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Foreword

This document Ls the final report of a programing language
development contract for advanced manned spacecraft. Thi=
effort was sponsored by the National Aeronautics and Space
Administration's Manned Spacecraft Center, Houston, Texas
under contract NAS 9-1 05 42. It was performed by Intermetrics,
Inc., Cambridge, Massachusetts under the technical direction
of Mr. Daniel J. Lickly. The Technical Monitor for the Manned
Spacecraft Center was initially Mr. John E. Williams and
later was Mr. Jack R. Garman, FS/5.

The publication of this report does not constitute approval
by the NASA of the findings or the conclusions contained therein.
It is published for the exchange and stimulation of ideas.
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CHAPTER 1

REPORT ORGANSZATI.ON

This chapter is intended to delineate the intent and
scope of the final report and to direct the ree.der's attention
to the technical authoritative documents which have been
produced by Intermetrics during the period of performance of
the contract.

The purpose of the final report is to summarize briefly
the technical material, review the objectives, progress, and
results of each contract task, and evaluate the ac;coV liahments
of this effort within the overall status of projectecT MSC
activities.

This final report is not the main source of technical
material describing the results of the contractual effort.
Several other documents have been written as end-item deliver-
ables and are the references in their respective areas. These
reports are:

1. Requirements Analysis for a Manned Soaceflight
Programming Language and Computer, MSC-01845,
August, 1970, Intermetrics, Inc., Cambridge,
Massachusetts.

1	 2. The Programming Language HAL - A Specification,
MSC-01846, June 1971, Intermetrics, Inc.

3. HALMAT, An Intermediate Language of the First
t	 HAL Com ip ler, 1,1SC-01847, June 1971, Intermetrics,

Inc.

Also complete in itself is, A Guide-to the HAL
Programming Language, which has been incorporated as Vol. II
of this final report.

r

	

	 The rest of Vol. I is organized as follows: Chapter 2
presents an overview of the contract and the objectives.
Chapter 3 is a technical summary of the HAL language. Chapter
4 discusses each contract task and contract related topics
and attempts to summarize significant information about each.

i
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CHAPTER 2

OVERVIEW

2.1 Introduction

Designs for the next generation of manned space vehicles
are currently being formulated. They involve advanced computer
systems performing comprehensive tasks of guidance, control,
navigation, monitoring, data reduction, and communication.
The typical aerospace computer that was employed for each of
these roles in the past was of modest performance capability and
possessed a limited storage facility which was considered to be
just sufficient for each function. However, it is expected that
the new generation of on-board computing systems will demand the
on-line availability of vastly increased computational po%z er
and system resources. The chief characteristics of future space
missions that will contribute to the need for extensive on-board
computer facilities are:

a) the variety and complexity of the systems and the activities
which the computing system is expected to service. Examples
of these are vehicle control, life support, inventory
management, scientific experiments, communications with the
crew, with other spacecraft and the ground, etc.

b) the vast amounts of data that are expected to be generated
on-board must be reduced and stored. Estimates of the
bulk of data generated by the systems aboard an orbiting
space base have been as high as 10 11 bits per day [9].

c) the long duration of the planned missions of the future
will require the computing system to be capable of perform-
ing a leading role in a large variety of missions, and of
providing support to numerous and varied Programs of scien-
tific exploration. These tasks will involve a massive
amount of supporting software which must be available on-board.

Manned spaceflight computers, thus far, have been special
purpose machines performing tasks principally in guidance, navi-
gation, control and pilot displays. The computer has been
provided with a restricted instruction set, small working memories
with no secondary storage capability, and established interfaces

2.
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to a limited number of output devices or special-purpose
displays. For the most part, programming has been accomplished
in basic machine language. Although a nuH)er of higho r-order
programming languages has been developed, none has boon applied
to manned spaceflight computer software development.

Future programs such as the shuttle and space station,
will require more complex software within the flight computer.
The functional processing requirements for the on--board system
will inck,.:ase in scope. In addition to performing guidance,
navigation, and control, the computer will handle centralized
data management functions while responding to requests from
a number of general-purpose display and control units. Other
functions will include in-flight monitoring, fight planning
and management, the control and collection of data from a
number of experiment sensors, and in the case of the space base,
provision for a modest amount of on-board software development.
The advanced spaceborne computer will perform functions common
to a large ground-based data processing facility, providing
many diverse computational services, and will involve extensive
man-machine interfacing.

Evolving flight computer system hardware will also impact
software design. Distributed multicomputers as well as large
centralized multiprocessing systems are being proposed as
candidate flight computer systems. These systems attempt to
provide high reliability and flexibility as well as increased

'	 computational power. They portend a more complex environment
for the software involving problems of resource conflicts,
data protection, error detection and recovery, and parallel
processing.

Past experience has shown that developing software for
manned space projects such as Apollo is a task of major pro-
portions. Heavy penalties in cost and time have been paid

•	 for underestimating the manpower and time necessary to produce
effective, qualified, and documented software. The problems
of design, control, and management of software have not been
easy to determine; techniques az.d procedures to cope with them
have been slow to evolve. The development and application of
a higher order programming languag3 is an essential step toward
achieving a more orderly and controlled software production
effort.

..

2.2 Objectives of the Contract

The principal objectives of the effort were threefold:

3.
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1. develop a set of requirements that a language must satisfy
if it is to be useful to the future needs of MSC;

2. analyze existing computer languages that appear likely
candidates and synthesize a resultant language that is
best suited for NASA purposes;

3. design and implement a compiler that will accept statements
in the developed language and produce code that will
operate on the IBM 360/75 at the RTCC: at MSC.

4.
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CHAPTER 3

A SYLLABUS OF HAL

3.1 Shuttle Language Requirements

As a result of an extensive language requirements analysis,
Intei.metrics designed HAL in order to satisfy the following
requirements:

1. The principal application of HAL is for the development of
manned spaceflight computer software for the 1972.1980
period and this includes Shuttle and Space Station applica-
tions. (Initial orientation will be toward the Shuttle
system.)	 .

2. Software applications should include: (a) navigation,
guidance, targeting and general mission programming; (b)
vehicle control and stabilization; (c) operating systems;
(d) on-board checkout and system monitoring; (e) data
management; (f) communications and displays; (g) com,:,iler
and support software.

3. The language and compiler should be designee for a wide
range of flight computer systems and should be capable of
supporting simplex configurations as well as advanced
multicomputer and multiprocessor computer systems.

4. The language should be machine-independent with a minimum
of exceptions.

5. The language and compiler must contain specific features
to aid in achieving high software reliability. The design
shall:

a) strive toward clarity and readability in the language;

b) enforce programming standards and conventions;

c) perform extensive automatic checking;

6. The output format of the language should endeavor to present
data types, attributes and operations in an unambiguous
way. An equation should look like an equation.

5.
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Character strings (or text) should be easily differentiated
from vectors, or arrays. The compiler will annotate the
output listing, accordingly.

7. The language should be oriented toward a general class
of technical personnel involved in manned spaceflight projects,
not solely highly trained programmers.

3.2 Chronology of Software Development (Program Documentation)

The format o f, a space programming language; i.e., its
source input and printea appearance, should be designed to
achieve maximum readability, ease in transfer of knowledge and
understanding, and it should provide a basis for program docu-
mentation. Most existing higher order programming languages
strive towards these goals as av:;ondary objectives, with program
composition as the first priority. Certainly ny new program-
ming language must be easy to use but composition is only the
"front-end" of a long process to develop reliable space software.
In perspective, stronger emphasis must be placed on software
control techniques and accompanying documentation.

The important point illustrated in Fig. 3.1 is that the
anticipated operational life-span of software will far exceed
in time and effort that taken to generate the programs. Conse-
quently, the language should emphasize readability and clarity
for maintaining the software rather than emphasizing ease in
program preparation.

The printed appearance of a langauge greatly influences
^.	 its usefulness as a communications medium. Most of today's

higher order languages, being fundamentally compatible with card
punches or data terminals, are written in single line format..
A multi-line, or two dimensional, format can bring a programming
language closer to being natural in expression and mathematical
form. Equations, whether scalar or vector-matrix, look like
equations and promote understanding among programmers and tech-
nical managers. Subscript and superscript lines, in which
exponents and subscripts appear in standard mathematical notation,
provide an opportunity to make data forms self-evident. For
example

VDOT _ -G + K3 M C

is obviously—a differential equation involving the vector data
types VDOT, G, C; the matrix data type M; and the square of the
subsc.ripted scalar K3.

.

6.
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The appeal of the two-dimensional format is not simply
esthetic; the conventional mathematical notation for input and
output will be decisive factors in promoting software relia-
bility. Coded operations will become visible to managers and
supervisors who have ultimate project responsibility. The
language can pruvide the basis of communication for a broad
spectrum of engineers, scientists and technicians contributing
to the shuttle program.

3.3 Salient Features of HAL

In order to meet the stated language requirements HAL
includes the following features:

1. Two-dimensional input-output and annotation of variables

An equation which involves exponents and subscripts
may be written, for example, as

CI = (X A2 + Y B2 ) 3/2

(HAL also provides for an optional one-line format.)

In addition, in an effort to increase program reliability
and promote HAL as a more direct communcations medium
between specifications and code, the HAL program listing is
annotated with special marks. Vectors, matrices, and arrays
of data are instantly recognized by *bars, stars and brackets.
Thus, a vector becomes V, a matrix M, and an array [A].
Further, bit strings appear with a dot, i.e., B and charac-
ter strings with a comma, 6. With these special marks as
aids, the source listing is more easily understood and serves
as an important step toward self-documentation.

2. Complete vector-matrix arithmetic

HAL can be used directly as a "vector-matrix"
language in implementing large portions of both on-board
and support software. For example, simplified equations
of motion might appear as:

A = B ACC; G = -MU UNIT (R)/R.R; VDOT = A + G; RDOT = V;

8.
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3. Bit and character manipulationsr

For  handling I/O devices, communications (up/down
a	 telemetry and text messages), and support programs

(executive, compiler, etc.) HAL provides for the necessary
"bit-pushing" and character manipulations. Individual
bits may be treated as Boolean quantities or grouped together
in strings. Strings of bits and/or characters can be
concatenated, deconcatenated, and converted to other data
types.

4. Data arrays and structures

In anticipation of the need to process large volumes
of measurement and experimental data (on advanced Shuttle or
Space Station missions) and to facilitate general file
handling or parallel computations, HAL provides for organiza-
tions of data. Multi-dimensional arrays of any single type
can be formulated, partitioned, and used in expressions. A
hierarchical organization called a structure (similar to the
title, chapter, section, paragraph organization of a book)
can be declared, in which related data of different types
may be stored and retrieved as a unit or by individual reference.

5. Real-time control

HAL is a real-time control language; that is, certain
defined blocks of code called programs and tasks can be
scheduled based on time or the occurrence of anticipated
events. These events may include external interrupts,
specific data conditions, and programmer-defined software
signals. Undesirable or unexpected events, such as abnormal
conditions, may be handled by instructions which enable the
programmer to specify appropriate action.

HAL's real-time control features permit the initiation
and scheduling of a number of active tasks. This will be
a necessity in order to cope with the computational tasks
required of the Shuttle's integrated avionics system.

6. Controlled data sharing

Program reliability is enhanced when a software system
can create effective isolation for various subsections of
code as well as maintain and control commonly used data.
HAL is a block-oriented language in that a block of code
can be established with locally defined variables that cannot
be altered by sections of program located outside the block.

9.
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Independent programs can be compiled and run together with
communication among the programs permitted through a
centrally managed and highly visible data pool. For a
real-time environment, HAL couples these precautions with
a locking mechanism which can protect, by progrumrler direc-
tive, a block from being entered, a task from being initiated,
and even an individual variable from being written into,
until the lock is removed.

These measures cannot in themselves ensure total
software reliability but HAL does offer the tools by which
many anticipated problems, especially those prevalent in
real-time control, can be isolated and solved.

3.4 HAL Program Organization

In order to accommodate all Shuttle programs in a single
computer, or substantial portions in distributed computers, it
is imperative that programs be isolated from one another except
at controlled and visible interfaces. This isolation should
prevent the unrestricted access of common data and the arbitrary
transfer of control to any location in the instruction logic.

Software techniques now exist which allow many programs,
designed to do various related and unrelated functions, to be
written and incorporated in a single computer without conflict.
The apprehension that the Shuttle DMS might be a bigger and more

'	 complicated Apollo-type effort with even more erasable conflicts
and control interferences is blunted by the introduction of
effective software modularity through language and compiler.

Fig. 3.2 illustrates the HAL program organization. The
individual numbered programs represent independently compilable
units. Thus, for example, Program #1 might be rendezvous
navigation, Program #2 - autopilots, Program 43 - environmental
system monitoring. Independent compilation permits divergent
groups of people to contribute to the whole and yet progress
at varied paces with measures of local management control.

The communication between programs is provided through a
common data pool (COMPOOL). The COMPOOL is a centrally
defined and centrally maintained group of definitions. Variable
names and location labels in the COMPOOL are potentially known
to all programs and, in fact, provide the only means of
communication between programs.

Thus, for the Shuttle, the many tasks can be apportioned
into programs ^.,hich are managerially or functionally convenient.
Information interfaces among programs then became visible at

10.
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the COMP00L level and can be monitored with respect to definition
and usage by a central authority.

3.5 Blocks of Code (Name Scr..o2e)
For the purposes here, tasks, procedures, and functions

may be considered as subroutines (or blocks). As stated, names
defined in the COMPOOL are potentially known in every program.
Names defined at the program-Level are potentially known within
all included (or nested) subroutines, and so on. The region
in which a name is known is referred to as its scope. Names
are only potentially known because any particular name can be
declared again in an inner block and then its scope would become
all the nested blocks within this block. The example in Fig.
3.3 may help to illustrate these principles:

Two desirable effects of the scope of rules are:

1. Common data must be declared at the highest level and only
once. This contributes to more direct management control
and better visibility.

2. Local variables may be defined within inner blocks and
remain unaffected by outside definitions. For example,
a programmer declaring X in procedure CHARLIE need not fear
that any other program will over-write his quantity. That
is, this particular X is not addressable from outside this
block. In fact, the X in GRAB must refer to different
memory cells.

For the Shuttle application, a name scope, or block-oriented,
language means that many programs and subsections of programs
(i.e., subroutines) can "live" in the same computer, isolated,
and unaware of each other, incapable of writing-over or other-
wise interfering with variables or locations that are not mutually
defined.

3.6 Control of Shared Data

In order to illustrate the problems in a general way,
that can arise in sharing data, consider the examples shown
in Fig. 3.4.

In both examples TASK B interrupts TASK A during the
execution of a statement. The interruption may be caused by
a hardware or software interrupt or by a "job swap" based on
priority. In Example 1, presume that the interruption occurred
while the r!^tri:r	 w-? being read. I-Then TASK A resumes, the

12.
11 JER,f E T RICS INCORPO'IATED - 31 80 GREEN' STREET - CAMEN 1DGE, 1Mi*%SSACF1U E 1 TS 02 139 - (617) 868-1810



..

C7
4aa

wa

J

,,.^ L
q ,^

^+ Imo'

W

`

r4

4J
W

k 9:

•A

41
Q V
4J

Q) 4J
41

N
b

>

0
U U

4) UQ

to N N
U -H •,-^

U
.

q ,^

4 k x

13.



1

r

e

uj
	F	

V)

	

l	 N ^

w

LLJ

04

1

Ny.

0 w

Cl
N	 Cl

1	 ^'i	 b N
le-1	

ea ^,	 s z+

f5 z

	

},	
f

	

. y	X

i

14.

	

^^	 e

ca
ANe

CDl

F

W

oa

w

CL. LLJ
c	

1Q ^ j
LLJ

^.. _

tZ
1

1

1
1



.

com ut tion of M will continue using some "old" N d to anNhep ^	 ^J
'new"	 data assigned in TASK B. In order to prevent this
conflict, initiation of TASK B would have to be stalled until
the reading of N in TASK A is completed.

In Example 2, presume that the interruption occurs dust
after the current value of Y is loaded into the accumulator.
When TASK A resumes, the "old" value of Y (i.e., not reflecting
the update of Y in TASK B) is restored into the accumulator,
X is subtracted and the result assigned to Y. In order to
prevent this conflict, the initiation of TASK B would have to
be stalled until the value of Y is updated in TASK A.

The approach taken, in HAL, towards solving the problems
represented above, is to confine the read and write accesses
of shared variables to identified UPDATE blocks. Consider
Example 1 and suppose that the statements in question (in TASKS
A and B) were enclosed within UPDATE blocks.

In TASK A a read-lock is established for N, because it
will be read onlyy. After the interruption, a write-lock is
established for R and "ASK B proceeds toward completion using
copy-data for ^ rather than active data. At the end of the
update-block in TASK B, the process stalls because of the
read-lock imposed in TASK A. As a *result, TASK A is allowed
to continue with consistent "old" N data. After c mpletion
of TASK A, a copy-cycle is effected in TASK B andn is updated.
All conflicts are elimina^-.ed.

The use of an UPDATE block is not a simple solution to
the data sharing problen ► and presumes a sophisticated compiler;
and yet the goal is worth the effort.

For the Shuttle, data sharing will be a necessity. A
unified approach, through a compiler, as outlined above,
will permit safe operation in multi-program and even multi-
processor environments.

3.7 HAL Code Can Look Like The Specification

HAL exhibits full scalar-vector-matrix capabilities;
vectors and matrices of arbitrary size may be declared. As
part of the HAL syntax, vector-matrix operations include:
inner and outer products, cross products, transpose and inverse,
matrix-vector products, etc. By raising exponents onto an
exponent line and not requiring a special symbol for multipli-
cation (e.g., the FORTRA_,T*) , HP_1, arithmetic code can look
remarkably like a written specification. Consider Fig. 3.5;

15.
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a set of rendezvous navigation equations has boon reproduced
from the Apollo GSOP Specification documont (MTT) . This set
incorporates the measurement data, 6Q, and updates state and
error covariance information. DIAL code: parallels the specifica-
tion almost line-for-line with fe, formalisms.. Note that
the vectors, matrices and scalars cntc apparent and their marks
aid in understanding the prk,^grammer's intent. The adjacent
vectors OREGA and Z, in the last line, imply an outer product.

Some further examples of arithmetic expressions are:

MATHEMATICAL NOTATION 	 HAL EXPRESSION

1. ab A B

2. a (-b) A (-B) or -A B

3. -(a + b) -(A + B)

4. ax+2 AX+2

5. ax+`c AX+2 C

6. ab/cd A B/C D

7. (+b)	
2.5 ( (A+B) /C) 2.5

i

8. a
b

1* 2.7+cT
9. (v_TY) M-1(v+Y)

10. a (Y YT) T (v x w)

A/(1 + B/(2.7 + C) )

(V.Y}M-1 (V+Y)

A (Y V) T (V * W)

3.8 Control, Logic, and Computation

Fig. 3.6 illustrates the applicability of HAL in implementing
a time critical routine. The example :elected is that of cross-
product steering of the Apollo Command and Service Module.
When XSTEER is entered,TGO the tame-to-go to engine cut-off,
is compared with 4 seconds. If TGO satisf.-Les the-inequality
then all the statements between DO and END are executed. mhat
is, the vehicle command rate in navigation-base coordinates
is zeroed, and an indicator switch SW is turned off. (?Dote that
the "over-dot" indicates a bit string; in this case, a Boolean,

17.
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0

or flag.) A routine ENGINE OFF is then scheduled (via a HAL
real-time control statement)7 to be executed at a proper time
hence, with priority 20. E OFF ID identifies this particular
scheduled job, uniquely, so^that it might be referenced at a

t	 future time, perhaps to terminate it. If TGO > 4 seconds then
none of the above instructions would have been executed. Instead,
the steering command rate OMHGA C would be computed based on
the cross-product of the "velocity-to--go" (VG) and the accelera-
tion related term (DELM).	 Finally this rate is transformed
from reference to stable member coordinates (REFSW , AT) and then
from stable member to navigation base coordinates (AWNB) for
application to the autopilot within another routine.

Although the mnemonics may be unfamiliar to the reader,
it is easy to see that HAL's expressiveness makes an important
contribution toward self-documentation.

3.9 Subscripts and Partitions

The elements of vectors, matrices, bit and character
strings, arrays and structures may be referenced by appropriate
subscripting.

The first component of a vector or a one-dimensional array,
is given the subscript 1, the :second 2, etc. up to the total
number of elements. Thus, for a 9-element vector, i.e.,

DECLARE V VECTOR (9)

I

the components may be written as,

V1 V2 V3 ... V9.

A matrix or two-dimensional array may be thought of as being
composed of horizontal rows and vertical columns. The first

'	 of the two subscripts refers to the row number, the second to
the column number. For instance, a matrix of two rows and three
columns would require the declaration

DECLARE B MATRIX (2 , 3)

and the elements could be referred to by writing:

Bl,l B1,2 B1,3 B2,1 B2,2 B2,3

19.
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A range of subscripts may also be selected and used for
partitioning; e.g., Vl TO 4 partitions a larger vector V
and selects the first four components to form a vector. The
same basic approach is used to subscript bit and character
strings; i.e., B16 selects th'e 16 th bit of a string, and 6 TO 10selects characters 5,6,7,8,9,10 from the original characte
string.

Fig. 3.7 illustrates the partitioning of a covariance
matrix in order to computer rms errors after a landmark
measurement and initialization prior to the next measurement.

3.10 Bit and Character Manipulations

n	 It is anticipated that for the Shuttle, bit and character
strings will be required for: logical derision sets, interfaces
with hardware, up and down telemetry formulation and decoding,
processing of text as status information for ground and on-board
display (or recording), complex logical decisions for checkout,
monitoring and equipment reconfiguration, interface with machine
code (if necessary), and the writing of special support software
like an executive, assembler, compiler, simulator, etc.

The manipulation of bit strings, in HAL, is accomplished
using the following four operators:

OPERATOR	 DEFINITION

NOT (^', ")	 complement

CAT	 concatenation
`gLSt

k AND ( & )	 logical AND

OR (^ or ;)	 logical OR

k	 and certain built-in functions and conversions to other data
types.

M	 .

NOT complements each bit in the string; CAT joins two
strings; AND and OR perform bit-by-bit logical operations on
the corresponding bits of two bit operands. For example,

`	 1. NOT B

Each bit in the string is complemented

2. A	 B4 TO 8 AND BIN' 101101;

A logical AND is performed on a bit-by-bit basis.

20.
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fi

The manipulation of character strings is accomplished using the
concatenation operator, CAT or (11). For example:

I	 I	 OF
1. T = C4 TO 911A  TO 5;

The joining together of two character "sub"-strings.

2. WR TA TE (DISPLAY)'BATTERY VOLTAGE EQUAL' S' I 1 VOLTS ;

The value of VOLTS is joined to the standard message.

Fig. 3.8 illustrates the use of bit and character strings
in decoding a systems status variable and displaying an appro-
priate status message. On entering DECODE the first three
bits of SYSTEM STATUS are examined and the proper CASE (i.e.,
system) selected depending on the integer value 1,2,3,4, etc.
A partial message is created. The last three bits are then
examined to determine status. Thus, the bit string 0110001
would cause the message

IMU SYSTEM STATUS: O.K.

3.11 Real Time Control and Error Recovery

The real-time control of HAL programs consists of the
interrelated scheduling of PROGRAMS and TASK blocks, the reliable
sharing of common data, and the recovery from abnormal error
conditions.

The concepts and language features have been designed for
general applicability to real-time control programming. It is
recognized that depending upon specific hardware environments
and operating system designs, certain features may not find
utility.

HATS real-time control commands permit the scheduling of
independent or dependent tasks (i.e., dependent on the existence
of another task), based on time and events, establishing
absolute and relative priorities, and assigning unique I.D.
words for future reference. Before or after the initiation of
a task, its priority may be changed or the task may be terminated
using the appropriate I.D. word. Once operating, a task may be
stalled and/or reactivated based on time or events. Events
may be defined to be interrupts or programmer-initiated occur-
rences. Tasks may then be scheduled or stalled based on single
events or combinations of events. The HAL real-time commands
include:

22.
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^1.
i

x

SCHEDULE unconditionally WAIT FOR... an event
SCHBODULE ... ON event (interrupt) SIGNAL enables occurrence of

programmer-defined
SCHEDULE...AT time event
:SCHEDULE...IN time increment PRIO CHANGE changes priority of

AWAIT time increment . task
WAIT.' 1 1NTIL... a time TERMINATE terminates task

Fig. 3.9 illustrates an. example of HAL real-time control.

During execution of HAL programs ,an error condition may
be detected by the system. Examples of errors might be:

overflow/underf low

divide by zero, or subscript out of range

Depending upon implementation such errors may be hardware
of scftwarc detected. In any case, execution cannot continue
and the system must offer generally applicable alternatives
(e.g., aborting the current task, etc.). In order to provide
the programmer with some control after the occurrence of an error,
perhaps to reset flags or previously initiated I/O commands
(e.g., engine jets), HAL permits programmer-defined error
conditions and alternatives. An example might be

ON ERROR  TO 5 GO TO RECOVERY;

which sets up a remedial action on the occurrence of 5 errors,
and

SEND ERROR 5 ;

which signsils the actual occurrence of the particular ERROR.

3.12 Summary

HAL has been designed for applicability to advanced manned
space missions. As such, reliability in terms of readability
and data protection has been emphasized. By incorporating
a full spectrum of data types, including-bits and characters,
HAL finds utility for on-board software, in fixed- or floating-
point machines as well as for ground support, simulation,
analysis, test and checkout, compilers and assemblers. HAL
provides an excellent programming language with which to build
special purpose 'user languages' for display, checkout, etc.
It is anticipated that development of HAL will continue on
a schedule necessary to support Shuttle software design and
implementation.

24.
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CHAPTER 4

HAL LANGUAGE AND COMPILER STATUS

4.1 Lant!uage Requirements Anal.vsis

The first phase of the contract that was undertaken was
the definition of the requirements to be placed on a programming
language for advanced space missions. Some of the guidelines
that evolved to focus the direction that the language would take
are given below.

4.1.1 Scope of the LanguSage. A large manned spacecraft project
is comprised of many software activities, including a) software
for the onboard computer system, b) the analysis, simulation
and test programs necessary to develop this onboard software,
c) software for ground-based systems for in-flight mission
control and support, d) mission planning and analysis software,
e) simulation and flight training software, f) post-flight mission
data reduction and analysis software. The language 'equirement:s
for all of these cover a broad spectrum. The emphasis in this
contract was to formulate a language principally oriented at
the development and maintenance of reliable software for onboard
applications, and ground-based real time control and support.
Although designed for space application, the language should
also be well suited for general aerospace -engineering problems,
and directly applicable to mission planning and analysis.

It should be noted that the size and complexity of potential
flight computer systems which are targets for the language could
vary considerably from a simplified candidate for the space
shuttle to more sophisticated and complex systems for the space
base. The language should be designed with sufficient features
to enable it to be "scaled" up or down according to the complexity
of the system without having to develop a completely new
language for each level of complexity. Therefore, although the
initial language design encompassed a broad spectrum of objec-
tives, applicability to the possibly limited requirements of
the near future always remained a paramount consideration.

Experience has shown that approximately 5 or more years
are required to design, develop, and verify software for a project

26.
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of the magnitude of the Space Shuttlo or Space Base systems.
It is evident that the management of such an effort will require

considerable insight, visibility and control to assure timely
production of reliable software. System planners must be careful
to employ the preventive measures necessary to avoid the p.l.tfalls
of poor design and implementation.

Accordingly, the programming language and compiler will
serve as tools to assist in the program preparation. The follow-
ing sections present a description of sonic of the key problems
in developing manned spaceflight software, which have influence
on requirements of the programming language and compiler.

4.1.2 Software Reliability and Verification. A unique charac-
teristic in the development of flight computer software is the
required degree of reliability and the amount of validation
necessary to achieve that reliability. The language and compiler
should contain specific features to aid in this development.

Apollo software demanded the highest pre-flight confidence,
and because neither the computer, the language, nor the program-
ming techniques were designed with checkout in mind, verification
was accomplished only through the philosophy of laboriously
defining and carrying out tests for every logical path, every
logical state. For any complicated program this '-ask is essen-
tially impossible and the approach reduces to "the more tests,
the more confidence". All too often, success criteria are
subjective and inconclusive. What is needed is the development
of a technique that ensures more deterministic behavior of the
software in its operational environment within the flight
computer. The technique should attack specifically the problem
of minimizing the test effort involved in the integration of
individual program modules. Checkout of individual modules
is not as significant a problem as groups of modules in a system
or mission sequence. The objective should be to specify a finite
number of tests for each function, and to achieve a definable level
of confidence once all tests are successful. The technique
should be aimed at limiting the possible number of "states"
of each software element by ensuring that its interaction with
the environment is predetermined, well defined and bounded
in some sense. To a large extent this can be mt by the incor-
poration of features into the compiler or language which ensures
"reliability" of the software and lessens the amount of testing.

4.1.3 Communications and Software Docanentation. In a large
programming effort many individuals, some representing quite
different activities, are required to communicate with each other,

27.
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And each does so in a way that has me aning to him!,el f . The
manager attempts to specify his requir cnient; the onrji.noer
attempts to describe his design, qualitatively to the manager
and quantitatively to the prograntim.-r; the programmer is plagued
with documenting the code to a Level that will be useful for
descriptive material, debugging activities, and a quick
reference, as the authority for 'what is real]_ going on in the
machine'. Clearly, all contributors want and have a need to
know at Least some of the intricacies of the implementation.
The problem here is language. Each group has only a limited
comprehension of the others' mode of expression. The engineer
designs and expresses his algorithms using conventional mathe-
,natics, or perhaps FORTRAN-like statements. The programmer
must take this specification and translate it into his language:
traditionally a basic assembly language appropriate to the parti-
cular computer. The programmer must then explain his efforts
to the user in the field, by using other media. He might have
charts drawn to describe detailed functional. flow. He might
use word statements or user-guides, or other apparently helpful
devices.

In many projects the coding language isolates the programmers
from everyone else associated with the effort. The programmer
becomes too busy to learn the physics and objectives of the
mission and is too busy to explain to others how the code works.
He, therefore, is forced to assume an increasing share of the
total responsibility. Small indispensable groups of experts
direct and shape the code and become tree overworked "authorities".

A properly designed programming language will prove to be
a useful analytical tool for the designer, a convenient and
useful program tool for the programmers and will provide a medium
for communication and documentation for technical management.
It will assist in bridging the communications gap. The language
will be oriented toward a general class of technical personnel
in the manned spaceflight project concerned with software. Users
are presumed to have technical backgrounds and some familiarity
with aerospace problems. The language will not be oriented
solely at the highly experienced flight computer programmer,
solely at the novice or non-scientific programmer, nor solely
at management personnel.

It was a specific objective of HAL to promote the ability
of the user quickly and easily to learn to read, write, under-
stand, and "think in" the language, and to document his results
in a clear and unambiguous manner.

28.
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4.1.4 Summery of Requirements. The following is a summary
list of lang-u- a-ge and compiler requirements developed as result
of an analysis of manned spaceflight progrictniming requirements.

4.1.4.1 General Requiremcnts

4.1.4.1.1 The principal. application of the language is for the
development of manned spaceflight c.- iiputer software for the
1972-1980 period anti this includes shuttle and space station
applications. (Initial orientation will be towards the shuttle
system.)

4.1.4.1.2 Software applications should include:

a. Navigation, guidance, targeting and general mission
programming.

b. Vehicle control and stabilizationr

c. Operating systems.

d. Data management

e. Conununications and displays

f. Compiler and :support software.

4.1.4.1.3 The language and compiler should be designed for a
wide range of flight computer systems and should be capable
of supporting simplex configurations as well as advanced
multi-computer and multi.-processor computer systems.

4.1.4.1.4 The language should be machine-independent with
a minimum of exceptions restricted to clearly identified areas.

4.1.4.1.5 The language and compiler must contain specific
features to aid in achieving high software reliability. The
design shall:

a. Strive toward clarity and readability in the language.

b. Endorce programming standards and conventions.

C. Perform extensive automatic checking.

29.
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4.1.4.1. 6 As general goals, the language should, in descending
order of importance:

a. Enable the programming of software for a wide variety
I.
	 of manned spaceflight applications.

b. Be easy to read and understand.

C, Be easy to debug.

d. Be easy to modify.

e, Be easy to use.

f. Be easy to learn.

g. Be easy to transfer to another computer.
t

h. Enable the enforcement of standards and conventions.

4.1.4.1.7 The output format of the language should strive
toward presenting data types, attributes and operations in an
unambiguous way. An equation will look like an equation. A
character string (or text) will be easily differentiated from
a vector, or array. The compiler will annotate outp-%^t listing.

4.1.4.1.8 Language should be oriented toward a general class
of technical personnel involve in manned spaceflight projects,
not solely highly trained programmers.

4.1.4.2 Specific Requirements Language

'	 4.1.4.2.1 To enhance readability, the language should possess
distinct names and labels.

4.1.4.2.2 The language should possess the following data
types: integers, fixed/floating point scalars, vectors,
matrices, booleans, bit and character strings,
and labels.

4.1.4.2.3 The language should possess the following data
organIZations: arrays of similar data types, "collections" of
different data types (e.., structures).

t
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4.1.4.2.4 The language should possess at least the following
data attributes: precision, dimension, init i. ali nation, global
variable lock and unlock, and static and automatic storage •

4.1.4.2.5 The language should possess a complete set of scalar
and matrix-vector arithmetic operations.

4.1.4.2.6 Boolean operations in the language should be the
logical AND, OR and NOT operators and should include a convenient
method of setting, resetting and inverting booleans. The language
should possess, as a minimum, the following set of relational
operators:

a. equal

b. not equal

c. less than, and less than-or equal

d. greater than, and greater than-or equal

4.1.4.2.7 The language will possess a flexible set of
conditional and unconditional program transfer instructions,
and data calls.

4.1.4.2.8 The language syntax must be accomplishable with a
defined common character set. This common set is:

A - Z

0 - 9

+ - -
n

< ?

plus blank or s ace. The compiler will not reject an expanded
character set; e.g. ", ", [ ], etc., where the expanded set
provides convenient alternate forms when available.

4.1.4.2.9 The language will possess the capability of dealing
with I/O operations, conditional error procedures, and real-time
tasking. These may not be an integral part of the language syntax.
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4.1.4.2.10 The language will include iteration statements
nested to any level.

4.1.4.2.11 Basic machine language coding will not be permitted
everywhere but will be restricted to clearly identified areas
such as special subroutines.

4.1.4.2.12 Simple replacement type macros will be provided
by the compiler.

4.1.4.2.13 The language should allow definition of global and
local data which can be applied to independent program sub-
sections.

4.1.4.2.14 The language should provide for data sharing
indicators and control of global information for real-time
use among program sub-sections.

4.1.4.2.15 The language will be designed for a 2-D input stream.
(An optional 1-dimension input will also be provided.)

1.4.2.16 For
'.ng operator

For bit strings
NOT, and a meth
CONCATENATE and

character strings, the language will possess the
CONCATENATE and a form of deconcatenation.
the language will possess the logical AND, OR,
Dd of shifting in addition to the string operator
a form of deconcatenation.

4.1.4.2.17 The language will not provide for complex number
arithmetic or data declarations.

4.1.4.2.18 Language will not include any specific code opti-
mization directives.

4.1.4.3 Specific Requirements-Compiler

M	

4.1.4.3.1	 The compiler should allow independent compilation
of sub-sections of the total program.

32.

( . INTERMETRICS INCORPORATED • 380 GREEN STREET • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 808-12=14



i

4.1.4.3.2 The compiler will possess a full library of mathe-
matical functions.

4.1.4.3.3 A system to handle a collection of shared data in
an orderly fashion is required.

4.1.4.3.4 The language will not provide for extensive or
ambiguous mixed data-type operations.

4.1.4.3.5 The compiler should provide execution checking with
reference to indexed data organizations; e.g. arrays.

t	 4.1.4.3.6 The compiler will annotate the output listing to
increase readability.

a
4.1.4.3.7 The output listing of the language will be in
2-D format.

4.1.4.3.8 The compiler will produce reentrant code when needed,
but recursive code is not required.

4.1.4.3.9 The output character set will not be restricted.
In order to achieve a maximum of self-expression the compiler
will be capable of utilizing the full character set of the
output device.

4.2 Language Analysis and Synthesis

4.2.1 Language Com2arisons. The next step in the chronological
progress of the contractual effort was the analysis of the
potential of existing languages. Eight prospective candidates
were examined for their suitability. Although absolutes are
difficult to prove or even demonstrate conclusively - in fact,
space programming could be accomplished with unlikely languages
such as COBOL or LISP, or even none at all (witness most
previous space programming efforts) - nevertheless, essential
properties of certain languages made them relatively better or
poorer prospects as measured by the requirements criterii. The
candidates that were surveyed and a pithy comment on each are
given as follows:
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1. CLASP: tuned for small flight computers. (See 4.2.2)

2. SPL Mark IV: CLASP's big brother, general purpose
replete with tables.

3. JOVIAL: The father of both CLASP and SPL, an old-timer
and direct decendent of ALGOL 58.

4. ALGOL: ALGOL 60 was the trail blazer in its day and
still the academic yardstick.

5. FORTRAN: The first and foremost, and still number one,
and probably will be for the forseeable future despite
its myriad shortcomings and venerable age.

6. PL/1: IBM's answer to the maiden's prayer - indeed,
all maiden's prayers. The union of FORT'RAN and COBOL
that turned out to look like ALGOL.

7. MAC: The maverick from MIT that pioneered vector-matrix
algebra and readability.

8. APL: The mathematicians' nirvana with its idyllic
elegance. Concise notation, powerful operators, total
generality, and indecipherability.

4.2.2 CLASP Evaluation. The most serious drawback to CLASP
is one 1-t shares with almost all the other languages - that it
was not designed to enhance readability and self-documentation.
This is of prime importance since it not only is a major contri-
butor to the achievement of program reliability, but promotes
all the other "EZ/2's" of the requirements section, easy to
maintain, easy to learn, etc.

CLASP is oriented towards a small-scale fixed-point
airborne computer. While this species will still be around for
some tim.r - especially in the military market, although there
too sounds are being made that foretell of floating-point -
the mandatory requirements clearly stressed the need for a more
general approach. The operational environment of a future space
mission langauge can best be described as a large-scale,
cooperative programming effort. Large-scale is self-evident.
Cooperative means that many programmers will be working together
on a joint venture and sharing the tools, routines, and data
on a real-time system. Contrast this with a commercial time-
sharing environment where each user is trying to solve his
own problem. As a consequence, CLASP has over-emphasized
fixed-point arithmetic capabilities and short-cuts to code
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optimization. An example is the arbitrary scaling of variables
to minimize shifting in the computer; this is potentially
an insidious hazard.

Other CLASP deficiencies include:

1. CLASP reflects its heritage as it still shows signs
of the JOVIAL syndrome, such as overly brief abbreviations
(A,B,I,B,L) and unusual syntax (periods '.' at one side
or the other or certain labels) which detract from the
legibility.

2. CLASP should encompass more comprehensive vector--matrix
operations. The inclusion of a special. matrix multiply
operator /*/ (an unsightly choice, at that) doers not do
justice to the vector-matrix algebra needs. It has been
estimated that 80% of the scientific computations for space
flight programs involve matrix calculations [7). Most
languages ignore the needs of linear algebra; exceptions
being MAC and APL.

3. No mention has been made of the ability to separately
compile program sections and integrate then • with an orderly
sharing of commonly used data (COPIFOOL concept), and sub-
routines. The control, interlocking, and accessing of
data and procedures is vital.

4. Better bit handling capabilities are needed. The logical
formulae are a strange sort of orphans since there is
no equivalent data type for them to be tied to. And PACK
and UNPACK are awkward functions, and not even true substi-
tution operations at that.

5. It has an unclear scope of names of variables and labels.

6. A parameterization capability is required. A form of
compile-time variable (the integer constant in CLASP)
should be permitted anywhere that a literal constant is
valid.

7. Real-time control capabilities are minimal.
h.

8. The rigid formulation permitted for subscripts is far
too restrictive and inflexible. It is an apparentY	
anachronism left over from FORTRAN.

9. It lacks a subroutine library and I/O routines.
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10. It needs the facility to create and minipulate complex
data structures.

11. It should be more machine independent: word-length and
hardware dependent functions should be modified; and the
easy lapse into machine code via the DIRECT directive
should not be encouraged.

12. The documentation should be less vague, ambiguous, and
conflicting.

13. It has no character or bit concatenation operations.

14. Minor syntactical forms often lacked appeal.

4.2.3 The Lineage of HAL. As a result of the analysis of the
various languages, it was decided that selecting one of the
existing languages or a subset of them, or even grating onto
them was not justified. It would have been nice to adopt
an "off-the-shelf" language, but the demand and need for program
integrity for future space missions dictate that all should be
done that is possible at an early date to design into the
language and software the special mechanisms ::equired to achieve
these objectives. And, furthermore, modern compiler building
techniques permit the flexibility of language constructs that
allow the language to grow and be shaped..for maximum utility
in the intended usage. On the other hand, a language that is
too new and different has both learning and compatibility
problems.

What were the desirable features of other languages that
HAL tried to incorporate?

1. MAC: The inherent readability of the three-line format
made it most attractive. In HAL it is generalized to
multiple lines. Another characteristic `L'.hat was brought
over intact was the vector-matrix operations and symbolisms.
They were integrated with the arrayness or repeatability
concepts of most languages.

2. PL/1: The basic syntactical structure of HAL is straight
from PL/l, which in turn owes much of its form to ALGOL.
The conditionals, DO groups, DECLARE statements, and
STRUCTURES are almost pure PL/l with word changes here
and there. On the other hand, PL/l is a very rich and full
language and has many, many features that are not needed
nor applicable. Moreover, there have been efficient
implementation of PL/l subsets, which is what HAL super-
ficially resembles.
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3. JOVIAL: Th y: JOVIAL (and full SILL) COP POOL concept and
objectives, if riot the dotai led apparatu , hive been added
to IIAL .

4. APIA: The generality of APL, especially in arrayness
served as a model for IIAL.

5. Several. particular features were borrowed:

a. The CASE statemont of EULER

b. The text replacement macro of XPL

6. HAL owes a debt; (as do many languages) to FORTRAN for
pioneering the general form for algebraic languages.

The result of this eclectic synthesis is IIAL which is described
further in Chapter 3 and Vol. II of this report and in Ref. 2.

4.2.4 The Suitability of FORTRAN. In meeting the language
requirements, FORTRAN would rank at the bottom of the list.
It lacks mane of the features that are wanted. It really is
only useful for scientific type calculations and has an awkward
form that is hard to read at that. However, it has one big
advantage going for it, it is well-known and widely used. And
although t'.ifferences pop-up in various implementations, they

w	 are usually easy to reconcile. This universality is such
an asset that a strong case could be made that if a special
language for the job were prohibited then it would be better
to take FORTRAN and augment it with large set of special purpose

I' y	subroutines than to accept a lesser known language that does
only a fraction of the job and is not directly under control
of NASA. However, the better choice still appears to shape
the language to the NASA tasks. This seems the only way that

4.	 the education and deepening insight which invariably accompanies
the system development can effectively feedback into the
subsequent work.

4.3 The HAL Compiler

Development efforts began early in the contract on the
production of the compiler and were continued in parallel with
the language development tasks. The first fe,,:7 months were
spent in the development of tools and techniques that would be
used in producing the HAL compiler. The objective was a compiler
that would run on the IBM 360/75 at DISC and produce code for
the 360/75 executed under RTOS. It was also a goal to separate
the code generation process so that- a code generator for anot-har
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computer could be substituted with a minimum of disturbance
to the rest of the compiler.

The HAL compiler has been designed to take advantage of
automatic compiler generation-techniques. As a key ingredient,
the total grammar of HAL is expressed in a meta-language and
changes are easily incorporated and thoroughly checko d for
ambiguities and inconsistencies by a grammar analysis program
that automatically produces the syntax tables that are used
by the compiler. The system used to accomplish this is the XPL
compiler generator system. It is described in the book,
A Compiler Generator., by McKeeman, Horning, and Wortman [8).

4.3.1 The XPL Com2iler Writinci System. Three basic components
comprise the XPL compiler writing system: ANALYZER, XCOM,
and SKELETON. XPL is the name of a language (a PL/1 subset)
in which these programs are written. Fig. 4.1 illustrates
the interaction of these programs and shows the stages that are
gone through in order to compile and run a HAL program. The
main steps are:

1. The grammar of the language is described in a meta-language,
BNF. Analyzer accepts the grammar and punches out decision
table3 used by the compiler.

2. The syntax tables are combined with SKELETON, a proto-
compiler that contains the basic parsing and stacking
mechanisms, and with the code generator that must be
written to do semantic interpretation and output execution
for each syntactical element.

3. The resultant source language
XCOM which is a
into executable
code is the HAL

statements are fed into
translates XPL statements
for the IBM/360. This object

compiler that
machine code
compiler.

4. FOAL source statements can then be compiled and executed.

A description of major elements is given below:

1. ANALYZER - The grammar analyzer is provided the description
of the langauge in BNF, Backus-Naur Form. BNF is the
meta-language most widely used to define programming
languages. It offers a readable method to express any
context-free grammar in an unambiguous way. In order to
satisfy ANALYZER the grammar must meet certain requirements:

a. The grammar must be unambiguous; each sentence must
have a unique phrase structure.
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b. The grammar must be compatible with the parsing algorithm
used by the translator.

If a grammar does not measure up, error diagnostics are
issued to aid corrective action. The method used is to
"run the parser backwards". Instead of reducing a string
of text to an end-item or goal symbol, it expands the goal
symbol into all the possible forms that are described by
the grammar and tabulates the decisions needed to parse
the produced forms. Expansion continues until all possible
cases have been examined. This exhaustive analysis of all
permutations points out the loopholes that r:ay be present
in possibly obscure syntactic combinations, and ensures that
the resulting parser will systematically handle all input
forms. It cannot, of course, guarantee that every syntac-
tical form will be given its intended inter pretation or that
correct code can and/or will be generated.

2. XCOM - XCOM is a one-pass compiler which translates XPL
source statements into IBM/360 machine instructions. It
was des'gned and constructed using the XPL system and thus
is self-compiling. XPL is a dialect of PL/1 with a number
of deletions and restrictions and a few extensions. Although
upon superficial examination, XPL does not appear to differ
significantly from PL/1, it is simplified enough so that
it produces fairly efficient machine code and consequently
will compile at about 7000 words per minutes, on the 360/75.

3. SKELETON - This proto-compiler is the frame-,-:ork to which
the decision tables from ANALYZER can be added to form a
syntax checker. The basic parsing algorithmn, which is a
bottom-up technique and a version of extended precedence,
is built into SKELETON. To this can be added other
XPL source code to accomplish semantic interpretation., code
generation, and symbol table manipulation in order to
round-out a complete compiler.

All three of these programs are written in XPL; ANALYZER
and XCOM are compiled and the object versions executed, but
SKELETON is only needed in source form and must be combined
with other source checks before a useful group is formed and
can be compiled (See Fig. 4.1).

ANALYZER is really a pre-proces!^-nr and is only run when
a change in the language or grammar is made. This should be
pinned-down early and the syntax tables remain fixed through
many revisions of the compiler. Because of its independence,
ANALYZER could be written in almost any language; we have seen
versions of ANALYZER in both PL/1 and FORT R-AIN IV.
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4.3.2 ILM, Com! ilor Struc.turv. The actual structure of MU,
is a two-pass compiler. It has two phas.c,. of execution.
PASS I carries out all the syntactic and virtually all. the
semantic analysis of the source: toxt. At the s^iwo time sytii )Ql
and l i'teral tables are generated, togetlic:1 , with toxt in the i nter-
medi.<<te language IiALt•1AT described in Refer c,iicc- 3. PAS IS) II
takes this intermediate text, a,.d carries out the rciiaindor of
the somantic analysis, performs a sin,all ar „fount of code opti.n-d7,a-
tion, and generates executable object text in l'ortran IV.
Fig. 4.2 illustrates the process. The XPI, systom has goon
designed as a one-pass systern (at least, care resident) and
extensive changes had to be made to support an overlayed second
pass.

Producing FORTRAN source statements as output way appt:e ar
highly unusual if not eccentric, and was not decicled upon
lightly. First, the FORTRAN route is contemplated only for the
360 or other general purpose computer facilities. For a flight.
computer, the intermediate FORTRAN step would bo onitted and
assembly language statements would be produced.' See Fig. 4.3;.
Second, the only reasonai°'.y generalized alternative would be
to produce input for. the 360 Assembler which is itself no spend
demon. Thus, the extra step of the FORTRAN con-pil.er is not
as bad as it might seem since it replaces the Assembler in
-the process. (Both FORTRAN G&H output machine code directly,
and provide an optional optimizer when wanted.) II r̂ t e ,^e r,
the reasons for going through FORTRAN were two-fold:

1. It was extremely desirable to achieve cotrtpatibility
with the great body of FORTRAN program no g., in existence
at MSC and elsewhere. If HAL is going to be ^•:idely used,
then there must be a way to work new HAL programs into
large FORTRAN simulations. To require massive conversion
is unreasonable. Thus, FORTRAN compability was very
important.

2. Fortran is universally implemented and offered a means
to promote machine transferability. With ASA Standard
FORTRAN IV it should be possible to take the FOXTP.AN
source images and compile them on many different computers.
Of course, not everything in HAL, can be dome in standard
FORTRAN - there must be some riiachine language subroutines --
but the great bulk of the job can be done in Fortran which
promises an easy road to machine portability.

At this point an obvious question arises, "Why not use
FORTRAN if HAL generates FORTRAN?” Thy :: answer lies i n the way
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It 	 {

that FORTRAN is being used. Because it is possi.b.Le to devise
techniques to implement HAL in FORTRAN does not mean that
they are closely related. HAL and FORTRAN are no more similar
than FORTRAN and PL/l. FOR'T'RAN is merely a tool or vehicle
that is used to produce the final machine instructions. There
is no more reason a priori to suspect that FORTRAN is qualified
as a replacement language because it is used in the translation
process than to suggest that assembly language could replace
FORTRAN because many implementations convert FORTRAN to assembly
language.

FORTRAN was rejected as the space programming language
early in our work. FORTRAN just does not offer the desired
features: clarity, readability, etc. HAL was designed, speci-

e	 fically, to meet the objectives of advanced manned spacecraft
missions. To this end HAL includes:

• specific features to enhance readability

cgmplete vector-matrix mathematics

• ability to orgat-dze and man..,.pulate large arrays and
structures of data

• full bit and character capability in order to handle
streams of binary data ana facilitate communications

FO RT RP N
but the
the rea

sophisticated real time control statements

advanced features to increase reliability; i.e.
COMPOOL, name scope, control of shared data

could be extended to incorporate some of these features,
result then would hardly be FORTRAN - especially if

dability issue were tackled.

At this point, an evaluation of the use of FORTRAN
as an intermediate language would rate it a satisfactory
decision. It has turned out more difficult than expected -
both in creating a parenthetical language from the HALMAT
code and in designing a FORTRAN system that will execute the
HAL operations. Assembly language would have offered a more
direct path. But on balance, it is felt that it was worth
it. Future developments will., h ,'rpefully bear this out.
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