1,728 research outputs found

    Towards high-level execution primitives for and-parallelism: preliminary results

    Full text link
    Most implementations of parallel logic programming rely on complex low-level machinery which is arguably difflcult to implement and modify. We explore an alternative approach aimed at taming that complexity by raising core parts of the implementation to the source language level for the particular case of and-parallelism. Therefore, we handle a signiflcant portion of the parallel implementation mechanism at the Prolog level with the help of a comparatively small number of concurrency-related primitives which take care of lower-level tasks such as locking, thread management, stack set management, etc. The approach does not eliminate altogether modiflcations to the abstract machine, but it does greatly simplify them and it also facilitates experimenting with different alternatives. We show how this approach allows implementing both restricted and unrestricted (i.e., non fork-join) parallelism. Preliminary experiments show that the amount of performance sacriflced is reasonable, although granularity control is required in some cases. Also, we observe that the availability of unrestricted parallelism contributes to better observed speedups

    Development of an MSC language and compiler, volume 1

    Get PDF
    Higher order programming language and compiler for advanced computer software system to be used with manned space flights between 1972 and 198

    Compiling vector pascal to the XeonPhi

    Get PDF
    Intel's XeonPhi is a highly parallel x86 architecture chip made by Intel. It has a number of novel features which make it a particularly challenging target for the compiler writer. This paper describes the techniques used to port the Glasgow Vector Pascal Compiler to this architecture and assess its performance by comparisons of the XeonPhi with 3 other machines running the same algorithms

    A compiler extension for parallelizing arrays automatically on the cell heterogeneous processor

    Get PDF
    This paper describes the approaches taken to extend an array programming language compiler using a Virtual SIMD Machine (VSM) model for parallelizing array operations on Cell Broadband Engine heterogeneous machine. This development is part of ongoing work at the University of Glasgow for developing array compilers that are beneficial for applications in many areas such as graphics, multimedia, image processing and scientific computation. Our extended compiler, which is built upon the VSM interface, eases the parallelization processes by allowing automatic parallelisation without the need for any annotations or process directives. The preliminary results demonstrate significant improvement especially on data-intensive applications

    Compiling a simulation language in APL

    Full text link
    This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in APL Quote Quad, http://dx.doi.org/10.1145/327600.327625This paper describes the procedure used to build several compilers, written in APL and APL2, to translate two continuous simulation languages into APL and C++. The advantages and disadvantages of using APL to write a compiler are discussed. A compromise had to be found between performance (the model execution speed) and flexibility (the ease to modify parameters and test "what if" situations). The resulting compiler (an APL2 packaged workspace) has been used successfully to generate educational applications and in medical research.This paper has been sponsored by the Spanish Interdepartmental Commission of Science and Technology (CICYT), project number TIC-96-0723-C02-01

    On evaluating parallel computer systems

    Get PDF
    A workshop was held in an attempt to program real problems on the MIT Static Data Flow Machine. Most of the architecture of the machine was specified but some parts were incomplete. The main purpose for the workshop was to explore principles for the evaluation of computer systems employing new architectures. Principles explored were: (1) evaluation must be an integral, ongoing part of a project to develop a computer of radically new architecture; (2) the evaluation should seek to measure the usability of the system as well as its performance; (3) users from the application domains must be an integral part of the evaluation process; and (4) evaluation results should be fed back into the design process. It is concluded that the general organizational principles are achievable in practice from this workshop
    corecore