork algebras as a programming calculus [2, 6, 7, 9, 16, 17], we
have (as shown in Thm. 4.1), the expressiveness of first-order logic. Further-
more, as Thm. 4.3 shows, the axioms of AFAs provide a complete characteriza-
tion of PFAs. These results enable us to use first-order logic as a specification
language, certain fork algebra equations as programs, and to reason about the
properties of specifications and programs within the theory. Moreover, Thm. 4.3,

9

when establishing the elementary equivalence between Th(AFA) and Th(PFA),
allows to formulate strategies and heuristics of the program construction process
in the shape of first-order formulas about relations.

A very popular strategy used in the solution of problems and in the design
of programs is the greedy strategy . This strategy is particularly useful in opti-
mization problems, as for example finding the minimum spanning tree, or the
coin exchange problem. In the next paragraphs, we will show how to formalize
this strategy within fork algebras as a predicate over relations, as well as discuss
its correctness.

It is well known the relationship existing between greedy algorithms and
weighted matroids, namely, that the greedy strategy applied on a problem ade-
quate for being modelized with a weighted matroid structure yields an optimal
solution.

Definition 5.1 Weighted matroids are combinatorial structures 〈S, I〉 in which
S is a finite set, and I is a subset of the powerset of S (called the set of inde-
pendent subsets of S) satisfying the following conditions:

• If A ∈ I and B ⊆ A, then B ∈ I (thus, the empty set ∅ belongs always to
I).

• If A ∈ I, B ∈ I, and |A| < |B|, then there exists x ∈ B \ A such that
A ∪ {x} ∈ I (this is known as the exchange property).

The greedy algorithm applied to a weighted matroid, is given by the following
pseudocode:

1. A ← ∅;

2. Sort S in increasing order by weight w(x);

3. for each x taken in the order imposed above do (6)

4. if A ∪ {x} ∈ I then

5. A ← A ∪ {x};

6. return A.

It is well known the fact that the previous algorithm returns an independent
subset of maximal size and minimum weight.

Let us consider a problem P whose relational specification has the form

P =⊒ ;Cond · Max · (⊒ ;Cond · Max → ≤) , (7)

where

1. ⊒ generates as output all the subsets of a set given as input,

2. Cond is a filter satisfying that for a given finite set S, ⊒ ;Cond gives as
output a family of independent subsets of S. Thus, for each set S, the
structure 〈S, ImS(⊒ ;Cond)〉 is a weighted matroid,

3. ⊒ ;Cond · Max produces as output the independent subsets of maximum
size.

4. ≤ is a linear ordering given by the weight of the elements.

10

Thus, the term

⊒ ;Cond · Max · (⊒ ;Cond · Max → ≤)

retrieves independent subsets of maximum size and minimum weight from a
matroid, and thus P can be implemented by means of the greedy algorithm.
We will define a predicate Greedy that will characterize those problems that
can be solved by the greedy algorithm. We will use an implementation of sets
based on lists which will simplify the treatement of sets.

Greedy(P,⊒, Cond,Max,≤) ⇐⇒

P =⊒ ;Cond · Max · (⊒ ;Cond · Max →≤) ∧ (8)

⊒= 1′L0 + 1′L>0 ;Cons̆ ;





1′

⊗
⊒



 ;Cons + 1′L>0 ;T l ; ⊒ ∧ (9)

Cond ¹ 1′ ∧ Cond ; ⊒ ¹ ⊒ ;Cond ∧ (10)

(⊒ ;Cond) ·Max
∇

(⊒ ;Cond) ·Max
;





HAS
⊗
1′



 ; /∈ ;Cons;Cond ;1 = 0 ∧ (11)





HAS
∇

(⊒ ;Cond) ·Max



 ; /∈ ;Cons;Cond = 0. (12)

Formula (8) states that problem P can be specified as in (7). Formula (9)
states that ⊒ generates all the subsets. Formula (10) states that Cond is a
filter and that sets satisfying Cond are closed under subsets. Formula (11)
describes the exchange property of matroids. Finally, formula (12) states that
subsets produced by the relation (⊒ ;Cond) ·Max have maximum size. Thus,
formula Greedy characterizes those problems that can be solved using the greedy
algorithm.

In our formalism of fork algebras, we can give a general characterization for
greedy algorithms in terms of predicates over relations. In order to do this in a
modular way, we will first define some auxiliary predicates.

In order to characterize a relation P producing the sorted output of the
objects in the set S (see steps 1–3 in (6)), we will use a predicate MINIMAL.
MINIMAL is defined as

MINIMAL(P,≤) ⇐⇒ P =




Has
⊗
1′



 ; /∈ ;π ·





Has
⊗
1′



 ; /∈ ;π →≤

where the relation ≤ is a linear ordering of objects and the relation /∈ is the
filter

{〈x ⋆ A, x ⋆ A〉 : x /∈ A} .

If we now consider the relation P characterized by the term




Has
⊗
1′



 ; /∈ ;π ·





Has
⊗
1′



 ; /∈ ;π →≤

11

this relation equals

{〈S ⋆ S0, y〉 : y is the minimum in the set S \ S0} .

The next predicate we will define is the predicate NEXT . This predicate
will characterize the binary relation

{〈S ⋆ S0, y ⋆ S1〉 : y is the minimum of S \ S0 ∧ S1 = S0 ∪ {y}} .

From the description of NEXT , it seems clear that the predicate MINIMAL
can be of use. NEXT is defined by:

NEXT (P,≤) ⇐⇒

∃Q



 MINIMAL(Q,≤) ∧ P =





Q

∇

ρ



 ;





π

∇

Add







 . (13)

Once we have defined the predicate NEXT , we will define an auxiliary
predicate Greedy Sol′, on whose definition will be based the definition of the
predicate Greedy Sol. The predicate Greedy Sol′ almost characterizes greedy
algorithms. Its only difference is that it accepts not only the input for the prob-
lem, but also a sequence of already visited elements and the partial construction
of the set A.

Greedy Sol
′

(P,≤, Cond) ⇐⇒

∃Q such that NEXT (Q,≤) ∧

P =





2̆

⊗

1′



 ;ρ+



























π ;π
∇





Q
⊗

1′



 ;



















π ;ρ
∇





π
⊗

1′



 ;Add ;Cond
+























ρ
⊗

1′





∇




π
⊗

1′



 ;Add ;¬Cond



















;π













































;















1′

⊗

π





∇

ρ ;ρ











;P.

(14)

The term





2̆

⊗
1′



 ;ρ

is different of 0 just in case all the generated objects were already considered
and, in this case, projects as output the set A.

On the other hand, if still there are objects that were not considered, then
Q (because NEXT (Q,≤) holds) will produce the smallest one. Thus, the term
(Q⊗ 1′) produces as output the smallest nontreated element, and at the same
time keeps a copy of the current state of the set A.

The term




π
⊗
1′



 ;Add ;Cond

12

tests is the newly generated object satisfies the criteria for belonging to the set
A, and if this is the case, adds the new element to the set A. If the new element
does not satisfy the criteria, then nothing is done.

Finally, the predicate Greedy Sol is defined as:

Greedy Sol(P,≤, Cond) ⇐⇒

∃Q











Greedy Sol′(Q,≤, Cond) ∧ P =















1′

∇

Empty V isited





∇

Empty Set











;Q











. (15)

The predicate Greedy Sol guarantees an adequate initialization for the re-
lations being defined by the predicate Greedy Sol′.

Finally, it is important to mention that we have derived an algorithm for the
problem of finding all the minumum spanning trees of a given connected graph.
In order to do that we have just needed to state relations satisfying the predicate
Greedy descripted above, and then instantiate the predicate Greedy Sol.

6 Conclusions

In this paper we have presented an important application of the representation
theorem for fork algebras, by showing that it is possible to express development
strategies in the first-order language of fork algebras. This makes fork algebras
a framework easier to handle than for example CIP-L [1], on which the rules are
written in a metalanguage.

References

[1] Bauer, F.L., Berghammer, R., Broy, M., Dosch, W., Geiselbrechtinger, F.,
Gnatz, R., Hangel, E., Hesse, W., Krieg–Brückner, B., Laut, A., Matzner,
T., Möller, B., Nickl, F., Partsch, H., Pepper, P., Samelson, K., Wirsing,
M., and Wössner, H., The Wide Spectrum Language CIP–L, LNCS 183,
Springer–Verlag, 1985.

[2] Baum, G.A., Frias, M.F., Haeberer, A.M. and Mart́ınez López, P.E., From

Specifications to Programs: A Fork–algebraic Approach to Bridge the Gap,
in Proceedings of MFCS’96, Cracow, September 1996.

[3] Bird, R., An Introduction to the Theory of Lists. In M. Broy, editor, Logic
of Programming and Calculi of Discrete Design, volume 36 of NATO ASI
Series F, pp. 3–42. Springer–Verlag,1987.

[4] Bird, R., A Calculus of Functions for Program Derivation, in Turner D.,
editor, Research Topics in Functional Programming, University of Texas at
Austin Year of Programming Series, Addison–Wesley 287–308.

[5] Bird, R. and de Moor, O. Relational Program Derivation and Context–free

Language Recognition. In A .W. Roscoe, editor, A Classical Mind: Essays
dedicated to C. A. R. Hoare. Prentice Hall, 1995.

13

[6] Frias, M.F. and Aguayo, N.G., Natural Specifications vs. Abstract Specifi-

cations. A Relational Approach, in Proceedings of SOFSEM ’94, Milovy,
Czech Republic, November 1994, 17–22.

[7] Frias, M.F., Aguayo N.G. and Novak B., Development of Graph Algorithms

with Fork Algebras, in Proceedings of the XIX Latinamerican Conference
on Informatics, 1993, 529–554.

[8] Frias, M.F., Baum, G.A., Haeberer, A.M. and Veloso, P.A.S., Fork Algebras

are Representable, in Bulletin of the Section of Logic, University of ÃLódź,
(24)2, 1995, pp.64–75.

[9] Frias, M.F. and Gordillo, S.E., Semantic Optimization of Queries to De-

ductive Object–Oriented Database, to appear in Proceedings of ADBIS’95,
Moscow, June 1995, Springer–Verlag, pp.55–72.

[10] Frias, M.F., Haeberer, A.M. and Veloso, P.A.S., On the Metalogical Prop-

erties of Fork Algebras, in Abstracts of the Winter Meeting of the ASL,
San Francisco, California, January 1995, The Bulletin of Symbolic Logic
(1)3, 1995, pp.364–365.

[11] Frias, M.F., Haeberer, A.M. and Veloso, P.A.S., A Finite Axiomatization

for Fork Algebras, Journal of the IGPL, to appear, 1996.

[12] Frias, M.F., Haeberer, A.M., Veloso, P.A.S. and Baum, G.A., Repre-

sentability of Fork Algebras, in Proceedings of the Logic Colloquium ’94,
July, 1994, p. 51. Also in The Bulletin of Symbolic Logic (1)2, 1995, pp.234–
235.

[13] Frias, M.F., Haeberer, A.M., Veloso, P.A.S. and Baum, G.A., Widening

Representable Fork Algebras, presented at the Tenth International Congress
of Logic, Philosophy and Methodology of Science, Florence, Italy, August
1995.

[14] Frias, M.F. and Orlowska, E., Equational Reasoning in Non-Classical Log-

ics, Journal of Applied Non-Classical Logics, to appear.

[15] Gyuris, V., A Short Proof for Representability of Fork Algebras, Journal of
the IGPL, vol 3, N.5, 1995, pp.791–796.

[16] Haeberer, A.M., Baum, G.A. and Schmidt G., On the Smooth Calculation

of Relational Recursive Expressions out of First–Order Non–Constructive

Specifications Involving Quantifiers, in Proceedings of the International
Conference on Formal Methods in Programming and Their Applications,
LNCS 735, Springer–Verlag, 1993, 281–298.

[17] Haeberer, A.M. and Veloso, P.A.S., Partial Relations for Program Deriva-

tion: Adequacy, Inevitability and Expressiveness, in Constructing Programs
from Specifications – Proceedings of the IFIP TC2 Working Conference on
Constructing Programs from Specifications. North Holland., IFIP WG. 2.1,
Bernhard Möller, 1991, 319–371.

[18] de Moor, O., Categories, Relations and Dynamic Programming, Mathemat-
ical Structures in Computer Science, Vol.4, pp.33–69, Cambridge University
Press, 1994.

14

[19] Möller, B., Relations as a Program Development Calculus, in Constructing
Programs from Specifications, B. Möller, editor, North–Holland, 1991, 373–
397.

[20] Németi, I., Representability of Fork Algebras depends on your Ontology,
Journal of the IGPL, to appear.

[21] Sain, I. and Németi, I., Fork Algebras in Usual as well as in Non–well–

founded Set Theories, preprint of the Mathematical Institute of the Hun-
garian Academy of Sciences, 1994, also appeared in Relational Methods
in Computer Science, Dagstuhl–Seminar–Report 80, Schloss Dagstuhl, C.
Brink and G. Schmidt eds., January 1994.

[22] Tarski, A., On the Calculus of Relations, Journal of Symbolic Logic, vol.
6, 1941, 73–89.

[23] Handbook of Mathematical Logic, Jon Barwise (Ed.), North Holland, 1977.

[24] Veloso, P.A.S. and Haeberer, A.M., A Finitary Relational Algebra for Clas-

sical First-Order Logic, Bull. Section of Logic, Polish Academy of Sciences,
vol. 20, no. 2, 1991, 52–62.

[25] Veloso, P.A.S., Haeberer, A.M., and Frias, M.F., Fork Algebras as Algebras

of Logic, in Proceedings of the Logic Colloquium ’94, July, 1994, p. 127.
Also in The Bulletin of Symbolic Logic, (1)2, 1995, pp.265–266.

15

