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Abstract 

This work presents a modulo scheduling framework for 
clustered ILP processors that integrates the cluster assign- 
ment, instruction scheduling and register allocation steps in 
a single phase. This unified approach is more effective than 
traditional approaches based on sequentially performing 
some (or all) of the three steps, since it allows optimizing 
the global code generation problem instead of searching for 
optimal solutions to each individual step. Besides, it avoids 
the iterative nature of traditional approaches, which require 
repeated applications of the three steps until a valid solu- 
tion is found. The proposed framework includes a mecha- 
nism to insert spill code on-the-fly and heuristics to 
evaluate the quality of partial schedules considering simul- 
taneously inter-cluster communications, memory pressure 
and register pressure. Transformations that allow trading 
pressure on a type of resource for another resource are also 
included. We show that the proposed technique outper- 
forms previously proposed techniques. For instance, the 
average speed-up for the SPECfp95 is 36% for a 4-cluster 
configuration. 
Keywords: Modulo scheduling, register allocation, spill 
code, cluster assignment, clustered architectures 

1. Introduction 

Until recently, computer architects had paid little attention 
to the time required to send signals/data among different 
parts of the chip. The technology and frequency employed 
allowed any part of the chip to be reached in a single cycle. 
However, the evolution of the chip manufacturing process 
has shown that global wire delays do not scale as technol- 
ogy improves. These delays will remain constant, meaning 
that relative to gate delays, they scale upwards [ 1 11. Tech- 
nology projections [26] point out that this different scaling 
will be one of the main hurdles for improving instruction 
throughput of future microprocessors [ 13. The main conse- 
quence will be that the percentage of on-chip transistors 
that can be reached in a single cycle will decrease, and 

microprocessors will become cor~~r~iunication bourzd rather 
than capacity bound. 

Researchers agree that this problem has to be taken into 
account in the design of current and future microproces- 
sors. New techniques to handle this problem have to be pro- 
posed at all levels, ranging from applications to technology. 
One promising contribution from the microarchitecture 
field is to divide some components of a processor into 
groups that are placed close together and interconnected by 
fast links. Links that interconnect different groups are rela- 
tive slow, basically because they are much longer. The 
result is what is called a clustered microarchitecture and 
each group is called a cluster. 

Current trends in clustering focus on the partition of 
both register files and functional units. In this way, each 
cluster consists of several functional units that obtain their 
operands from a local register file. Values generated by one 
cluster and needed by another one are communicated 
through a bus or a point-to-point connection. Thus, the 
delay and complexity of some critical components are 
reduced. For instance, bypasses are provided mainly (or 
only) among local functional units; the number of register 
file ports and the number of registers of each local file are 
small. 

The reduced delays may translate into a higher clock 
frequency whereas the lower complexity may reduce the 
power requirements [31]. Clustered designs can be found in 
current research proposals (multicluster [6][ 181, multisca- 
lar [27], multithreading [ 151, trace processor [22][29], etc.) 
and in some commercial superscalar processors such as the 
Alpha 21264[ IO]. Remarkably, this technique is becoming 
quite common in the design of embedded/DSP processors 
with a VLIW core such as the TI’S TMS32OC6x [28], 
Equator’s MAP1000 [IS], the ADI’s TigerSharc [9] or the 
HP/ST’s Lx [ 5 ] .  

This work focuses on this last kind of architectures, 
which are commonly referred to as clustered VLIW archi- 
tectures. The effectiveness of this microarchitecture 
strongly depends on the ability of the compiler to generate 
code that balances the workload of the different clusters 
and results in few inter-cluster communications. 
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Modulo scheduling [20] is a very effective instruction 
scheduling technique for loop-intensive codes, which are a 
common workload in such processors. The main goal of pre- 
vious proposals on modulo scheduling for clustered architec- 
tures was to reduce the number of communications among 
clusters while trying to balance the workload. However, 
these works used relatively simple techniques to deal with 
register and memory port usage. In some cases the register 
pressure is simply ignored [17]. In others, naive solutions to 
the problem are used such as increasing the initiation interval 

ous transformations). In this way the usage of these 
three resources is kept balanced. 

The rest of the paper is organized as follows. Section 2 
reviews related works. The assumed microarchitecture is 
described in section 3.  The proposed technique is detailed in 
section 4 and it is evaluated in section 5. Finally, section 6 
summarizes the main conclusions of this work. 

2. Related Work 
(1I)if the number of required registers-exceeds the available 
ones [24]. For these cases, a more sophisticated treatment of 
this phenomena will result in a better performance. For some 
codes, registers and memory ports are very critical resources 
and their impact on performance can be even greater than 
that of communications and workload balance. 

There are several works related with instruction scheduling 
for clustered architectures. A proposal for solving the prob- 
lem of scheduling instructions for partitioned register files is 
in the work by Ellis in a compiler prototype called Bulldog 
[4]. That work implements trace scheduling and decides 
cluster assignments to the instructions in a trace. In that algo- 

In the literature we can find many works dealing with 
register pressure for non-clustered VLIW architectures. In 
particular, when a modulo schedule requires more registers 
than available, there are three possible solutions: a) inserting 

rithm cluster selection and list scheduling are treated as two 
sequential phases. The cluster assignment step uses a BUG 
algorithm (Bottom-Up Greedy). Communication operations 
are inserted during the scheduling steD if necessm. v " 1  

spill code and re-schedule the-loop [21]; b) increase the in;- 
tiation interval and re-schedule the loop [21]; and c) a com- 
bination of both [30]. In all cases, these actions are taken 
after a schedule for the whole loop has been computed, and 
involve an iterative process first computing a schedule and 
then adding spill or increasing the 11, until a schedule that 
does not require more registers than those available is found. 

Capitanio et al. present a scheduling algorithm [3] whose 
objective is code partition when the VLIW clustered archi- 
tecture does not have full connectivity among all registers 
and functional units. The algorithm strategy is similar to the 
one employed by Bulldog (i.e., cluster assignment for all 
instructions in a dependence graph followed by instruction 
scheduling). -, 

In this work we present a modulo scheduling framework 
for clustered VLIW architectures that takes into account the 
three main critical resources at the same time: inter-cluster 
communications, register pressure and memory port pres- 

scheduled in i t ,  adding spill code on-the-fly if required. 
Besides, as the schedule is produced, the pressure on these 
three resources is tried to be kept balanced. We show that this 
new technique produces significantly better modulo sched- 
ules than previous techniques. 

Jang et al. [ 121 present another scheduling scheme that 
uses separate cluster assignment and scheduling phases. In 
their work, a graph is partitioned using a k-way partitioning 
algorithm (where k is the number of clusters). Their main 

graph, each node represents a register (or value) instead of an 
operation in order to provide flexibility in their retargetable 
compiler. 

These works differ from the approach presented in this 
paper in two basic aspects: they focus on scheduling instruc- 
tions in acyclic codes (more particularly, they do not deal 
with modulo scheduling) and follow an approach where the 
cluster assignment and the instruction scheduling are per- 
formed in two sequential phases. 

sure. In a sing1e phase* nodes are assigned to a 'luster and aim is to achieve a balanced scheduling. In the dependence 

The main contributions of this paper are: 
This is the first time to the best of our knowledge that a 
framework to perform cluster assignment, instruction 
scheduling and register allocation as a single phase has 
been proposed for modulo scheduling. This approach is 
also new and effective for non-clustered architectures 
although in this paper we focus on clustered ones. 
The proposed instruction scheduler considers the pres- 

Ozer et al. [19] propose a scheduling algorithm called 
unified-assign-and-scheduling (UAS) that differs from previ- 
ous approaches. Instead of first partitioning the instructions 
among the clusters and then scheduling them, these two steps - - 

sure on the inter-cluster communication network, regis- 
ter file and memory ports at the same time, and includes 
mechanisms to maintain them at a similar level as the 
schedule is being produced. It also includes mecha- 

are performed at the same time. The algorithm proposed in 
this paper follows the same strategy. However, our work 
focuses on modulo scheduling instead of list scheduling and 
Derforms SDill code on-the-fly. 

There are a few works related to modulo scheduling for 
clustered architectures. Fernandes et al. [7] propose an 
approach to perform both scheduling and partitioning in a 
single step for software pipelined loops. However, they 
assume an architecture with an unusual register file organiza- 

nisms to transform register pressure in memory pres- 
sure (adding spill code), inter-cluster communications 
into memory pressure (by doing the communications 
through memory) and memory pressure into communi- 
cations or register pressure (by undoing the two previ- 
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Figure 1. Clustered VLIW architecture 

tion based on a set of local queues for each cluster and a 
queue file for each communication channel. 

Nystrom and Eichenberger [ 171 present an algorithm to 
assign nodes to clusters when modulo scheduling is per- 
formed. Their algorithm deals with cases where the connec- 
tion among the different register files is bus-based or grid- 
based. In their approach, cluster assignment and node sched- 
uling correspond to different phases. If any of them fails, the 
algorithm is re-started by increasing the initiation interval. 
They focus on two main aspects: the impact of loop-carried 
dependences and the negative impact of aggrcssively filling 
clusters. They obtain good results, but the assumed architec- 
ture almost never saturates the communication links 
(because they assume sufficient low-latency buses), and 
thereby the effect of communication is very low. However, 
when the number of buses decreases or the communication 
latency increases, the performance of this algorithm is signif- 
icantly degraded [24]. 

Sinchez and Gonzjlez [24] propose a unified assign-and- 
schedule approach, that is, cluster selection and scheduling 
of operations are done in a single phase. An attempt is made 
to schedule each operation in all the clusters in  which there 
is an available slot, and the best one is chosen. The heuristic 
for selecting a cluster is based on minimizing the number of 
outedges. An outegdge is defined as an edge from a node 
already scheduled in a cluster to a node that is either sched- 
uled in another cluster or not scheduled yet. In that paper, 
they show that this technique is better that performing the 
cluster assignment and scheduling into two sequential steps. 
However, in  that paper a simple approach to deal with regis- 
ters is considered: when no register is available, a cluster is 
not selected as candidate, and if no cluster is possible, then 
the initiation interval is increased and the process re-started. 
That work is later extended to deal with a distributed cache 
memory [25] .  The work, presented in this paper also uses a 
unified assign-and-schedule approach and, in addition, it 
inserts spill code on-the-fly. Besides, it uses more effective 
mechanisms to deal with communications, register and 
memory pressure, as outlined in the introduction. 

Kailas, Ebcioglu and Agrawala [ 131 have recently pre- 
sented an approach to produce schedules for acyclic code 
that combines cluster assignment, instruction scheduling and 
register allocation in a single phase. Our work differs in the 
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Figure 2. Detailed architecture of a single cluster 

fact that it focuses on cyclic code and in particular on modulo 
scheduling. Besides, there are significant differences 
between the heuristics used by the two works. For instance, 
our scheme allows trading cluster communications for mem- 
ory pressure. 

3. Clustered VLIW Architecture 

The clustered VLIW architecture that we assume in this 
work is shown in Figure 1. It is composed of different clus- 
ters, each one made up of different functional units and a 
local register file. A value generated by one cluster and con- 
sumed by another is communicated through one of a set of 
buses shared by all the clusters. When a value is communi- 
cated, the employed bus is busy during the latency of the 
communication. The cluster that writes onto the bus and the 
cluster/s that read from the bus are codified in the VLIW 
instruction, as described below. All the clusters also share the 
memory hierarchy, starting from the first-level cache. In this 
work we have considered that all clusters are homogeneous 
(i.e., same number of registers and typehumber of functional 
units) although the proposed scheduling techniques can eas- 
ily be generalized for non-homogeneous configurations. 

The detailed architecture of a single cluster is shown in 
Figure 2. Each input of each functional unit may be a value 
read from the local register file, or a value obtained through 
bypasses from other local functional units, or the value that 
comes from a bus. This last value is stored in a special regis- 
ter called incoming value register (IRV),  and can feed a func- 
tional unit and/or be stored in the local register file (in the 
case that another instruction scheduled in this cluster needs 
the value later). On the other hand, the data that is placed on 
the bus can be either obtained from the output of a functional 
unit or from the local register file. 

The VLIW instruction format is shown in Figure 3. One 
of these VLIW instructions is read from memory every 
cycle, and the different instructions (CLUSTER,) are distrib- 
uted to the appropriate clusters. A stall in one cluster affects 
all the others, so that all the clusters work on the same VLIW 
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VLIW Instruction 

Bus Output Mux 
FU Input Mux -Register 

-Register -FU 
-BUS (IRW -Unused 
-Constant 
.Unused Bus Input 

.Register 
Noutput *Null 

-Register 

Figure 3. VLIW instruction format 

instruction. Each instruction for a particular cluster consists 
of the following fields: an operation for each functional unit 
in that particular cluster (FUj) and the source ( IN  BUS) and 
target (OUT BUS) for each bus. The IN BUS field indicates, 
if necessary, the register in the local register file in which the 
value in IRV has to be stored. The OUT BUS field indicates 
the register whose contents has to be issued to the bus, if any. 
This value can be obtained from the local register file, or 
from the bypass network if the register is being written at that 
time. 

As each bus is a resource shared by all the clusters, when 
one particular cluster places a data on the bus (OUT BUS), 
this bus will be busy during the entire duration of the com- 
munication. Therefore, no other instruction can use this bus 
in the meantime (a bus is considered by the scheduling algo- 
rithm as another functional unit in the reservation table). 

4. URACAM Technique 

In this section we present the proposed modulo scheduling 
framework for clustered VLIW architectures. A main feature 
of the proposed technique is that the three phases of tradi- 
tional code generation schemes, namely cluster assignment, 
instruction scheduling and register allocation, are performed 
concurrently in a single phase. We refer to the technique as 
URACAM (Unified Register Allocation, Cluster Assign- 
ment and Modulo scheduling approach). Another important 
feature is that the algorithm does not include backtracking, 
that is, each node is scheduled only once. Not including 
backtracking has a direct impact in the reduction of the 
scheduling time. The last remarkable characteristic is that 
the heuristics used to generate code try to minimize register 
pressure, memory pressure and inter-cluster communica- 
tions at the same time, and consider that the three factors are 
equally important. Obviously, the proposed algorithm also 
tries to maximize parallelism. 

In this section we first describe the approach used to 
compare alternative partial schedules. Then, we present 
some transformations that are used to improve the partial 
schedule as it is being built. Finally, the algorithm is detailed. 

4.1. Figure of Merit 

Previous approaches to modulo scheduling for clustered 
VLIW architectures have as a main objective to reduce the 
number of communications. However, memory traffic and 
register pressure are two other factors that influence the per- 
formance of a modulo scheduled loop. Since these three 
terms are related, a technique that tries to improve one or 
some of them independently from the others may obtain 
worse schedules. Our technique employs a unified assign, 
schedule, and register allocation approach where the taken 
decisions use heuristics to keep them balanced. 

The schedule for a loop is gradually built by adding 
instructions to a partial schedule until all operations have 
been scheduled. Given a partial schedule and the current 
instruction that is to be inserted in the schedule, the figure of 
merit is used to compare the different partial schedules that 
may be reached by inserting the instruction in alternative 
slots. 

The figure of merit is used to decide which is the best 
option among several alternatives is crucial for any code gen- 
eration framework. In our case, our figure of merit must 
reflect the above three factors (register, memory and commu- 
nications), and hence, it  is a multi-dimensional variable. 
Besides, in order to compare different alternatives, we have 
to devise an approach to compare these multi-dimensional 
variables. 

The two underlying concepts behind the figure of merit 
that we propose are discussed below. The first one is that 
scarce resources are more valuable than abundant ones. In 
particular, the value of a given type of resources is propor- 
tional to the amount of currently remaining resources of this 
type. For instance, if at a given point in time there are 10 tree 
registers and 5 free communication slots, the value of a com- 
munication slot is twice the value of a register. Thus, a pos- 
sible schedule for the current instruction that requires 3 
additional registers is preferred to another alternative that 
requires 2 communication slots. 

The second underlying concept is that it  is desirable to 
maximize the available resources of the most used type of 
resources. For instance, assuming 10 free registers and 5 free 
communication slots, a schedule for the current instruction 
that consumes 4 additional registers and 2 communication 
slots is preferred to a solution that consumes 1 register and 3 
communication slots. This is because the former solution 
consumes 40% and 40% of the available resources (registers 
and communications respectively) whereas the latter con- 
sumes 10% and 60%. The former solution is preferred 
because it maximizes the minimum percentage left unused. 

These two concepts can be summarized as a philosophy 
that tries to benefit the weakest (most used resource) so that 
the difference between the strongest (least used resource) 
and the weakest shortens gradually. The above two concepts 
are analytically formalized below. 
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MinCost2(Scheduling S1, Scheduling S2) 
{ 
FMeritl = Sl.ComputeFigureMerit0; 
FMerit2 = S2.ComputeFigureMeritO; 

Sort (FMeritl) ; 
Sort (FMerit2) ; 

foreach (pl,p2) in FMeritl and FMerit2 do I 
if ((pl-p2( > Threshold) 

if (pl > p2) return S2; 
else return S1; 

1 

if (Sum(FMerit1) < Sum(FMerit2)) return S1; 
else return S 2 ;  

Figure 4. Algorithm to select the best partial schedule 
between two Dossible ones 

In the assumed architecture, communications are a global 
resource, whereas registers and memory ports are local. 
Thus, for every candidate approach' to inserting an instruc- 
tion into a partial schedule, the figure of merit consists of a 
set of 2 x NClusters + I percentages: 

Communications. Percentage of free communication 
slots before scheduling the current instruction that are 
consumed by the new inserted instruction. 
Memory. For every cluster, percentage of free memory 
access slots before scheduling the current instruction 
that are consumed by the new inserted instruction. 
Registers. For every cluster, percentage of free life- 
times before scheduling the current instruction that are 
consumed by the new inserted instruction. 

Note that some of the above percentages can be negative, 
which means that the new inserted instruction increases the 
amount of available resources of the corresponding type. As 
an example, spill code can increase the number of available 
registers. 

Figure 4 shows the algorithm used to compare two partial 
schedules. First, the figure of merit for each alternative 
schedule is computed as described above. Each figure of 
merit consists of 2 x  NClusters + I components that are later 
sorted from highest to lowest. The components are compared 
pair-wise starting from the highest (according to the order 
produced by the Sort routine). Whenever a significant differ- 
ence is found (greater than a given threshold) the schedule 
with the lowest component is chosen. If all pair of compo- 
nents are similar, the choice is made by adding all the com- 
ponents of each schedule and selecting the one with the 
lowest sum. 

We observed that a threshold different from zero is bene- 
ficial for cases when the differences between the first compo- 
nents are negligible but a significant difference occurs at a 
given location. In this case, it is better to choose based on the 

1.  The candidates that are considered are defined in  section 4 3 

component with a significant difference. For instance, 
assuming a figure of merit consisting of 5 components, 
(80,70,40,35,34) is preferred to (79,69,68,5,4). In this case, 
the second alternative is better according to the first and sec- 
ond components but the difference is so small that we con- 
sider them as similar. The first component with an important 
difference is the third one, and this is the one that determines 
the choice of the first alternative. We arbitrarily set the 
threshold to 10% for the experiments reported in this paper. 
We leave for future work the study of the influence of the 
threshold in order to tune it. 

It is important to remark that we always use the approach 
described in this section in order to compare different alter- 
natives. For instance, this approach is used to decide the most 
convenient cluster for a given instruction and it  is also used 
to determine whether adding spill code is beneficial. 

4.2. Transformations 

As pointed out above, the proposed code generation tech- 
nique never unschedules an already scheduled operation. 
However, it includes mechanisms that reduce the pressure on 
a given type of resource (register, memory or communica- 
tions) at the expense of increasing the pressure on another 
type. This is achieved by applying certain transformation to 
the partial schedule, which are described below. 

As the final schedule is being built, if the partial schedule 
reaches a state in which inter-cluster communications are 
overloaded whereas other resources are not, i t  may be bene- 
ficial to reduce communications even if i t  is done at he 
expense of increasing the usage of other resources. Some- 
times communications can be reduced by loop unrolling as 
reported in [24]. However, code expansion is a drawback that 
may be a critical issue in some environments such as embed- 
ded systems. An alternative way to send a value from one 
cluster to another is through memory. That is, the source 
cluster writes the value to a given location and the destina- 
tion cluster reads it. Note that this has some similarity with 
spill code. In this case, the pressure on the interconnection 
network is reduced at the expense of increasing the memory 
pressure. 

Register pressure can be reduced by applying spill code. 
This again increases the pressure on the memory ports. The 
lifetime to spill is chosen according to the one that optimizes 
the figure of merit described in section 4.1. However, if the 
number of overlapped lifetimes at a given cycle exceeds the 
number of available registers, only the lifetimes that are live 
at that cycle are considered. 

The above two transformations require additional mem- 
ory instructions to be inserted in the code. Since each mem- 
ory operation that is present in the original code requires a 
memory slot, we can anticipate how many memory slots will 
be consumed for these instructions, even if they are not 
scheduled yet. The remaining memory slots are considered 
as a global resource that is consumed only for the above two 
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S = InitializeScheduling(G); 

foreach node n in Nodes do { 
(1)Nodes = OrderSMSNodes(G) 

LCandidates.EmptyList0; 
( 2 )  foreach cluster c do 

if (S.PossibleSchedule(n, 
ScheduleInCluster(S, n, 

> 
if (LCandidates .empty ( ) { 

(3) II++; 
ReInitialize ( )  ; 

> 
else 

( 4 )  S = MinCostN(LCandidates) ; 

c) ) 
c,LCandidates); 

Figure 5. Main steps of the scheduling algorithm 

transformations. Thus, the figure of merit is extended with an 
additional component that reflects the usage of this global 
resource, which is relevant only for the above transforma- 
tions. 

On the other hand, memory pressure can be reduced by 
either changing communications through memory by com- 
munications through the interconnection network, or undo- 
ing spill code previously inserted. The former transformation 
increases the number of communications, and they both tend 
to increase the register pressure. 

In any case, the above transformations are only applied 
when they are correct and the figure of merit indicates that 
they provide a benefit, that is, the figure of merit of the sched- 
ule that includes the transformation must be better than that 
of the schedule without the transformation. The figure of 
merit is also used to select the best lifetime, communication 
or memory operation to be transformed. Section 4.3 
describes when these transformations are tried. 

The described transformations allow the algorithm to 
perform some limited type of backtracking, in the sense that 
previous decisions related with communications, memory 
port usage and register usage can be reconsidered. However, 
these transformations never require to unschedule a previ- 
ously scheduled instruction except communications or spill 
code operations. 

4.3. Detailed Algorithm 

The main steps of the scheduling algorithm are shown in Fig- 
ure 5. In the first step of the algorithm (1) a list with all the 
nodes (i.e. instructions) of the data dependence graph is 
built. This list is sorted to reflect the order in which nodes 
will be handled by the scheduler, according to the ordering 
proposed in the Swing Modulo Scheduler [ 141. This ordering 
gives priority to the nodes in recurrences and orders different 
recurrences according to the constraint that each impose in 
the initiation interval, from the most to the least constraining 
one. Besides, the resulting order ensures that a node in a par- 
ticular position of the list only has predecessors or succes- 
sors before it but not both (excepting one node per each 

ScheduleInCluster(Schedu1ing S, node n,  

{ 
(1)Sl = ScheduleOpInCluster ( S ,  n, c) ; 
(2)if (Last-one(n) and !Sl.OverSatur()) ( 

cluster c, list LCandidates) 

LCandidats.insert(S1); 
return; 

> 
s2 = s1; 

(3)ListFactors = Sl.OrderedFactors() 

(4)foreach ic! ListFactors { 
if (i == Corn) S2.ImproveCommO; 
else if (i == Mem) S2.ImproveMemO; 
else if (i == Reg) S2.ImproveReg(l; 

1 

(5)if (S2.0verSatO and Sl.OverSat0) 
return; 

LCandidates.insert(S1); 

LCandidates.insert(S2); 

LCandidates.insert(MinCost2(Sl, S2) 1 ;  

else if (s2.overSatO) 

else if (Sl.OverSat0) 

else 

> 

Figure 6. Scheduling an operation in a cluster 

recurrence). Moreover, nodes that are neighbors in the graph 
are placed close in the list. 

Once the nodes have been sorted, each node is scheduled 
in the appropriate cycle and cluster. The core of the algo- 
rithm is in section (2). In this loop, the current node is 
attempted to be scheduled in each possible cluster (i.e. those 
clusters with enough resources), producing a list of alterna- 
tive partial schedules (LCandidates). If n o  scheduling is in 
the list, then the initiation interval is increased and the whole 
process is re-initialized (3). Otherwise, the best schedule is 
chosen according to the figure of merit described in Section 
4.1. 

Figure 6 shows the most important actions related with 
the scheduling of the actual node in one cluster. Initially, the 
proposed algorithm tries to schedule the operation in the 
cluster without applying any of the transformations 
described in section 4.2 (1). If the current node is the last one 
of the list and the produced schedule does not require more 
resources (communications, registers and memory) than 
those available, the obtained schedule is inserted into the 
LCandidates list (2). Otherwise, a new possible partial 
schedule is created by trying to improve the one generated at 
step (1) applying the transformations described in Section 
4.2. 

In order to schedule one operation in a cluster, the earliest 
start time (Estart) and the latest start time (Lstart) are com- 
puted taken into account its scheduled predecessors and suc- 
cessors. Predecessors or successors scheduled in different 
clusters imply an inter-cluster communication. The latency 
of this communication is taken into account when computing 
Estart and Lstart, and it is constrained by previous scheduled 
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communications. Note that a communication can be done 
either through memory or a bus. If the communication is 
from one predecessor to several successors in different clus- 
ters, the bus-based option is chosen, since a single communi- 
cation can broadcast the data to all the consumers. 
Otherwise, the choice between bus- or memory-based com- 
munication is determined by comparing the figure of merit of 
each alternative. 

Once Estart and Lstart are calculated, the actual node is 
scheduled as close as possible to its predecessors or succes- 
sors in order to minimize register pressure. Any required 
communication is also scheduled. Communications through 
memory are scheduled in such a way that register pressure is 
minimized (i.e., stores are scheduled as close as possible to 
the producer and loads are placed as close as possible to its 
consumer(s)), whereas the most effective slot for bus-based 
communications is determined by the solution that provides 
the best figure of merit. 

Then, communications, register pressure and memory 
pressure are tried to be improved. These three factors are 
tried to be improved one at each time, following the order 
given by the components of the figure of merit (3). That is, 
the factor for which the current instruction has consumed 
most percentage is chosen first, and it is improved until i t  is 
not oversaturated. Then, the next most used resource is cho- 
sen and so on. As a result, a transformed partial schedule is 
obtained in addition to the original one (4). If both schedules 
have any oversaturated resource, the current cluster is not 
considered as a candidate for the current instruction (5 ) .  If 
just one of the two partial schedules has. no oversaturated 
resources, it is inserted in the LCandidates list. Otherwise, 
the one with best benefit, according to the figure of merit, is 
chosen and inserted in the LCandidates list. 

Table 1. Clustered VLIW configurations and latencies 

each type and a quarter of the registers per cluster (note that 
both, in  total, are 12-way issue). For the clustered configura- 
tions we will show results for different number of buses ( I ,  4 
and unbounded) with different latencies (1  or 2 cycles) and 
different total number of registers (32, 64 and unbounded). 

In this section we present results on instructions per cycle 
(IPC). These numbers include the contribution of the pro- 
logue and epilogue. The number of iterations of each loop 
has been obtained through profiling. 

The unified configuration represents our baseline since it 
has the same resources as the clustered configurations but it  
does not suffer from the inter-cluster communication penal- 
ties. Therefore, the IPC of the unified configuration is an 
upper bound of what can be achieved by the clustered ones. 
Note that this measure (IPC) is independent of the processor 
cycle time. However, the clustered organizations may benefit 
from a faster clock, then an IPC for a clustered configuration 
near than that obtained for the unified configuration means 
an overall improvement of the performance when the cycle 
time is considered. 

For all configurations the memory hierarchy is. shared by 
att the dusters and considered pesfect (I.e., all' cache accesses 
hit). For a real; memory, techniques to, reduce the impact of 
cache misses when modulo scheduling is aoolied should be c . I  

Selecting which particular communications, register used (231. 
L 1  

pressure or memory pressure are reduced by transformations 
is done according to the figure of merit. Among all the can- 
didates, only those that provide some benefit are applied. 

The modulo scheduling algorithm has been implemented 
in the ICTINEO compiler [2] and all the SPECfp95 bench- 
marks have been evaluated. The programs were run until 

5. Performance Results 

This section presents a performance study of the URACAM 
technique. 

5.1. Experimental Framework 

The scheduling algorithm has been evaluated for three differ- 
en t  configurations of the clustered VLIW architecture. These 
configurations are shown in Table 1 .  

The first configuration is called unijied and it is com- 
posed of a single cluster with four functional units of each 
type (integer, floating point and memory) and a unique reg- 
ister file. Both the 2-cbister and 4-cluster configurations 
have the register file split into two and four partitions respec- 
tively. The former has 2 functional units of each type and half 
of the registers per cluster. The latter has 1 functional uni t  of 

completion using the test input data set. The performance 
figures shown in this section refer to the modulo scheduling 
of innermost loops. For some of them the initiation interval 
reaches a limit that makes modulo scheduling inappropriate 
(for these cases, for instance, list scheduling would be more 
effective). These loops are not considered for any of the fig- 
ures in order to compare the same set of loops for all config- 
urations and techniques. We have measured that the selected 
loops represents around SO% of the total execution time. 

5.2. Evaluation 

One of the main novelties of the proposed algorithm is that 
the spill code is inserted at the same time as the nodes are 
scheduled, instead of the traditional approach that does it  
after scheduling all the nodes. Then, the first experiment 
studies the effectiveness of this combined scheduling and 
register allocation technique. 
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Figure 7. Benefit of the combined instruction scheduling 
and register allocation for the unified architec- 
ture , 

For this study, we have first obtained results for a non- 
clustered (unified) architecture. These results are shown in 
Figure 7. For each graph, the white bars show the IPC for an 
unbounded register file, which never requires spill code. The 
gray and black bars show the IPC for a limited size register 
file (64 registers in the top graph and 32 in the bottom graph). 
The gray bar corresponds to the proposed on-the-fly spilling 
technique, and the black bar corresponds to the approach that 
increases the initiation interval whenever the scheduler runs 
out of registers. 

The first observation is that for 64 registers all three con- 
figurations/techniques obtain the same IPC. This means that 
for the loops of the SPECfp95 programs considered in this 
study, 64 registers are enough for the unified architecture. On 
the other hand, when the number of registers is 32 the differ- 
ences are more noticeable. As we can see in the graph, add- 
ing spill code on-the-fly is more effective than increasing the 
initiation interval. The combined spill and scheduling tech- 
nique improves the IPC by 5% on average over the approach 
that increases the initiation interval, and it is just 4% lower 
than that achieved with an unbounded number of registers. 
As we will see in the following experiments, the benefit of 
the proposed technique is more remarkable for clustered 
architectures. 

Register pressure increases for clustered architectures 
due to inter-cluster communications. Since some values have 
to be communicated through the buses, the lifetime of these 
values augments. This increase in lifetimes corresponds to 
both the cycles until a free bus is available and the latency of 
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Figure 8. Performance of the proposed algorithm 

the bus itself. In Figure 8 we show the IPC obtained by the 
proposed algorithm for the 2- and 4-cluster architectures 
with both 32 and 64 registers. In these graphs we use as a 
baseline for comparisons the IPC obtained for the iiriiJed 
architecture with on-the-fly spill code (first bar). Several bus 
configurations have been evaluated for the clustered config- 
urations: (i) 1 bus with I-cycle latency, (ii) 1 bus with 2-cycle 
latency, and (iii) 4 buses with 1-cycle latency. 
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We can see that for some programs and configurations 
the proposed algorithm obtains an IPC comparable to that 
obtained by the unified architecture (e.g., swim and fpppp).  
On average, the IPC for the 4-bus configuration is just 3%, 
7%, 10% and 17% lower than that of the unified configura- 
tion for 2 clusters and 64 registers, 2 clusters and 32 regis- 
ters, 4 clusters and 64 registers, and 4 clusters and 32 
registers respectively. We have also evaluated the perfor- 
mance of a configuration with an unbounded number of 
buses and the results show that its IPC is practically identical 
to the 4-bus configurations. 

Figure 9 shows the comparison of the URACAM tech- 
nique for clustered VLIW architectures (2- and 4-cluster) 
with the technique proposed by Shnchez and Gonzhlez [24]. 
This latter technique was shown to be very effective at bal- 
ancing the workload and minimizing communication 
requirements. It was also shown to outperform previous 
approaches. However, this technique simply increases the 
initiation interval and re-initialize the process when not 
enough registers are available. In this figure, the first and sec- 
ond bars show the results for the SBnchez and Gonzalez's 
technique (SA+GO) and the URACAM technique respec- 
tively for a configuration with 1 bus and 1-cycle latency, 
whereas the third and fourth ones show the same results 
when a 2-cycle latency for the bus is considered. 

As we can see in these graphs, the URACAM technique 
outperforms the most effective previous proposal for all 
benchmarks and configurations. For some programs such as 
tomcatv, su2cor and hydro2d the improvement is huge, spe- 
cially for configurations with 4 clusters and a bus with 1-  
cycle latency (between 80% and 125%). 

For the 2-cluster architecture, on average the proposed 
technique outperforms the previous proposal by 18% and 
19% for I-cycle and 2-cycle bus latency respectively and 32 
registers. For 64 registers the average improvements are 13% 
and 12% respectively. 

For the 4-cluster architecture, the speed-up of the pro- 
posed technique over the SBnchez and GonzBlez's scheduler 
is even higher. For a 32 registers, the average IPC improve- 
ment is 22% and 36% for I-cycle and 2-cycle latency respec- 
tively. For 64 registers, the improvements are 12% and 36% 
respectively. 

6. Conclusions 

This work has presented a code generation framework for 
cyclic code on clustered ILP processors. This framework 
combines cluster assignment, modulo scheduling and regis- 
ter allocation into a single phase, which allows searching for 
solutions that optimize the three factors simultaneously, 
rather than optimizing each one separately. 

New heuristics have been introduced in order to quantify 
the benefit of alternative schedules considering multiple 
parameters simultaneously, such as the inter-cluster commu- 
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Figure 9. Comparison of URACAM with previous proposal 

nication overhead, memory pressure and register require- 
ments. Besides, transformations to improve the partial 
schedule on-the-fly have been proposed. 

The results show important improvements over previous 
proposals and minor degradation when compared with an 
architecture with the same resources but no communication 
penalty. 
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