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Correcting the power amplifier’s (PA) distortion of orthogonal frequency division mul-

tiplexing (OFDM) signals has been the target of a lot of research. However, to meet

spectrum mask requirements, these attempts have almost exclusively focused on the

transmitter. In this thesis, we consider the PA non-linearities as a sparse phenomenon

and then use four algorithms based on the novel field of compressed sensing (CS) to

estimate and cancel these distortions at the receiver side. The first two algorithms

are the CS and weighted CS algorithms which use frequency-domain free-carriers

for measurements. We improve upon these with the third—an intelligent data-aided

algorithm which does not require free-carriers and thus allows full bandwidth use.

The last approach combines pre-compensation at the transmitter with CS-based post-
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compensation at the receiver. All four algorithms are applied to measurement-based

amplifier models and results show their effectiveness in correcting the amplifier’s dis-

tortion.
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باستخدام تقنيات الإستشعار المضغوط لتطبيقات تقسيم التردد 

 .(OFDM)المتعامد المتداخل 

 
 الهندسة الكهربائية   :التخصص

 
 2102 يوليو  :تاريخ الدرجة العلمية

 
 

( OFDM)إن تصحيح التشويه الناتج عن مضخم الطاقة لإشارات تقسيم التردد المتعامد المتداخل 

كانت و لا زالت محل دراسة عدد كبير من الباحثين، و لتلبية متطلبات الطيف الكهرومغناطيسي 

 .المتاح ركزت هذه المحاولات بشكل عام على طرف الارسال فقط

قمنا بدراسة تشوهات الإرسال الغير الخطية بإعتبارها ظاهرة متناثرة حيث تم في هذه الأطروحة، 

لتقدير وإلغاء هذه التشوهات في  إستخدام خوارزميات قائمة على تقنيات الإستشعار المضغوط

،الأولى مبنية على الإستشعار المضغوط و  و قد تم دراسة أربع خوارزميات. الجانب المستقبل

أمّا . الثانية مبنية على الإستشعار المضغوط الموزون و كلتاهما تستخدم ترددات خالية للقياس

الخوارزمية الثالثة فهي تطوير لما سبق حيث تشكل خوارزمية ذكية مبنية على البيانات، و تتميز 

تقوم الخوارزمية . بإستخدام كامل للنطاق التردديبعدم إستخدام ترددات خالية للقياس مما يسمح 

الرابعة بالجمع بين التعويض المسبق للجانب المرسل و التعويض المبني على الإستشعار المضغوط 

 .التشوهات في الجانب المستقبل

أخيراً تم تطبيق هذه الخوارزميات على نماذج لمضخمات الطاقة لأغراض القياس، وقد أظهرت 

 .ية هذه الخوارزميات في تصحيح التشويه لمضخمات الطاقةالنتائج فعال

 

 درجة الماجستر في العلوم

 جامعة الملك للبترول والمعادن

 المملكة العربية السعودية –الظهران 
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CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Orthogonal Frequency Division Multiplexing (OFDM)

Today’s world is one filled with a plethora of wireless communication devices. From

the ubiquitous mobile phone and laptop to the more recent but already popular tablet

computer, there is an on-going explosion in the use of wireless devices in every sphere

of people’s lives—be it school, business or pleasure. The result of this is a huge

demand for high data rates to enable the much needed swift and rapid voice, video

and data transfer. This, however, proves to be a challenge especially in the face of

limited available bandwidth.

As a solution to this problem, orthogonal frequency division multiplexing (OFDM),

which is a modulation scheme that allows high data transfer rates within a restricted

bandwidth, was proposed. In an OFDM system, the data to be transmitted is split

into a large number of streams each of which is modulated (at a low symbol rate)
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onto one of an equally large number of sub–carriers distributed over particular fre-

quencies in such a way that these sub-carriers are orthogonal to each other. This gives

OFDM its high spectral density while at the same time allowing robustness to mul-

tipath fading, inter-symbol interference and other channel conditions. These benefits

of OFDM have earned it an adoption in the standards of many of today’s most im-

portant communication systems including digital subscriber line (DSL), wireless local

area networks (WLAN), worldwide interoperability for microwave access (WiMAX),

long term evolution (LTE), and digital audio broadcasting (DAB) [1–3].

However, since OFDM is a combination of a large number of sub-carriers, the

output signal is essentially a sum of many sine waves and at the points where these

waves add constructively, high peaks occur resulting in an OFDM output signal with

a high peak-to-average power ratio (PAPR) as can be seen in the sample time domain

OFDM signal in Figure 1.1. This high PAPR of the OFDM signal however, causes a

problem at the transmitter’s power amplifier (PA). This problem is described in the

following section.

1.1.2 The Problem at the Power Amplifier: Efficiency vs.

Linearity

Considering the effect of power consumption in wireless communication systems on

the environment and on the cost of operation of wireless network infrastructure, as

well as the battery life of mobile terminals, substantial research has been carried out

with an aim of reducing the energy used by both the base station and the mobile

2
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Figure 1.1: Time domain OFDM signal with high PAPR

devices.

In terms of power consumption, the key component of wireless systems is the power

amplifier (PA) and with wireless communication consuming about 60 TWh or 0.33%

of global electricity consumption annually [4], operating the PA at high efficiency is

of primary importance in order to avoid energy wastage.

Besides its efficiency, another important consideration with regards to the power

amplifier is its linearity. To avoid loss of information due to high error levels (in terms

of bit error rate and error vector magnitude, for example) and to meet spectrum mask

thresholds of various communication standards, it is important that the output of the

PA is a linearly amplified replica of the input.

This linearity provision, however, turns out to oppose the high efficiency require-

ment. This is because, as is shown in the gain profile of a sample measurement-based

amplifier model (the ZHL model, futher details are given in Chapter 2) in Figure 1.2,
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it is only at low input levels (and therefore, low efficiency) that power amplifiers used

in communication systems act linearly. On the other hand, at high input (and high ef-

ficiency) levels which are closer to the saturation region, these amplifiers usually show

relatively high levels of distortion as can be seen in the gain response of a sample PA

in Figure 1.2.
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Figure 1.2: Gain response of a sample commercial amplifier

Due to the great operating cost of low efficiency, power amplifiers in wireless sys-

tems are typically operated closer to their high efficiency regions. Due to this, the

high PAPR of OFDM signals induces the non-linearities of the amplifier leading to

significant distortion in its output especially when the input is of high amplitude. The

comparison of sample input and output signals of the ZHL amplifier model as shown

in Figure 1.3 shows distortion specifically at high input levels while the portion of the

signal clipped off (i.e. the distortion) is depicted in Figure 1.4. Note that in Figure

1.3 the PA input signal has been amplified by the small signal gain value (which is
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30.5 dB in this example as can be observed in Figure 1.2) in order to compare it with

the PA output signal.
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Figure 1.3: Sample input (OFDM) and ouput signals of a commercial amplifier—shows
distortion at high input levels
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Figure 1.4: Clipped portion of signal in Figure 1.3
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It is possible to avoid distortion by operating the PA at low efficiency but this is

normally not done. Rather, in the industry, the common solution to this dilemma is to

operate the PA at high efficiency and then, use one of several proposed techniques (as

discussed in the literature review section that follows) to correct for the resulting non-

linearity at the transmitter. Our goal in this work is to correct this distortion at the

receiver (i.e. “post–compensation”) by estimating it using compressed sensing–based

approaches.

1.2 Literature Survey & Objectives

Largely due to the importance and widespread implementation of OFDM, many at-

tempts have been made to correct the non–linear distortion induced by the power am-

plifier. Since government communication commissions world–wide manage the radio

spectrum such that particular bands are assigned to particular services, in many of the

standards that employ OFDM, the transmitted signal has to meet specific spectrum

mask requirements. Most attempts at removing (or avoiding) the PA’s non-linearities

have therefore concentrated at the transmitter so that the resulting spectrum at the

amplifier’s output meets the linearity requirement and does not cause interference

between adjacent channels.

A popular and preferred form of these transmitter–based techniques has been to

implement upstream of the power amplifier, a “digital predistorter” (DPD) which is

built to neutralize the effect of the PA i.e. in such a way that the combination of

the predistorter and the (non–linear) amplifier would be a linear amplification sys-
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tem [5–8]. Building the predistorter function involves characterizing the PA through

a process known as “behavioral modeling” and then inverting the resulting character-

istic function [5]. However, because of the extra complexity and power consumption

involved, implementing a predistorter becomes an issue in applications where trans-

mitter complexity needs to be kept at a minimum (for example in the up–link in the

communication between a mobile device and a base station or in the down-link of

satellite communication from a satellite station to an earth base station).

Besides predistortion, quite a number of other techniques have been proposed to

mitigate the amplifier’s distortion at the transmitter. These include coding schemes

[9–11], companding transforms [12, 13], tone reservation [14, 15], and constellation

expansion [16, 17]. (Some of these as well as others have been studied and discussed

in [18, 19].) However, like predistortion, these solutions are focused on correcting the

distortion before transmission and as a result, add varying degrees of complexity to the

transmitter—thus making them inappropriate for use in systems where transmitter

simplicity is a primary target.

Another suggested solution to avoid or reduce the amplifier’s distortion is clip-

ping [20] which involves adding a peak-reducing signal to the transmitted signal and

despite having relatively low-complexity, introduces clipping noise leading to perfor-

mance degradation. In the face of this, some receiver–based techniques to estimate

and correct these clips have been proposed [21–26]. Although we also target compen-

sating for distortion at the receiver in this thesis, the distortion we tackle is due to

“hard-clipping” (i.e. clipping caused by the PA itself, which cannot be controlled)

7



unlike these previous works that dealt with distortion caused by “soft-clipping” (i.e.

deliberate clipping at transmitter to avoid PA distortion and in which clipping signal

can be designed to ease the recovery process at the receiver).

Although it could be argued that delaying distortion correction from the trans-

mitter to the receiver may be inappropriate for some applications—since the spec-

trum at the transmitter would not meet spectrum mask regulations, there are many

applications in the unlicensed industrial scientific and medical (ISM) band where

some spectral leakage onto neighboring channels is still acceptable. Examples of such

applications include wireless sensor networks (WSN), wireless local area networks

(WLAN), radio frequency identification (RFID), Bluetooth, and micro-satellite appli-

cations. Also, these applications generally include mobile terminals which are limited

in size and operate at low power—making conventional transmitter-based linearization

techniques burdensome on these devices both in terms of complexity and power.

In this work, we propose a number of techniques based on the relatively new field

of compressed sensing (CS) to “(post-)compensate” for the non–linear distortions

caused by the transmitter’s power amplifier at the receiver. Compressed sensing aims

at recovering signals using much fewer measurements than as proposed by the Shannon

Theorem. This is possible given that the signal to be recovered is “sparse” in some

domain and the domain in which the measurements are taken is incoherent with that

in which the signal is sparse [27–31]. Based on measurement-based amplifier models,

we show in this thesis that the power amplifier non–linear distortions are sometimes

sparse in the time-domain and we are thus, in such cases, able to employ CS to estimate
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and then eliminate these distortions using a few frequency–domain free (pilot) carriers

for measurement. Furthermore, to improve the estimate and preserve bandwidth, an

intelligent data–aided technique which allows us to apply CS even without including

free carriers in transmission is proposed.

Although in [24] and [25], compressed sensing is also applied compressed sensing at

the receiver, it is used in quite a different manner. In both prior works, the transmit

signal is soft-clipped before transmission and so, knowledge of the clipping signal can

be and is used in estimating the clips at the receiver. In our work however, we have no

such information at the receiver since we do not soft-clip the signal at the transmitter,

rather, the signal is sent directly as it is and is only hard-clipped by the PA itself.

1.3 Contributions

The main points differentiating this thesis from previous work in this area are as

follows:

1. To the best of our knowledge, our work presents the first ever attempt to lin-

earize practical amplifier prototypes using CS. Unlike [24] and the bulk of other

techniques aimed at mitigating PA distortion which implement highly simpli-

fied power amplifier models, here, we use realistic amplifier models based on

laboratory measurements of power amplifier prototypes (as discussed in Section

2.1).

2. To estimate and remove the PA distortion, we implement both CS and weighted

CS algorithms.
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3. We enhance these more basic CS–based algorithms using a data–aided technique

that gives us the ability to correct the non–linearities without the use of free car-

riers. We are thus able to use the bandwidth at 100% efficiency unlike common

CS techniques.

4. In some situations where pre-compensation is performed at the transmitter,

we can overdrive the amplifier beyond saturation point to improve the power

efficiency of the system. Ordinarily, such overdrive would cause unwanted dis-

tortions at the PA output but based on the work presented in this thesis, we

can overdrive the PA and then post-compensate for the resulting distortions at

the receiver using the CS–based algorithms thus increasing the system efficiency.

This is the final linearization approach presented in this thesis—which we refer

to as “joint–compensation” since it combines both forms of compensation.

1.4 Thesis Organization

After the introduction given in this chapter, Chapter 2 goes on to describe the power

amplifier models, how they were derived from laboratory measurements, and the prob-

lem we aim to solve in this thesis—the compensation of distortion caused by the PA’s.

Chapter 3 then presents the theory of compressed sensing and explains why and how

we are able to apply it in this problem before moving to a detailed discussion of the

basic and weighted CS algorithms. The motive and description for the data–aided

and joint–compensation techniques come in Chapter 4. Both Chapters 3 and 4 are

finalized with a presentation of simulation results of the implementation of each of the
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algorithms described in the respective chapters. The thesis is concluded in Chapter 5

with a summary of the results of the research work and a proposal for future work in

the area.

1.5 Notation Used

For clarity, this section briefly describes the different font-types and symbols generally

used in this thesis (except where stated otherwise) to represent the different variable

types. This information is summarized in the following table.

Table 1.1: Summary of notation used

Variable Type Representation

Constants Italicized, upper-case letters (e.g., M)

Scalars Italicized, lower-case letters (e.g., x)

Vectors Bold-face, lower-case letters (e.g., x)

The ith member of the vector, x x(i)

Matrices Bold-face, upper-case letters (e.g., F)

Variable estimates A hat over the variable (e.g., x̂)

Variables in the frequency-domain A check over the variable (e.g., x̌)

Transpose of the matrix, F Superscript T (e.g., FT)

Complex conjugate (Hermitian)
transpose of the matrix, F

Superscript H (e.g., FH)
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CHAPTER 2

POWER AMPLIFIER MODELS

& PROBLEM DESCRIPTION

Since our use of measurement based amplifier models is one of the main distinctive

points of this work, this chapter serves to describe the amplifiers used, their models

and how some of these models were experimentally derived from the measurements

performed on the actual amplifiers. From the discussion about the amplifiers models,

we will be able to give more details about the distortion-correction problem.

It should be noted however that although, in general, power amplifiers exhibit two

types of non-linearities—the static (also referred to as “memoryless non-linearity”)

and the dynamic (also referred to as “memory effects”), we only deal with static

distortions here. The difference between the two forms is that for the static distortions,

the instantaneous complex gain of the PA is a function of the input sample at that

instant only while in the case of memory effects, the instantaneous complex gain is

a function of not just the current input sample but also a finite number of previous
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input samples [5]. In this work, we assume the amplifiers have no memory effects and

so, in the models we use—as detailed in Section 2.1—the PA gain is only a function

of the current input sample i.e. all forms of distortion treated are static.

We should also point out that, in general, all power amplifiers have maximum

input levels beyond which the amplifiers will saturate. For this reason, signals have

to be scaled down to meet the maximum input requirements of the amplifier under

test. Thus, here, it is the scaled–down version of the OFDM signal that is the actual

PA input.

2.1 PA Models Used: Memoryless Polynomial &

Look-Up Table

In this work, we have studied the Memoryless Polynomial (MP) and the Look-Up Table

(LUT) models to simulate the behavior of the power amplifier. The following two sub-

sections (2.1.1 and 2.1.2) summarily describe both models and present characteristic

plots for the particular amplifiers studied in this work. Further explanation is available

in [5]. Note that, in order to aid the comparison of the distortion caused by the

amplifiers, the y-axis of all figures of the amplitude responses have been set to a range

of 11 dB while the y-axes of the phase response figures have been set to a range of 30◦

.
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2.1.1 Memoryless Polynomial Model

This model is actually a particular variation of a more general model—the memory

polynomial—which itself is a simplification of the more comprehensive Volterra Model

used for dynamic non-linear systems. The memory polynomial is popularly used for

power amplifiers exhibiting memory effects and its output is given by [32, 33]:

xmp−out(n) =

Mmp
∑

j=0

Nmp
∑

i=0

aij · xmp−in(n− j) · |xmp−in(n− j)|i−1 (2.1)

where xmp−out(n) is the instantaneous model output, xmp−in(n) is the instantaneous

model input, Nmp and Mmp are the non-linearity order and the memory depth of the

MP model respectively, and aij are the model coefficients.

In our implementation, Mmp = 0 (and therefore, our model is memoryless)

while Nmp = 13. The PA characteristic curves—showing the non-linear behavior of

the model—are presented in Figures 2.1 and 2.2. It is noticed from the plot of the

amplitude response in Figure 2.1 the PA’s non-linear gain which ranges over 3.5 dB

(from 73 dB to 76.5 dB). The phase response in Figure 2.2 shows that the phase shift

is also non-linear with a 16circ range. Figure2.3 shows examples of the distortion with

a particular set of input amplitudes compared to the corresponding output ampli-

tudes (scaled down for comparison) while the resulting clips in this example case are

illustrated in Figure 2.4.

It should be noted that the negative coefficients in the clipped portion in Figure

2.4 result when the linearly-amplified PA input is less than the actual PA output.
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Figure 2.1: Measured gain response of MP–modeled PA
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Figure 2.2: Measured phase response of MP–modeled PA
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Figure 2.3: Sample input and output signals for MP–modeled PA

130 140 150 160 170 180 190 200 210 220
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Sample Index

A
m

pl
itu

de

Figure 2.4: Sample clipped portion for MP–modeled PA
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2.1.2 Look-Up Table Model

The look-up table model is the primary model for the static non-linearities of power

amplifiers. It is a relatively simple model where a wide range of possible amplifier

inputs and their corresponding (complex) gain values are saved in a look-up table

so that for any given input, we simply interpolate linearly on the table to find the

appropriate gain and then multiply this gain value by the input to obtain the respective

output value. The output of the LUT is given by:

xlut−out(n) = G(|xlut−in(n)|) · xlut−in(n) (2.2)

where xlut−in(n) and xlut−out(n) are the input and output signals respectively and

G(|xlut−in(n)|) is the instantaneous complex gain of the PA.

The following section gives more details about specific amplifiers used in this work

which were modeled using the LUT model.

2.2 Amplifiers Modeled using Look-Up Table

Due to its implementation simplicity, the look-up table model has been used for most

of this work. The following are the code names for the different amplifiers modeled

using the look-up table. Further description for each is given in the following sections.

1. RFMD

2. Doherty

3. ZHL

4. GaN
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2.2.1 RFMD

This refers to a commercial PA from RF Micro Devices of North Carolina, USA

with part number RF5198. It is designed for handset applications in the 1920MHz

to 1980MHz frequency band. As can be seen in the measured gain characteristic in

Figure 2.5, this amplifier is mostly linear and significant non-linear compression only

comes in when the input power levels exceed 0 dB and for a range of 5 dB (i.e. from 0

dBm to 5 dBm). The phase difference, as seen in Figure 2.6 has a very short range of

less than 5◦ (between 46.5◦ and 51◦) and thus has very little effect on the distortion.

Considering the amplitude response, it is expected that only a relatively small number

of data samples would fall in the non-linear region and suffer substantial distortion.

This is obvious from the sample input and output signals in Figure 2.7 as well as the

corresponding clips shown in Figure 2.8.
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Figure 2.5: Measured gain response of RFMD PA
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Figure 2.6: Measured phase response of RFMD PA
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Figure 2.7: Sample input and output signals for RFMD PA
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Figure 2.8: Sample clipped portion for RFMD PA

2.2.2 Doherty

The Doherty PA used here is a high-power high-efficiency laterally diffused metal

oxide semiconductor (LDMOS)-based Doherty amplifier with 300 W peak power and

61 dB small-signal gain. This PA is designed for operation in the 2110 − 2170 MHz

frequency band.

Unlike the RFMD amplifier, this Doherty amplifier has a very non-linear response

as illustrated in Figure 2.9. Even for low input levels, although it is relatively linear,

it still has some distortions and these greatly increase at high input levels and range

for about 10 dB (between −17 dBm to −7 dBm). Since much of the scaled input

signal would fall in this range, the amount of distortion multiplies as compared to the

RFMD amplifier. To makes things worse, the phase shift as shown in Figure 2.10 has

a 30◦ range that aggravates the distortion and leads to a dense clipped signal as the
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sample in Figure 2.12 shows.
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Figure 2.9: Measured gain response of Doherty PA
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Figure 2.10: Measured phase response of Doherty PA
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Figure 2.11: Sample input and output signals for Doherty PA
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Figure 2.12: Sample clipped portion for Doherty PA
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2.2.3 ZHL

ZHL refers to the “ZHL-42” which is the industry-assigned code name for a medium-

high power instrumentation amplifier that operates in the frequency range of 700 −

−4200 MHz and has a small signal gain of 30 dBm. The gain response of this amplifier

is somewhat similar to that of the RFMD amplifier except that it is even more linear

for the initial 30 dB range of input power levels and only gets non-linear for a relatively

short input range (−6 dBm to 2 dBm) as shown in Figure 2.13. Also, the phase shift

of this amplifier (see Figure 2.14) is of a limited range (−92◦ to −89◦). As a result

of this, the major clips are relatively few—much less than the Doherty amplifier but

more than the RFMD since the non-linearity in the gain response lasts for a slightly

longer input power range. A sample of these clips (corresponding to the input and

output signals in Figure 2.15) is illustrated in Figure 2.16.
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Figure 2.13: Measured gain response of ZHL PA
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Figure 2.14: Measured phase response of ZHL PA

140 160 180 200 220 240
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Carrier Index

A
m

pl
itu

de

PA Input
PA Output

Figure 2.15: Sample input and output signals for ZHL PA
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Figure 2.16: Sample clipped portion for ZHL PA

2.2.4 GaN Amplifier

The Gallium Nitride (GaN) amplifier is a medium power Doherty amplifier which

has been designed for use in micro-satellite applications.We see from Figure 2.17 that

just like the previous Doherty amplifier, the distortion in the GaN also extends over

a wide range (about 16 dB) of input power levels(−20 dBm to −4 dBm)—which is

in fact a much larger range than that of the Doherty amplifier described in Section

2.2.2. On the other hand, unlike the previous Doherty PA, the maximum phase shift

as shown in Figure 2.18 is only about 3◦ and so, this has only little effect on the

distortion. However, due to the very non-linear amplitude response, much of the

input signal would fall in non-linear region resulting in much distortion as we observe

in the sample input and output signals in Figure 2.19 and the corresponding clips in

Figure 2.20.
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Figure 2.17: Measured gain response of GaN PA
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Figure 2.18: Measured phase response of GaN PA

26



0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Sample Index

A
m

pl
itu

de
 (

V
)

PA Input
PA Output

Figure 2.19: Sample input and output signals for GaN PA
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Figure 2.20: Sample clipped portion for GaN PA
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2.3 Comparing the Amplifier Models Used (in

terms of Gini Sparsity Index)

In the preceding sections that describe the amplifier models, we have touched on some

differences between the gain and phase responses of the amplifiers and how these affect

the amount of distortion caused by each amplifier. In this section, we use a sparsity

measurement scale known as the Gini Sparsity Index [34] to compare and rank the

four amplifiers modeled using the LUT according to the non-linearities they induce.

We are particularly interested in obtaining a measure of the sparsity because, be-

sides giving us some information about how much distortion we are to correct, it helps

us to know how effective our compressed sensing algorithm would be in estimating the

distortion. This is because, as we describe in Chapter 3, an important requirement

for CS to perform properly in recovering a signal is that the signal should be sparse.

Thus, the more sparse a signal is, the better CS performs in estimating the signal and

the more dense it becomes, the worse CS performs.

Of the 16 commonly used sparsity measures studied in [35], the Gini Index was

found to be one of only two that meet all six attributes desirable for a measure of

sparsity discussed in [35]. The index, denoted by Gs, rates the sparsity of a signal from

Gs = 0 (very dense) to Gs = 1 (very sparse, a single impulse). To calculate the Gini

Index for a given vector, x = [x(0) x(1) x(2) . . . x(N)] where N is the vector length,

we first sort the vector from the minimum to the maximum value so that we have:

x(0̄) ≤ x(1̄) ≤ x(2̄) ≤ . . . ≤ x(N̄) where 0̄, 1̄, 2̄, . . . , N̄ are the new indices of the sorted
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vector. The Gini Index is then found thus [34, 35]:

Gs(x) = 1− 2
N
∑

i=1

x(̄i)

‖x‖l1

(

N − i+ 1
2

N

)

(2.3)

Since the distortion caused by every amplifier would vary depending on the input

signal, to obtain a Gini Index value for the amplifiers studied, the average Gini Index

for a very large number of input signals was taken. For this reason, the Gini values

reported are independent of the actual value of N1. Table 2.1 presents a comparison

of the four amplifiers modeled by the LUT model in terms of distortion due to their

gain and phase responses and their Gini Sparsity Index values.

Table 2.1: Comparison of amplifier models

Amplifier
Code Name

Gain Distortion
Range

Phase
Distortion Range

Gini Sparsity
Index, Gs

RFMD 5 dB (−5 dB – 0 dB) 5◦ 0.718

Doherty 10 dB (−17 dB – −7 dB) 30◦ 0.461

ZHL 8 dB (−6 dB – 2 dB) 3◦ 0.708

GaN 16 dB (−20 dB – −4 dB) 3◦ 0.564

As we expect, we notice in Table 2.1 that the Doherty has the lowest Gini Index

value (i.e. its distortion is most dense) while the RFMD has the maximum values

(its distortion is most sparse). For this reason, although all four amplifiers were

studied, in this report, we present only the results of compensating for the distortion

caused by the RFMD and Doherty amplifiers—thus working on both extremes—and

the algorithms described can easily be extended and applied to the other amplifiers.

1Although, in this thesis, N was generally taken to be 256.
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2.4 Experimental Set-up for deriving LUT 2

In this section, using the RFMD amplifier as an example, we describe the experimental

process of deriving the look-up tables for the amplifiers considered. The layout of the

setup is shown in Figure 2.21 and the actual setup used is shown in Figure 2.22.

Figure 2.21: Layout of experiments for LUT measurements

We first measure the amplitude and phase responses of the RFMD amplifier by

driving the amplifier with an appropriate signal (a 5 MHz LTE signal based on OFDM

modulation) loaded via a signal generator. The output of the amplifier is then an-

alyzed using a vector signal analyzer (VSA). The amplitude and phase of the input

2The experiment described in this section and as pictured in Figure 2.22 was performed
at the iRadio Lab. a the University of Calgary, Calgary, Canada.
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Figure 2.22: Actual experimental setup for LUT measurements

(loaded from the generator) is plotted against the corresponding amplitude and phase

of the output (as analyzed by the VSA) to give the amplitude and phase response

curves shown in blue in Figure 2.23. These curves are then fitted using the dou-

ble exponentially weighted moving average (dEWMA) method [36] and the resulting

average response in given by the red curves in Figure 2.23.
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Figure 2.23: Measured and fitted characteristics of the amplifier. (a) Amplitude charac-
teristics; (b) Phase characteristics.
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CHAPTER 3

POST-COMPENSATION USING

COMPRESSIVE SENSING

3.1 Introduction to Compressed Sensing

Compressed sensing (CS, also interpreted as “compressive sensing”, “compressed sam-

pling” and “compressive sampling”) is a novel signal recovery technique that allows

for signal reconstruction even when the sampling frequency is much lower than the

Nyquist rate.

It is commonly believed that, according to Shannon’s theorem, for a signal to be

correctly recovered it needs to be sampled at a minimum rate of twice its maximum

frequency i.e. the Nyquist frequency. However, [37–39] show that via compressed

sensing, a signal can be reconstructed from much fewer measurements. This is possible

due to two fundamental prerequisites in the structure of a CS problem:

1. Sparsity: This applies to the signal being recovered and alludes to the require-
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ment that the signal, when represented in a particular domain, has most of its

coefficients equal to zero and only few to be non-zero i.e. the signal is sparse

in the given domain. An N -dimensional vector, x ∈ CN having only s � N

non-zero coefficients is said to be “S-sparse” or to have “a sparsity of S”.

2. Incoherence: This second condition pertains the domain in which a signal is

sampled. If the signal were to be sampled in the domain in which it is sparse,

then, with very high probability, most of the samples would be zero. Rather,

the measurements should to taken in a domain in which the signal is spread out

i.e. one that is incoherent with the domain of sparsity such that all samples

taken have some element of all the coefficients to be estimated.

As an example, to recover a signal that is sparse in the time domain, mea-

surements should be taken in the frequency domain since these two domains

are maximally incoherent with each other.1 The incoherence of the time and

frequency domains is shown in the impulse noise example in Figure 3.1 where

impulse noise has been added in the time domain of an OFDM signal (which in-

cluded free–carriers in the frequency domain). Despite the distortion caused by

the impulse noise—as shown in Figures 3.1a and 3.1b—affecting only two signal

coefficients in the time domain, it is spread out and distorts all frequency–domain

coefficients (Figures 3.1c and 3.1d). This shows that a signal that is sparse in

the time domain (which is the distortion in this example) is wide-spread in the

frequency domain—this means that the two domains are incoherent.

1As a side note, it turns out that random matrices are mostly incoherent with any given
basis [27,28].
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Figure 3.1: Incoherence between the time & frequency domains - impulse noise example.
(a) Time domain representation of a signal before impulse noise (b) Time domain representa-
tion of the signal with impulse noise added (in black) at two locations (c) Frequency domain
representation of the signal before impulse noise (d) Frequency domain representation of the
signal after impulse noise shows impact (distortion) on all coefficients.
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3.2 The Compressed Sensing Algorithm

Given an under-determined system such as:

b = Ax+ z (3.1)

where b is an M×1 known vector, A is an M×N known measurement matrix, z is an

M×1 noise vector, M is the number of measurements, N is the number of unknowns,

and M << N . Our goal is to find the sparsest N × 1 vector, x which solves (3.1).

Thus, our first thought might be to simply use l0-minimization:

min
x̃

‖x̃‖l0 subject to ‖Ax̃− b‖l2 ≤ ε (3.2)

where ε restricts the amount of noise in the recovered data. To solve this problem,

we need to search through the combination,
(

N

S

)

possibilities (if x is S-sparse)—and

so, when N is large, (as it usually is in OFDM), l0-minimization becomes virtually

impossible. However, as discussed in [27], given some particular conditions, the results

of l0-minimization are exactly replicated by l1-minimization:

min
x̃

‖x̃‖l1 subject to ‖Ax̃− b‖l2 ≤ ε (3.3)

where ‖x̃‖l1 :=
∑

i |x̃i|. This is a convex problem for which there are many tools

available to solve. Besides l1-minimization, there are other methods that can be

used to solve for the sparsest x: for example, greedy pursuit algorithms [40–42] and
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Bayesian methods [43, 44].

To correctly estimate an S-sparse vector, x, we need to have the number of mea-

surements, M to be [27]:

M ≥ S log

(

N

S

)

(3.4)

However, it has been found through experimentation [27, 45] that as a rule of thumb

it is enough to use:

M ≥ 4S (3.5)

.

3.3 CS for PA Distortion Compensation: Why &

How?

This section seeks to clarify why we are able to apply compressed sensing in compen-

sating for the power amplifier’s non-linear distortions and discusses briefly some of

the main steps we take.

From the amplifier examples given in Section 2.1, we see that the signal portion

clipped off by the PA (“the clipped signal”) is, in general, close to being sparse since

many of its coefficients are very close to zero (even though they might not be exactly

zero)2. Figure 3.2 shows this characteristic in a sample of the distortion caused by the

RFMD amplifier. We are thus able to use CS to estimate the large distortions since

2In proper terms, such a signal is referred to as a “compressible” signal and results (as
detailed later on in this chapter) show that CS is very much applicable even in this case.
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they are sparse relative to the rest of the clipped signal we are to estimate.
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Figure 3.2: Clipped portion of RFMD PA input due to PA distortion

Regarding how compressed sensing is applied to this problem, it was previously

mentioned in Section 3.1 that we need to take measurements in a domain which is

incoherent with the domain where the signal is sparse. Since the distortion caused by

the PA is relatively sparse in the time domain, we therefore sample in the frequency

domain. We achieve this by randomly inserting free / zero / null carriers in the

transmitted OFDM symbol. As explained in Section 3.1, any distortion that occurs in

the time domain—such as the PA’s non-linearities—would affect all frequency–domain

carriers including the null ones. Thus, the frequency–domain data on the free carriers

at the receiver side can serve as measurements to estimate the time–domain distortion.
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3.4 Transceiver Model: Transmitter, Power

Amplifier and Receiver

3.4.1 Transmitter

In OFDM, the serial stream of data, d to be transmitted is first divided into N parallel

streams each of which is modulated (usually using some form of phase-shift keying

(PSK) or quadrature amplitude modulation (QAM)) onto a sub-carrier to obtain a

set of N data symbols. However, in our case, we need to reserve M free carriers for

measurement for the CS algorithm, and so, we are left we K = N −M data symbols,

x̌ = [x̌(0) x̌(1) x̌(2) . . . x̌(K − 1)]. After inserting free tones and taking the inverse

Discrete Fourier Transform (IDFT) of the resulting data set, our OFDM signal (which

is the input of the power amplifier) becomes:

xi = FHSK x̌ (3.6)

where FH is the Hermitian conjugate of the N ×N DFT matrix, F:

[F]k,l =
1√
N
e−

j2πkl

N , k, l ∈ 0, 1, . . . , N − 1 (3.7)

and SK is an N × K selection matrix having all entries as zero except for a single

entry in each of the K columns which equals one. The multiplication SK x̌ thus gives

us an N × 1 vector with M = N −K zeros representing the free tones. Since we need

these free tones to be randomly spread in the signal (due to the requirements of the
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CS algorithm), the ones in the SK matrix should be randomly placed.

To avoid inter-symbol interference, a cyclic prefix is appended to xi before the

OFDM signal advances to the power amplifier stage.

3.4.2 Power Amplifier

The models used for the power amplifier have already been described extensively in

Chapter 2. Each of these amplifiers have maximum input power restrictions and so

the OFDM signal has to be scaled so that its maximum power does not surpass that

allowed by the particular amplifier in use. Thus the scaled input is:

xs = cxi

= cFHSK x̌

(3.8)

where 0 ≤ c ≤ 1 is the scale factor which varies from amplifier to amplifier. Also, in

general, for any power amplifier model used, we can model the distorted output as an

addition of a linearly amplified input signal and a (negative) clipped signal and thus

write the power amplifier output, xp, as:

xp = gxs + xc (3.9)

where g is a constant amplification value which is an approximation of the PA’s small

signal gain and xc is a N × 1 vector representing the portion of the signal clipped by

the PA (i.e. the distortion caused by the PA).

Combining equations (3.8) and (3.9), we obtain the following equation for the
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transmitted signal:

xp = αxi + xc = αFHSK x̌+ xc (3.10)

where the scale factor and the small signal gain have been combined into α = gc.

Figure 3.3 shows a sample comparison of the linearly amplified input αxi and the

actual PA output xp. The corresponding clipped signal, xc = αxi − xp is shown in

Figure 3.4.
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Figure 3.3: Sample input & output signals for RFMD PA

The simplified block diagram in Figure 3.5 summarizes the steps taken till this

stage.
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Figure 3.4: Clipped portion of RFMD PA input due to PA distortion

Figure 3.5: Simple block diagram summarizing transmitter & PA stages
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3.4.3 Receiver

At the receiver, after removing cyclic prefix, we have:

y = Hxp + z (3.11)

where y is the time–domain received signal, and z ∼ CN (0, σzI) both of size

N × 1 . Due to the cyclic prefix of OFDM, H is a circulant matrix and in

equation (3.11), represents the cyclic convolution of the channel impulse response,

h = (h(0), h(1), h(2), . . . , h(L− 1)) with xp and can be decomposed as:

H = FHDF, (3.12)

where D = diag(ȟ) and ȟ =
√
NFh is the DFT of the channel impulse response. (In

this work, we assume the channel is known.)

Using the Fourier transform to obtain the frequency–domain form of the received

signal in equation (3.11) gives us:

y̌ = Fy = FHxp + ž (3.13)

where the unitary matrix F leaves the DFT of z, ž ∼ CN (0, σzI) just like z. Substi-
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tuting for xp from equation (3.10), we have:

y̌ = F · (FHDF · (αFHSKxi + xc)) + ž

y̌ = αDSKxi +DFxc + ž (3.14)

3.5 Post-Compensation using Basic Compressed

Sensing Algorithm

Following on from the preceding discussion, in this section, we explain specifically

how we apply the CS algorithm to our problem of estimating and correcting for the

PA-induced distortion of an OFDM signal at the receiver. As explained earlier in

Sections 3.1 & 3.3:

1. Our ability to model the power amplifiers’ non-linearities as a sparse phe-

nomenon in the time domain is what enables us to apply CS to estimate and

compensate for these distortions;

2. The measurements used in the CS algorithm for estimating these distortions

are taken from the perturbations (from the zero position) of randomly–placed

frequency–domain free carriers. We note that these perturbations were induced

by the PA time–domain distortion itself and are signal–wide in the frequency–

domain due to the incoherence of the two domains as previously discussed. A

sample of these frequency–domain perturbations is shown in Figure 3.6.
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Figure 3.6: A comparison of the frequency–domain signal before and after the PA shows
the PA–stimulated perturbations throughout the signal. (a) Frequency–domain signal before
PA distortion; (b) Frequency–domain signal after PA distortion
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Proceeding from the received signal as described in Section 3.4.3, the following details

the methodology for post-compensation using CS:

We denote by ωωω with a cardinality of |ωωω| = N , the set of all data carriers in the

OFDM symbol and by ωωωM with a cardinality of |ωωωM | = M , the set of free carriers

used to estimate the distortion, xc. Given SM , a N ×M matrix which is otherwise a

zero matrix except for exactly one element equal to 1 in each column such that the

columns of SM form the orthogonal complement of the columns of SK , we derive the

observation vector:

y̌′ = ST

M y̌

y̌′ = ST

M (αDSK x̌+DFxc + ž)

y̌′ = ST

MDFxc + ž′ (3.15)

where we note that given the special structure of the SM matrix as compared to the

SK matrix, ST

MDSK = 0. Re-writing equation (3.15), we have:

y̌′ = Ψxc + ž′ (3.16)

where Ψ , ST

MDF is the measurement matrix of size M × N and ž′ = ST

M ž is an

M × 1 vector. Comparing equation (3.16) with (3.1), we notice that estimating the

time-domain signal vector xc in (3.16) is a CS problem since xc which is the clipped
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portion of the signal is relatively sparse. Therefore, using (3.3), we estimate xc from:

min
x̂

‖x̂c‖l1 subject to ‖Ψx̂c − y̌′‖l2 ≤ ε (3.17)

where ε =
√

σ2
z(M +

√
2M) [28]. As explained previously, we are not restricted to

using (3.17) and any algorithm that solves (3.16) would be sufficient. As an example,

Figure 3.7 shows the CS-estimate of the sample clipped signal shown in Figure 3.2.
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Figure 3.7: CS estimate of clipped portion of RFMD PA input

The estimate of the clipped signal, x̂c is then subtracted from the received signal,

y to obtain the corrected signal,

us = y− x̂c (3.18)
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This signal is then scaled and converted to the frequency–domain via the DFT:

ǔ = Fui = F
us

α
(3.19)

ǔ is demodulated and the free-carriers are removed to give an estimate of the trans-

mitted data, d̂. The different phases of the receiver (including the post-compensation

algorithm) are illustrated in Figure 3.8.

Figure 3.8: Simple block diagram summarizing the receiver stage

3.6 Improving the CS Estimate with Weighted CS

As is obvious from Figure 3.2, the power amplifier’s non-linear response does not affect

the high peaks exclusively, rather, the whole signal is affected—except that lower

amplitudes have a much lower distortion than the peaks. However, for this reason,

the CS algorithm would usually only give good estimates for the peak distortions and

as for the low distortions, the estimates—as can be seen in the sample in Figure 3.7—

are unusable. Also, not correcting for these minute distortions has only a negligible

effect on the error rate and our ability to correctly estimate the transmitted data.3

3Although results regarding this are not presented here, this was confirmed via simulation.

48



For these reasons, estimates of very low amplitude can be discarded.

So, to improve our estimated clipped signal, xc, a first thought was to force

x̂c(q) = 0 ∀ q ∈ {i : x̂c(i) < T} (3.20)

where T is some threshold value. However, determining an appropriate value for T is

not as straightforward as may seem and choosing a wrong value may lead to keeping

some wrong estimates and discarding some correct ones. Due to this, this method of

zeroing amplitudes below a particular threshold was put aside.

We rather implement an intelligent weighted CS (WCS) algorithm where we use

the knowledge of the amplitude levels in the received signal as a priori information

to improve the CS approximation of the distortion. Since we know that the signifi-

cant clips which we need to estimate occur almost exclusively at locations with high

amplitudes and that as the amplitudes reduce, the probability of clipping lessens,

we need to modify the CS algorithm such that more priority is given to recovering

the clips at locations where the received signal, y is higher magnitude (i.e. locations

where clipping is more probable) and low-magnitude locations are on the other hand

penalized. To achieve this, we apply a weighted CS (WCS) algorithm via reweighted

l1 minimization [46]:

min
x̂

‖wTx̂c‖l1 subject to ‖Ψx̂c − y̌′‖l2 ≤ ε (3.21)
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where w is defined as the inverse of the received signal, y:

w(n) =















1
y(n)

, if y(n) 6= 0,

∞, if y(n) = 0,

(3.22)

where n = 1, 2, . . . , N 4. Equation (3.22) assigns smaller weights to locations of larger

amplitudes (where clipping is more probable) thus forcing the WCS algorithm in (3.21)

to focus more on these locations and less on the other locations with less amplitude

to which larger weights are assigned.

Figure 3.9 shows a comparison of the WCS and CS estimates of the sample clipped

signal shown in Figure 3.2.
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Figure 3.9: WCS & CS estimates of clipped portion of RFMD PA input

From this comparison, we see three benefits of the WCS algorithm:

4In simulations, ∞ in this case was taken to be 105
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• It improves amplitude estimates at locations also detected by the CS algorithm,

• It indicates additional distortion locations not found by plain CS. and

• It removes wrong locations suggested by the plain CS algorithm.

3.7 Simulation Set-up & Results

For all simulation results presented in this thesis, the number of sub-carriers was held

constant at N = 256 and the 64-QAM modulation scheme was used. The channel is

also always assumed to be known and the SNR is varied from 15 dB to 35 dB. Although

all amplifier models listed in Chapter 2 were studied, as mentioned previously, we only

present the results of the RFMD and Doherty models.

Each of these performance measurements have been plotted against the SNR range.

To evaluate and compare the effectiveness of the various CS-based solutions proposed

in this paper, the following performance indices were used:

1. Normalized Mean Square Error (NMSE) [47]:

NMSE =

1

N

N
∑

r=1

∣

∣αxi(r)− ui(r)
∣

∣

2

1

N

N
∑

r=1

∣

∣αxi(r)
∣

∣

2

(3.23)
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2. Error Vector Magnitude (EVM) [48, 49]:

EVMrms =

√

√

√

√

√

√

√

√

√

1

N

N
∑

r=1

∣

∣x̌(r)− ǔ(r)
∣

∣

2

1

N

N
∑

r=1

∣

∣x̌(r)
∣

∣

2

(3.24)

3. Bit Error Rate (BER):

BER =

∑

bit errors (comparing d & d̂)

K
(3.25)

We note that in all cases, we have an upper bound for the performance when no

distortion-estimation technique is used at the receiver and a lower bound when the

PA is assumed to be perfectly linear.

In Figures 3.10a-3.10c, we present and compare the performance (using all three

performance metrics mentioned above) of both CS &WCS in recovering and correcting

for the power amplifier’s non-linearities. The number of free-carriers used, M , ranged

from 10% to 25% of N , in steps of 5%.

Note that due to the great non-linearity of the Doherty PA, neither CS nor WCS

are able to recover the distortions it causes.5 For this reason, all curves for the Doherty

PA (with and without recovery) almost exactly overlap each other and so, only a single

curve (representing the case when WCS is used with the PA) is shown in the results

presented in Figures 3.10a and 3.10c. (In the EVM plot of Figure 3.10b, the curve for

5A distortion-recovery technique suitable for highly non-linear amplifiers like the Doherty
is the joint compensation which is discussed in Chapter 4.
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the Doherty PA has been left out as its minimum value is 32% which is high above the

RFMD EVM range displayed.) Also note that in Figure 3.10a, only the SNR range

from 20 dB to 35 dB has been displayed because before 20 dB, all recovery techniques

perform essentially equally in terms of NMSE.
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Figure 3.10: Comparison of performance of WCS and CS for RFMD amplifier using (a)
NMSE (b) EVM (c) BER measurements
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From these results we note:

1. Both CS and WCS are able to estimate some of the PA distortions and thus

correct the received signal to an extent. Also, we notice that the more free-

carriers we use, the better the distortion estimate is.

2. WCS gives good improvement over CS. Especially in terms of NMSE & EVM,

it seems to be equivalent to using 10% extra carriers for CS—as we see the

10% & 20% WCS curves almost exactly overlapping the 20% & 30% CS curves

receptively. In terms of BER, WCS shows even better improvement over CS.

3.8 Chapter Conclusion

After describing the basic CS algorithm, its sparsity and incoherence requirements,

and how we apply it to our distortion-estimation problem, we have also explained in

this chapter, the weighted CS technique. The results presented for the RFMD PA

show that although basic CS is able to estimate and correct some distortion, WCS

significantly improves upon these estimates.
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CHAPTER 4

DATA-AIDED CS AND JOINT

COMPENSATION

In this chapter, we discuss two advanced methods by which the results of the CS

algorithm can further be improved. These are:

1. Data-Aided Compressed Sensing (“Data-Aided CS” or “DACS”)

2. Joint Compensation (i.e. Pre-Compensation along with Post-Compensation)

4.1 DATA-AIDED CS ALGORITHMS

4.1.1 Motivation

In both the basic and weighted CS algorithms described in Chapter 3, we have always

included free-carriers in the transmitted frequency–domain signal in order to obtain, at

the receiver, the measurements which CS uses to estimate the PA distortion. However,
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if we could find some way to obtain measurements from the data-carriers also, we

would be able to improve our estimation algorithm from two important angles:

• Further estimation of left-over distortion even after implementing CS.

• Ability to implement CS without any free-carriers thus using the bandwidth at

full efficiency.

We notice that the free-carrier measurements used in CS—as is clear from Figure

3.6—are simply the perturbations (i.e. amounts of deviation) of these free-carriers

from their original zero position. Thus, similarly for the data-carriers, if at the receiver,

we have knowledge of their original locations in the constellation, we would be able

to calculate their respective perturbations from these locations and thus obtain extra

measurements to use in the CS algorithm. The question that now presents itself is:

how do we find the original constellation locations of at least some of these data-

carriers?

One option would be to assume that all constellation points of the received signal,

y̌, within a given short threshold distance, R of an original constellation point, x̌(i)

have deviated from that original constellation point and thus consider as reliable all

perturbations, p̌(l) such that:

p̌(l) = |x̌(i)− y̌(j)| ≤ R, i, j ∈ 0, 1, . . . , k − 1 (4.1)

where k is the number of frequency-domain data-carriers. This is equivalent to drawing

circles of radii, R around all original constellation points and taking all deviations
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within the circles as reliable perturbations p̌(l) to be used as measurements in the CS

algorithm.

A problem with this however is in choosing a suitable value for the threshold

R. On the one hand, selecting a minuscule value for R would make sure that each

receiver point is correctly compared with its respective original point, but this would

give us only few measurements of little amplitude which would lead to only negligible

improvement in the estimation problem. On the other hand, if we chose R to be

too large, we stand the risk of comparing wrong points and thus obtaining erratic

measurements.

To avoid this problem, we use a more tenable approach to obtain reliable pertur-

bations. It is obvious that each constellation point of the received signal would—with

very high probability—have deviated from one of the four original constellation loca-

tions surrounding it and not other constellation locations. In Figure 4.1 for example,

ǔ(2) would most probably have deviated from one of either X ,Xa ,Xb , or Xc . Thus,

we can simply select the closest of these neighboring points (in this case, X ) as most

probably being the original constellation point of ǔ(2) and then take the distance

between the two points to be a possible reliable perturbation.

Since this algorithm makes use of the received data to obtain measurements to be

used in CS, we refer to it as the Data-Aided CS (DACS) algorithm. The preceding is a

simplified discussion of this algorithm and the following section gives a more detailed

mathematical description.
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Figure 4.1: Description of the data-aided algorithm

4.1.2 Description

From the above discussion, we understand that we are able to implement the DACS

algorithm based on our assumption that a number of data carriers, x̌′ ⊂ x̌ even

after the power amplifier’s distortion, are still within their respective decision regions.

We denote the set of these carriers by ωωωM ′ with cardinality |ωωωM ′| = M ′ such that

M ′ < N . If X consists of the M-ary constellation points, then at these locations of

reliable perturbations, it is highly probable that:

x̌′ ≈ XM ′ (4.2)

Just as we had SM which selected the free-carriers in the case of basic CS, we let

SM ′ denote the N ×M ′ selection matrix—a zero matrix except for a single element in
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each column which equals 1—that selects the “reliable” carriers. Given u and ǔ to be

time and frequency-domain versions of the partially corrected signal (see Equations

3.18 and 3.19) respectively, we know that u is a sum of: (i) an estimate of the input

signal, x̂i, (ii) left-over distortion, x̃c = xc − x̂c (after removing some non-linearities),

and (iii) noise, z, i.e.:

u = x̂i + x̃c + z (4.3)

And in the frequency-domain:

ǔ = ˆ̌x+DFx̃c + ž (4.4)

To obtain the data-carrier measurements for DACS, we multiply (4.4) by ST

M ′ on both

sides:

ST

M ′ǔ = ST

M ′
ˆ̌x+ ST

M ′DFx̃c + ST

M ′ ž

ST

M ′ǔ = ˆ̌x
′

+ ST

M ′DFx̃c + ST

M ′ ž (4.5)

Subtracting the corresponding correct constellation locations from (4.5) yields:

ST

M ′ǔ− XM ′ = ˆ̌x
′ −XM ′ + ST

M ′DFx̃c + ST

M ′ ž

But since (4.2) gives x̌′ − XM ′ = 0, we have

ST

M ′ǔ− XM ′ = ST

M ′DFx̃c + ST

M ′ ž (4.6)
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which we write as

ǔ′ = Ψ′x̃c + ž′′ (4.7)

where ǔ′ , ST

M ′ǔ−XM ′ and Ψ′ , ST

M ′DF. We point out here that in estimating the

residual distortion, x̃c, we don’t have to use all M ′ reliable carriers; rather we can

limit the number of carriers used to Q such that ωωωQ ⊂ ωωωM ′ ⊂ ωωω—which would be

sufficient. So, we re-define our variables of (4.7) thus:

ǔ′ , ST

Rǔ− XR and Ψ′ , ST

RDF

Comparing (4.7) with (3.1), we see we can use CS to estimate x̃ thus:

min
ˆ̃x

‖ˆ̃xc‖l1 subject to ‖Ψ′ˆ̃xc − ǔ′‖l2 ≤ ε (4.8)

For further refinement of the estimates, we can iterate the DACS algorithm as given

above a number of j times. The whole procedure is illustrated in the functional block

digram of Figure 4.2

Figure 4.2: Block diagram illustrating the DACS algorithm
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4.1.3 Choosing Data-Carriers: Constructing ωωωR

One of the most crucial steps in the DACS algorithm as described above is how we

select the set of R data-carriers, ωωωR (out of a possible N −M) that would be used to

obtain measurements used in runs of DACS. Considering all possible ways, we would

have a total of
(

N−M

R

)

options to build ωωωR.

To satisfy the requirements of the CS algorithm, the R carriers need to be randomly

distributed in the signal. However, constructing ωωωR by a simple random selection

would mean that less-reliable carriers are selected. And since the improvement offered

by DACS greatly depends on the reliability of the carriers, such a random selection

increases our risk of obtaining a wrong estimate for the remnant distortion.

Rather, we employ a smart technique in building ωωωR such that it consists of the

most reliable carriers by using the posterior probability:

R(n) = log
Pr(〈ǔ(n)〉 = X |ǔ(n))
Pr(〈ǔ(n)〉 = X ∗|ǔ(n)) (4.9)

where n = 1, 2, 3, . . . , (N −M), 〈.〉 represents the respective decoded symbol, X is the

constellation point closest to ǔ(n) while, X ∗ represents the nearest neighboring point.

(4.9) thus gives us a function that helps us measure the reliablity of decoding ǔ(n) to

X relative to X ∗.

To explain this technique, we consider the sample case as shown in Figure 4.1.

As in the figure, every point, ǔ(n) would have four closest neighbors surrounding it

from the constellation. We assume X to be the correct symbol, and the three other
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neighbors are denoted by Xa,Xb and Xc. We observe in this example that:

|ǔ(1)− X| = |ǔ(2)− X| (4.10)

However,

|ǔ(1)−X|
|ǔ(1)− Xa|

>
|ǔ(2)−X|
|ǔ(2)− Xa|

(4.11)

i.e. R(1) > R(2) (4.12)

Meaning that ǔ(1) is a more reliable carrier than ǔ(2).

After determining the reliability of all N − M data-carriers, we choose the R

carriers of highest reliability values, i.e.:

ωωωR , arg{Rs}Rs=1 (4.13)

It turns out that the set of carriers, ωωωR, is almost always a randomly dispersed set

from (ωωω − ωωωM). It thus satisfies the CS requirement that measurements are taken

randomly, and so, from this angle, the performance of CS in estimating the distortion

is not inhibited by our intelligent method of selecting ωωωR.

4.1.4 Simulation Results

To evaluate the performance of the DACS algorithm, we again considered the RFMD

amplifier with an OFDM signal of the same parameters given in Chapter 3 (i.e. N =
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256, 64-QAM, SNR range: 15 dB to 35 dB in 5 dB steps) and the same performance

measurements (NMSE, EVM and BER). Again, just as in Chapter 3, the results are

upper-bounded by the case when no distortion estimation method is used (“No CS”)

and lower-bounder when the power amplifier is by-passed (“No PA”) i.e. we have only

noise.

In the results presented in the plots of Figure 4.3, we have compared the perfor-

mance of two iterations of DACS using 30% and 40% of the data-carriers after using

WCS with 10% free-carriers. We also include the performance of two iterations of

DACS using 40% of the data-carriers without a previous run of WCS.
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Figure 4.3: Comparison of performance of different runs of DACS for the RFMD amplifier
using (a) NMSE (b) EVM (c) BER
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The results are quite encouraging as the two plots which use DACS after WCS show

the enhancement DACS gives to the WCS estimates—especially the second iteration

of each of these which improves over the first iterations’ estimates to a large degree.

We also note the expected effect of using a larger number of data-carriers for DACS

as we see that using 40% gives much better results than 30% carriers—particularly in

the BER curves.

4.1.4.1 Blind Distortion Estimation with DACS

Since the Data-Aided CS algorithm uses only data-carriers in estimating the PA dis-

tortions, we can improve bandwidth efficiency by doing away with free-carriers (used

for basic CS and WCS) and rely only on DACS for distortion estimation. However,

since we would implement neither CS nor WCS, we expect distortion estimates would

be worse (than if we were to use CS or WCS before DACS). The results of this case

of blind estimation in which we include zero free–carriers in the transmitted signal

(M = 0) are presented in Figures 4.3a–4.3c as the curves with 0% carriers.

Comparing the results for blind estimation, we see that we are able to get good

performance in estimating the distortion especially after the second iteration when we

use more data-carriers (40% in our case). In all curves, this blind estimation turns

out better to be than using 10% free-carriers and 30% data-carriers and in the EVM

and NMSE curves, it gets as good as using 10% free-carriers and 40% data-carriers.

Thus by using DACS, we can exclude free-carriers from our transmitted signal thus

improving bandwidth efficiency while at the same time, still having a relatively good

estimate of the distortion.
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4.2 JOINT COMPENSATION

We discuss in this section how transmitter-side pre-compensation methods can be

combined with our receiver-side, CS-based post-compensation algorithms. This com-

bination is termed, “joint compensation”.

4.2.1 Motivation

As was noted in Chapter 2, not all power amplifiers lend themselves readily to distor-

tion estimation using CS. This is especially because such amplifiers are very non-linear

and so, the distortion they cause is quite condensed i.e. very non-sparse. In such cases,

CS fails to estimate the distortion correctly as one of its fundamental requirements

(i.e. that the signal being estimated is sparse) is not met. An example of such a

highly non-linear amplifier is the Doherty PA (previously described in Sub-section

2.2.2) which has a relatively very low Gini Sparsity Index of about 0.461. It should

be noted that, as we mentioned in that sub-section, the distortions of the Doherty

PA are even made worse by the large range of the phase response. A sample of the

distortion due to this amplifier is shown in Figure 4.4. In situations such as this, we

are forced to use a transmitter-side pre-compensation method such as pre-distortion

to correct for the PA distortion.

Also, even for some amplifiers where the distortion is sparse and receiver-based CS

techniques can be used to estimate and remove the distortion, we may be forced to use

pre-compensation especially if the transmitted signal has to meet stringent spectrum

mask requirements as is the case with many of today’s communication standards.
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Figure 4.4: Sample of distortion at the output of the Doherty PA

In these two cases where pre-compensation techniques are required, digital pre-

distortion (described in Section 1.2) is a popular choice. However, in particular cases,

a mismatch between the pre-distorter function and the power amplifier may inhibit the

otherwise excellent performance of pre-distortion. Some reasons why such a mismatch

might occur include:

1. Aging, long term drifts of the biasing, heat, a change in the characteristics

of the transmitted signal (including changes in the carrier frequency or signal

average power) or a combination of these may lead to a change in the amplifier’s

behavior.

2. Changes in the surroundings of the mobile terminal may cause fluctuations in

the antenna impedance which would lead to a load mismatch thus changing the

amplifier’s behavior.
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In situations such as these, the pre-distorter would normally be able to correct for

much of the amplifier distortion, however, due to the mismatch between it and the PA,

there would be some remnant distortion on the transmitted signal. If this remanant

distortion is relatively sparse, we can therefore use the CS-based post-compensation

algorithms presented in this thesis to estimate the left-over distortion at the receiver

and then correct the received signal.

This implementation of post-compensation after using pre-compensation is what

we refer to as “joint compensation” and we describe it in the following section using

the example case when the transmitted signal has a higher maximum power than is

normally allowed by the PA. While the block diagram of the receiver remains the same

as Figure 4.2 (since we stil use DACS for post-compensation), the only change on the

transmitter side is our inclusion of the pre-distorter upstream of the power amplifier

as illustrated in Figure 4.5.

Figure 4.5: Block diagram of transmitter in joint compensation

4.2.2 Description

Under normal conditions, even after implementing a pre-distorter function before the

amplifier, the combination is still only operated below a certain maximum input power

level which can reach but must not exceed the saturation power. This is because

operating the PA in the saturation region would lead to non-linear distortions.
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However, since we are able to correct these distortions using the CS-based algo-

rithms presented in this thesis, it becomes possible to operate the power amplifier at

a higher average power level than it would ordinarily operate at i.e. overdrive the am-

plifier so that it operates closer to saturation and thus at higher efficiency. Figure 4.6

compares the gain characteristic of the Doherty amplifier before pre-distortion, after

pre-distortion and after pre-distortion again but with the amplifier overdriven (by up

to 6 dB). As we see in the figure, the cascade of the digital pre-distorter (DPD) with

the Doherty PA gives a perfectly linear amplifier. But when the overdrive is applied,

the amplifier is driven into the saturation region resulting in distortion as shown in

the sample clips in Figure 4.7 when the overdrive was 2 dB.
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Figure 4.6: Comparsion of gain characteristics of different versions of the Doherty PA

Although overdriving the amplifier might cause spectrum regrowth, this is not a

problem in the ISM band. To study the joint compensation algorithm, we implement

it for the overdriven Doherty amplifier ranging the overdrive level from 0 dB to 6 dB.
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Figure 4.7: Clips due to the overdriven precompensated Doherty PA (overdrive = 2 dB)

4.2.2.1 Overdrive and Sparsity

We know that without overdrive (i.e. overdrive = 0 dB), the pre-distorted amplifier

has no distortions. It is also obvious that as the overdrive increases from 0 dB to 6 dB,

we go further and further into the saturation region of the PA and thus, the amount

of distortion increases causing a decrease in the sparsity of the clipped portion. Figure

4.8 compares the sparsity levels of the clipped signal as the overdrive increases. We

use the Gini Index [34, 35] which, as mentioned previously, rates the sparsity of a

signal from Gs = 0 (very dense) to Gs = 1 (very sparse, a single impulse).

In general, we expect that when the overdrive is too low, the distortion is rela-

tively negligible and of too little amplitude to recover using CS. At medium values

of overdrive, DACS should perform well in estimating the clips till a certain range of

overdrive levels above which the distortion should get too sparse for CS to correctly
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Figure 4.8: Gini sparsity index of overdriven Doherty PA

estimate.

4.2.3 Simulation Results (using Doherty Amplifier)

Using parameters similar to those used in DACS in simulating the joint compensation,

we compare the performance of the amplifier without the DPD and with the DPD

(both with and without overdrive). For each of the overdrive values used (2 dB, 3 dB

and 4 dB), we compare the results of the second iteration of DACS (“DACS2”) versus

the case where no distortion estimation is done. For all runs of DACS (except one),

WCS is first used with 10% free-carriers to estimate some distortion. In the single

exception to this (at an overdrive of 3 dB “OD=3dB”), DACS is again run twice

but no free-carriers are included in the transmitted signal i.e. no previous distortion

estimation was used. This is labeled as “0-DACS2”.
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It should be noted that here, performance is lower bounded by the perfectly linear

case of the non-overdriven amplifier cascaded with the digital pre-distorter and upper

bounded by the results when the DPD is not used (whether or not CS is applied in this

case does not matter since the huge distortion due to the PA makes any improvement

offered by CS negligible).
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Figure 4.9: Comparison of performance of joint compensation for the Doherty PA via (a)
NMSE (b) EVM (c) BER (Note: the ’No CS’ case is not shown in the EVM plot as even
it’s minimum value (at 35 dB) is too high (approx. 29%))
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From the Figures 4.9a-4.9c, we note that:

1. A combination of any form of the DPD with the PA corrects for much of the

PA distortion. However, the more we overdrive the PA, the more non-linearities

occur and the less effective the DPD is in correcting for this distortion.1

2. Using DACS for post-compensation after pre-distortion (joint compensation)

allows us to overdrive the amplifier by about 3 dB and still maintain relatively

good performance—as we see that at an SNR of 35 dB, the 3 dB overdriven

amplifier gives an EVM value of about 2.5% which is very close to the EVM of

the perfectly linear amplifier (approx. 1.8%).

3. The curves denoting the case when no free-carriers are used for WCS before

implementing the DACS algorithm (“0-DACS2”) show that for a slight reduction

in performance, we can increase bandwidth efficiency if we exclude free-carriers

at the transmitter.

1We notice that according to Figures 4.8 and 4.9, CS seems to only work when the Gini
Index G ≥ 0.950 but from results presented in Chapter 3, it worked for the RFMD amplifier
which had a Gini Index of just G = 0.718. The reason for this discrepancy in the threshold
in both cases is discussed in the Appendix.
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CHAPTER 5

CONCLUSION & FUTURE

WORK

5.1 Conclusion

In an attempt to correct the non-linear distortion caused by power amplifiers in OFDM

systems, we have been able to show that these non-linearities can sometimes be mod-

eled as sparse phenomenon and so, methods based on the compressed sensing can be

used to correct these distortions by estimating and then canceling them at the receiver

side. In particular, four distinct algorithms have been presented in this thesis:

1. “Basic” Compressed Sensing (CS): This refers to the simplest of algorithms

where CS is applied directly using measurements from free-carriers inserted in

the frequency-domain transmitted signal.

2. Weighted CS (WCS): This improves upon the CS algorithm by giving larger

weights to less probable clipping locations and smaller weights to the more prob-
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able ones. Doing this forces CS to focus on the more probable locations and thus

improves the distortion estimate. Results show that this is equivalent to using

10% (or more) extra free-carriers in basic CS.

3. Data-Aided CS (DACS): As a further enhancement of the CS algorithm,

we were able to extract measurements from the data-carriers for more runs

of CS. Besides allowing us to improve upon the WCS results, this enables us

to estimate for the PA distortion even without including any free-carriers on

the frequency-domain transmitted signal thus saving bandwidth and enhancing

system throughput. The results of DACS are encouraging especially after the

second iteration.

4. Joint Compensation: The above three methods only perform well when the

distortion caused by the amplifier is sparse. In cases where a highly non-linear

power amplifier such as the Doherty is used, we implement joint compensation

by pre-compensation (via a pre-distorter function at the transmitter) along with

post-compensation (via DACS, for example, at the receiver). Using joint com-

pensation allows us to increase the operating average power of the PA by about 3

dB since our post-compensation algorithm would correct for the resulting extra

distortions. Even in cases where the PA is not overdriven, this algorithm helps

remove any residual distortion that may occur due to a mismatch between the

DPD and the PA.
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5.2 Future Work

Based on the work presented in this thesis, the following are possible areas which

could be considered for further work:

1. In the actual implementation of OFDM in communication standards, free-

carriers are usually available at the band edges. As opposed to randomly placed

carriers within the signal bandwidth (as adopted in this work), carriers at the

edges are readily available. It would be interesting to see how our algorithm

can be modified to take advantage of these carriers. One benefit of doing this

is that the resulting matrix would be of higher structure and so the structure

could possibly be used to reduce the complexity of the algorithm [43].

2. In solving the CS problem, we focused in this thesis on convex relaxation al-

gorithms. Another option would be to consider Bayesian-based recovery for

Gaussian and non-Gaussian priors [43, 50]. The advantage of Bayesian tech-

niques is that they are of lower complexity and are also able to incorporate a

prior, statistical information about the clipped signal.

3. In our work, we assumed the channel to be known. Future work could explore

applying the algorithms presented to a more realistic situation with the entire

communication link and then compensating for distortion at the the receiver

when channel impairments are present.

4. It is also possible to evaluate the feasibility of implementing (and perhaps, mod-

ifying) the techniques proposed in this thesis for power amplifiers which exhibit
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memory effects.
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APPENDIX: Reason for Variation in Sparsity Re-

covery Threshold based on the Gini Index

From results presented in Figures 3.10a-3.10c in Chapter 3, we notice that the CS

recovery performs well for the RFMD applifier which had a Gini Sparsity Index of

G = 0.718. However, in the results of the overdriven Doherty PA presented in Figures

4.3a-4.3b, the performance of even two iterations of DACS hardly gives good results

when the overdrive is 4 dB or above which, according to Figure 4.8, translates to a

Gini range of G ≤ 0.945. The obvious question is: how come CS-recovery breaks for

a system with a high sparsity index but still works very well when the sparsity is

relatively much lower.

To answer this question, we note that one major difference between the distor-

tion due to the RFMD amplifier (or any general amplifier for that matter) and the

distortion due to the overdriven pre-distorted amplifier system is that the later case

excludes the many minor clips (i.e. coefficients which are very close to zero but no

exactly zero) present in the former case. This is noticed whenthe distortions of both

amplifiers as presented in Figures 3.2 and 4.7 are compared.

Apparently, it seems the cause of the relatively low Gini index for RFMD and ZHL

might be the very many close-to-zero but non-zero amplitudes which are absent in the

overdriven pre-distorted Doherty amplifier. To test if these minor clips are the cause

of the discrepancy in the threshold value, the Gini Index for the normal distortion

caused by the RFMD amplifier was compared against the index value for the same

distortion however, after zeroing-out the lowest 200 amplitudes (i.e. leaving only the

80



56 highest amplitudes). For the former (normal distortion), the normal Gini Index

value for the RFMD amplifier was obtained (G = 0.711) while for the later, it was

much higher (G = 0.908).
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Figure 5.1: Gini index comparison
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