840 research outputs found

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    Mechanistic modeling of architectural vulnerability factor

    Get PDF
    Reliability to soft errors is a significant design challenge in modern microprocessors owing to an exponential increase in the number of transistors on chip and the reduction in operating voltages with each process generation. Architectural Vulnerability Factor (AVF) modeling using microarchitectural simulators enables architects to make informed performance, power, and reliability tradeoffs. However, such simulators are time-consuming and do not reveal the microarchitectural mechanisms that influence AVF. In this article, we present an accurate first-order mechanistic analytical model to compute AVF, developed using the first principles of an out-of-order superscalar execution. This model provides insight into the fundamental interactions between the workload and microarchitecture that together influence AVF. We use the model to perform design space exploration, parametric sweeps, and workload characterization for AVF

    A unified modulo scheduling and register allocation technique for clustered processors

    Get PDF
    This work presents a modulo scheduling framework for clustered ILP processors that integrates the cluster assignment, instruction scheduling and register allocation steps in a single phase. This unified approach is more effective than traditional approaches based on sequentially performing some (or all) of the three steps, since it allows optimizing the global code generation problem instead of searching for optimal solutions to each individual step. Besides, it avoids the iterative nature of traditional approaches, which require repeated applications of the three steps until a valid solution is found. The proposed framework includes a mechanism to insert spill code on-the-fly and heuristics to evaluate the quality of partial schedules considering simultaneously inter-cluster communications, memory pressure and register pressure. Transformations that allow trading pressure on a type of resource for another resource are also included. We show that the proposed technique outperforms previously proposed techniques. For instance, the average speed-up for the SPECfp95 is 36% for a 4-cluster configuration.Peer ReviewedPostprint (published version

    Identifying, Quantifying, Extracting and Enhancing Implicit Parallelism

    Get PDF
    The shift of the microprocessor industry towards multicore architectures has placed a huge burden on the programmers by requiring explicit parallelization for performance. Implicit Parallelization is an alternative that could ease the burden on programmers by parallelizing applications ???under the covers??? while maintaining sequential semantics externally. This thesis develops a novel approach for thinking about parallelism, by casting the problem of parallelization in terms of instruction criticality. Using this approach, parallelism in a program region is readily identified when certain conditions about fetch-criticality are satisfied by the region. The thesis formalizes this approach by developing a criticality-driven model of task-based parallelization. The model can accurately predict the parallelism that would be exposed by potential task choices by capturing a wide set of sources of parallelism as well as costs to parallelization. The criticality-driven model enables the development of two key components for Implicit Parallelization: a task selection policy, and a bottleneck analysis tool. The task selection policy can partition a single-threaded program into tasks that will profitably execute concurrently on a multicore architecture in spite of the costs associated with enforcing data-dependences and with task-related actions. The bottleneck analysis tool gives feedback to the programmers about data-dependences that limit parallelism. In particular, there are several ???accidental dependences??? that can be easily removed with large improvements in parallelism. These tools combine into a systematic methodology for performance tuning in Implicit Parallelization. Finally, armed with the criticality-driven model, the thesis revisits several architectural design decisions, and finds several encouraging ways forward to increase the scope of Implicit Parallelization.unpublishednot peer reviewe

    CAREER: Automated software understanding for retargeting embedded image processing software for data parallel execution

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    Cache remapping to improve the performance of tiled algorithms

    Get PDF
    corecore