13 research outputs found

    Chicken Swarm Optimization for PTS based PAPR Reduction in OFDM Systems

    Get PDF
    Partial transmit sequence (PTS) is a well-known PAPR reduction scheme for the OFDM system. One of the major challenge of this scheme is to find an optimal phase vector using exhaustive search over all the allowed phase factor combinations. This leads to increased search complexity which grows exponentially as the number of sub-blocks is increased. In this paper, chicken swarm optimization (CSO) based PTS system is designed that aims to find an optimal solution in less number of average iterations and therefore results in reduced computational complexity of the system. We have proposed two categories of the algorithm: (i) CSO-PTS system without threshold limit on PAPR (ii) CSO-PTS system with threshold limit on PAPR. Both the schemes offer effective trade-offs between the computational complexity and the PAPR reduction capability of the system. Simulation results confirm that our proposed schemes perform well in terms of low computational complexity, lesser number of average iterations and improved PAPR reduction capability of the OFDM signal without any loss in BER performance of the system

    CPM Training Waveforms With Autocorrelation Sidelobes Close to Zero

    Get PDF
    Continuous phase modulation (CPM) plays an important role in wireless communications due to its constant envelope signal property and tight spectrum confinement capability. Although CPM has been studied for many years, CPM training waveforms having autocorrelations with zero sidelobes have not been reported before, to the best of our knowledge. Existing works on the CPM system design mostly assume that the channel fading coefficients are either perfectly known at the receiver or estimated using random CPM training waveforms. In this correspondence paper, we propose a novel class of CPM training waveforms displaying autocorrelation sidelobes close to zero. The key idea of our construction is to apply differential encoding to Golay complementary pair having perfect aperiodic autocorrelation sum properties

    New Hybrid Schemes for PAPR Reduction in OFDM Systems

    Get PDF
    الـ 3GPP قدمت مشروع LTE لتلبية الطلبات المتزايدة لخدمات الاتصالات ذات السرعة العالية والجودة العالية. يستخدم نظام الـ LTE تقنية مضاعفة تقسيم التردد المتعامد (OFDM) في شكل (OFDMA) في الوصلة الهابطة (Downlink) وشكل الـ (SCFDMA) في الوصلة الصاعدة (Uplink) مجتمعة مع تقنية الـ MIMO لتقديم معدل بيانات عالي، قدرة عالية، وحصانة ضد القنوات متعددة المسارات. ومع ذلك لا يزال ارتفاع نسبة القدرة العظمة إلى المتوسط (PAPR) لإشارة الـ LTE المرسلة هي المشكلة الرئيسية التي تعمل على تدهور كفاءة النظام بشك عام وإمكانية استهلاك الطاقة. لذلك كرست الكثير من البحوث للحد من تدهور الأداء بسبب مشكلة الـ PAPR في أنظمة LTE-OFDM. تعتبر طرق ضغط الإشارة (Companding Methods) جزءاً من الطرق المعروفة والتي تعتبر سهلة ومنخفضة التعقيد، وبلا قيود على شكل التضمين وحجم عدد الحوامل (Subcarrier Size)، ولها خصائص طيفية جيدة، ومع ذلك فإن هذه الطرق تقلل الـ PAPR بمقدار ضئيل. وقد اقترح هذا البحث سبعة طرق هجينة جديدة على أساس مزيج من Zaddoff Chu Matrix Transform (ZCT) مع ست أساليب مختلفة من طرق ضغط الإشارة وهي Rooting Companding (RCT)، New Error Function Companding (NERF)، Absolute Exponential Companding (AEXP)، Logarithmic Rooting Companding (LogR)، Cosine Companding (COS)، وTangent Rooting Companding (TanhR). بالإضافة إلى ذلك تم تطوير الطريقة الهجينة السابعة وتجمع الـ Zaddoff Chu Matrix Transform (ZCT) مع طريقة جديدة مقترحة تسمى Advanced AEXP (AAEXP). أظهرت النتائج أن هذه الطرق المتطورة تجمع بين خصائص طريقة الـ ZCT مع خصائص طرق ضغط الإشارة، وتحقق أداء أمثل وانخفاضاً أفضل من حيث PAPR وBER. كما حققت طريقة الـ ZCT+AAEXP أفضل النتائج مقارنة بالطرق الأخرى.The 3rd Generation Partnership Project (3GPP) introduced LTE to meet increasingly demands for communication services with high speed and quality. LTE uses OFDM in the form of OFDMA in the downlink and SCFDMA in the uplink combined with MIMO offering high data rate, high capacity and immunity against multipath channels. However, still the high PAPR of the LTE transmitted signal is the major problem affecting overall system performance degradation and power efficiency. A plenty of research has been devoted to reduce the performance degradation due to the PAPR problem inherent to LTE OFDM systems. A portion of the current techniques such companding methods have low-complexity, no constraint on modulation format and subcarrier size, good distortion and spectral properties; however, they have limited PAPR reduction capabilities. This paper proposes seven new hybrid schemes including Zaddoff Chu Matrix Transform (ZCT) precoding and six modern companding methods; Rooting Companding (RCT), New Error Function Companding (NERF), Absolute Exponential Companding (AEXP), Logarithmic Rooting Companding (LogR), Cosine Companding (COS) and Tangent Rooting Companding (TanhR) companding. Furthermore, the seventh proposed hybrid scheme has been added incorporating ZCT precoding with new proposed companding called Advanced AEXP (AAEXP) companding. The developed methods are combining properties of both ZCT & Compandings, and achieving superior PAPR performance and optimal BER. Simulations results illustrate that the new seven proposed hybrid schemes can achieve better PAPR reduction, and BER performance and the best achievement has been achieved by ZCT+AAEXP scheme

    A Closed Form Selected Mapping Algorithm for PAPR Reduction in OFDM Multicarrier Transmission

    Get PDF
    Nowadays, the demand for communication multi-carriers' channels, where the sub-channels are made mutually independent by using orthogonal frequency division multiplexing (OFDM), is widespread both for wireless and wired communication systems. Even if OFDM is a spectrally efficient modulation scheme, due to the allowed number of subcarriers, high data rate, and good coverage, the transmitted signal can present high peak values in the time domain, due to inverse fast Fourier transform operations. This gives rise to high peak-to-average power ratio (PAPR) with respect to single carrier systems. These peaks can saturate the transmitting amplifiers, modifying the shape of the OFDM symbol and affecting its information content, and they give rise to electromagnetic compatibility issues for the surrounding electric devices. In this paper, a closed form PAPR reduction algorithm is proposed, which belongs to selected mapping (SLM) methods. These methods consist in shifting the phases of the components to minimize the amplitude of the peaks. The determination of the optimal set of phase shifts is a very complex problem; therefore, the SLM approaches proposed in literature all resort to iterative algorithms. Moreover, as this calculation must be performed online, both the computational cost and the effect on the bit rate (BR) cannot be established a priori. The proposed analytic algorithm finds the optimal phase shifts of an approximated formulation of the PAPR. Simulation results outperform unprocessed conventional OFDM transmission by several dBs. Moreover, the complementary cumulative distribution function (CCDF) shows that, in most of the packets, the proposed algorithm reduces the PAPR if compared with randomly selected phase shifts. For example, with a number of shifted phases U=8, the CCFD curves corresponding to the analytical and random methods intersect at a probability value equal to 10(-2), which means that in 99% of cases the former method reduces the PAPR more than the latter one. This is also confirmed by the value of the gain, which, at the same number of shifted phases and at the probability value equal to 10(-1), changes from 2.09 dB for the analytical to 1.68 dB for the random SLM

    Ciphered BCH Codes for PAPR Reduction in the OFDM in Underwater Acoustic Channels

    Get PDF
    We propose an effective, low complexity and multifaceted scheme for peak-to-average power ratio (PAPR) reduction in the orthogonal frequency division multiplexing (OFDM) system for underwater acoustic (UWA) channels. In UWA OFDM systems, PAPR reduction is a challenging task due to low bandwidth availability along with computational and power limitations. The proposed scheme takes advantage of XOR ciphering and generates ciphered Bose–Chaudhuri–Hocquenghem (BCH) codes that have low PAPR. This scheme is based upon an algorithm that computes several keys offline, such that when the BCH codes are XOR-ciphered with these keys, it lowers the PAPR of BCH-encoded signals. The subsequent low PAPR modified BCH codes produced using the chosen keys are used in transmission. This technique is ideal for UWA systems as it does not require additional computational power at the transceiver during live transmission. The advantage of the proposed scheme is threefold. First, it reduces the PAPR; second, since it uses BCH codes, the bit error rate (BER) of the system improves; and third, a level of encryption is introduced via XOR ciphering, enabling secure communication. Simulations were performed in a realistic UWA channel, and the results demonstrated that the proposed scheme could indeed achieve all three objectives with minimum computational powerThis research was funded by a grant from the Spanish Ministry of Science and Innovation in the framework of the project “NAUTILUS: Swarms of underwater autonomous vehicles guided by artificial intelligence: its time has come” (PID2020-112502RB / AEI / 10.13039/501100011033). Partial funding for open access charge: Universidad de Málag

    Generalized DFT: extensions in communications

    Get PDF
    Discrete Fourier Transform (DFT) is a restricted version of Generalized DFT (GDFT) which offers a very limited number of sets to be used in a multicarrier communication system. In contrast, as an extension on Discrete Fourier Transform (DFT) from the linear phase to non-linear phase, the proposed GDFT provides many possible carrier sets of various lengths with comparable or better performance than DFT. The availability of the rich library of orthogonal constant amplitude transforms with good performance allows people to design adaptive systems where user code allocations are made dynamically to exploit the current channel conditions in order to deliver better performance. For MIMO Radar systems, the ideal case to detect a moving target is when all waveforms are orthogonal, which can provide an accurate estimation. But this is not practical in distributed MIMO radars, where sensors are at varying distances from a target. Orthogonal waveforms with low auto- and cross-correlations are of great interest for MIMO radar applications with distributed antennas. Finite length orthogonal codes are required in real-world applications where frequency selectivity and signal correlation features of the optimal subspace are compromised. In the first part of the dissertation, a method is addressed to design optimal waveforms which meets above requirements for various radar systems by designing the phase shaping function (PSF) of GDFT framework with non-linear phase. Multicarrier transmission such as orthogonal frequency-division multiplexing (OFDM) has seen a rise in popularity in wireless communication, as it offers a promising choice for high speed data rate transmission. Meanwhile, high peak-to-average power ratio (PAPR) is one of the well-known drawbacks of the OFDM system due to reduced power efficiency in non-linear modules. Such a situation leads to inefficient amplification and increases the cost of the system, or increases in interference and signal distortion. Therefore, PAPR reduction techniques play an essential role to improve power efficiency in the OFDM systems. There has been a variety of PAPR reduction methods emphasizing different aspects proposed in the literature. The trade-off for PAPR reduction in the existing methods is either increased average power and/or added computational complexity. A new PAPR reduction scheme is proposed that implements a pre-designed symbol alphabet modifier matrix (SAM) to jointly modify the amplitude and phase values of the original data symbol alphabets prior to the IFFT operation of an OFDM system at the transmitter. The method formulated with the GDFT offers a low-complexity framework in four proposed cases devised to be independent of original data symbols. Without degrading the bit error rate (BER) performance, it formulates PAPR reduction problem elegantly and outperforms partial transmit sequences (PTS), selected mapping technique (SLM) and Walsh Hadamard transform (WHT-OFDM) significantly for the communication scenarios considered in the dissertation

    Analysis and Implementation of PAPR reduction algorithms for C-OFDM signals

    Get PDF
    Nowadays multicarrier modulation has become a key technology for communication systems; for example C-OFDM schemes are used in wireless LAN (802.11a/g/n), terrestrial digital television (DVB-T) and audio broadcaster (DAB) in Europe, and discrete multitone (DMT) in x.DSL systems. The principal difficulty with OFDM is the occurrence of the coherent alignment of the time domain parallel signals at the transmitted side which forces system designer to introduce either additional hard computationally device or a suitable power back-off at the high power amplifier in order to cope with the large magnitude signal fluctuation. This leads to a significant increment in computational cost in the former case whereas in a worse allowable power utilization in the latter case with respect to the original system. However since both allowable power and computational cost are subject to a design as well as regulatory limit others solution must be accomplished. Peak reduction techniques reduce maximum-to-mean amplitude fluctuations nominating as a feasible solution. Peak-to-average power ratio is the key metric to measure this amplitude fluctuations at transmitter and to give a clear figure of merit for comparison among different techniques
    corecore