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Abstract: Nowadays, the demand for communication multi-carriers’ channels, where the sub-
channels are made mutually independent by using orthogonal frequency division multiplexing
(OFDM), is widespread both for wireless and wired communication systems. Even if OFDM is a
spectrally efficient modulation scheme, due to the allowed number of subcarriers, high data rate,
and good coverage, the transmitted signal can present high peak values in the time domain, due
to inverse fast Fourier transform operations. This gives rise to high peak-to-average power ratio
(PAPR) with respect to single carrier systems. These peaks can saturate the transmitting amplifiers,
modifying the shape of the OFDM symbol and affecting its information content, and they give rise
to electromagnetic compatibility issues for the surrounding electric devices. In this paper, a closed
form PAPR reduction algorithm is proposed, which belongs to selected mapping (SLM) methods.
These methods consist in shifting the phases of the components to minimize the amplitude of the
peaks. The determination of the optimal set of phase shifts is a very complex problem; therefore,
the SLM approaches proposed in literature all resort to iterative algorithms. Moreover, as this cal-
culation must be performed online, both the computational cost and the effect on the bit rate (BR)
cannot be established a priori. The proposed analytic algorithm finds the optimal phase shifts of an
approximated formulation of the PAPR. Simulation results outperform unprocessed conventional
OFDM transmission by several dBs. Moreover, the complementary cumulative distribution function
(CCDF) shows that, in most of the packets, the proposed algorithm reduces the PAPR if compared
with randomly selected phase shifts. For example, with a number of shifted phases U = 8, the CCFD
curves corresponding to the analytical and random methods intersect at a probability value equal to
10−2, which means that in 99% of cases the former method reduces the PAPR more than the latter
one. This is also confirmed by the value of the gain, which, at the same number of shifted phases
and at the probability value equal to 10−1, changes from 2.09 dB for the analytical to 1.68 dB for the
random SLM.

Keywords: power lines communication; peak-to-average-power ratio; selected mapping; analytical solution

1. Introduction

Orthogonal frequency division multiplexing (OFDM) is an efficient multi-carrier modu-
lation technique both for wireless communication and power line communication (PLC).

For its high data rate, OFDM has been indeed widely used in many wireless commu-
nication standards, such as digital video broadcasting (DVB) and based mobile worldwide
interoperability for microwave access [1]. It offers a considerable high spectral efficiency,
multipath delay spread tolerance, immunity to the frequency selective fading channels and
power efficiency [2,3].

Moreover, the rapid development of smart grids and electric transportation has made
PLC technology a promising complementary scheme to the wireless communications [4–8].
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In such a case, OFDM has been proposed to overcome the limited bandwidth (up to
100 MHz) and enhance the transmission throughput in PLC systems; the power line is
exploited as a communication multi-carriers’ channel, where the sub-channels are made
mutually independent by using orthogonal frequencies. In 2010, the standard IEEE 1901
has been approved to unify PLC technologies based on OFDM modulation scheme for
high-speed communication devices using frequencies below 100 MHz [9].

Despite the great advantages that OFDM modulation scheme presents in both wireless
and power line communications, some important aspects need to be addressed in the
systems design. One of the major issues is the high peak-to-average power ratio (PAPR) of
the transmitted OFDM signals, which depends on the phases of the sub carriers.

These peaks could decrease the signal-noise ratio (SNR) of the digital-to-analog con-
verter (DAC). Moreover, they could saturate the transmitting high-power amplifiers (HPA),
overcoming their dynamic range and modifying the shape of the OFDM symbol, and then
affecting its information content. Furthermore, such spikes bring problems of electromag-
netic compatibility that, in many applications, put very strict requirements, due to the
presence of critical electrical devices.

Many approaches have been proposed to deal with the PAPR reduction problem,
and literature reports several review papers that propose different classifications of the
methods [10–13]. They mainly categorized the methods in the following classes:

1. Coding techniques (CT), which avoid the use of codeword with high peak power [14–20];
2. Signal distortion techniques (SD), such as clipping and filtering, which means the

non-linear treatment of amplitude near the peak power [21–23];
3. Multiple signaling and probabilistic techniques (MSP), such as selected mapping

methods (SLM) [24–26], partial transmission sequence (PTS) [27,28], phase optimiza-
tion [29], tone reservation and tone injection [30], and constellation shaping [31,32],
which generate a permutation of the multi-carrier signal and choose the signal with
the minimum PAPR for transmission, or modify different parameters in the OFDM
signal, and optimize them to minimize the PAPR.

Over the last few years, several studies have been presented, which combine two
or more PAPR reduction methods to use the characteristics of each method in a hybrid
scheme to improve performance and to improve the cost efficiency in terms of better
PAPR reduction [33]. Among these techniques, in literature there are some that combine
the approach of selective mapping (SLM) with other approaches, often demonstrating
advantages in terms of complexity and/or information integrity. In [34] two parallel
forms of multiple signal representation (MSR) approaches, the SLM methodology and the
modified-partial transmit sequence (PTS) technique called the cyclic shift sequences, PTS
are mixed to enhance the PAPR efficiency and computational complexity level better than
the conventional PTS methodology. In [35,36], SLM methods are used with compounding
methods. The latter are applied to speech signal having high peaks and are also applied to
the OFDM signal. In particular in [36], a new hybrid method has been proposed considering
the cascade of two stages. In the first stage, the SLM is combined with PTS reduction
technique and in the second stage the PTS technique is combined with compounding
methods. This hybrid method is able to reduce the system complexity and to increase
the bit error rate performance. In order to reduce the complexity of SLM and achieve
a significant PAPR reduction, in [37] the authors propose a hybrid approach called low
complexity hybrid selective mapping for PAPR mitigation for asymmetrically clipped
optical OFDM. The new approach utilizes the properties of IFFT and Hermitian symmetry
to reduce the complexity of the conventional SLM. Despite the great number of methods,
until now, no one has been able to solve the problem at low computational cost and, at the
same time, preserving the information content of the signal.

In [38], a detailed analysis of advantages/limitations of several approaches that com-
bine SLM and PTS is reported. This analysis shows that there is a trade-off between
the efficiency in the PAPR reduction and the computational complexity level of these
hybrid methods.
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Our proposal focuses on improving the performance of the SLM method, which is
one of the most used in hybrid approaches. The SLM [25] approach consists in applying
a phase shift to the components of the OFDM symbol, changing the shape of the OFDM
symbol in such a way to limit the peaks. The determination of the optimal set of phase
shifts is a very complex problem; thus, the SLM approaches proposed in literature all resort
to iterative algorithms to solve it. In this paper, the problem of determining the optimal
set of phase shift is solved in closed form on an approximated formulation of the PAPR.
Such approximation uses the n-norm instead of infinity norm, with n = 4, in the definition
of the PAPR. The gradient expression of the objective function has been analytically defined,
and its solution consists simply in the calculation of the roots of a sixth degree polynomial,
which represent the optimal solutions of the optimization problem. To better approximate
the PAPR value, the analytical evaluation can be easily extended to a greater value of the
n-norm. We have limited ourselves to n = 4 in order not to burden the reading of the
analytical steps of the algorithm reported in the Appendix A of the paper. However, the
proposed approach can be conceptually extended to a higher value of n at the expense of
a higher number of analytical steps. Simulation results demonstrate the validity of the
n-norm approximation and the advantage with respect to SLM iterative methods.

The paper is organized as follows. Section 2 introduces the OFDM system model.
In Section 3, the PAPR problem is depicted together with the selected mapping method.
In Section 4, the closed form algorithm is proposed, whereas the simulation results are
reported in Section 5. The last Section 6 provides discussion and conclusions. Finally, in the
Appendix A, the analytical steps are reported.

2. OFDM System Model

Figure 1 shows the basic scheme of an OFDM system. An OFDM modulation scheme
allows digital data to be efficiently and reliably transmitted over a transmitter channel
and it performs well even in multipath environments with reduced receiver complexity.
Using ODFM, it is possible to exploit the time domain, the space domain, the frequency
domain and even the code domain to optimize transmitter channel usage. As shown in
Figure 1, the bit data must be firstly converted from serial stream into parallel streams,
each of which are coded and modulated on to a subcarrier. In fact, OFDM allows one to
subdivide the available band into mutually orthogonal subcarriers so that each of them can
be considered independently. These subcarriers are regularly spaced in frequency, forming
a block of spectrum. The frequency spacing and time synchronization of the subcarrier is
chosen in such a way that the subcarriers are orthogonal, which means they do not cause
interference with one another. Moreover, using narrow subcarriers, the frequency response
can be considered constant and then the signal does not undergo distortion effects.

Figure 1. Basic schema of an OFDM transmitter and receiver (T/R) system.
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The signal sent through the single sub channel is the sum of two iso frequential in
quadrature sinusoidal signals. The two degrees of freedom, given by the amplitude of the
two sinusoids, allow one to send a two-dimensional message, corresponding to points in the
plane (Figure 2). The set of points constitutes a constellation, and each point is associated
with a binary string; therefore, the more points, the more bits are associated to each point,
and then the higher the bit rate. In Figure 2, two different kinds of constellation are shown:
the amplitude phase shift keying (APSK), and the quadratic amplitude modulation (QAM).

Figure 2. APSK and QAM modulation schemes.

Each constellation is associated with a maximum power level, corresponding to the
farthest points from the origin. To increase the number of points and then the length of
the string associated to each of them, one can augment the power available for the sub
channel or put the points closer each other. Note that, the first solution can give rise to
saturation of the transmission devices and interferences, whereas the second solution can
cause receiving errors, due to the unavoidable presence of noise. The QAM scheme is more
diffused than the APSK because it is easier to implement, and the average signal power is
lower. However, in this work, to cope with possible heavy noise conditions, we preferred
to adopt the APSK constellation scheme.

3. PAPR in OFDM Systems

The OFDM typically suffers a high peak to average power ratio (PAPR), defined for
transmitted signal x(t), as

PAPR[x(t)] =
peak power o f x(t)

average power o f x(t)
=

max
0≤t≤T

|x(t)|2

1
T
∫ T

0 |x(t)|
2dt

(1)

where T is the interval of OFDM signal (OFDM symbol period).
PAPR has negative consequences, both on the interference caused, for example, by

PLC transmission and on the allowed peak of power the system can support. In particular,
if the instantaneous signal overcomes the linear range of the amplifier, this clips the peaks
of the signal, which will result in distorted [39].

Selected Mapping Approach for PAPR Reduction

Selected mapping approach basically consists of shifting the phase of the sinusoidal
components in order to reduce the value of the peaks. As previously highlighted, although
SLM is one of the most used PAPR reduction techniques, it has some drawbacks. In fact,
typically this approach is applied online, because a different set of phase shifts must be
determined for any stream of bit and it is not reasonable calculating a priori the shifting for
all the possible streams, but this implies that the set of phases before the shifting has to be
sent as side information, by using to this purpose a part of the available channel. Note that,
the reduction of the PAPR, whichever approach is used, is paid in terms of bit rate.
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Most of the SLM approaches presented in literature consist in iteratively generating a
large set of phase shift vectors, and then selecting the OFDM symbol having the lowest
PAPR. The quality of the solution in terms of low PAPR depends on the number of phase
shift vectors. However, the required calculation time must not exceed the rate the streams
are generated, so as not to affect the transmission rate.

In [40], it is shown that the iterative procedure usually converges towards a limited
set of phases to shift, because the incremental benefit that can be obtained by shifting the
most parts of the components is very low.

This fact suggests that a possible way to reduce the computational cost is to select a
reduced number of phases to shift. Limiting the number of phases to shift has a benefit
in terms of bit rate, because it reduces the side information of the transmission. Indeed, if
the point of the constellation undergoes a phase shifting, this shift must be attached to
the transmission, to make it possible for the receiver to reconstruct the original message.
Therefore, the higher the number of shifted components, the higher is the part of the
channel used to transmit side information.

In this work, the number of phases to be shifted is established a priori. The components
whose phase is shifted are those having the highest values of power, which are potentially
those mainly affecting the PAPR. In this way, the receiver can deduce the set of shifted
components without any side information. To overcome the computational complexity of
the algorithm, in this paper, the problem of finding the optimal phase shift vector is solved
in closed form on an approximated formulation of the PAPR.

To compare the results of a PAPR reduction technique it is common to refer to the
complementary cumulative distribution function (CCDF) of the PAPR, which provides a
statistical description of the power levels in the OFDM signal. In particular, it gives the
probability that PAPR of the OFDM signal x(t) will be above a given threshold PAPR0 [10].

A PAPR reduction algorithm may satisfy the multiple objectives of reducing the
PAPR without affecting the bit rate (BR) and the bit error rate (BER), hence limiting the
computational complexity and the side information to be transmitted. Several performance
indexes can be introduced. As SLM algorithms do not affect BER, in this paper the following
performance index has been proposed [13]:

Γ = −10log10

(
PAPRa f ter

PAPRbe f ore

)
(2)

which measures the relative PAPR reduction after the application of the algorithm at a fixed
CCDF. A large value for the “gain” Γ implies better PAPR reduction.

4. Analytical Solution of SLM Problem

The calculation of the optimal phase shift vector is a hard task, which could require a
high computational cost even in the case of a small number of phases to shift. The complex
envelope of the transmitted OFDM signal can be written as:

x(t) =
1
M ∑M

k=−M Xkejkωt, 0 ≤ t ≤ MT (3)

where X = {Xk, k = −M, · · · , M} is the block of M symbols, M is the number of subcar-
riers, ω is the angular frequency of the fundamental harmonic, and j =

√
−1.

The equivalent real envelope can be obtained by summing M sinusoids corresponding
to as many subcarriers:

x(t) = ∑M
k=1 Ak sin(kωt + ϕk) (4)

The aim of the optimization problem consists in minimizing the PAPR value given by
(1) of the OFDM symbol (4) acting on a prefixed number U of phases ϕk. The initial values
of both amplitudes Ak and phases ϕk depend on the current frame of bits transmitted
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with the OFDM symbol, so that a new optimization problem must be solved online for
each symbol.

The first objective is to remove the time variable in the formulation of the optimization
problem. In fact, it is a difficult task to foresee the position of the peaks in the OFDM
symbol, and this would be a further problem to address inside that of optimizing the PAPR.
To this end, we resort to the norm of the signal, which is defined for the generic order n as:

En =
n

√∫ T

0
|x(t)|ndt (5)

As it is well known, as n→ ∞ , En tends to the maximum value of x(t), but, in general,
a small order n > 2 is sufficient to put in evidence the presence of an instantaneous peak.
In particular, we can observe that the integral inside the root in (5), for n = 2 is equal to the
energy of x(t), which is invariant with respect to the phases ϕk of its components.

Therefore, even for n = 3, the norm could be used to estimate the presence of a peak in
the signal. For the sake of simplicity, the norm n = 4 has been adopted, to avoid introducing
the absolute value of the objective function. Furthermore, the root operation in (5) does
not affect the position of the minimum, so that the optimization problem is formalized
as follows:

min
ϕ∈Φ

{
P =

∫ T

0
x(t)4dt

}
(6)

where Φ is the set of phases to shift and P is a function whose stationary points are assumed
in place of those of the PAPR[x(t)]. Figure 3 reports PAPR[x(t)] (continuous red line) and
P (continuous blue line) when changing only one phase angle from 0◦ to 360◦. As expected,
the two curves present an offset, due to their different definitions, but their minimums
(highlighted with vertical dashed lines) are quite close and, assuming the stationary point
evaluated on the blue curves, non-significant variation is introduced in the PAPR. Note that,
a further improvement of the PAPR approximation can be achieved if a norm n, with n
greater than 4, is considered, at the cost of a greater effort in the analytic determination of
the optimal phase shifts. In the same Figure 3, the continuous green line reports the trend
of P evaluated using the norm n = 16 instead of n = 4. As can be noted, the offset greatly
reduces and the two minima points almost coincide.

Figure 3. Continuous lines: Approximated PAPR P with norm n = 4 (blue), norm n = 16 (green) and
norm n = ∞ (red) when changing only one phase angle from 0◦ to 360◦. Vertical dashed lines show
(with the same color) the minimum of the three curves. A zoom of the minimum points is reported in
the frame.
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Considering (4) and (6), the general expression of the norm P can be calculated, where
the fundamental frequency ω has been normalized to 1:

P =
∫ 2π

0

[
∑M

k=1 Ak sin(kt + ϕk)
]4

dt (7)

In this paper, a line search algorithm [41] is used to seek the minimum of the objective
function. To this end, the gradient expression of the objective function must be defined,
in order to calculate the stationary points. It is worth noticing that this does not affect the
generality of the results. By deriving (7) with respect to ϕr ∈ Φ, the first-order condition
can be determined:

∂P
∂ϕr

= 4
∫ 2π

0

[
∑M

k=1 Ak sin(kt + ϕk)
]3

Ar cos(rt + ϕr) · dt = 0 (8)

Let us re-write Equation (8) highlighting the r-th term in the sum:

∂P
∂ϕr

= 4
2π∫
0

Ar sin(rt + ϕr) +
M

∑
k = 1
k 6= r

Ak sin(kt + ϕk)


3

· Ar cos(rt + ϕr)dt = 0 (9)

Let us define sk = sin(kt + ϕk) and ck = cos(kt + ϕk). Then, the first order condi-
tion becomes:

∂P
∂ϕr

=
2π∫
0

(
Arsr +

M
∑

k = 1
k 6= r

Aksk
)3 · Arcr dt =

=
2π∫
0

A3
r s3

r + 3A2
r s2

r
M
∑

k = 1
k 6= r

Aksk + 3Arsr


M
∑

k = 1
k 6= r

Aksk


2

+


M
∑

k = 1
k 6= r

Aksk


3 · Arcr dt = 0

(10)

The four terms in Equation (10) can be evaluated separately in closed form by simple
analytical steps, reported in Appendix A, leading to:

First Term
2π∫
0

A3
r s3

r Arcr dt = 0, ∀r (11)

Second Term

2π∫
0

3A2
r s2

r

M

∑
k = 1
k 6= r

Aksk

Arcr dt = A cos(3ϕr) + B sin(3ϕr) (12)
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where {
A = − 3

8 2πA3
r Ak sin(ϕk)

B = 3
8 2πA3

r Ak cos(ϕk)
(13)

Third Term

2π∫
0

3Arsr


M

∑
k = 1
k 6= r

Aksk


2

Arcr dt = Ccos(2ϕr) + Dsin(2ϕr) (14)

where 

C = ± 3
4 2πA2

r
M
∑

k±m = 2r
k, m 6= r
k > m

Ak Am sin(ϕk ± ϕm)

D = ∓ 3
4 2πA2

r
M
∑

k±m = 2r
k, m 6= r
k > m

Ak Am cos(ϕk ± ϕm)
(15)

Fourth Term

2π∫
0


M

∑
k = 1
k 6= r

Aksk


3

Arcr dt = E cos(ϕr) + F sin(ϕr) (16)

where 

E = ± 3
4 2πAr

M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am sin[ϕk ± (ϕl ∓ ϕm)]

F = ∓ 3
4 2πAr

M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am cos[ϕk ± (ϕl ∓ ϕm)]
(17)

Determination of ϕr

In the following, the phases ϕr, corresponding to the stationary points, are deduced.
Once the coefficients, A, B, C, D, E and F, whose derivation is reported in the Appendix A,

are evaluated in closed form, the first-order condition (10) becomes:

∂P
∂ϕr

= A cos(3ϕr) + B sin(3ϕr) + C cos(2ϕr) + D sin(2ϕr) + E cos(ϕr)

+F sin(ϕr) = 0
(18)

Applying the Weierstrass substitution (or tangent half-angle substitution) [42], which
introduces the variable z = tan

( ϕr
2
)
, the following parametric trigonometric relations can

be stated:

sin(ϕr) =
2z

1 + z2 ; cos(ϕr) =
1− z2

1 + z2 (19)
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Then, using the duplication and triplication formulas, it follows that:

sin(2ϕr) = 2sin(ϕr)cos(ϕr) =
4(z− z3)

(1 + z2)
2 (20)

cos(2ϕr) = cos2(ϕr)− sin2(ϕr) =
z4 − 6z2 + 1

(1 + z2)
2 (21)

sin(3ϕr) = 3sin(ϕr)− 4sin3(ϕr) =
6z5 − 20z3 + 6z

(1 + z2)
3 (22)

cos(3ϕr) = 4 cos3(ϕr)− 3cos(ϕr) =
−z6 + 15z4 − 15z2 + 1

(1 + z2)
3 (23)

Hence, the first-order condition becomes:

∂P
∂ϕr

= (−A + C− E) z6 + (6B− 4D + 2F) z5 + (15A− 5C− E) z4

+(−20B + 4F) z3 + (−15A− 5C + E) z2

+(6B + 4D + 2F) z + (A + C + E) = 0
(24)

Solving this equation with respect to z, the values of ϕr are obtained as:

ϕr = 2 tan−1(z) (25)

It is worth to point out that the phase ϕr, corresponding to the stationary point, is
not unique, because it is obtained as the argument of a trigonometric function. This is
in accordance with the fact that the stationary point could be either a minimum or a
maximum point.

5. Simulation Results

Following the analytical procedure described in previous Sections, a first simulation
has been conducted by considering a random bit stream composed of 107 bits and OFDM
symbols with 64-APSK modulation to present the statistical analysis of the PAPR reduction
by varying the number of shifted phases U. In the simulation, an OFDM base-band signal
with N = 64 subcarriers and 390,625 frames has been considered.

In Figure 4, the comparison between the PAPR CCDF curves, obtained with the
conventional OFDM and the SLM method with a number U of shifted phases ranging
from 2 to 32, is reported. It can be observed that a small number of shift vectors allows the
PAPR to be strongly reduced, but at the same time at the improvement tends to saturate
very soon.

Figure 5 reports the marginal improvement of the gain Γ of the random SLM method
with the increase of the number U of shifts from 2 to 32. The gain has been calculated for
CCDF equal to 10−3. As can be noted, the PAPR reduction tends to saturate as the number
of shift vectors increases, and no further measurable advantage can be achieved with a
number of shift vectors greater than eight.

The proposed analytic SLM has been tested on the same bit stream used for the above
analysis. In Figure 6, the CCDF diagrams are shown for different numbers of shifted
carriers for the analytical SLM and the random SLM. As can be observed, for U = 8, the
analytical SLM outperforms the random one in the overwhelming majority of the cases,
while the latter works better in the rare cases where the PAPR is very high.
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Figure 4. Comparisons of CCDF in OFDM-APSK system for conventional OFDM (black) and for the
random SLM PAPR reduction technique with U ranging from 2 to 32, step 1 (red, from right to left).

Figure 5. Marginal improvement of PAPR reduction gain of the random SLM method with the
increase of number U with CCDF = 10−3.

Figure 6. Comparisons of CCDF in OFDM-APSK system for conventional OFDM (bold black),
random (red), and analytic (grey) PAPR reduction techniques with U = 4 (circle), U = 8 (diamond),
and U = 10 (stars).
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This is confirmed by the values reported in Table 1, which presents the comparison
between the analytic and the random SLM in terms of the gain Γ. Three cases are reported
corresponding to three different values of CCDF. The larger values of Γ for analytic SLM
for higher values of CCDF implies its better PAPR reduction in the large majority of cases.
However, as already highlighted, with the random SLM algorithm, the maximum value of
the PAPR reduction can be obtained with a limited number of phase shift vectors and, due
to the low computational cost, it would be possible to apply in parallel the two algorithms
and, for each frame, the one corresponding to the maximum reduction can be assumed to
calculate the OFDM symbol. In this case, the effective CCDF curve is represented by the
leftmost envelope of the random and analytical diagrams.

Table 1. Gain of PAPR reduction techniques with N = 64 and U = 8.

PAPR
Reduction Technique CCDF= 10−3 CCDF= 10−2 CCDF= 10−1

Analytical approach 2.89 2.43 2.09
Random SLM 2.94 2.43 1.68

DSLM [43] 2.97 2.63 1.93

Although the example referred to in Figure 6 is very basic, the results allow some
important considerations to be made. The first is that the improvements achieved with
the random approach tend to saturate for low values of U. In the real cases, in which the
number of subcarriers is much higher than in the example, the saturation phenomenon
will be even more evident, because the relative weight of the proposed random solutions
will be much smaller. Another aspect that appears evident is that, with the same number
of shifted phases, the proposed method allows one to obtain a greater reduction in PAPR
in most cases. For example, with U = 8, the curves corresponding to the random and
analytical methods intersect at a probability value equal to 10−2; this means that in 99% of
cases the analytical method reduces the PAPR more. In 1% of cases, the random method
allows for a better result. This fact is attributable to the fact that a low-order norm was
adopted. As shown in Figure 3, as the order of the norm increases, the minimum point
of the norm tends to coincide with the global minimum, so that the growth of the norm
necessarily involves a shift to the left of the curve in Figure 6. As explained previously, the
adoption of a higher order norm does not involve a greater computational burden during
transmission, but only a greater analytical development of the model.

For the sake of comparison, in the same Table 1, the values of the gain provided in
recent literature [43], by using the dispersive selection mapping (DSLM) scheme proposed
in [44], have been added for the same number N of subcarriers and the same number U
of phases shifted. Even if the DSLM presents limited advantages with respect to analytic
and random SLM at a probability value equal to 10−2, the analytic SLM outperforms both
random and DSLM at a probability value equal to 10−1. Note that DSLM has a higher
computational complexity with respect to analytic and random SLM.

6. Discussion and Conclusions

The OFDM is a very appealing technique both for wireless and wired communications
because of its spectrum efficiency and robust channel. One of its main disadvantages is
that the composite transmitted signal may present a very high peak to average power
ratio (PAPR) when the input sequences are strongly correlated. Hence, PAPR reduction is
mandatory. A PAPR reduction algorithm may satisfy the multiple objectives of reducing
the PAPR without affecting the bit rate (BR) and the bit error rate (BER), hence limiting the
computational complexity and the side information to be transmitted.

In this paper, a closed form algorithm for the PAPR reduction in OFDM modulation
scheme is proposed, which can be used both in wired and wireless communications.
It represents an analytical solution of the optimization problem associated with the selective
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mapping (SLM) method, where the peaks occurring in the multi carrier signals are reduced
by applying a phase shifting to the sinusoidal components of the signal. The analytical
solution is obtained by an approximation of the PAPR definition, which uses the n-norm
instead of infinity-norm, with n = 4, in the definition of the PAPR, and it presents several
advantages with respect to the random SLM iterative approaches presented in literature.

Firstly, the analytically obtained solution represents the optimal solution of the mini-
mization problem if the approximation introduced by replacing 4-norm with the infinity-
norm in the definition of the PAPR is disregarded. Note that, the closed-form algorithm can
be formulated using n-norm with increased value of n, achieving a better approximation of
PAPR at the cost of increased effort in off-line analytical steps. In this paper, the order n = 4
has been adopted just so as not to burden the analytical steps reported in the Appendix A.

Moreover, the computational time of the random SLM method to define the phase
shift is not fixed. In fact, a certain number of random attempts are performed, until the
value of the PAPR is acceptable or no improvement is obtained after a prefixed maximum
number of runs. Conversely, the computational complexity of the proposed closed form
method is limited to the solution of a 6th degree polynomial equation, which guarantees
that the best solution is found in a fixed time.

The potentiality of the proposed approach has been tested referring to a case study
and comparison has been made with the random SLM PAPR reduction gain with respect to
the conventional OFDM.

As shown in the results, with the same number of candidate phase vectors U with
U > 4, the random SLM method exceeds the analytical SLM in the rare cases where the
PAPR is very high, while the former works better in the vast majority of cases. Even with
a number of shifted phases U = 8, the CCFD curves corresponding to the analytical and
random methods intersect at a probability value equal to 10−2. This means that in 99% of
cases the first method reduces the PAPR more than the second one. This is also confirmed
by the value of the gain Γ, which measures the relative PAPR reduction after the application
of the algorithm at a fixed CCDF. The larger the value of the gain, the better the PAPR
reduction. With a number of shifted phases U = 8 and at the probability value equal
to 10−2 the gain assumes the same value Γ = 2.43 dB for both the analytic and random
methods, whereas at the probability value equal to 10−1, Γ = 2.09 dB for the analytical
and Γ = 1.93 dB for the random SLM. From the comparison with literature [43], analogue
conclusions can be drawn.

The results could be improved if a better approximation of the PAPR is considered by
increasing the norm order, at the cost of further offline effort in the analytic determination
of the stationary points.

Note that, while with random SLM the computational complexity increases with the
increase of U, and, at the same time, the relative improvement decreases, with the analytical
approach, the computational complexity does not change with the increase of U while
maintaining significant margins for improvement.

Recently, several hybrid approaches have been proposed to minimize the PAPR value,
at the expense of increasing the computational complexity. Literature clearly demonstrates
that the most promising approach is to combine two or more PAPR reduction methods to
use the characteristics of each method in a hybrid scheme. However, there is a trade-off
between the efficiency in the PAPR reduction and the computational complexity level of
these hybrid methods. Improving the performance of each of the methods in the hybrid
approach will improve the efficiency of the overall hybrid method. Many of them combine
the approach of selective mapping (SLM) with other approaches, such as the partial transmit
sequence (PTS) methods [34,36]. Our proposal focuses on improving the performance of
the SLM method, which is in fact one of the most used in hybrid approaches. The proposed
closed form SLM algorithm, which per se is not superior to other methods, is not intended
as an alternative to these recent hybrid methods, but, if ever, as an improvement of the SLM
approach present in the hybrid methods with consequent impact on both the computational
complexity of hybrid methods and the computational times.
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A comparison with the most performing techniques will be done in future works by im-
plementing the proposed analytical SLM approach within hybrid techniques. Moreover, in
future works, the analytic approach will be extended to a higher value of norm order.
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Appendix A

In this appendix, the four terms in Equation (10) are evaluated in closed form and the
phases ϕr, corresponding to the stationary points, are deduced.

First Term
2π∫
0

A3
r s3

r Arcr dt = A4
r

2π∫
0

s3
r cr dt = A4

r

2π∫
0

s2
r srcr dt (A1)

Applying the double-angle formulas to s2
r and the Werner formulas to srcr:

A4
r

2π∫
0

s2
r srcr dt =

A4
r

4

2π∫
0

(1− c2r)s2r dt =
A4

r
4

2π∫
0

(
s2r −

1
2

s4r

)
dt = 0, ∀r (A2)

The first term of (10) is null ∀r because it is equal to the integral of two sinusoids
within a multiple of their period.

Second Term

2π∫
0

(
3A2

r s2
r

M
∑

k = 1
k 6= r

Ak sk
)

Arcr dt = 3A3
r

M
∑

k = 1
k 6= r

Ak

2π∫
0

sks2
r cr dt

= 3
2 A3

r
M
∑

k = 1
k 6= r

Ak

2π∫
0

sk(1− c2r)cr dt

= 3
2 A3

r
M
∑

k = 1
k 6= r

Ak

2π∫
0
(skcr − skcrc2r) dt

(A3)

The first term of (A3) leads to the sum of integrals whose argument is the prod-
uct of two sinusoids with different frequency (because k 6= r); therefore, it is null ∀r.
Concerning the second term, applying the Werner formulas to c2rcr, the following formula
is obtained:

− 3
2

A3
r

M

∑
k = 1
k 6= r

Ak

2π∫
0

skcrc2r dt = −3
4

A3
r

M

∑
k = 1
k 6= r

Ak

2π∫
0

(skcr + skc3r) dt (A4)
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The first addend in (A4) leads to the sum of integrals whose argument is the product
of two sinusoids with different frequency (because k 6= r); therefore, it is null ∀r. For what
concerns the second addend:

− 3
4

A3
r

M

∑
k = 1
k 6= r

Ak

2π∫
0

skc3r dt 6= 0 ∀ k : k = 3r (A5)

Then, the integral (A5) is not null for k = 3r. In fact, writing the expression (A5) in the
extended form, and using the Werner formulas, and considering k = 3r:

− 3
4 A3

r
M
∑

k = 1
k 6= r

Ak

2π∫
0

sin(kt + ϕk) cos(3rt + 3ϕr)dt

= − 3
8 A3

r
M
∑

k = 1
k 6= r

Ak

2π∫
0
[sin((k + 3r)t + ϕk + 3ϕr)

+ sin(ϕk − 3ϕr)]dt = − 3
8 2πA3

r
M
∑

k = 1
k 6= r

Ak sin(ϕk − 3ϕr)

= − 3
8 2πA3

r Ak sin(ϕk − 3ϕr)

= − 3
8 2πA3

r Ak[sin(ϕk) cos(3ϕr)− cos(ϕk) sin(3ϕr)]

=
[
− 3

8 2πA3
r Ak sin(ϕk)

]
cos(3ϕr)

+
[ 3

8 2πA3
r Ak cos(ϕk)

]
sin(3ϕr) = A cos(3ϕr) + B sin(3ϕr)

(A6)

where: {
A = − 3

8 2πA3
r Ak sin(ϕk)

B = 3
8 2πA3

r Ak cos(ϕk)
(A7)

Third Term

2π∫
0

3Arsr
( M

∑
k = 1
k 6= r

Ak sk
)2 Arcr dt

= 3A2
r

2π∫
0

srcr


M
∑

k = 1
k 6= r

A2
ks2

k + 2
M
∑

k, m 6= r
k > m

Ak Amsksm

 dt

= 3
2 A2

r
M
∑

k = 1
k 6= r

A2
k

2π∫
0

s2
ks2r dt + 3A2

r
M
∑

k, m 6= r
k > m

Ak Am
2π∫
0

s2rsksm dt

(A8)

Let us now analyze the two integrals in (A8) separately. For what concerns the
first integral:



Energies 2022, 15, 1938 15 of 23

3
2 A2

r
M
∑

k = 1
k 6= r

A2
k

2π∫
0

s2
k s2r dt = 3

2 A2
r

M
∑

k = 1
k 6= r

A2
k

2π∫
0

(
1− c2k

)
s2r dt

= 3
2 A2

r
M
∑

k = 1
k 6= r

A2
k

2π∫
0

s2r dt− 3
2 A2

r
M
∑

k = 1
k 6= r

A2
k

2π∫
0

s2rc2k dt = 0, ∀r
(A9)

The first integral in (A9) is null ∀r because it is the integral of a sinusoid within a
multiple of its period. The second integral leads to the sum of integrals whose argument
is the product of two sinusoids with different frequency (because k 6= r); therefore, it is
null ∀r.

Considering the second integral in (A8):

3A2
r

M
∑

k, m 6= r
k > m

Ak Am
2π∫
0

sksms2r dt = 3
2 A2

r
M
∑

k, m 6= r
k > m

Ak Am
2π∫
0
(ck−m − ck+m) s2r dt

= 3
2 A2

r
M
∑

k, m 6= r
k > m

Ak Am
2π∫
0
(s2rck−m − s2rck+m) dt 6= 0

∀ k, m : k±m = 2r
(A10)

Then, the integral in (A10) is not null for two cases, i.e., k±m = 2r.
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∓ 3
2 A2

r
M
∑

k±m = 2r
k, m 6= r
k > m

Ak Am
2π∫
0

s2rck±m dt =

∓ 3
2 A2

r
M
∑

k±m = 2r
k, m 6= r
k > m

Ak Am
2π∫
0

sin(2rt + ϕr)cos((k±m)t + ϕk

±ϕm) dt =

∓ 3
4 A2

r
M
∑

k±m = 2r
k, m 6= r
k > m

Ak Am
2π∫
0
[sin((4rt + 2ϕr + ϕk ± ϕm)

+sin(2ϕr − ϕk ∓ ϕm)] dt =

± 3
4 2πA2

r
M
∑

k±m = 2r
k, m 6= r
k > m

Ak Amsin(ϕk ± ϕm − 2ϕr)

= ± 3
4 2πA2

r
M
∑

k±m = 2r
k, m 6= r
k > m

Ak Am[sin(ϕk ± ϕm)cos(2ϕr)

−cos(ϕk ± ϕm)sin(2ϕr)] =

=


± 3

4 2πA2
r

M
∑

k±m = 2r
k, m 6= r
k > m

Ak Amsin(ϕk ± ϕm)


cos(2ϕr)

+


∓ 3

4 2πA2
r

M
∑

k±m = 2r
k, m 6= r
k > m

Ak Amcos(ϕk ± ϕm)


sin(2ϕr)

= Ccos(2ϕr) + Dsin(2ϕr)

(A11)

where 

C = ± 3
4 2πA2

r
M
∑

k±m = 2r
k, m 6= r
k > m

Ak Am sin(ϕk ± ϕm)

D = ∓ 3
4 2πA2

r
M
∑

k±m = 2r
k, m 6= r
k > m

Ak Am cos(ϕk ± ϕm)
(A12)
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Fourth Term

2π∫
0


M

∑
k = 1
k 6= r

Aksk


3

Arcr dt =
2π∫
0


M

∑
k = 1
k 6= r

A3
ks3

k + 3
M

∑
k, l 6= r
k > l

Ak A2
l sks2

l + 6
M

∑
k, l, m 6= r
k > l > m

Ak Al Amskslsm

Arcr dt (A13)

Let us now analyze each term one by one.

1. Calculation of the term:
∫ 2π

0 ∑M
k = 1
k 6= r

A3
ks3

k Arcr dt

2π∫
0

M
∑

k = 1
k 6= r

A3
ks3

k Arcr dt = Ar
M
∑

k = 1
k 6= r

A3
k

2π∫
0

s2
kskcr dt = Ar

2

M
∑

k = 1
k 6= r

A3
k

2π∫
0
(1− c2k)skcr dt

= Ar
2

M
∑

k = 1
k 6= r

A3
k

2π∫
0
(skcr − skc2kcr) dt

(A14)

The first addend in (A14) is null ∀r because it leads to the sum of integrals whose
argument is the product of two sinusoids with different frequency (because k 6= r).

Concerning the second addend:

− Ar
2

M
∑

k = 1
k 6= r

A3
k

2π∫
0

skc2kcr dt = − Ar
4

M
∑

k = 1
k 6= r

A3
k

2π∫
0
(s3k − sk)cr dt

= − Ar
4

M
∑

k = 1
k 6= r

A3
k

2π∫
0
(s3kcr − skcr) dt

(A15)

The second integral in (A15) is null ∀r because it leads to the sum of integrals whose
argument is the product of two sinusoids with different frequency (because k 6= r). Then,
only the first addend survives leading to:

− Ar

4

M

∑
k = 1
k 6= r

A3
k

2π∫
0

s3kcr dt 6= 0 ∀ k : k =
r
3

(A16)

Then, the integral in (A16) is not null only for k = r
3 :
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− Ar
4

M
∑

k = 1
k 6= r

A3
k

2π∫
0

sin
(
3kt + 3ϕk

)
cos

(
rt + ϕr

)
dt

= − Ar
8

M
∑

k = 1
k 6= r

A3
k

2π∫
0
[sin(2rt + 3ϕk + ϕr) + sin(3ϕk − ϕr)]dt

= − 2πAr A3
k

8 sin(3ϕk − ϕr)

=

[
− 2πAr A3

k
8 sin(3ϕk)

]
cos(ϕr)

+

[
2πAr A3

k
8 cos(3ϕk)

]
sin(ϕr) = E cos(ϕr) + F sin(ϕr)

(A17)

where  E = − 2πAr A3
k

8 sin(3ϕk)

F =
2πAr A3

k
8 cos(3ϕk)

(A18)

2. Calculation of the term:
∫ 2π

0 3 ∑M
k, l 6= r
k > l

Ak A2
l sks2

l Arcr dt

2π∫
0

3
M
∑

k, l 6= r
k > l

Ak A2
l sk s2

l Arcr dt = 3Ar
M
∑

k, l 6= r
k > l

Ak A2
l

2π∫
0

sks2
l cr dt

= 3
2 Ar

M
∑

k, l 6= r
k > l

Ak A2
l

2π∫
0
(1− c2l)sk cr dt

= 3
2 Ar

M
∑

k, l 6= r
k > l

Ak A2
l

2π∫
0
(skcr − skc2lcr) dt

= − 3
2 Ar

M
∑

k, l 6= r
k > l

Ak A2
l

2π∫
0

skc2lcr dt

= − 3
4 Ar

M
∑

k, l 6= r
k > l

Ak A2
l

2π∫
0
(sk+2lcr + sk−2lcr) dt 6= 0

∀ k, l : k± 2l = r ; k > l

(A19)

The integral (A19) is not null for two cases, i.e., k± 2l = r:
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− 3
4 Ar

M
∑

k± 2l = r
k, l 6= r

Ak A2
l

2π∫
0

sk±2lcr dt

= − 3
8 Ar

M
∑

k± 2l = r
k, l 6= r

Ak A2
l

2π∫
0
[sin(2rt + ϕk ± 2ϕl + ϕr)

+ sin(ϕk ± 2ϕl − ϕr)] dt

= − 3
8 2πAr

M
∑

k± 2l = r
k, l 6= r
k > l

Ak A2
l sin(ϕk ± 2ϕl − ϕr)

=


− 3

8 2πAr
M
∑

k± 2l = r
k, l 6= r
k > l

Ak A2
l sin(ϕk ± 2ϕl)


cos(ϕr)

+


3
8 2πAr

M
∑

k± 2l = r
k, l 6= r
k > l

Ak A2
l cos(ϕk ± 2ϕl)


sin(ϕr)

= E cos(ϕr) + F sin(ϕr)

(A20)

where: 

E = − 3
8 2πAr

M
∑

k± 2l = r
k, l 6= r
k > l

Ak A2
l sin(ϕk ± 2ϕl)

F = 3
8 2πAr

M
∑

k± 2l = r
k, l 6= r
k > l

Ak A2
l cos(ϕk ± 2ϕl)

(A21)

3. Calculation of the term:
∫ 2π

0 6 ∑M
k, l, m 6= r
k > l > m

Ak Al Amskslsm Arcr dt
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2π∫
0

6
M
∑

k, l, m 6= r
k > l > m

Ak Al Amskslsm dt = 6Ar
M
∑

k, l, m 6= r
k > l > m

Ak Al Am
2π∫
0

skslsmcr dt

= 3Ar
M
∑

k, l, m 6= r
k > l > m

Ak Al Am
2π∫
0

sk(cl−m − cl+m )cr dt

= ±3Ar
M
∑

k, l, m 6= r
k > l > m

Ak Al Am
2π∫
0

skcl∓mcr dt

= ± 3
2 Ar

M
∑

k, l, m 6= r
k > l > m

Ak Al Am
2π∫
0
(sk+l∓m + sk−l±m)cr dt 6= 0

∀ k, l, m : k + l ∓m = r; k− l ±m = r; k > l > m

(A22)

The integral (A22) is not null in four cases, i.e., k + l ∓m = r ; k− l ±m = r.
In particular, for: k + l ∓m = r

± 3
2 Ar

M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am
2π∫
0

sk+l∓mcr dt

= ± 3
4 Ar

M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am
2π∫
0
[sin(2rt + ϕk + ϕl ∓ ϕm + ϕr)

+ sin(ϕk + ϕl ∓ ϕm − ϕr)] dt

= ± 3
4 2πAr

M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am sin(ϕk + ϕl ∓ ϕm − ϕr)

=

± 3
4 2πAr

M
∑

k + l ∓m
k, l, m 6= r

Ak Al Am sin(ϕk + ϕl ∓ ϕm)

 cos(ϕr)

+

∓ 3
4 2πAr

M
∑

k + l ∓m
k, l, m 6= r

Ak Al Am cos(ϕk + ϕl ∓ ϕm)

 sin(ϕr) =

= E cos(ϕr) + F sin(ϕr)

(A23)
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where 

E = ± 3
4 2πAr

M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am sin(ϕk + ϕl ∓ ϕm)

F = ∓ 3
4 2πAr

M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am cos(ϕk + ϕl ∓ ϕm)
(A24)

The same exact procedure holds for the second case: i.e., for k− l ±m = r

± 3
2 Ar

M
∑

k− l ±m
k, l, m 6= r
k > l > m

Ak Al Am
2π∫
0

sk−l±mcr dt

= ± 3
4 Ar

M
∑

k + l ∓m
k, l, m 6= r

Ak Al Am
2π∫
0
[sin(2rt + ϕk − ϕl ± ϕm + ϕr)

+ sin(ϕk − ϕl ± ϕm − ϕr)] dt

=


± 3

4 2πAr
M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am sin(ϕk − ϕl ± ϕm)


cos(ϕr)

+


∓ 3

4 2πAr
M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am cos(ϕk − ϕl ± ϕm)


sin(ϕr) =

= E cos(ϕr) + F sin(ϕr)

(A25)

where 

E = ± 3
4 2πAr

M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am sin(ϕk − ϕl ± ϕm)

F = ∓ 3
4 2πAr

M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am cos(ϕk − ϕl ± ϕm)
(A26)

Summarizing the previous results, for k± ( l ∓m) = r

2π∫
0

6
M

∑
k, l, m 6= r
k > l > m

Ak Al Amskslsm dt = E cos(ϕr) + F sin(ϕr) (A27)
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where 

E = ± 3
4 2πAr

M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am sin[ϕk ± (ϕl ∓ ϕm)]

F = ∓ 3
4 2πAr

M
∑

k + l ∓m
k, l, m 6= r
k > l > m

Ak Al Am cos[ϕk ± (ϕl ∓ ϕm)]
(A28)
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