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SUMMARY

Intel’s Xeon Phi is a highly parallel x86 architecture chip made by Intel. It has a number of novel features
which make it a particularly challenging target for the compiler writer. This paper describes the techniques
used to port the Glasgow Vector Pascal Compiler (VPC) to this architecture and assess its performance by
comparisons of the Xeon Phi with 3 other machines running the same algorithms. Copyright c© 0000 John
Wiley & Sons, Ltd.
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1. CONTEXT

This work was done as part of the EU funded CLOPEMA project whose aim is to develop a cloth
folding robot using real time stereo vision. At the start of the project we used a Java legacy software
package, C3D[1] that is capable of performing the necessary ranging calculations. When processing
the robot’s modern high resolution images it was prohibitively slow for real time applications, taking
about 20 minutes to process a single pair of images.

To improve performance, a new Parallel Pyramid Matcher (PPM) was written in Vector Pascal
[2]†, using the legacy software as design basis. The new PPM allowed the use of both SIMD and
multi-core parallelism[3]. It performs about 20 times faster on commodity PC chips such as the
Intel Sandybridge, than the legacy software. With the forthcoming release of the Xeon Phi it was
anticipated to be able to obtain further acceleration running the same PPM code on the Xeon Phi.
Hence, taking advantage of more cores and wider SIMD registers, whilst relying on the automatic
parallelisation feature of the language. The key step in this would be to modify the compiler to
produce Xeon Phi code. However, the Xeon Phi turned out to be considerably more complex
compared to previous Intel platforms. Porting of the Glasgow Vector Pascal compiler became an
entirely new challenge, and required a different porting approach than previous architectures.

2. PREVIOUS RELATED WORK

Vector Pascal [4, 2] is an array language and as such shares features from other array languages
such as APL [5], ZPL [6, 7, 8], Distributed Array Processor Fortran [9], Fortan90 [10] or Single
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2 M. CHIMEH, W.P. COCKSHOTT, S.B. OEHLER ET AL.

Assignment C [11, 12]. The original APL and its descendent J were interpretive languages in which
each application of a function to array arguments produced an array result. Whilst it is possible to
naively generate a compiler that uses the same approach it is considered inefficient as it leads to
the formation of an unnecessary number of array temporaries. This reduces locality of reference
and thus cache performance. The key innovation in efficient array language compiler development
was Budd’s [13] principle to create a single loop nest for each array assignment and to create
temporaries as scalar results. This principle was subsequently rediscovered by other implementers
of data parallel languages or sub-languages [14]. It has been used in the Saarbrucken[15] and the
Glasgow Vector Pascal compilers.

The first Vector Pascal compiler was reported by Perrot[16] who called his Pascal variant Actus.
This was an explicitly data parallel version of Pascal where the syntax of array declarations indicated
which dimensions of the array were to be evaluated in parallel.

It was also possible to use explicit ranges of indices within an array access thus v[a:b]. Two
subsequent Vector Pascal compilers[4, 2] generalised the ISO Pascal .. range notation to denote a
range on which vector operations were to occur v[a..b], but the Saarbrucken one[17] retained the
a:b notation. Parallel execution of multiple statements could be induced by the within construct:

within i:j do
begin
a[#] := b[#] + incr;
b[#] := b[# shift 1]
end;

The # symbol was substituted with the appropriate element of the index set. The current compiler
does not have a within statement but simple for-loops without sequence dependencies are
vectorised.

A similar approach was taken in parallel if statements:

if a[10:90] < a[10:90 shift - 1] then b[#] := a[#] + 1
else b[#] := a[#] - 1

The current Glasgow Vector Pascal compiler does not support parallel if statements but does allow
parallel if expressions to achieve the same result:

b[10..90]:=if a < a[iota[0] - 1] then a + 1
else a := a - 1

Note that the # notation is not supported. Instead index sets are usually elided, provided that the
corresponding positions in the arrays are intended. If offsets are intended the index sets can now be
explicitly referred to using the predeclared array of index sets iota. iota[0] indicates the index
set for the leading dimension, iota[1] the next dimension etc.

Perrott’s compiler was targeted at distributed memory SIMD machines. The Turner and
Saarbrucken ones aimed at attached vector accelerators, the Glasgow implementation has targeted
modern SIMD chips[18, 19, 20, 21], with the first release targeted at single cores like the Intel P3 or
the AMD K6. In performing vectorisation the compiler used similar techniques to those reported for
the contemporary Intel C [22]. Vectorisation was done by the front end which passed a vectorised
semantic tree to machine specific code generators. This paper reports on a new vectorisation strategy
in the Glasgow implementation, which uses the compiler back-end.

After multi-core chips became available and after collaboration with the Single Assignment
C(SAC)[11] team, SAC-style support for multi-core parallelisation was added. The current Vector
Pascal compiler distributes the rows of a two dimensional array computation across cores, rather
than offering the Arctus option of selecting along which dimension multi-processor parallelism will
be invoked. It inherits from SAC the policy of starting worker threads for all cores on the first
invocation of an array-parallel computation. These worker threads then block, but are available for
subsequent array computations. As in SAC, multi-core parallelism is invoked automatically, without
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COMPILING VECTOR PASCAL TO THE XEON PHI 3

the need for any pragmas or other programme notation, whenever a map operation is performed over
two dimensional arrays.

3. FEATURES OF THE XEON PHI

The Xeon Phi is a co-processor card, with one Many-Integrated-Core (MIC) chip on a PCI board,
that plugs into a host Intel Xeon system. The board itself has its own GDDR5 memory. The
MIC chip, on the Xeon Phi 5110P [23], contains 60 cores, each with its own cache. Each core
is in addition 4-way hyperthreaded. Shared coherent access to the caches allows the chip to run a
single Linux image. Using the p-threads library a single Linux process may fork threads across
different cores sharing the same virtual memory.

The individual cores are a hybrid supporting legacy instructions equivalent to those on the original
Pentium, but with an AMD64 register architecture. They are described as in-order cores[24] as
opposed to the dynamically scheduled cores of other Xeon models. The Linux runs 64bit with a
modified ABI. There are no MMX, SSE or AVX or conditional move instructions.

A whole set of new instructions have been added[25]. These resemble AVX : SIMD registers and
a 3 operand format, but the binary and the assembly language are different. SIMD registers are 512
bits versus the AVX 256 bits. Key features are:

• The ability to perform arithmetic on 16 pairs single precision floating point numbers using a
single instruction - this is a simple extension of what AVX can do.

• Individual bits of 16 bit mask registers can be set based on comparisons between 16 pairs of
floating point numbers.

• The usage of mask registers to perform conditional writes into memory or into vector registers.
• On the fly conversions between different integer and floating point formats, when loading

vector registers from memory.
• Performing scattered loads and stores using a combination of a vector register and a general

purpose register.

The last point is the most novel feature of the architecture. Let us consider the following Pascal
source code samples:

for i:=0 to 15 do x[i]:= b[a[i]];

I.e. x is to be loaded with a set of elements of b selected by a, where x and b are arrays of reals and
a is an array of integers. Vector Pascal allows us to abbreviate this to:

x:=b[a]

The key step, the expression b[a] in this can in principle be performed on the MIC as

knot k1,k0
1:vgatherdps ZMM0{k1},[r15+ ZMM8*4 ]
jknzd k1,1b

assuming that r15 points at the base address of array b, ZMM8 is a vector register that has been
preloaded with a, and ZMM0 is the register that will subsequently be stored in x. What the assembler
says is

1. Load mask register k1 with 0FFFFH.
2. Load multiple words into ZMM0 from the addresses formed by the sum of r15 and 4 times

the elements of ZMM8, clearing the bits in k1 corresponding to the words loaded.
3. Repeat so long as there are non zero bits in k1.

4. PASCAL PARALLELISM MECHANISM

Vector Pascal[4, 2], supports parallelism implicitly by allowing array variables to occur on the left
hand side of an assignment expression. The expression on the right hand side may use array variables
wherever standard Pascal allows scalar variables.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
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4 M. CHIMEH, W.P. COCKSHOTT, S.B. OEHLER ET AL.
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Figure 1

The order in which assignments to the individual array elements are assigned is undefined,
the compiler can perform the calculations in a data parallel fashion. In fact, for two dimensional
arrays, it parallelises the first dimension across multiple cores, the second dimension using SIMD
instructions.

The compiler is re-targeted between different machine architectures using the Intermediate
Language for Code Generation (ILCG) [26]. The machine description consists of declarations for
registers and stacks, followed by semantic patterns. Patterns specify data types, addressing modes,
operators or classes of instructions. The type system supports vector types and its expressions,
parallel operations over vectors.

The ILCG compiler translates machine specifications into Java classes for code generators. Let
file AVX32.ilc define an AVX cpu, the ILCG compiler will produce file AVX32.java which
translates an abstract semantic tree into semantically equivalent AVX assembler. A compiler flag in
Vector Pascal specifies which code-generator class to use [18, 19, 20].

An example patterns used is the specification of base plus offset addressing on an Intel processor:

pattern baseplusoffsetf(basereg r, offset s )
means [ +(ˆ(r),s) ] assembles[ r ’+’ s ];

The portion +(ˆ(r),s) means match the tree in Figure 1. Note that ˆ is the dereference operator.

5. VECTORISATION CHALLENGES

The front end of the Pascal compiler is machine independent; the front end queries the code
generator to discover types are supported for SIMD and the length of the SIMD registers. Given an
array assignment, the front end first generates the tree for a scalar for-loop to perform the requisite
semantics. It then checks whether this is potentially vectorisable, and if it is, it checks if the code
generator supports SIMD operations on the specified type. If yes then it converts the scalar for-loop
into a vectorised for-loop.

The checks for vectorisability involve excluding statements :

1. with function calls, e.g., a[i]:=ln(b[i]),
2. or in which the loop elements are not adjacent in memory :

(a) ones where the iterator i is not used as the rightmost index of a multi-dimensional array,
e.g., a[i]:=b[i,j],

(b) statements in which the loop iterator i is multiplied by some factor, e.g.,

a[i] := b[i * k]

(c) statements in which the index of an array is another array, e.g.,

a[i] := b[ c[i] ].

These were reasonable restrictions for the first and second generation of SIMD machines, but
some of them are unnecessary for more modern machines such as the Xeon Phi. In particular the
availability of gather instructions means that we do not need to be so restrictive in the forms of
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COMPILING VECTOR PASCAL TO THE XEON PHI 5

access that can be vectorised. One can envisage other machines being built that will allow at least
certain functions to be performed in SIMD form.

Rather than use complex machine specific tests and tree transformations in the front end, it was
decided to keep a common front end and extend the machine specification language. ILCG has been
upgraded to allow tree→ tree transformations before these are mapped into assembler strings.

The extensions made to ILCG are:

• Patterns can now be recursive.
• Curried patterns using a parameter passing mechanism.
• tree→ tree transformer patterns can be defined.
• Pattern matching can be guarded by Boolean predicates.

As a first illustration let us look at a pattern that will vectorise for-loops on the Xeon Phi:

t r a n s f o r m e r p a t t e r n v e c t o r i s a b l e f o r ( any i , any s t a r t ,
any f i n i s h , v e c d e s t l h s ,
v e c t o r i s a b l a l t e r n a t i v e s r h s )

means [ f o r ( r e f i n t 3 2 ) i := s t a r t t o f i n i s h
s t e p 1 do l h s [ i ] := r h s [ i ] ]

r e t u r n s [ s t a t e m e n t ( /∗ s c a l a r r e s i d u a l l oop ∗ /
f o r i . i n : = + ( +( −( ∗ ( d i v ( + (1 , −( f i n i s h . in , s t a r t . i n ) ) , 1 6 ) , 1 6 ) , 1 ) ,

s t a r t . i n ) , 1 )
t o f i n i s h . i n s t e p 1 do l h s . i n := r h s . in ,

/∗ v e c t o r loop ∗ /
f o r i . i n := s t a r t . i n t o +( −( ∗ ( d i v ( + (1 , −( f i n i s h . in , s t a r t . i n ) ) ,

16) , 1 6 ) , 1 ) , s t a r t . i n )
s t e p 16 do l h s . o u t := r h s . o u t

) ] ;

The pattern recognises a for-loop with steps of 1 and integer iterator i. The body must be an
assignment, whose left hand side is matched by vecdest with i as a parameter, and the right hand
side matches vectorisablealternatives curried with i. It returns two loops, the first a
scalar one for the residual data that may not fit in vector registers. The second is vectorised in steps
of 16 and uses the transformed outputs of the two patterns invoked earlier. The transformer pattern
vectdest illustrates predicates.

t r a n s f o r m e r p a t t e r n v e c d e s t ( any i , any r , v s c a l e d i n d e x j )
/∗ t h i s r u l e r e c o g n i s e s s c a l a r a d d r e s s e s t h a t can

be c o n v e r t e d t o v e c t o r a d d r e s s e s ∗ /
means [ ( r e f i e e e 3 2 ) mem ( ( i n t 6 4 ) + ( r , j [ i ] ) ) ]
r e t u r n s [ mem( + ( j . in , r . i n ) , i e e e 3 2 v e c t o r ( 1 6 ) ) ]
p r e c o n d i t i o n [ NOT( CONTAINS( r . in , i . i n ) ) ] ;

Given a memory reference to an ieee32 scalar it generates a reference to a 16 element vector of
ieee32 at the same address. A precondition is that the base address r does not contain i, the loop
iterator, which must only occur in the scaled index address part recognised by j[i]. The suffixes
.in and .out in patterns refer to the tree the identifier matched pre and post transformation. The
rules for the vectorisation of 32 bit floating point loops for the Xeon Phi take up 20 transformer
patterns. The two main patterns recognise map and reduce loops. Subsidiary patterns include ones
to allow non adjacent vector locations for gather instructions and to check that no dependencies or
function calls exist. In addition the machine description includes 320 instruction patterns, which
generate assembler code.

The extensions allowed utilisation of gather instructions in bulk parallel array statements without
modifying the front end and cause automatic vectorisation of many ordinary Pascal for-loops.

In principle vectorisation could now be removed from the front end, but doing this would
involve modifying many legacy ILCG machine descriptions. For the Xeon Phi, however, we
disabled vectorisation in the compiler front end. Further additions to ILCG such as polymorphic
transformation functions, class inheritance for machine architectures, would allow more concise
machine descriptions, but ILCG is a Domain Specific Language(DSL). As art constantly aspires to
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6 M. CHIMEH, W.P. COCKSHOTT, S.B. OEHLER ET AL.

the condition of music‡, DSLs aspire to the condition of general programming languages. But if that
occurs, they cease to be DSLs. One has to know when to stop extending.

5.1. Pre-fetching

The Xeon Phi reportedly uses in-order cores[24], a memory access will hold up the pipeline until
the data becomes available. Since there is a significant overhead to accessing the external memory
it is desirable that as many accesses as possible are satisfied from the cache. Intel provides special
instructions vprefetch0, vprefetch1 that will speculatively load data into the level 1 and
level 2 cache respectively. These instructions are hints to the cache hardware, and will not trigger
page faults or exceptions if the address supplied is non resident or protected. In [28] a sophisticated
strategy is given for making use of these.

With a compiler primarily for image processing applications a simpler pre-fetching strategy can
and has been implemented. In image processing it cannot be assumed that memory fetches for vector
operations will be aligned on 64 byte boundaries as expected by the Intel compilers described in
[28]. Image processing routinely involves operations being performed between sub-windows, placed
at arbitrary origins within an image. In order to support this Vector Pascal allows the applications
programmer to define array slices, which in type terms are indistinguishable from whole arrays.
At run time a 2D array slice will specify a start address and an inter-line spacing. 2D array slices
are particularly useful for defining sub-windows for image processing code. Such code typically
takes two or more windows and performs some mathematical operation between corresponding
pixels in the two or more windows. Aligned arrays will be the exception rather than the rule which
means that vector loads have to be unaligned loads. The dynamic loop peeling technique reported
by Bik[22] for dealing with unaligned arrays does not work when you have two or more arrays in an
operation that are mutually misaligned. It can at best bring one of the arrays into alignment [29]. Wu
et al[30] give a more complex alignment technique, which does handle multiple mutually unaligned
arrays. Whilst this was appropriate for some instruction-sets, the Xeon Phi vloadunpacklps and
vloadunpackhps perform essentially the same operations as the longer sequences of instructions
proposed in [30].

Even if arrays are mutually misaligned, it is still possible to fetch ahead each time, one performs a
vector load. The assumption is that these will mainly occur within loops, so that on subsequent loop
iterations, data will already have been loaded into the caches. The following sequence illustrates the
use of pre-fetching in assembler output of the compiler.

v l o a d u n p a c k l p s ZMM1, [ r s i + r d i ]
v l o a d u n p a c k h p s ZMM1, [ r s i + r d i +64]
v p r e f e t c h 0 [ r s i + r d i +256]
v p r e f e t c h 1 [ r s i + r d i +512]

Note that since the alignment is unknown the compiler has to issue two load instructions :
vloadunpacklps followed by vloadunpackhps to load into vector register ZMM1 the low
and high portions of a 16 float vector (64 bytes) from two successive 64 byte cache lines. This
explicit exposure of the cache lines in the instruction set architecture is a new feature for Intel.
In previous Intel instruction sets, a data transfer that potentially spanned two cache lines could be
performed in a single instruction. Let us call the lines accessed by the vloadunpack instructions: l0
and l1.

It then issues a prefetch for line l4 into the level 1 cache, and a prefetch for l8 into the level 2
cache. The fetch for line l4 is 4× 64 = 256 bytes on from the original effective address specified
by the sum of rsi and rdi. The intention is that by the time 4 iterations of the loop have been
performed the data for the next iteration will have been preloaded into the level 1 cache.

‡”All art constantly aspires towards the condition of music. For while in all other kinds of art it is possible to distinguish
the matter from the form, and the understanding can always make this distinction, yet it is the constant effort of art to
obliterate it.”[27]
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COMPILING VECTOR PASCAL TO THE XEON PHI 7

Table I. Compliance with ISO standard tests.

Compiler Free Pascal Turbo Pascal Vector Pascal Vector Pascal
ver 2.6.2 Ver 7 Xeon Phi Pentium

Number of fails 34 26 4 0
Success rate 80% 84.7% 97.6% 100%

5.2. Multi-core issues

Vector Pascal uses p-threads to support multi-core parallelism over matrices. Our experiments
showed that the thread dispatch mechanism used in the standard multi-core implementations needed
a couple of changes to get the best out of the Xeon Phi.

• The default is to use thread affinity to tie threads to cores. On the Xeon Phi it gives a better
performance if thread affinity is disabled.

• The default task scheduling uses p-thread semaphores. On the Xeon Phi it was more efficient
to use spin-locks(busy waiting).

6. COMPILER EVALUATION

The porting success of the Glasgow Vector Pascal compiler for the Xeon Phi has been evaluated
in semantic terms, efficiency terms, and ease of use. Note: a compiler was considered semantically
successful if it correctly compiles and evaluates a language test suite. Hence, in section 6.1 the
compiler got evaluated against the ISO Pascal programme test suite. Section 6.2 discusses the ease
of use evaluation for which complexity metrics were applied to the micro-benchmark sources in
different languages. Where as the efficiency term was evaluated against other language/machine
combinations in section 6.3 .

6.1. Standards conformance

The ISO-Pascal conformance test suite comprises 218 programmes designed to test each feature
of the language standard. Since Vector Pascal is an extension of standard Pascal we prepared a
further 79 test programmes to validate language extensions. From the ISO test set a subset§ was
excluded that tests obsolete file i/o features as Vector Pascal follows the Turbo Pascal syntax for file
operations. We ran the test suite using the host Vector Pascal compiler and in cross compiler mode
for the Xeon Phi. A programme was counted as a pass if it compiled and printed the correct result.
A fail was recorded if compilation did not succeed or the programme, on execution, failed to deliver
the correct result. Comparison with the host Vector Pascal compiler gives and indication of residual
errors in the code generator. As Table I shows the Xeon Phi system passes 97.6% of the tests. This
is still some way short of the 100% compliance achieved on the Xeon host targeting Pentium code.

In order to judge of whether the observed failure rates were good or poor by industry standards,
we also ran the test suite through the final version of the highly successful Turbo Pascal compiler
for DOS and the Free Pascal compiler for Linux. Both of these use the same Turbo Pascal syntax
for file i/o and can validly be tested on the same subset of conformance tests. Table I shows that
semantic compliance by these widely used Pascal compilers is significantly below that achieved by
the new Xeon Phi compiler. Our aim, in future work will be to achieve 100% compliance.

6.2. Ease of use

The test programs were a matrix multiply micro benchmark and two algorithms taken from real
code used in the parallel pyramid matcher : scaling an image using linear interpolation and image

§Tests 1,3,5,19,54,67..76,78,90..92,111..115,118,121,131,141,160,197,198,202,203,212,213.
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8 M. CHIMEH, W.P. COCKSHOTT, S.B. OEHLER ET AL.

Listing 1 The Pascal matrix multiply routine. Note that . is a predefined inner product operator
working over arrays.

1 type m = array [ 1 . . n , 1 . . n ] of r e a l ;
2 procedure f ( var ma , mb , mc :m) ;
3 begin
4 ma:= mb . mc ;
5 end ;

Listing 2 The C sequential and parallel matrix multiply routines. Note that the parallel loop nesting
has been altered to obtain better fetch performance of adjacent data in the inner loop.

1 void MatMul Seq ( double ∗ D, double ∗ E , double ∗ F ) {
2 f o r ( i n t i =0 ; i<N; i ++)
3 f o r ( i n t j =0 ; j<N; j ++)
4 f o r ( i n t k =0; k<N; k ++)
5 F [ i ∗N+ j ] += D[ i ∗N+k ] ∗ E [ k∗N+ j ] ; }
6
7 void MatMul Par ( double ∗ A, double ∗ B , double ∗ C) {
8 #pragma omp p a r a l l e l s h a r e d (A, B , C)
9 {

10 #pragma omp f o r
11 f o r ( i n t i =0 ; i<N; i ++)
12 f o r ( i n t j =0 ; j<N; j ++) {
13 double temp = A[ i ∗N+ j ] ;
14 # pragma i v d e p
15 f o r ( i n t k =0; k<N; k ++){
16 C[ i ∗N+k ] += temp ∗ B[ j ∗N+k ] ; }}}}
17 re turn ; }

convolution. These operations were selected because they take up most of the cycles in our stereo
matching algorithm. The images were stored as red, green and blue planes of 32 bit floating point
numbers, image sizes ranged from 512 by 512 to 5832 by 5832 pixels rising in steps of

√
2.

As a means of rating the efficiency of the Vector Pascal all 3 algorithms were ran in C as
well as Vector Pascal. The C version was compiled with Intel compiler icc. Using OpenMP that
includes pragma directives, allowed us to create both vectorised and multicore loops. For scaling
and convolution CUDA versions were also developed, run and compared against the others.

6.2.1. Matrix Multiply We compare C, Vector Pascal and C with OpenMP matrix multiply in
Algorithms 1 and 2. The C code uses the most obvious sequential algorithm. The OpenMP
derivation is 60% longer and re-organises the loop nest structure in order to make vectorised
fetching of data easier. The Pascal version is the shortest and could normally be shortened to just
one line, or even less since inner product is an operator in Vector Pascal allowing one to write matrix
expressions like (A.B) + v where A,B matrices and v a vector. The Pascal operation expands into
a loop structure analogous to that for the sequential C++ which is then automatically parallelised
and vectorised.

In terms of complexity, the ranking for this task is Pascal, C++, OpenMP as shown in Table II.

6.2.2. Image Rescale For image scaling the input image was expanded by
√
2 in its linear

dimensions. The inner function used for the Pascal image scaling test is shown in Listing 4. This
uses temporary arrays vert and horiz to index the source image array. The C++ version is in
Listing 3. Lines 4-12, is the main computation of the scaling routine. It is within the two for-loops
over the number of rows and columns. For the multi-core parallelisation, we use different pragmas
to split up the outer loop to run across cores. However, to create a vectorised loop, SIMD construct
can be used instead.
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COMPILING VECTOR PASCAL TO THE XEON PHI 9

Table II. Code complexity measures

Lines Nonspace chars

Seq C++ Matmul 10 190
Par C++ Matmul 16 327
Pascal Matmul 4 89
Seq C++ Conv 33 1470
Par C++ Conv 39 1585
Pascal Conv 53 1435
CUDA Conv 227 6181

Seq C++ Scale 37 1072
Par C++ Scale 39 1108
Pascal Scale 17 837
CUDA Scale 98 2189

Listing 3 : C++ main loop nest for scaling routine. Note that pimage is a predefined struct type
that has the number of maxcol, maxrow and maxplane of an image. Some lines are elided in the
listing.

1 void p l a n e i n t e r p o l a t e ( f l o a t ∗∗∗A, f l o a t ∗∗∗B ,
2 i n t maxp lane index , f l o a t dx ,
3 f l o a t dy , pimage a , pimage b ) {
4 . . .
5 f o r ( i n t i =0 ; i< b . maxrow ; i ++)
6 f o r ( i n t j =0 ; j< b . maxcol ; j ++)
7 B[ tmp ] [ i ] [ j ] = (A[ tmp ] [ v e r t [ i ] ] [ h o r i z [ j ] ] ∗
8 (1 − hr [ j ] ) + A[ tmp ] [ v e r t [ i ] ] [ h o r i z [ j ] + 1 ] ∗
9 hr [ j ] ) ∗ (1 − vr [ i ] ) +

10 (A[ tmp ] [ v e r t [ i ] + 1 ] [ h o r i z [ j ] ] ∗ (1 − hr [ j ] ) +
11 A[ tmp ] [ v e r t [ i ] + 1 ] [ h o r i z [ j ] +1 ] ∗ hr [ j ] ) ∗ vr [ i ] ;
12 . . . }

Listing 4 : The Pascal scaling routine.
1 PROCEDURE p l a n e i n t e r p o l a t e ( var a , b : P l a n e ) ;
2 var v e r t , h o r i z : p i v e c ; vr , h r : p r v e c ;
3 begin
4 new ( v e r t , b . maxrow ) ; new ( vr , b . maxrow ) ;
5 v e r t ˆ := t r u n c ( i o t a [ 0 ] ∗dy ) ; v r ˆ := i o t a [ 0 ] ∗ dy −v e r t ˆ ;
6 new ( h o r i z , b . maxcol ) ; new ( hr , b . maxcol ) ;
7 h o r i z ˆ := t r u n c ( i o t a [ 0 ] ∗dx ) ; h r ˆ := i o t a [ 0 ] ∗dx−h o r i z ˆ ;
8 (∗ we have computed v e c t o r s o f h o r i z o n t a l and v e r t i c a l
9 p o s i t i o n s i n v e r t and h o r i z , t h e h o r i z o n t a l and v e r t i c a l

10 r e s i d u a l s i n hr and vr ∗ )
11 B [ 0 . . B . maxrow−1 , 0 . .B . maxcol −1]:=
12 (A[ v e r t ˆ [ i o t a [ 0 ] ] , h o r i z ˆ [ i o t a [ 1 ] ] ] ∗
13 (1− hr ˆ [ i o t a [ 1 ] ] ) + A[ v e r t ˆ [ i o t a [ 0 ] ] ,
14 h o r i z ˆ [ i o t a [ 1 ] ] + 1 ] ∗ hr ˆ [ i o t a [ 1 ] ] ) ∗ (1− vr ˆ [ i o t a [ 0 ] ] ) +
15 (A[ v e r t ˆ [ i o t a [ 0 ] ] + 1 , h o r i z ˆ [ i o t a [ 1 ] ] ] ∗ (1− hr ˆ [ i o t a [ 1 ] ] ) +
16 A[ v e r t ˆ [ i o t a [ 0 ] ] + 1 , h o r i z ˆ [ i o t a [ 1 ] ] + 1 ] ∗ hr ˆ [ i o t a [ 1 ] ]
17 ) ∗ vr ˆ [ i o t a [ 0 ] ] ;
18 d i s p o s e ( v e r t ) ; d i s p o s e ( h o r i z ) ; d i s p o s e ( v r ) ; d i s p o s e ( h r ) ;
19 end ;

Note that iota is the implicit index vector for the expression, so iota[0], iota[1] give the x,y
position in the image array.

The parallel loop is distributed across cores and then within each, combines iterations of each
loop in to vectorisation. The C++ version closely follows the Vector Pascal one, but the CUDA
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Listing 5 CUDA code for the scaling kernel. Note the use of ’texture memory’ which can be indexed
by real valued coordinates.

g l o b a l void s u b s a m p l e K e r n e l (
f l o a t ∗ d Dst , i n t imageW , ] {
i n t imageH , f l o a t s c a l e f a c t o r W , f l o a t s c a l e f a c t o r H ,
i n t imageW2 , i n t imageH2

)
{

c o n s t i n t i x = IMAD( blockDim . x , b l o c k I d x . x , t h r e a d I d x . x ) ;
c o n s t i n t i y = IMAD( blockDim . y , b l o c k I d x . y , t h r e a d I d x . y ) ;
c o n s t f l o a t x = ( f l o a t ) i x + 0 . 5 f ;
c o n s t f l o a t y = ( f l o a t ) i y + 0 . 5 f ;
i f ( i x >= imageW2 | | i y >= imageH2 ) re turn ;
d Ds t [IMAD( iy , imageW2 , i x ) ] =

tex2D ( t e x S r c , x / s c a l e f a c t o r W , y / s c a l e f a c t o r H ) ;
}

Listing 6: Pseudo code for the row filter kernel of convolution on GPU.
For each m u l t i p r o c e s s o r

Repeat
S e l e c t an u n p r o c e s s e d b l o c k with x y i d e n t i t y

Copy t h e b l o c k from g l o b a l to l o c a l memory
Per form h o r i z o n t a l c o n v o l u t i o n on l o c a l memory
Write back to g l o b a l memory

U n t i l a l l b l o c k s done

program consists of three steps: (1). data is first transferred from host to GPU device memory; (2).
then the kernel code is executed on the GPU; and (3). finally the results are transferred back to
the host from the GPU device. Listing 5 shows the scaling kernel in CUDA to run on an Nvidia
GPU. The kernel function is in principal invoked in parallel on all pixel positions. On the GPU
it is not necessary to explicitly code for the interpolation. Instead CUDA offers a feature called
texture memory that allows implicit linear interpolation of a two dimensional array of data. The
interpolation is performed when the array is indexed using the tex2d function.

6.2.3. Image Convolution A separable convolution kernel is a vector of real numbers that can be
applied independently to the rows and columns of an image to provide filtering. It is a specialisation
of the more general convolution matrix, but is algorithmically more efficient to implement ¶. For all
tests we used separable kernels of width 5 as required for our stereo vision system.

The Pascal implementation attempts to minimise the cache usage, convolving the image in
slices that will fit into the cache. This optimisation, which is not parallelism specific, adds some
complexity to the algorithm.

The GPU convolution algorithm is more complex than the corresponding scaling algorithm. In
order to reduce the number of idle threads tiling is used. The image is divided into a set of rectangular
blocks. From the standpoint of the CUDA programming language, these blocks in the image are
defined as ’thread blocks’, i.e. rectangular blocks of programme threads that run in SIMD fashion.
At run-time each block is automatically allocated to a multiprocessor. All threads within one block
execute on the allocated multiprocessor. Listing 6 shows pseudo code for the row filter part of the
convolution algorithm that runs on an Nvidia GPU. The column filter pass operates much like the
row filter pass.

¶The complete algorithm can be found in Vector Pascal as Listing ?? of the additional materials file
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Listing 7 The Pascal routine that occupies most of the cycles for convolution.
PROCEDURE MA5(VAR acc , p1 , p2 , p3 , p4 , p5 : p l a n e ; k : k e r n e l ) ;
BEGIN

acc := p1∗ k [ 1 ] +p2∗k [ 2 ] +p3∗k [ 3 ] +p4∗k [ 4 ] + p5∗k [ 5 ] ;
END;

Table III. Ratio of Xeon Phi to Ivy Bridge Xeon speeds for different image sizes. 12 threads on Xeon
compared to 100 threads on Xeon Phi. Numbers > 1 indicate that the Xeon Phi is faster.

Image size Scaling Convolution

512x512 3.8 0.6
768x768 4.3 0.8

1152x1152 4.9 1.3
1728x1728 5.6 1.8
2592x2592 6.1 1.3
3888x3888 6.6 1.0
5832x5832 7.5 1.2

Note that the copying of data into the local memory has to be done explicitly in CUDA, and the
convolution code is so written as to ensure that the copying can be done in parallel blocks, 64 bytes
wide. This is analogous to the compiler on the Xeon Phi issuing prefetch instructions. The difference
is that the programmer on the Xeon Phi does not have to explicitly schedule these transfers.

6.3. Efficiency

To assess the performance of Vector Pascal on the Xeon Phi, the three test programs were ran on
four different architectures, for varying numbers of cores. Besides the Intel Xeon Phi 5110P, an Intel
Xeon E5-2620 processor, an AMD FX-8120 processor and a Nvidia GeForce GTX 770 GPU were
used. For each test timings were obtained over a set of images with varying input sizes.

6.3.1. Matrix efficiency Table V records the efficiency of the three algorithms on two machines.
We take gcc with no optimisations enabled on the host as the base performance. The Vector Pascal
matrix multiply code compiled on the Xeon does not vectorise, but with 12 threads it shows good
acceleration. The single threaded gcc code on the Xeon Phi has very poor performance, running
much slower than on one Xeon core. The same C code with OpenMP enabled using icc runs 75
times faster than the baseline. Pascal on the Xeon Phi runs 19 times faster than baseline.

6.3.2. Image scaling efficiency This can be vectorised on the Xeon Phi using gather instructions,
whereas for earlier Intel or AMD processors the code can not be effectively vectorised. It is a
particularly favourable basis on which to compare the Xeon Phi with standard Xeons. Table III
shows that the performance gain on scaling ranges from 3.8 to 7.5. Figure 2 shows a plot of Pascal
scaling timings against number of threads used.

• When using the same number of threads on a large image the Ivy Bridge Xeon host processor
outperforms the Xeon Phi on scaling.

• The Xeon Phi however, overtakes the host Xeon once the number of threads is greater than 10.
It goes on to achieve a peak performance an order of magnitude greater than the host Xeon.

• The Xeon Phi supports hyperthreading and shows a modest performance gain above 60
threads, but this gain is not monotonic, there is a local minimum of time at 100 threads with a
local maximum at 120 threads.

Figure 3 shows the time taken to perform scaling and convolution against image size for four
systems. It can be seen that for larger images convolution takes about the same time whatever
architecture we use. For scaling, on which the gather instructions can be used, the Xeon Phi shows
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Comparison of Xeon Phi with Xeon 6 core on 5832 pixel scaling

Figure 2. Log/Log plot of performance using Xeon Phi and Xeon 6 core processor for scaling images. The
input images were 5832 pixels square. For each processor the maximum number of threads uses was twice

the number of physical cores.

a considerable advantage over the two AVX machines. Also the Xeon Phi performs best on large
images.

Since the work to be done scales as the square of the image edge, we would expect that on a
Log/log scale the points for each machine should lie on a line with gradient +2. This indeed is
almost what we observe for the Nvidia. But the Xeon Phi initially has a gradients of substantially
less than 2. The Xeon Phi has a slope of 1.28, indicating that the machine is more efficient for large
images than for small images. How can we explain this?

We attribute it to the overheads of starting large numbers of tasks, which is expensive for small
images. The Nvidia, being a SIMD machine does not face this overhead. It can be seen that for
larger images we observe a scaling slope closer to 2 for the Xeon Phi.

The GPU bears considerable costs in transferring data from the host machine into graphics
memory to perform convolution or scaling. If one has a multi stage algorithm that can avoid repeated
transfers of this sort by making use of the graphics memory to store intermediate results, then the
GPU is likely to show an advantage over the Xeon Phi. Against this, the retention of a basic x86
architecture on the Xeon Phi means that it is possible to port code to it by simply recompiling the
same source with a different set of command line flags.

6.4. Image convolution performance

Caching When convolving a colour image the algorithm must perform 60×32bit memory fetches
per pixel: 3 colour planes × 2 passes × (5 kernel values + 5 pixel fetches). We can assume that
half these memory access, to the kernel parameters, are almost bound to be satisfied from the
level 1 cache, but that means that some 120 bytes have to be fetched from either main memory
or level 2 cache for each pixel accessed, so the algorithm is heavily memory-fetch bound. An
obvious optimisation is to process the image in slices such that two copies of each slice will fit
into the level 2 cache; two copies because the algorithm uses a temporary buffer of the same size.
The algorithm shown in section 6.4 is embedded within a recursive routine that, if the working-set
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Figure 3. (a) Log/log plot of convolution times on Xeon Phi and 6 core Xeon host, against number of threads
used. The input images were 5832 pixels square; (b) Log/log plot of scaling and convolution times on Xeon

Phi, Nvidia, AMD 8 cores and a Xeon 6 cores, against image edge in pixels.

needed is greater than cachesize, will split the image horizontally and call itself sequentially
on the upper and lower halves. We systematically varied the declared cachesize and found that
performance peaked at 48MB. If the declared size working is too big performance falls off. When
cache size is too small, performance again declines since the number of raster lines in the image is
too small to provide a balanced workload for all threads.
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Table IV. Scaling and convolution timings in milliseconds for 100 threads with different languages and
settings, over square colour images of different sizes represented as single precision floating point numbers.
Working set size for the convolution algorithm set at 32 MB. C++ code compiled using OpenMP and the

icpc compiler.

Language C++ Pascal Pascal Pascal
OpenMP No FMA FMA FMA

Image edge size Pre-fetch

Scaling Time Time Time Time

1152x1152 2.4 7.3 7.6 6.9
1728x1728 4.7 14.8 13.9 13.1
2592x2592 8.4 29.7 25.6 26.4
3888x3888 18.3 55.6 55.6 54.8
5832x5832 42.3 131 129 126.0

Convolution Time Time Time Time

1152x1152 0.85 7.9 6.9 7.3
1728x1728 1.99 11.5 10.5 10.6
2592x2592 4.15 22 22.9 20.8
3888x3888 8.77 72 70.7 65
5832x5832 19.56 145 140.7 126

Scaling and Convolution with Pre-fetching Table IV shows that prefetching actually slowed
down performance in some cases when using 100 threads. Although in the larger images prefetching
was consistently beneficial for small image sizes it produces erratic results. Intuitively we can see
that for smaller images, threads may prefetch unnecessary data beyond the end of the scan lines they
are tasked with. The surplus prefetching will generate extra bus traffic. We thus do not reproduce
the results of Krishnaiyer et al [28] who found that pre-fetching was generally beneficial, including
for convolution.

Krishnaiyer et al [28] published only results for the maximal number of threads supported by the
hardware. We have found that performance does not necessarily peak at this point.

Enabling the pre-fetching flag for the C++ code did not make much difference in the timings. So,
the best performance obtained by disabling pre-fetching. Vectorisation was enabled using pragma
ivdep‖.

As Figure 3 shows, the peak performance for image convolution occurs at 100 threads after which
performance degrades.

On image convolution, an operation that can be vectorised well on either and AVX or a Phi
instruction set, the performance gain of the Xeon Phi is much more modest than it was for resizing.
We had expected the relative advantage to be greater in the case of image scaling since for this task
the Xeon Phi can use gather instructions, which are not available on the ordinary Xeon.

If we contrast Figure 2 with Figure 3 we see that the Xeon Phi performs worse core for core as
compared to the Xeon using vectorised AVX code and the Xeon running scalar Pentium convolution
code. Even at the optimal number of threads (100) the Xeon Phi only slightly outperforms the host
processor.

Fused Multiply-Accumulate The Xeon Phi has a couple of instructions that perform the
calculation a := a + b*c on vectors of 16 floats. The very high performance figures quoted
by Intel for the machine appear to be on the basis of these instructions which effectively perform
32 floating point operations per clock cycle per core. After enabling fused multiply accumulate
instructions in the compiler we did see a noticeable acceleration of performance on both our image
processing primitives as shown in Table IV.

In terms of comparing the parallel frameworks, OpenMP exhibited very good performance. We
would like to add other parallel frameworks, such as GPRM [31] to the comparisons. We also plan

‖pragma ivdep tells the compiler to ignore assumed data dependencies that inhibit vectorisation.
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Table V. Performance vs. complexity, 3 machines 4 compilers.

cores compiler seconds speedup code size relative perf/size
in char size ratio

Matrix Multiply(2048×2048)
Xeon 1 gcc 53 100% 190 100% 100%
Xeon 1 vpc 42 126% 89 46% 269%
Xeon 12 vpc 7.1 746% 89 46% 1593%
Xeon Phi 1 gcc 541 10% 190 100% 10%
Xeon Phi 236 vpc 2.78 1906% 89 46% 4070%
Xeon Phi 240 icc 0.7 7571% 327 172% 4399%

Scaling(1728×1728)
Xeon 1 gcc 0.528 100% 1072 100% 100%
Xeon 1 vpc 0.415 127% 837 78% 163%
Xeon 12 vpc 0.081 651% 837 78% 834%
Xeon Phi 100 vpc 0.013 4061% 837 78% 5201%
Xeon Phi 100 icc 0.0047 11234% 1108 103% 10869%
Nvidia 1536 cuda 0.019 2778% 2189 204% 1360%

Convolution(1728×1728)
Xeon 1 gcc 0.35 100 % 1470 100.0% 100%
Xeon 1 vpc 0.35 100% 1435 97% 102%
Xeon 12 vpc 0.042 833% 1435 97% 854%
Xeon Phi 100 vpc 0.01 3500% 1435 97% 3585%
Xeon Phi 100 icc 0.002 17500% 1585 107% 16355%
Nvidia 1536 cuda 0.013 2692% 6181 420% 640%

to parallelise the image algorithms over the RGB planes to find out whether better performance can
be achieved.

7. CONCLUSIONS AND FUTURE WORK

The Xeon Phi is a challenging machine to target because it combines a high level of SIMD
parallelism along with a high degree of thread parallelism. Making the best use of both requires
changes to well established compilation techniques. We have described an extended syntax for
machine descriptions which allows machine specific vectorisation transformation to be used.
Experiments with some simple image processing kernel operations indicate that, where these
transformations can be used, the Xeon Phi shows a much greater advantage over an Ivy Bridge
Xeon (Table III). Overall for floating point image processing operations the Xeon Phi also appears
competitive with more conventional GPU architectures. However for complete application the use of
NVIDIA GPU’s requires a lot more code to be composed then required when processing images on
the Xeon Phi. Although the Vector Pascal compiler in semantic terms fulfils better the requirements
of ISO Pascal then commercial compilers it does not perform as well as Intel C in absolute
performance. One of the reasons for this is the slightly misleading description of the Xeon Phi
to be an in order machine. Inspecting Intel C compiler outputs show instruction reordering that only
make sense if load instructions do not block, but on the contrary can overlap with subsequent register
to register operations so long as these do not depend on the load. The current Vector Pascal for the
Xeon Phi has no assembly instruction re-order pass. Future work on the Vector Pascal compiler for
Xeon Phi would therefore require further, machine specific, assembly code optimisation.
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