
A Unified Modulo Scheduling and Register Allocation
Technique for Clustered Processors

Josep M. Codina, Jesus Sanchez and Antonio Gonzalez

Department of Computer Architecture
Universitat Politecnica de Catalunya

Barcelona - SPAIN
E-mail: {jmcodina, fran, antonio}@ac .upc .es

Abstract

This work presents a modulo scheduling framework for
clustered ILP processors that integrates the cluster assign-
ment, instruction scheduling and register allocation steps in
a single phase. This unified approach is more effective than
traditional approaches based on sequentially performing
some (or all) of the three steps, since it allows optimizing
the global code generation problem instead of searching for
optimal solutions to each individual step. Besides, it avoids
the iterative nature of traditional approaches, which require
repeated applications of the three steps until a valid solu-
tion is found. The proposed framework includes a mecha-
nism to insert spill code on-the-fly and heuristics to
evaluate the quality of partial schedules considering simul-
taneously inter-cluster communications, memory pressure
and register pressure. Transformations that allow trading
pressure on a type of resource for another resource are also
included. We show that the proposed technique outper-
forms previously proposed techniques. For instance, the
average speed-up for the SPECfp95 is 36% for a 4-cluster
configuration.
Keywords: Modulo scheduling, register allocation, spill
code, cluster assignment, clustered architectures

1. Introduction

Until recently, computer architects had paid little attention
to the time required to send signals/data among different
parts of the chip. The technology and frequency employed
allowed any part of the chip to be reached in a single cycle.
However, the evolution of the chip manufacturing process
has shown that global wire delays do not scale as technol-
ogy improves. These delays will remain constant, meaning
that relative to gate delays, they scale upwards [1 11. Tech-
nology projections [26] point out that this different scaling
will be one of the main hurdles for improving instruction
throughput of future microprocessors [13. The main conse-
quence will be that the percentage of on-chip transistors
that can be reached in a single cycle will decrease, and

microprocessors will become cor~~r~iunication bourzd rather
than capacity bound.

Researchers agree that this problem has to be taken into
account in the design of current and future microproces-
sors. New techniques to handle this problem have to be pro-
posed at all levels, ranging from applications to technology.
One promising contribution from the microarchitecture
field is to divide some components of a processor into
groups that are placed close together and interconnected by
fast links. Links that interconnect different groups are rela-
tive slow, basically because they are much longer. The
result is what is called a clustered microarchitecture and
each group is called a cluster.

Current trends in clustering focus on the partition of
both register files and functional units. In this way, each
cluster consists of several functional units that obtain their
operands from a local register file. Values generated by one
cluster and needed by another one are communicated
through a bus or a point-to-point connection. Thus, the
delay and complexity of some critical components are
reduced. For instance, bypasses are provided mainly (or
only) among local functional units; the number of register
file ports and the number of registers of each local file are
small.

The reduced delays may translate into a higher clock
frequency whereas the lower complexity may reduce the
power requirements [31]. Clustered designs can be found in
current research proposals (multicluster [6][181, multisca-
lar [27], multithreading [151, trace processor [22][29], etc.)
and in some commercial superscalar processors such as the
Alpha 21264[IO]. Remarkably, this technique is becoming
quite common in the design of embedded/DSP processors
with a VLIW core such as the TI’S TMS32OC6x [28],
Equator’s MAP1000 [IS], the ADI’s TigerSharc [9] or the
HP/ST’s Lx [5] .

This work focuses on this last kind of architectures,
which are commonly referred to as clustered VLIW archi-
tectures. The effectiveness of this microarchitecture
strongly depends on the ability of the compiler to generate
code that balances the workload of the different clusters
and results in few inter-cluster communications.

175
0-7695-1363-8101 $10.00 0 2001 IEEE

Modulo scheduling [20] is a very effective instruction
scheduling technique for loop-intensive codes, which are a
common workload in such processors. The main goal of pre-
vious proposals on modulo scheduling for clustered architec-
tures was to reduce the number of communications among
clusters while trying to balance the workload. However,
these works used relatively simple techniques to deal with
register and memory port usage. In some cases the register
pressure is simply ignored [17]. In others, naive solutions to
the problem are used such as increasing the initiation interval

ous transformations). In this way the usage of these
three resources is kept balanced.

The rest of the paper is organized as follows. Section 2
reviews related works. The assumed microarchitecture is
described in section 3. The proposed technique is detailed in
section 4 and it is evaluated in section 5. Finally, section 6
summarizes the main conclusions of this work.

2. Related Work
(1I)if the number of required registers-exceeds the available
ones [24]. For these cases, a more sophisticated treatment of
this phenomena will result in a better performance. For some
codes, registers and memory ports are very critical resources
and their impact on performance can be even greater than
that of communications and workload balance.

There are several works related with instruction scheduling
for clustered architectures. A proposal for solving the prob-
lem of scheduling instructions for partitioned register files is
in the work by Ellis in a compiler prototype called Bulldog
[4]. That work implements trace scheduling and decides
cluster assignments to the instructions in a trace. In that algo-

In the literature we can find many works dealing with
register pressure for non-clustered VLIW architectures. In
particular, when a modulo schedule requires more registers
than available, there are three possible solutions: a) inserting

rithm cluster selection and list scheduling are treated as two
sequential phases. The cluster assignment step uses a BUG
algorithm (Bottom-Up Greedy). Communication operations
are inserted during the scheduling steD if necessm. v " 1

spill code and re-schedule the-loop [21]; b) increase the in;-
tiation interval and re-schedule the loop [21]; and c) a com-
bination of both [30]. In all cases, these actions are taken
after a schedule for the whole loop has been computed, and
involve an iterative process first computing a schedule and
then adding spill or increasing the 11, until a schedule that
does not require more registers than those available is found.

Capitanio et al. present a scheduling algorithm [3] whose
objective is code partition when the VLIW clustered archi-
tecture does not have full connectivity among all registers
and functional units. The algorithm strategy is similar to the
one employed by Bulldog (i.e., cluster assignment for all
instructions in a dependence graph followed by instruction
scheduling). -,

In this work we present a modulo scheduling framework
for clustered VLIW architectures that takes into account the
three main critical resources at the same time: inter-cluster
communications, register pressure and memory port pres-

scheduled in i t , adding spill code on-the-fly if required.
Besides, as the schedule is produced, the pressure on these
three resources is tried to be kept balanced. We show that this
new technique produces significantly better modulo sched-
ules than previous techniques.

Jang et al. [121 present another scheduling scheme that
uses separate cluster assignment and scheduling phases. In
their work, a graph is partitioned using a k-way partitioning
algorithm (where k is the number of clusters). Their main

graph, each node represents a register (or value) instead of an
operation in order to provide flexibility in their retargetable
compiler.

These works differ from the approach presented in this
paper in two basic aspects: they focus on scheduling instruc-
tions in acyclic codes (more particularly, they do not deal
with modulo scheduling) and follow an approach where the
cluster assignment and the instruction scheduling are per-
formed in two sequential phases.

sure. In a sing1e phase* nodes are assigned to a 'luster and aim is to achieve a balanced scheduling. In the dependence

The main contributions of this paper are:
This is the first time to the best of our knowledge that a
framework to perform cluster assignment, instruction
scheduling and register allocation as a single phase has
been proposed for modulo scheduling. This approach is
also new and effective for non-clustered architectures
although in this paper we focus on clustered ones.
The proposed instruction scheduler considers the pres-

Ozer et al. [19] propose a scheduling algorithm called
unified-assign-and-scheduling (UAS) that differs from previ-
ous approaches. Instead of first partitioning the instructions
among the clusters and then scheduling them, these two steps - -

sure on the inter-cluster communication network, regis-
ter file and memory ports at the same time, and includes
mechanisms to maintain them at a similar level as the
schedule is being produced. It also includes mecha-

are performed at the same time. The algorithm proposed in
this paper follows the same strategy. However, our work
focuses on modulo scheduling instead of list scheduling and
Derforms SDill code on-the-fly.

There are a few works related to modulo scheduling for
clustered architectures. Fernandes et al. [7] propose an
approach to perform both scheduling and partitioning in a
single step for software pipelined loops. However, they
assume an architecture with an unusual register file organiza-

nisms to transform register pressure in memory pres-
sure (adding spill code), inter-cluster communications
into memory pressure (by doing the communications
through memory) and memory pressure into communi-
cations or register pressure (by undoing the two previ-

176

...

Lzr!l CACHE

Figure 1. Clustered VLIW architecture

tion based on a set of local queues for each cluster and a
queue file for each communication channel.

Nystrom and Eichenberger [171 present an algorithm to
assign nodes to clusters when modulo scheduling is per-
formed. Their algorithm deals with cases where the connec-
tion among the different register files is bus-based or grid-
based. In their approach, cluster assignment and node sched-
uling correspond to different phases. If any of them fails, the
algorithm is re-started by increasing the initiation interval.
They focus on two main aspects: the impact of loop-carried
dependences and the negative impact of aggrcssively filling
clusters. They obtain good results, but the assumed architec-
ture almost never saturates the communication links
(because they assume sufficient low-latency buses), and
thereby the effect of communication is very low. However,
when the number of buses decreases or the communication
latency increases, the performance of this algorithm is signif-
icantly degraded [24].

Sinchez and Gonzjlez [24] propose a unified assign-and-
schedule approach, that is, cluster selection and scheduling
of operations are done in a single phase. An attempt is made
to schedule each operation in all the clusters in which there
is an available slot, and the best one is chosen. The heuristic
for selecting a cluster is based on minimizing the number of
outedges. An outegdge is defined as an edge from a node
already scheduled in a cluster to a node that is either sched-
uled in another cluster or not scheduled yet. In that paper,
they show that this technique is better that performing the
cluster assignment and scheduling into two sequential steps.
However, in that paper a simple approach to deal with regis-
ters is considered: when no register is available, a cluster is
not selected as candidate, and if no cluster is possible, then
the initiation interval is increased and the process re-started.
That work is later extended to deal with a distributed cache
memory [25] . The work, presented in this paper also uses a
unified assign-and-schedule approach and, in addition, it
inserts spill code on-the-fly. Besides, it uses more effective
mechanisms to deal with communications, register and
memory pressure, as outlined in the introduction.

Kailas, Ebcioglu and Agrawala [131 have recently pre-
sented an approach to produce schedules for acyclic code
that combines cluster assignment, instruction scheduling and
register allocation in a single phase. Our work differs in the

BUS

L1 I CACHE

Figure 2. Detailed architecture of a single cluster

fact that it focuses on cyclic code and in particular on modulo
scheduling. Besides, there are significant differences
between the heuristics used by the two works. For instance,
our scheme allows trading cluster communications for mem-
ory pressure.

3. Clustered VLIW Architecture

The clustered VLIW architecture that we assume in this
work is shown in Figure 1. It is composed of different clus-
ters, each one made up of different functional units and a
local register file. A value generated by one cluster and con-
sumed by another is communicated through one of a set of
buses shared by all the clusters. When a value is communi-
cated, the employed bus is busy during the latency of the
communication. The cluster that writes onto the bus and the
cluster/s that read from the bus are codified in the VLIW
instruction, as described below. All the clusters also share the
memory hierarchy, starting from the first-level cache. In this
work we have considered that all clusters are homogeneous
(i.e., same number of registers and typehumber of functional
units) although the proposed scheduling techniques can eas-
ily be generalized for non-homogeneous configurations.

The detailed architecture of a single cluster is shown in
Figure 2. Each input of each functional unit may be a value
read from the local register file, or a value obtained through
bypasses from other local functional units, or the value that
comes from a bus. This last value is stored in a special regis-
ter called incoming value register (IRV), and can feed a func-
tional unit and/or be stored in the local register file (in the
case that another instruction scheduled in this cluster needs
the value later). On the other hand, the data that is placed on
the bus can be either obtained from the output of a functional
unit or from the local register file.

The VLIW instruction format is shown in Figure 3. One
of these VLIW instructions is read from memory every
cycle, and the different instructions (CLUSTER,) are distrib-
uted to the appropriate clusters. A stall in one cluster affects
all the others, so that all the clusters work on the same VLIW

177

VLIW Instruction

Bus Output Mux
FU Input Mux -Register

-Register -FU
-BUS (IRW -Unused
-Constant
.Unused Bus Input

.Register
Noutput *Null

-Register

Figure 3. VLIW instruction format

instruction. Each instruction for a particular cluster consists
of the following fields: an operation for each functional unit
in that particular cluster (FUj) and the source (IN BUS) and
target (OUT BUS) for each bus. The IN BUS field indicates,
if necessary, the register in the local register file in which the
value in IRV has to be stored. The OUT BUS field indicates
the register whose contents has to be issued to the bus, if any.
This value can be obtained from the local register file, or
from the bypass network if the register is being written at that
time.

As each bus is a resource shared by all the clusters, when
one particular cluster places a data on the bus (OUT BUS),
this bus will be busy during the entire duration of the com-
munication. Therefore, no other instruction can use this bus
in the meantime (a bus is considered by the scheduling algo-
rithm as another functional unit in the reservation table).

4. URACAM Technique

In this section we present the proposed modulo scheduling
framework for clustered VLIW architectures. A main feature
of the proposed technique is that the three phases of tradi-
tional code generation schemes, namely cluster assignment,
instruction scheduling and register allocation, are performed
concurrently in a single phase. We refer to the technique as
URACAM (Unified Register Allocation, Cluster Assign-
ment and Modulo scheduling approach). Another important
feature is that the algorithm does not include backtracking,
that is, each node is scheduled only once. Not including
backtracking has a direct impact in the reduction of the
scheduling time. The last remarkable characteristic is that
the heuristics used to generate code try to minimize register
pressure, memory pressure and inter-cluster communica-
tions at the same time, and consider that the three factors are
equally important. Obviously, the proposed algorithm also
tries to maximize parallelism.

In this section we first describe the approach used to
compare alternative partial schedules. Then, we present
some transformations that are used to improve the partial
schedule as it is being built. Finally, the algorithm is detailed.

4.1. Figure of Merit

Previous approaches to modulo scheduling for clustered
VLIW architectures have as a main objective to reduce the
number of communications. However, memory traffic and
register pressure are two other factors that influence the per-
formance of a modulo scheduled loop. Since these three
terms are related, a technique that tries to improve one or
some of them independently from the others may obtain
worse schedules. Our technique employs a unified assign,
schedule, and register allocation approach where the taken
decisions use heuristics to keep them balanced.

The schedule for a loop is gradually built by adding
instructions to a partial schedule until all operations have
been scheduled. Given a partial schedule and the current
instruction that is to be inserted in the schedule, the figure of
merit is used to compare the different partial schedules that
may be reached by inserting the instruction in alternative
slots.

The figure of merit is used to decide which is the best
option among several alternatives is crucial for any code gen-
eration framework. In our case, our figure of merit must
reflect the above three factors (register, memory and commu-
nications), and hence, it is a multi-dimensional variable.
Besides, in order to compare different alternatives, we have
to devise an approach to compare these multi-dimensional
variables.

The two underlying concepts behind the figure of merit
that we propose are discussed below. The first one is that
scarce resources are more valuable than abundant ones. In
particular, the value of a given type of resources is propor-
tional to the amount of currently remaining resources of this
type. For instance, if at a given point in time there are 10 tree
registers and 5 free communication slots, the value of a com-
munication slot is twice the value of a register. Thus, a pos-
sible schedule for the current instruction that requires 3
additional registers is preferred to another alternative that
requires 2 communication slots.

The second underlying concept is that it is desirable to
maximize the available resources of the most used type of
resources. For instance, assuming 10 free registers and 5 free
communication slots, a schedule for the current instruction
that consumes 4 additional registers and 2 communication
slots is preferred to a solution that consumes 1 register and 3
communication slots. This is because the former solution
consumes 40% and 40% of the available resources (registers
and communications respectively) whereas the latter con-
sumes 10% and 60%. The former solution is preferred
because it maximizes the minimum percentage left unused.

These two concepts can be summarized as a philosophy
that tries to benefit the weakest (most used resource) so that
the difference between the strongest (least used resource)
and the weakest shortens gradually. The above two concepts
are analytically formalized below.

178

MinCost2(Scheduling S1, Scheduling S2)
{
FMeritl = Sl.ComputeFigureMerit0;
FMerit2 = S2.ComputeFigureMeritO;

Sort (FMeritl) ;
Sort (FMerit2) ;

foreach (pl,p2) in FMeritl and FMerit2 do I
if ((pl-p2(> Threshold)

if (pl > p2) return S2;
else return S1;

1

if (Sum(FMerit1) < Sum(FMerit2)) return S1;
else return S 2 ;

Figure 4. Algorithm to select the best partial schedule
between two Dossible ones

In the assumed architecture, communications are a global
resource, whereas registers and memory ports are local.
Thus, for every candidate approach' to inserting an instruc-
tion into a partial schedule, the figure of merit consists of a
set of 2 x NClusters + I percentages:

Communications. Percentage of free communication
slots before scheduling the current instruction that are
consumed by the new inserted instruction.
Memory. For every cluster, percentage of free memory
access slots before scheduling the current instruction
that are consumed by the new inserted instruction.
Registers. For every cluster, percentage of free life-
times before scheduling the current instruction that are
consumed by the new inserted instruction.

Note that some of the above percentages can be negative,
which means that the new inserted instruction increases the
amount of available resources of the corresponding type. As
an example, spill code can increase the number of available
registers.

Figure 4 shows the algorithm used to compare two partial
schedules. First, the figure of merit for each alternative
schedule is computed as described above. Each figure of
merit consists of 2 x NClusters + I components that are later
sorted from highest to lowest. The components are compared
pair-wise starting from the highest (according to the order
produced by the Sort routine). Whenever a significant differ-
ence is found (greater than a given threshold) the schedule
with the lowest component is chosen. If all pair of compo-
nents are similar, the choice is made by adding all the com-
ponents of each schedule and selecting the one with the
lowest sum.

We observed that a threshold different from zero is bene-
ficial for cases when the differences between the first compo-
nents are negligible but a significant difference occurs at a
given location. In this case, it is better to choose based on the

1. The candidates that are considered are defined in section 4 3

component with a significant difference. For instance,
assuming a figure of merit consisting of 5 components,
(80,70,40,35,34) is preferred to (79,69,68,5,4). In this case,
the second alternative is better according to the first and sec-
ond components but the difference is so small that we con-
sider them as similar. The first component with an important
difference is the third one, and this is the one that determines
the choice of the first alternative. We arbitrarily set the
threshold to 10% for the experiments reported in this paper.
We leave for future work the study of the influence of the
threshold in order to tune it.

It is important to remark that we always use the approach
described in this section in order to compare different alter-
natives. For instance, this approach is used to decide the most
convenient cluster for a given instruction and it is also used
to determine whether adding spill code is beneficial.

4.2. Transformations

As pointed out above, the proposed code generation tech-
nique never unschedules an already scheduled operation.
However, it includes mechanisms that reduce the pressure on
a given type of resource (register, memory or communica-
tions) at the expense of increasing the pressure on another
type. This is achieved by applying certain transformation to
the partial schedule, which are described below.

As the final schedule is being built, if the partial schedule
reaches a state in which inter-cluster communications are
overloaded whereas other resources are not, i t may be bene-
ficial to reduce communications even if i t is done at he
expense of increasing the usage of other resources. Some-
times communications can be reduced by loop unrolling as
reported in [24]. However, code expansion is a drawback that
may be a critical issue in some environments such as embed-
ded systems. An alternative way to send a value from one
cluster to another is through memory. That is, the source
cluster writes the value to a given location and the destina-
tion cluster reads it. Note that this has some similarity with
spill code. In this case, the pressure on the interconnection
network is reduced at the expense of increasing the memory
pressure.

Register pressure can be reduced by applying spill code.
This again increases the pressure on the memory ports. The
lifetime to spill is chosen according to the one that optimizes
the figure of merit described in section 4.1. However, if the
number of overlapped lifetimes at a given cycle exceeds the
number of available registers, only the lifetimes that are live
at that cycle are considered.

The above two transformations require additional mem-
ory instructions to be inserted in the code. Since each mem-
ory operation that is present in the original code requires a
memory slot, we can anticipate how many memory slots will
be consumed for these instructions, even if they are not
scheduled yet. The remaining memory slots are considered
as a global resource that is consumed only for the above two

179

S = InitializeScheduling(G);

foreach node n in Nodes do {
(1)Nodes = OrderSMSNodes(G)

LCandidates.EmptyList0;
(2) foreach cluster c do

if (S.PossibleSchedule(n,
ScheduleInCluster(S, n,

>
if (LCandidates .empty () {

(3) II++;
ReInitialize () ;

>
else

(4) S = MinCostN(LCandidates) ;

c))
c,LCandidates);

Figure 5. Main steps of the scheduling algorithm

transformations. Thus, the figure of merit is extended with an
additional component that reflects the usage of this global
resource, which is relevant only for the above transforma-
tions.

On the other hand, memory pressure can be reduced by
either changing communications through memory by com-
munications through the interconnection network, or undo-
ing spill code previously inserted. The former transformation
increases the number of communications, and they both tend
to increase the register pressure.

In any case, the above transformations are only applied
when they are correct and the figure of merit indicates that
they provide a benefit, that is, the figure of merit of the sched-
ule that includes the transformation must be better than that
of the schedule without the transformation. The figure of
merit is also used to select the best lifetime, communication
or memory operation to be transformed. Section 4.3
describes when these transformations are tried.

The described transformations allow the algorithm to
perform some limited type of backtracking, in the sense that
previous decisions related with communications, memory
port usage and register usage can be reconsidered. However,
these transformations never require to unschedule a previ-
ously scheduled instruction except communications or spill
code operations.

4.3. Detailed Algorithm

The main steps of the scheduling algorithm are shown in Fig-
ure 5. In the first step of the algorithm (1) a list with all the
nodes (i.e. instructions) of the data dependence graph is
built. This list is sorted to reflect the order in which nodes
will be handled by the scheduler, according to the ordering
proposed in the Swing Modulo Scheduler [141. This ordering
gives priority to the nodes in recurrences and orders different
recurrences according to the constraint that each impose in
the initiation interval, from the most to the least constraining
one. Besides, the resulting order ensures that a node in a par-
ticular position of the list only has predecessors or succes-
sors before it but not both (excepting one node per each

ScheduleInCluster(Schedu1ing S, node n,

{
(1)Sl = ScheduleOpInCluster (S , n, c) ;
(2)if (Last-one(n) and !Sl.OverSatur()) (

cluster c, list LCandidates)

LCandidats.insert(S1);
return;

>
s2 = s1;

(3)ListFactors = Sl.OrderedFactors()

(4)foreach ic! ListFactors {
if (i == Corn) S2.ImproveCommO;
else if (i == Mem) S2.ImproveMemO;
else if (i == Reg) S2.ImproveReg(l;

1

(5)if (S2.0verSatO and Sl.OverSat0)
return;

LCandidates.insert(S1);

LCandidates.insert(S2);

LCandidates.insert(MinCost2(Sl, S2) 1 ;

else if (s2.overSatO)

else if (Sl.OverSat0)

else

>

Figure 6. Scheduling an operation in a cluster

recurrence). Moreover, nodes that are neighbors in the graph
are placed close in the list.

Once the nodes have been sorted, each node is scheduled
in the appropriate cycle and cluster. The core of the algo-
rithm is in section (2). In this loop, the current node is
attempted to be scheduled in each possible cluster (i.e. those
clusters with enough resources), producing a list of alterna-
tive partial schedules (LCandidates). If n o scheduling is in
the list, then the initiation interval is increased and the whole
process is re-initialized (3). Otherwise, the best schedule is
chosen according to the figure of merit described in Section
4.1.

Figure 6 shows the most important actions related with
the scheduling of the actual node in one cluster. Initially, the
proposed algorithm tries to schedule the operation in the
cluster without applying any of the transformations
described in section 4.2 (1). If the current node is the last one
of the list and the produced schedule does not require more
resources (communications, registers and memory) than
those available, the obtained schedule is inserted into the
LCandidates list (2). Otherwise, a new possible partial
schedule is created by trying to improve the one generated at
step (1) applying the transformations described in Section
4.2.

In order to schedule one operation in a cluster, the earliest
start time (Estart) and the latest start time (Lstart) are com-
puted taken into account its scheduled predecessors and suc-
cessors. Predecessors or successors scheduled in different
clusters imply an inter-cluster communication. The latency
of this communication is taken into account when computing
Estart and Lstart, and it is constrained by previous scheduled

180

communications. Note that a communication can be done
either through memory or a bus. If the communication is
from one predecessor to several successors in different clus-
ters, the bus-based option is chosen, since a single communi-
cation can broadcast the data to all the consumers.
Otherwise, the choice between bus- or memory-based com-
munication is determined by comparing the figure of merit of
each alternative.

Once Estart and Lstart are calculated, the actual node is
scheduled as close as possible to its predecessors or succes-
sors in order to minimize register pressure. Any required
communication is also scheduled. Communications through
memory are scheduled in such a way that register pressure is
minimized (i.e., stores are scheduled as close as possible to
the producer and loads are placed as close as possible to its
consumer(s)), whereas the most effective slot for bus-based
communications is determined by the solution that provides
the best figure of merit.

Then, communications, register pressure and memory
pressure are tried to be improved. These three factors are
tried to be improved one at each time, following the order
given by the components of the figure of merit (3). That is,
the factor for which the current instruction has consumed
most percentage is chosen first, and it is improved until i t is
not oversaturated. Then, the next most used resource is cho-
sen and so on. As a result, a transformed partial schedule is
obtained in addition to the original one (4). If both schedules
have any oversaturated resource, the current cluster is not
considered as a candidate for the current instruction (5) . If
just one of the two partial schedules has. no oversaturated
resources, it is inserted in the LCandidates list. Otherwise,
the one with best benefit, according to the figure of merit, is
chosen and inserted in the LCandidates list.

Table 1. Clustered VLIW configurations and latencies

each type and a quarter of the registers per cluster (note that
both, in total, are 12-way issue). For the clustered configura-
tions we will show results for different number of buses (I , 4
and unbounded) with different latencies (1 or 2 cycles) and
different total number of registers (32, 64 and unbounded).

In this section we present results on instructions per cycle
(IPC). These numbers include the contribution of the pro-
logue and epilogue. The number of iterations of each loop
has been obtained through profiling.

The unified configuration represents our baseline since it
has the same resources as the clustered configurations but it
does not suffer from the inter-cluster communication penal-
ties. Therefore, the IPC of the unified configuration is an
upper bound of what can be achieved by the clustered ones.
Note that this measure (IPC) is independent of the processor
cycle time. However, the clustered organizations may benefit
from a faster clock, then an IPC for a clustered configuration
near than that obtained for the unified configuration means
an overall improvement of the performance when the cycle
time is considered.

For all configurations the memory hierarchy is. shared by
att the dusters and considered pesfect (I.e., all' cache accesses
hit). For a real; memory, techniques to, reduce the impact of
cache misses when modulo scheduling is aoolied should be c . I

Selecting which particular communications, register used (231.
L 1

pressure or memory pressure are reduced by transformations
is done according to the figure of merit. Among all the can-
didates, only those that provide some benefit are applied.

The modulo scheduling algorithm has been implemented
in the ICTINEO compiler [2] and all the SPECfp95 bench-
marks have been evaluated. The programs were run until

5. Performance Results

This section presents a performance study of the URACAM
technique.

5.1. Experimental Framework

The scheduling algorithm has been evaluated for three differ-
en t configurations of the clustered VLIW architecture. These
configurations are shown in Table 1 .

The first configuration is called unijied and it is com-
posed of a single cluster with four functional units of each
type (integer, floating point and memory) and a unique reg-
ister file. Both the 2-cbister and 4-cluster configurations
have the register file split into two and four partitions respec-
tively. The former has 2 functional units of each type and half
of the registers per cluster. The latter has 1 functional uni t of

completion using the test input data set. The performance
figures shown in this section refer to the modulo scheduling
of innermost loops. For some of them the initiation interval
reaches a limit that makes modulo scheduling inappropriate
(for these cases, for instance, list scheduling would be more
effective). These loops are not considered for any of the fig-
ures in order to compare the same set of loops for all config-
urations and techniques. We have measured that the selected
loops represents around SO% of the total execution time.

5.2. Evaluation

One of the main novelties of the proposed algorithm is that
the spill code is inserted at the same time as the nodes are
scheduled, instead of the traditional approach that does it
after scheduling all the nodes. Then, the first experiment
studies the effectiveness of this combined scheduling and
register allocation technique.

181

In I
8

6 h

y 4 y 4

2 2

n 0

II I 0 UNIF-UnboundRias 1 I

y 4

2

n

SPECfp95 - 32 REGISTERS

Figure 7. Benefit of the combined instruction scheduling
and register allocation for the unified architec-
ture ,

For this study, we have first obtained results for a non-
clustered (unified) architecture. These results are shown in
Figure 7. For each graph, the white bars show the IPC for an
unbounded register file, which never requires spill code. The
gray and black bars show the IPC for a limited size register
file (64 registers in the top graph and 32 in the bottom graph).
The gray bar corresponds to the proposed on-the-fly spilling
technique, and the black bar corresponds to the approach that
increases the initiation interval whenever the scheduler runs
out of registers.

The first observation is that for 64 registers all three con-
figurations/techniques obtain the same IPC. This means that
for the loops of the SPECfp95 programs considered in this
study, 64 registers are enough for the unified architecture. On
the other hand, when the number of registers is 32 the differ-
ences are more noticeable. As we can see in the graph, add-
ing spill code on-the-fly is more effective than increasing the
initiation interval. The combined spill and scheduling tech-
nique improves the IPC by 5% on average over the approach
that increases the initiation interval, and it is just 4% lower
than that achieved with an unbounded number of registers.
As we will see in the following experiments, the benefit of
the proposed technique is more remarkable for clustered
architectures.

Register pressure increases for clustered architectures
due to inter-cluster communications. Since some values have
to be communicated through the buses, the lifetime of these
values augments. This increase in lifetimes corresponds to
both the cycles until a free bus is available and the latency of

D UNIF-URACAM
0 CLST-URACAY-BnlL-1
I CLST-URACAM-Bnl Lm2 --

SPECfp95 - 32 REGISTERS
(a) 2-cluster

in 1
6

2 4

2

0

8 . ---I

10 UNIF-URACAM 1 I
6

0 c 4

2

0

SPECfp95 - 32 REGISTERS

(b) 4-cluster

Figure 8. Performance of the proposed algorithm

the bus itself. In Figure 8 we show the IPC obtained by the
proposed algorithm for the 2- and 4-cluster architectures
with both 32 and 64 registers. In these graphs we use as a
baseline for comparisons the IPC obtained for the iiriiJed
architecture with on-the-fly spill code (first bar). Several bus
configurations have been evaluated for the clustered config-
urations: (i) 1 bus with I-cycle latency, (ii) 1 bus with 2-cycle
latency, and (iii) 4 buses with 1-cycle latency.

182

We can see that for some programs and configurations
the proposed algorithm obtains an IPC comparable to that
obtained by the unified architecture (e.g., swim and fpppp).
On average, the IPC for the 4-bus configuration is just 3%,
7%, 10% and 17% lower than that of the unified configura-
tion for 2 clusters and 64 registers, 2 clusters and 32 regis-
ters, 4 clusters and 64 registers, and 4 clusters and 32
registers respectively. We have also evaluated the perfor-
mance of a configuration with an unbounded number of
buses and the results show that its IPC is practically identical
to the 4-bus configurations.

Figure 9 shows the comparison of the URACAM tech-
nique for clustered VLIW architectures (2- and 4-cluster)
with the technique proposed by Shnchez and Gonzhlez [24].
This latter technique was shown to be very effective at bal-
ancing the workload and minimizing communication
requirements. It was also shown to outperform previous
approaches. However, this technique simply increases the
initiation interval and re-initialize the process when not
enough registers are available. In this figure, the first and sec-
ond bars show the results for the SBnchez and Gonzalez's
technique (SA+GO) and the URACAM technique respec-
tively for a configuration with 1 bus and 1-cycle latency,
whereas the third and fourth ones show the same results
when a 2-cycle latency for the bus is considered.

As we can see in these graphs, the URACAM technique
outperforms the most effective previous proposal for all
benchmarks and configurations. For some programs such as
tomcatv, su2cor and hydro2d the improvement is huge, spe-
cially for configurations with 4 clusters and a bus with 1-
cycle latency (between 80% and 125%).

For the 2-cluster architecture, on average the proposed
technique outperforms the previous proposal by 18% and
19% for I-cycle and 2-cycle bus latency respectively and 32
registers. For 64 registers the average improvements are 13%
and 12% respectively.

For the 4-cluster architecture, the speed-up of the pro-
posed technique over the SBnchez and GonzBlez's scheduler
is even higher. For a 32 registers, the average IPC improve-
ment is 22% and 36% for I-cycle and 2-cycle latency respec-
tively. For 64 registers, the improvements are 12% and 36%
respectively.

6. Conclusions

This work has presented a code generation framework for
cyclic code on clustered ILP processors. This framework
combines cluster assignment, modulo scheduling and regis-
ter allocation into a single phase, which allows searching for
solutions that optimize the three factors simultaneously,
rather than optimizing each one separately.

New heuristics have been introduced in order to quantify
the benefit of alternative schedules considering multiple
parameters simultaneously, such as the inter-cluster commu-

4

Y
2

0

I I 0 CLST-SA+GO-B=iL=l I I

4

0
%

2

I CLST-SA+GO-B=lL=I
0 CLST-URACAM-B=iL=I
I CLST-SA+GO-E=lL=Z

I
I n I

,&e &So 'Lb e." ,+** ,*e* ,+* ,qQQQ ,.s" $*- +
SPECfp95 - 32 REGISTERS

(b) 4-cluster

Figure 9. Comparison of URACAM with previous proposal

nication overhead, memory pressure and register require-
ments. Besides, transformations to improve the partial
schedule on-the-fly have been proposed.

The results show important improvements over previous
proposals and minor degradation when compared with an
architecture with the same resources but no communication
penalty.

183

Acknowledgements

This work has been partially supported by the CICYT project
TIC-5 1 1/98, the ESPRIT project EP 24942, and Analog
Devices.

References

V. Agarwal, M. Hrishikesh, S. Keckler and D. Burger,
“Clock Rate versus IPC: The End of the Road for Con-
ventional Microarchitectures”, in Proc. of the 27th Int.
Synp. on Cornputer Architecture, pp. 248-259, June
2000
E. AyguadC, C. Barrado, A. Gonzblez et al., “Ictineo: a
Tool for Research on ILP’, in SC’96, Research Exhibit
“Polaris at Work ”, 1996
A. Capitanio, D. Dytt and A. Nicolau, “Partitioned Reg-
ister Files for VLIWs: A Preliminary Analysis of
Tradeoffs”, in P rocs. of 25th. Int. Symp. on Microarchi-
tecture, pp. 192-300, 1992
J. R. Ellis, “Bulldog: A Compiler for VLIW Architec-
tures’’, MIT Press, p p . 180- 184, 1986
P. Faraboschi, G. Brown, J. Fisher, G. Desoli and F.
Homewood, “Lx: A Technology Platform for Customi-
zable VLIW Embedded Processing”, in Proc. of the
27th Int. Symp. on Computer Architecture, pp. 203-21 3,
June 2000
K.I. Farkas, P. Chow, N.P. Jouppi and Z. Vranesic, “The
Multicluster Architecture: Reducing Cycle Time
Through Partitioning”, in Procs. of 30th. Int. Symp. on
Microarchitecture, pp. 149-159, Dec. 1997
M.M. Fernandes, J . Llosa and N. Topham, “Distributed
Modulo Scheduling”, in Procs. of Int. Symp. on High-
Performance Computer Architecture, pp. 130-1 34, Jan.
1999
M. Franklin, “The Multiscalar Architecture”, PhD The-
sis, Technical Report TR-I 196, Computer Science
Dept., UW-Madison, 1993
J. Fridman and Zvi Greefield, “The TigerSharc DSP
Architecture”, IEEE Micro, pp. 66-76, Jan-Feb. 2000

[IO] L. Gwennap, “Digital 21264 Sets New Standard”,
Microprocessor Report, 10(14), Oct. 1996

[11) R. Ho, K. Mai and M. Horowitz, “The Future of Wires”,
IEEE Special Proceedings, to appear.

[121 S. Jang, S. Carr, P. Sweany and D. Kuras, “A Code Gen-
eration Framework for VLIW Architectures with Parti-
tioned Register Banks”, in Procs. of 3rd. Int. Cont on
Massively Parallel Computing Systems, April 1998

[I31 K. Kailas, K. Ebcioglu and A. Agrawala, “CARS: A
New Code Generation Framework for CLustered ILP
Processors”, in Proc. 7th Int. Synp. on High-Perfor-
mance Computer Architecture, Jan. 200 1

[I41 J. Llosa, A. GonzBlez, E. AyguadC and M. Valero,
“Swing Modulo Scheduling: A Lifetime-Sensitive
Approach”, in Procs. of Int. ConJ: on Parallel Architec-
tures and Compilation Techniques, pp. 80-86, Oct. 1996

[151 “MAP1000 unfolds at Equator”, Microprocessor
Report, 12(16), Dec. 1998

[161 P. Marcuello and A. Gonzblez, “Clustered Speculative
Multithreaded Processors”, in Procs. on the 13th Int.
Conference on Supercomputing, pp. 365-372, June 1999

[171 E. Nystrom and A. E. Eichenberger, “Effective Cluster
Assingment for Modulo Scheduling”, in Procs. of 31th.
lnt. Symp. on Microarchitecture, pp.103-114, 1998

[181 S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-
Effective Superscalar Processors”, in Procs. of the 24th.
Int. Symp. on Computer Architecture, pp. 1-13, June
1997

[19] E. Ozer, S. Banerjia and T.M. Conte, “Unified Assign
and Schedule: A New Approach to Scheduling for Clus-
tered Register File Microarchitectures”, in Procs. of 31st
Int. Symp. on Microarchitecture, pp. 308-315, Nov.
1998

[20] B.R. Rau and C.D. Glaeser, “Some Scheduling Tech-
niques and an Easily Schedulable Horizontal Architec-
ture for High Performance Scientific Computing”, in
Procs. on the 14th Ann. Workshop on Microprogram-
ming, pp. 183-198, Oct. 1981

[21] B.R. Rau, M. Lee, P. Tirumalai, and P. Schlansker. Reg-
ister allocation for software pipelined loops. In Proceed-
ings of the ACM SIGPLAN’92 Conference on
Programming Language Design and Implementation,
pages 283-299, June 1992.

[22] E. Rotenberg, Q. Jacobson, Y. Sazeides and J.E. Smith,
“Trace Processors”, in Procs. of the 30th Int. Symp. on
Microarchitecture, pp. 138-148, Dec. 1997

[23] J. SBnchez and A. GonzBlez, “Cache Sensitive Modulo
Scheduling”, in P rocs. of 30th. Int. Symp. on Microar-
chitecture, pp. 338-348, Dec. 1997

[24] J. Sbnchez and A. Gonzilez, “The Effectiveness of Loop
Unrolling for Modulo Scheduling in Clustered VLIW
Architectures”, in Procs. of the 29th. lnt. Con$ on Par-
allel Processing, pp. 555-562, Aug. 2000

[25] J. SBnchez and A. Gonzblez, “Modulo Scheduling for a
Fully-Distributed Clustered VLIW Architecture”, in
Procs. of 33th. Int. Symp. on Microarchitecture, Dec.
2000

[26] Semiconductor Industry Association, “The National
Technology Roadmap for Semiconductors: Technology
Needs”, 1997

[27] G. Sohi, S.E. Breah and T.N. Vijaykumar, “Multiscalar
Processors”, in P rocs. of the 22nd. Int. Symp. on Com-
puter Architecture, pp.414-425, June 1995

[28] Texas Instruments Inc., “TMS32OC62x/67x CPIJ and
Instruction Set Reference Guide”, 1998

[29] S. Vajapeyam and T. Mitra, “Improving Superscalar
Instruction Dispatch and Issue by Exploiting Dynamic
Code Sequences”, in Procs. of Int. Symp. on Computer
Science, pp. 1-12, June 1997

[30] J. Zalamea, J. Llosa, E. AyguadC and M.
Valero,”Improved Spill Code Generation for Software
Pipelined Loops” in Proc. of Con$ on Programming
Languages Design and Implementaion, June 2000

[3 11 V.V. Zyuban, “Low-Power High-Performance Super-
scalar Architectures”, PhD Thesis, Dept. of Computer
Science and Engineering, University of Notre Dame,
Jan. 2000

184

