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Reliability to soft errors is a significant design challenge in modern microprocessors owing to an exponential
increase in the number of transistors on chip and the reduction in operating voltages with each process
generation. Architectural Vulnerability Factor (AVF) modeling using microarchitectural simulators enables
architects to make informed performance, power, and reliability tradeoffs. However, such simulators are
time-consuming and do not reveal the microarchitectural mechanisms that influence AVF. In this article,
we present an accurate first-order mechanistic analytical model to compute AVF, developed using the first
principles of an out-of-order superscalar execution. This model provides insight into the fundamental in-
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1. INTRODUCTION

The mitigation of radiation-induced soft errors has emerged as a key design challenge
in current and future process technologies as a result of increasing transistor densities
and lowering operating voltages [Baumann 2005; Mukherjee et al. 2003; Borkar 2005;
Shivakumar et al. 2002]. However, a significant fraction of radiation-induced faults do
not affect the correctness of program execution [Wang et al. 2004]: faults may occur
in structures that do not contain program state or contain misspeculated or other
state that does not affect the correctness of the program. As soft error mitigation
mechanisms incur a significant penalty in terms of area, power, performance, and
design effort, quantifying this masking effect of program execution using Architectural
Vulnerability Factor (AVF) modeling enables designers to devise soft error mitigation
mechanisms that meet these goals efficiently. AVF captures the probability that a
fault in a structure will manifest as an error in the program output, and it can be
modeled using statistical fault injection on RTL models later in the design cycle or
estimated using Architecturally Correct Execution (ACE) analysis [Mukherjee et al.
2003] or SoftArch [Li et al. 2005] on microarchitectural simulators during the early
design phase.

Architects use detailed microarchitectural simulations to study the effect of microar-
chitectural or parametric changes on AVF in order to determine the best tradeoff
between Soft Error Rate (SER), performance, power, and area. However, such simula-
tions are very time-consuming when performed over a large number of workloads, for
a large number of instructions, and over a large number of microarchitectural configu-
rations and parameters. Such simulations do not reveal the precise microarchitectural
mechanisms that influence aggregate metrics such as CPI or branch prediction rates,
providing limited insight into the underlying factors influencing AVF. Statistical or
machine-learning-based modeling [Fu et al. 2006; Duan et al. 2009; Cho et al. 2007;
Walcott et al. 2007] also does not easily quantify the fundamental interactions between
the workload and the microarchitecture, making it difficult to derive insight into the
factors affecting AVF. Consequently, workload characterization for AVF becomes a sig-
nificant challenge.

In this work, we develop a modeling methodology to analytically obtain the AVF of
a structure using ACE analysis, in the first order, using statistics collected from rela-
tively inexpensive profiling. The central concept behind this methodology is to divide
program execution into intervals [Eyerman et al. 2009]. Each interval is a region of exe-
cution delimited by miss events that disrupt the dispatch of instructions. We model the
occupancy of state that will eventually be committed by the processor in each interval.
The occupancy of correct-path state during each interval is averaged, weighted by the
time spent in each interval. The AVF of a structure is then estimated by derating this
occupancy with the average proportion of un-ACE bits induced by the workload. Addi-
tionally, our model is deliberately constructed to capture the interaction of the various
miss events and their combined impact on occupancy. This allows us to derive novel
quantitative insights into the workload’s influence on the AVF of a structure, which
may not be obvious from aggregate metrics. We use the same terminology as Eyerman
et al. [2009] to refer to such “white box” models as mechanistic models, as they are built
from first principles, in contrast to “black box” statistical or machine-learning-based
analytical models. Figure 1 presents the general overview of our modeling methodol-
ogy. Workloads are profiled to capture important metrics required by the model, which
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Fig. 1. Design space exploration using the model.

is a one-time effort. Multiple microarchitectures can then be modeled using the data
from a single profile. Our methodology can be used to model the AVF of any structure
whose AVF correlates with its utilization, and whose utilization is influenced by pro-
gram execution. In this article, we demonstrate the methodology for estimating the
AVF of the reorder buffer (ROB), issue queue (IQ), load and store queues (LQs, SQs),
and functional units (FUs). We show that the mean absolute error in estimating AVF
for each of these structures is less than 7%, for a four-wide out-of-order machine, as
compared to ACE analysis using cycle-accurate simulations.

Our modeling methodology can complement cycle-accurate simulations for perform-
ing experiments, such as parametric sweeps or design space exploration. The compu-
tational simplicity of the model enables the architect to cheaply explore the design
space, eliminate infeasible design points, and guide detailed simulations. Owing to its
simplicity, our model also allows the architect to study more workloads over longer
runtimes than possible using detailed simulation while providing valuable insight.

The key contributions of this work are as follows:

(1) We present a novel first-order analytical model for AVF, designed from first prin-
ciples to capture the impact of microarchitectural events on the AVF of major
out-of-order processor structures. The key novelty of this modeling effort over prior
mechanistic models for performance [Karkhanis and Smith 2004; Eyerman et al.
2009] is that it captures the interaction between different events occurring in a
processor, which is required for estimating AVF and estimates AVF with low error.
This enables the architect to derive unique insight into the factors affecting the AVF
of a structure, not available using aggregate metrics or prior work using black-box
models [Fu et al. 2006; Walcott et al. 2007; Duan et al. 2009; Cho et al. 2007].

(2) As the model requires inexpensive profiling, it can be used to perform design space
exploration studies nearly instantaneously. In this work, we demonstrate how the
model can be used to study the effect of scaling the ROB, issue width, and memory
latency on AVF, which provides valuable insight into the effect of microarchitecture
and workload interactions on AVF.

(3) We demonstrate how the model can be used for workload characterization for AVF.
As the model quantitatively expresses the exact mechanisms influencing AVF, it
can be used to identify high or low AVF-inducing workloads. We also demonstrate
why aggregate metrics such as IPC or cache miss rates do not correlate with the
AVF of a structure.

(4) We demonstrate a use case of the model to study the impact of compiler optimiza-
tions, algorithms, implementations, and input data on AVF, SER, and performance
to emphasize the importance of workload characterization for AVF.

The remainder of this article is organized as follows: Section 2 revisits AVF modeling
using ACE analysis and the interval analysis methodology for modeling performance.
We outline our modeling methodology and associated tradeoffs in Section 3. We com-
pare the AVF as predicted by the model to the AVF computed using detailed simulation
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in Section 4. Finally, we utilize the model to derive insights into the effect of microar-
chitectural changes on AVF in Section 5.

2. BACKGROUND

2.1. ACE Analysis

In order to compute AVF, Mukherjee et al. [2003] introduce the concept of Architec-
turally Correct Execution bits. An ACE bit is one whose correctness is required for the
correctness of the program. A bit could be either microarchitecturally or architecturally
ACE. Bits that are not critical to program correctness are termed un-ACE. Microarchi-
tecturally un-ACE bits include bits due to an unused or invalid state, bits discarded as
a result of misspeculation, and bits in predictor structures. Architecturally un-ACE bits
are a direct result of the instructions in the binary, such as NOPs, software prefetches,
predicated false instructions, and dynamically dead instructions.

Mukherjee et al. formally define the AVF of a structure of size N bits as AVFstructure =
1
N ×∑N

i=0( ACE cycles for bit i
Total Cycles ). Thus, AVF of a structure is expressed as the average number

of ACE bits per cycle divided by the total number of bits in the structure. AVF is used
to derate the circuit-level fault rate of the structure to estimate its Soft Error Rate
(SER). The derated fault rates for all structures are added up to estimate the overall
SER of the processor.

2.2. Interval Analysis

Our first-order mechanistic model for AVF is inspired by earlier work for estimating
Cycles Per Instruction (CPI) for out-of-order superscalar architectures, proposed by
Karkhanis and Smith [2004] and refined by Eyerman et al. [2009] using interval anal-
ysis. In the interest of brevity, we only present the basic ideas here. Interval analysis
models the program execution as an ideal, miss-free execution, interrupted by miss
events that disrupt the dispatch of instructions. Instructions are fetched, decoded, and
dispatched into the instruction window or the ROB. Upon completion, instructions
are retired from the instruction window in program order. In the absence of any miss
events, the processor is able to dispatch instructions at the maximum dispatch rate
D1. Each miss event interrupts the dispatch of instructions until it resolves. An I-cache
miss will cause instruction fetch to be stalled until it has been resolved. A branch mis-
predict, once detected, will trigger a pipeline flush for all instructions fetched after the
mispredicted branch. The branch misprediction penalty for an out-of-order processor is
modeled as the sum of the front-end pipeline depth and the branch resolution penalty.
The branch resolution penalty is the number of cycles between the mispredicted branch
entering the instruction window and the misprediction being detected. A long-latency
Last-Level Cache (LLC) miss at the head of the ROB will cause the processor to stall
until it is resolved. As an out-of-order processor can extract Memory-Level Parallelism
(MLP), and nearly all of the latency of an overlapped miss is hidden behind that of
the nonoverlapped data LLC/TLB miss, it is sufficient to count only the nonoverlapped
data LLC and TLB miss cycles toward estimating performance for a given instruction
window size.

Therefore, the total number of cycles for executing a program is modeled as the sum
of the cycles spent in each interval. Miss events that would not interrupt dispatch,
such as L1 or LLC data cache hits, are modeled similarly to arithmetic instructions.
The model assumes a microarchitecture design with sufficient resources such that the
processor would not frequently stall in the absence of miss events while running typical
workloads.

1Note that D may be less than the peak designed dispatch width if the program lacks sufficient inherent
Instruction-Level Parallelism (ILP).
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Karkhanis and Smith [2004] and Eyerman et al. [2009] demonstrate that it is suffi-
cient to model these intervals as being independent of one another, with little loss in ac-
curacy. This key simplifying assumption does not hold true for correct-path occupancy.
For example, a mispredicted branch that is dependent on an LLC data cache miss signif-
icantly reduces the occupancy of correct-path (ACE) bits in the shadow of the LLC miss
and is nontrivial to estimate using the existing interval analysis model or aggregate
metrics. It is therefore necessary for our AVF model to account for such interactions.

The profilers for the model are implemented as sliding windows and collect statistics
for a range of instruction window sizes [Eyerman et al. 2009]. Thus, ROB size, issue
width, front-end pipeline depth, and the latencies of instructions, caches, TLBs, and
main memory can be changed in the model without requiring additional profiling. If the
cache hierarchy or the branch predictor is changed, the corresponding profiler would
need to be rerun. Our model retains the same flexibility as the original interval analysis
modeling methodology to allow easy design space exploration.

3. MODELING AVF USING INTERVAL ANALYSIS

The unique requirements of our model are to capture the occupancy of state in a
given structure in the core, while discarding the occupancy of un-ACE wrong-path
instructions, and faithfully modeling the complex interactions between miss events
that affect AVF.

In this section, we describe the methodology for estimating the occupancy of correct-
path state of the ROB, LQ, SQ, IQ, and FUs, which contain the largest amount of
corruptible state in the core (we consider all caches and TLBs to be outside the core).
We then estimate AVF by derating this occupancy by the fraction of bits introduced into
a structure that were un-ACE. We identify un-ACE instructions through profiling and
use this information to determine the number of ACE bits injected into each structure
while running the workload. The separation of the program’s influence on the number
of ACE bits induced in a structure and the residency of these ACE bits in the structure
enable the architect to gain deeper insight into the interaction of events and their
contribution to overall AVF. As with any analytical modeling methodology, we seek
to balance accuracy with simplicity of formulation, the ability to provide quantitative
insight, and ease of collecting necessary program characteristics.

Our modeling methodology must account for the effect of interaction—ignored in
interval analysis for CPI—between miss events on the occupancy of correct-path state.
The data necessary to achieve this is easily obtained from the profiler for interval
analysis, incurring negligible overhead.

We estimate the occupancy of eventually committed state in the ROB in Section 3.1.
The ROB occupancy governs the occupancy of LQ, SQ, and FUs. As the IQ2 can issue
instructions out of order, its occupancy is estimated independently, as described in
Section 3.2.

3.1. Modeling the AVF of the ROB

In this section, we study the effect of each miss event on the occupancy of the ROB
independently of one another and analyze the impact of interaction between miss
events. As illustrated in Figure 2, we linearize the ramp-up and ramp-down curves
for occupancy, with slopes equal to the dispatch rate, in the interest of simplicity. It is
assumed for the purposes of this work that the designed dispatch and retire widths for
the processor are equal.

2We use IQ or issue queue here to refer to the instruction buffer and scheduler logic. This is the same as
the reservation station in a reservation-station-based design. For the purposes of this article, we assume a
physical register file (PRF)-based design while calculating the number of bits/entry for the issue queue. Our
modeling methodology is equally applicable to either design.
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Fig. 2. Modeling the occupancy of the ROB using interval analysis.

3.1.1. Occupancy of Correct-Path Instructions. The interval analysis model for perfor-
mance estimation allows us to estimate the number of cycles spent during each ex-
ecution interval. Our model allows us to estimate the occupancy of correct-path in-
structions in the ROB during these intervals. The occupancy of the ROB is modeled as
the average occupancy of state during each interval, weighted by the number of cycles
spent in each interval, and is expressed as follows:

OROB
avg = 1

Ctotal
·
(

OROB
ideal · Cideal + OROB

DL2Miss · CDL2Miss + OROB
IL1Miss · CIL1Miss

+ OROB
IT LBMiss · CIT LBMiss + OROB

brMp · CbrMp + OROB
DT LBMiss · CDTLBMiss

)
. (1)

In this equation, C refers to the total number of cycles, and O refers to the occupancy
of state during each interval. In the following sections, we describe how the occupancy
of state during each miss event is computed. Ctotal refers to the total number of cycles
required for executing the program/trace.

3.1.2. Modeling Steady-State Occupancy. Given an instruction window of size W , the to-
tal number of cycles taken to execute all instructions in the instruction window is a
function of the latency of executing the critical path. The critical path, or the critical
dependence chain, is the longest-latency dependence chain in the instruction window.
The rate at which all instructions in the instruction window can be retired is fundamen-
tally limited by this critical dependence chain. The average critical path length K(W)
for a given program is modeled as K(W) = 1

α
W1/β [Michaud et al. 1999; Karkhanis

and Smith 2004], where α and β are constants that are determined by fitting the
relationship between K(W) and W to a power curve. This analysis is performed
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Fig. 3. IW characteristics for sample SPEC CPU2006 workloads plotted on a logarithmic scale.

assuming that all instructions have unit latency. Therefore, given an average instruc-
tion latency l, the critical path would require l ·K(W) cycles. Using Little’s law, the ideal
or steady-state IPC (I(W)) that can be extracted from the program given an instruction
window of size W is presented in Equation (2) [Michaud et al. 1999; Karkhanis and
Smith 2004]. For a processor with a designed dispatch width D, setting I(W) = D and
rearranging the terms in Equation (2) give us the steady-state ROB occupancy, OROB

ideal ,
or W(D) necessary to sustain the peak dispatch rate:

I(W) = W
l · K(W)

= α
l .W

(1−1/β) (2)

∴ OROB
ideal = W(D) = ( l·D

α

) β

β−1 . (3)

Equation (2) is referred to as the IW characteristic [Karkhanis and Smith 2004;
Eyerman et al. 2009]. If the steady-state IPC of the program is less than the designed
dispatch width for a given instruction window size, the program requires a much larger
instruction window to extract the necessary ILP. In this case, the occupancy of the ROB
will saturate to 100%. As noted by Karkhanis and Smith [2004], a processor that has
a balanced design for a typical workload will not frequently stall due to a full IQ.
Therefore, we consider only the typical case for our modeling. An implicit assumption
of Equation (2) is that the product of the longest dependence chain and average latency
(l · K(W)) is approximately equal to the latency of executing the critical dependence
path. This approximation may induce errors in pathological workloads with few miss
events. However, the separation of critical path and average latency profiling allows
us to easily change instruction or cache latencies in the model without reprofiling the
workload.

Figure 3 presents the relationship between K(W) and W for a range of instruction
window sizes up to 512 entries, plotted on a log-log scale. The power curve fit for
determining α and β for each workload is represented by a dashed line. The y-intercept
for the fitted IW characteristic is equal to 1/α and is a scaling factor. The slope of the line
determines 1/β, which represents ILP: workloads with low values of β have lower ILP
and, consequently, lower steady-state IPC. Note that β ≥ 1. For the SPEC CPU2006
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workloads studied in this work, β ranges between 1.24 and 2.39. This suggests an
approximately square-root relationship between inherent ILP and instruction window
size, as reported in prior work [Riseman and Foster 1972; Michaud et al. 1999].

We use the coefficient of determination R2 to estimate the goodness of fit. R2 = 1
indicates a perfect fit, whereas R2 = 0 indicates the absence of a fit. For workloads
such as bzip2, the fit with the power curve is nearly exact (R2 ≈ 1). This fit for practical
ROB sizes (between 32 and 512) is apparent from visual inspection of Figure 3. For
other workloads such as astar, the fit slightly diverges in this range (R2 = 0.99). These
two cases are typical of most workloads, and most workloads have R2 around this
mark. However, hmmer has R2 = 0.98 due to an irregular IW characteristic that leads
to a relatively suboptimal fit as indicated in Figure 3. Although the general trend is
approximately that of a power curve, the curve itself has changing behavior in different
intervals, leading to divergence with the fitted power curve at various points along it.
This may induce errors for workloads that have few miss events, making the accuracy
of the IW characteristic fit a critical factor, as will be discussed in Section 4.1.

It is recommended that a value of W that is much larger than the range of instruction
window sizes of interest be selected for doing curve fitting. This avoids any error from
the divergence at the extremes. In this work, we evaluate the IW characteristic for
ROB sizes of up to 512 entries.

3.1.3. Modeling Occupancy in the Shadow of Long-Latency Data Cache Misses. As shown in
Figure 2(a), a nonoverlapped data L23 miss (or a TLB miss for a hardware-managed
TLB) reaches the head of the ROB, blocking the retirement of subsequent instructions.
The processor continues to dispatch instructions until the ROB fills up completely.
Thus, the occupancy in the shadow of a nonoverlapped L2 miss is OROB

DL2Miss = W .
When the data eventually returns from main memory, the L2 miss completes, and the
processor is now able to retire instructions. However, the occupancy of the ROB need
not return to steady state after the L2 miss completes; it can remain at nearly 100%
if the processor is capable of dispatching and retiring instructions at the same rate. In
Section 3.1.5, we explain the procedure for accounting for this interaction.

3.1.4. Modeling Occupancy During Front-End Misses.

Modeling Occupancy During an L1 I-Cache Miss. The occupancy of the ROB during
an L1 I-cache miss depends on the hit latency of the L2 cache, as shown in Figure 2(c),
and therefore requires special modeling. When an L1 I-cache miss occurs, the pro-
cessor is initially able to dispatch instructions until the front-end pipeline drains.
Subsequently, the occupancy of the ROB decreases by a rate determined by the ideal
IPC (see Equation (2)), as depicted by the solid line in Figure 2(c). Once the I-cache miss
resolves and the front-end pipeline is refilled, occupancy of the ROB starts increasing
at the rate of the ideal IPC (Equation (2)). Linearizing ramp-up and ramp-down,4 the
shaded areas under the ramp-up and ramp-down are equal, allowing us to approxi-
mate occupancy as depicted by the dotted line in Figure 2(c). Thus, the reduction in
correct-path state during an I-cache miss is latL2 · D, where latL2 cycles is the I-cache
miss latency (i.e., the hit latency of the L2 cache), and D is the steady-state dispatch or
retirement rate. Thus, OROB

IL1Miss = OROB
ideal − latL2 · D. This allows us to model changes in

occupancy as steps, greatly simplifying computation, and is used to model other miss
events as well.

3We assume that the L2 cache is the LLC in the remainder of the study with no loss in generality.
4Although it is possible to compute the exact ramp-up and ramp-down curves using Equations (2) and (3),
the error due to linearization is negligible.
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Fig. 4. Modeling the effects of interactions between miss events on occupancy.

The occupancy during other front-end misses such as L2 cache instruction misses
and I-TLB misses can be modeled along similar lines. As the latencies of L2 instruction
misses and I-TLB misses are relatively large, the occupancy of the ROB goes down to
zero.

Modeling Occupancy During a Branch Misprediction. Figure 2(b) illustrates the
effect of a branch misprediction on the occupancy of the ROB. The solid line depicts
the occupancy of correct-path instructions in the ROB. All instructions fetched after
the mispredicted branch are eventually discarded, and hence un-ACE. As correct-
path instructions are retired and instructions from the mispredicted path continue to
be fetched, the occupancy of ACE state decreases. The overall occupancy, as indicated
using the dotted line, remains at the steady-state value, until the branch misprediction
is detected and the pipeline is flushed. Karkhanis and Smith [2004] show that assuming
an oldest-first issue policy, the mispredicted branch is among the last correct-path
instructions to be executed in the instruction window. Simultaneously, retirement of
instructions drains the ROB of correct-path state, resulting in low ACE occupancy by
the time the misprediction is detected, and the pipeline is flushed. Thus, OROB

brMp ≈ 0.
After the front-end pipeline refills and dispatch resumes, the occupancy of the ROB
eventually returns to the steady-state value.

3.1.5. Modeling Interactions Between Miss Events.

Dependent Branch Mispredictions in the Shadow of a Long-Latency Load Miss. Con-
sider the case in which a branch is dependent on a long-latency load miss and occurs
within the same instruction window. If such a branch is mispredicted, all instructions
in the ROB fetched after the branch instruction are un-ACE. As the branch will not re-
solve until the cache miss completes, the occupancy of correct-path state in the shadow
of this L2 miss is not 100%, as shown in Figure 4(a). Programs such as perlbench, gcc,
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mcf, and astar have a significant number of such interactions. Branch mispredictions
that are independent of long-latency data cache misses will resolve quickly such that
their interaction has a negligible effect on occupancy.

We capture this interaction by computing the number of instances in which a nonover-
lapped data L2 or TLB miss has a dependent mispredicted branch in its instruction win-
dow (Ndep(W)). The average number of instructions between the nonoverlapped miss
at the head of the ROB and the earliest dependent mispredicted branch (lenDL2,Br(W),
lenDT LB,Br(W)) is also captured to estimate the occupancy of correct-path state in the
shadow of the L2 miss. Note that the mispredicted branch only needs to be dependent
on any data L2 or TLB cache miss in the instruction window. This computation can be
added to the existing profiler for nonoverlapped data cache misses with little overhead.
It does, however, require that information on mispredicted branches from the branch
profiler be made available to the nonoverlapped data cache miss profiler.

For a total number of nonoverlapped L2 misses NDL2Misses(W), we express the term
OROB

DL2Miss · CDL2Miss in Equation (1) as follows:

OROB
DL2Miss · CDL2Miss = (lenDL2,Br(W) · Ndep(W) + W · (NDL2Miss(W) − Ndep(W)))

× latDL2Miss. (4)

Equation (4) expresses the cumulative occupancy of correct-path state in the shadow
of a data L2 miss. If all the state in the shadow of a data L2 miss were correct-path
instructions, the cumulative occupancy would simply be (W · NDL2Miss(W) × latDL2Miss),
where W is the size of the instruction window. However, if Ndep(W) such DL2 misses
had lenDL2,Br(W) correct-path instructions in their shadow, the cumulative occupancy
of instructions in the shadow of such DL2 misses would be (lenDL2,Br(W) · Ndep(W) ×
latDL2Miss). The remaining L2 misses, namely, (NDL2Misses−Ndep(W)), have an occupancy
of W instructions in their shadow. Equation (4) combines the two aforementioned cases
to give the cumulative occupancy in the shadow of a data L2 miss.

Interaction of Data and Instruction Cache Misses. Our model is affected by two types
of interactions between data cache and instruction cache miss events. The first case
occurs when an L2 instruction cache or ITLB miss occurs in the shadow of a nonover-
lapped DL2 or DTLB miss, resulting in less than 100% occupancy of the ROB. We find
that this case is very rare; only perlbench is significantly impacted due to its higher
proportion of ITLB misses. We follow a procedure similar to the aforementioned case
of dependent branch instructions. L1 I-cache misses in the shadow of a nonoverlapped
L2/DTLB miss resolve quickly, and hence their interaction has negligible effect on
average occupancy.

A second case occurs when there is an extended period of ideal execution between
a long-latency data cache miss and a subsequent front-end miss. As described in
Section 3.1.3, we made a simplifying assumption that the occupancy of the ROB re-
turns to steady state relatively quickly after a long-latency data cache miss retires, as
a result of subsequent front-end misses or fetch inefficiencies. However, the occupancy
of the ROB can stay high if the CPU can dispatch and retire at full dispatch bandwidth.
This may affect high IPC workloads that experience few miss events. In order to model
this case, we measure the fraction of nonoverlapped DL2 and DTLB misses that are
separated from a front-end miss event by at least 2W instructions. This interval length
is chosen to be large enough to eliminate misses that occur in the shadow of the L2
and DTLB miss; that is, it must be greater than W . By picking an interval length of
greater than 2W , we only capture the length of long intervals and filter out the impact
of very short intervals on average. Figure 4(b) outlines the average number of nonover-
lapped misses that are followed by intervals of greater length than 2W instructions for
the cache and branch predictor configuration outlined for the wide-issue machine in
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Table I. Processor Configurations

Parameter Wide-Issue Machine Narrow-Issue Machine
ROB 128 entries, 76 bits/entry 64 entries, 76 bits/entry
Issue queue 64 entries, 32 bits/entry 32 entries, 32 bits/entry
LQ 64 entries, 80 bits/entry 32 entries each, 80 bits/entry
SQ 64 entries, 144 bits/entry 32 entries each, 144 bits/entry
Branch predictor Combined, 4K bimodal, 4K Combined, 4K bimodal, 4K

gshare, 4K choice, 4K BTB gshare, 4K choice, 4K BTB
Front-end pipeline depth 7 5
Fetch/dispatch/issue/ 4/4/4/4/4 per cycle 2/2/2/2 per cycle
execute/commit
L1 I-cache 32kB, 4-way set associative 32kB, 4-way set associative
L1 D cache 32kB, 4-way set associative 32kB, 4-way set associative
L2 cache 1MB, 8-way set associative 1MB, 8-way set associative
DL1/L2 latency 2/9 cycles 2/9 cycles
DTLB and ITLB 512 entry, fully associative 512 entry, fully associative
Memory latency 300 cycles 300 cycles
TLB miss latency 75 cycles 75 cycles

Table I. As seen in Figure 4(b), with the exception of hmmer, gobmk, sjeng, and astar,
this situation occurs infrequently. The average length of such sequences for these work-
loads ranges between 300 and 450 instructions. Thus, the fraction of nonoverlapped L2
misses in Figure 4(b) will experience a subsequent region of ideal execution in which
occupancy is W , which is included in our calculations for the model. We perform a
similar experiment to capture long intervals between two consecutive data L2/TLB
misses but find that they are infrequent and affect only workloads dominated by these
misses. In such cases, the contribution of the data L2/TLB miss to overall AVF is so
large that the effect of the interval between them is negligible and can be ignored. We
nevertheless track these cases as they may need to be accounted for if the workload
has few miss events.

Clustered Front-End Misses. With the exception of the L1 I-cache miss, the ROB is
completely drained after a front-end miss event. As these misses are independent of
one another, their impact on occupancy is separable in the first order. As the ROB is
not completely drained in the shadow of an I-cache miss, the lagging I-cache miss in
two consecutive I-cache misses will experience a lower occupancy than the leading one.
We ignore this interaction due to their relative infrequency and their low impact on
average occupancy. We study this assumption in further detail in Section 4.1.

3.2. Modeling of the AVF of the IQ

The occupancy of the IQ requires separate modeling as instructions can issue out of
order, in contrast to the ROB, which instructions are dispatched to, and retired from,
in program order. We assume an oldest-first issue policy for our model. Prior work by
Butler and Patt [1992] shows that scheduling policy has very low impact on IPC. We
therefore expect that our methodology can be applied to IQs with other scheduling
policies. Occupancy of correct-path instructions during front-end misses is modeled in
a manner similar to that of the ROB. Ideal occupancy and occupancy in the shadow of
a long-latency data cache or TLB miss are modeled differently, as outlined later.

3.2.1. Steady-State IQ Occupancy. Let A(W) be the average number of instructions in a
chain of dependent instructions in the instruction window. A(W) is obtained as a by-
product of the critical path profiling necessary to determine K(W). The average latency
of each instruction in the IQ is l · A(W). The steady-state arrival rate of instructions
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Table II. Configuration of Functional Units for the Wide-Issue Machine

Unit No. of Units Latency
Int ALU 4 1
Int MUL 1 3
Int DIV 1 20 (blocking)
FP ALU 4 3
FP MUL 2 4
FP DIV/SQRT 1 12/24 (blocking)

in the issue queue is either the steady-state ideal dispatch rate I(W) or the designed
dispatch width D, if I(W) > D. Using Little’s law, OIQ

ideal = l · A(W) · min(D, I(W))
[Karkhanis and Smith 2007].

3.2.2. Occupancy in the Shadow of a Long-Latency Load Miss. When issue of instructions
ceases in the shadow of an L2/TLB load miss, the IQ eventually contains only the
instructions dependent on such misses. We measure the average number of instructions
dependent on the L2 and DTLB misses in the instruction window to determine the
average occupancy during such miss events. This profiling can be added to the existing
profiler for determining nonoverlapped data cache misses with no overhead. We also
capture the effect of interactions between data L2/TLB misses and front-end misses,
similar to the procedure outlined in Section 3.1.5.

3.3. Modeling the AVF of LQ, SQ, and FU

The occupancy of the LQ, SQ, and FUs can be derived from the occupancy of the
ROB and the instruction mix (I-mix). Additionally, by classifying un-ACE instructions
according to the I-mix, the occupancy of each of these units is derated to estimate AVF.

In this work, we assume that each functional unit is pipelined with buffering equal
to the width of the data path and has depth equal to the latency of the instructions that
it can handle. For example, the integer multiply unit has a latency of three cycles and is
capable of doing 64-bit computation. Thus, the number of vulnerable bits in the integer
multiply pipe is 192 bits. The model can easily accommodate other implementations of
the functional units. Table II lists the functional unit configuration for the wide-issue
machine. ACE analysis is performed considering the operand size and logical masking;
for example, if a 32-bit instruction is sent to a 64-bit ALU, the upper 32 bits are un-
ACE. FU utilization can then be estimated using Little’s law, as the latency of each
arithmetic instruction and the issue rate are known.

Loads and stores enter the LQ and SQ after they are issued and remain there until
they are retired. As we have seen in Section 3.2, the average dispatch-to-issue latency
for an instruction is l · A(W) cycles. Thus, the LQ and SQ occupancy can be estimated as
the fraction of loads and stores in the ROB, adjusted for the average dispatch-to-issue
latency of the loads/stores in the instruction stream. Thus, we compute the occupancy-
cycle product in the ideal case for SQ as (Nstores/Ntotal) · OROB

ideal · Cideal − l · A(W) · Nstores,
where Nstores and Ntotal are the number of stores and total number of instructions,
respectively. This assumption may be violated if a majority of the stores are dependent
on a load that misses in the L2 cache and occur in the same instruction window as the
store. In this case, the store will issue only after the load data returns from memory.
This is infrequent in the workloads under study but can be easily detected: the analysis
is already performed as described in Section 3.2.2. We would only need to capture the
proportion of such stores and adjust the occupancy accordingly. All other occupancy-
cycle products from Equation (1) are multiplied by the fraction of stores to estimate
OSQ

total. We improve the occupancy estimation by capturing the number of loads and
stores in the shadow of a nonoverlapped data L2/TLB.

ACM Transactions on Computer Systems, Vol. 32, No. 4, Article 11, Publication date: January 2015.



Mechanistic Modeling of Architectural Vulnerability Factor 11:13

3.4. Summary

This section presents a summary of all the data required for the model. The model
requires a critical path and average latency profiler to capture average latency l, α, and
β in order to model the steady-state behavior. This profiler also captures the average
dependence chain length used for IQ occupancy modeling. We also require a front-end
miss profiler for capturing the number of instruction cache misses (L1 and L2) and
branch mispredictions. This profiler captures additional information for estimating
the branch resolution penalty, which is required for estimating IPC. A memory cache
miss profiler for data L2 and TLB misses is required for IPC and occupancy modeling.
The profiler requires front-end miss information (obtained using the front-end miss
profiler) to model interaction between front-end and back-end events. An ACE analysis
profiler is used to tag instructions with ACE information that can then be used to
compute the AVF of each unit. Note that most of these profilers do not depend on one
another and can be run in parallel.

A single set of profiles can be used to vary the sizes of the ROB, LQ, SQ, IQ, and
FUs and the latencies of instructions, I-cache, D-cache, I-TLB, D-TLB, L2, and mem-
ory. Thus, a design space evaluation that has two different values for each of the
12 parameters listed previously yields 4,096 unique configurations that can be deter-
mined instantaneously from a single set of profiles. As a detailed timing simulation for
the same would take hours or days to complete, our methodology provides significant
speedup, in addition to insight. Our profilers used in this study are not optimized for
speed. Nevertheless, we get a speedup of 18× as compared to detailed simulations over
all the studies presented in this article.

4. EVALUATION OF THE MODEL

We implement ACE analysis on a modified version of SimpleScalar [Burger and Austin
1997]. We implement detailed, bit-wise ACE analysis in which each entry in the mi-
croarchitectural structure of interest has ACE bits fields based on its opcode. For
example, stores or branch instructions do not need a result register, and thus the cor-
responding fields in their ROB entries are un-ACE. We also implement a separate IQ,
LQ, and SQ in SimpleScalar. We evaluate the accuracy of our model using 20 SPEC
CPU2006 workloads (we were unable to compile the remaining workloads for Alpha)
using gcc v4.1 compiled with the -O2 flag. We run the profilers and the detailed sim-
ulator on single simulation points of length 100 million instructions, identified using
the SimPoint methodology [Sherwood et al. 2002]. The two configurations evaluated
in this section are presented in Table I. Wide-issue machine and narrow-issue machine
represent a four-wide and two-wide issue out-of-order superscalar, respectively.

4.1. Results

The AVF of the ROB, IQ, LQ, SQ, and FUs computed using the model and microarchi-
tectural simulation is presented in Figures 5 and 6 for the wide-issue and narrow-issue
machine, respectively. We compute the overall SER for these structures assuming an
arbitrary intrinsic fault rate5 of 0.01 units/bit. Each unit expresses the number of fail-
ures per unit time. Note that our results are independent of this intrinsic fault rate
and would hold true even if a very different fault rate was chosen.

As presented in Table III, the mean absolute error (MAE) and the maximum absolute
error are no larger than 0.07 and 0.16, respectively. As AVF is normalized to the number
of bits in the structure (Section 2), it amplifies errors in small structures. For a sense of

5Fault rates are often measured and expressed in terms of Failure in Time (FIT), which is defined as one
failure every 109 hours. As real FIT rates are rarely published by manufacturers, we use an arbitrary unit
and value instead. Our modeling methodology is independent of the exact FIT rate/bit.
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Fig. 5. Modeled versus simulated AVF for the wide-issue machine.

proportion of the error in computing SER, we express the absolute error in estimating
SER in terms of the intrinsic fault rate of each entry in the corresponding structure.
In the interest of brevity, in the following discussion, when we express absolute SER
error as n entries, we mean “equivalent to the intrinsic fault rate of n entries in the
corresponding structure.” For example, each of the 128 entries in the ROB has 76 bits
per entry and an intrinsic fault rate of 0.01 units/bit. The intrinsic fault rate for the
ROB would then be 0.76 units/entry and 97.28 units overall, that is, 97.28 failures
per unit time. If the MAE of the model was 3.0 units, this would be equivalent to the
intrinsic fault rate of four ROB entries. This gives us an intuitive sense of proportion
of the error relative to the intrinsic fault rate of the ROB.

The MAE for estimating SER of the ROB, IQ, LQ, and SQ for the wide-issue machine
is 3.8, 4.5, 2.8, and 1.3 entries, respectively. The maximum absolute error for estimating
the SER of these structures is 10.2, 9.9, 5.7, and 3.8 entries, respectively. Similarly,
the MAE for estimating the SER of the aforementioned structures of the narrow-issue
machine is 3.8, 2.1, 1.5, and 0.6 entries, respectively. The maximum absolute error for
these structures is 8.3, 5.1, 3.2, and 2.2 entries, respectively.

Figures 5(f) and 6(f) present the combined SER for the ROB, IQ, LQ, SQ, and FUs.
Root Mean Square Error (RMSE) is typically used to compute the accuracy of a model

and is computed as
√

1
N

∑N
i=0(mi − ai)2, where mi, ai, and N represent the modeled value,

ACM Transactions on Computer Systems, Vol. 32, No. 4, Article 11, Publication date: January 2015.



Mechanistic Modeling of Architectural Vulnerability Factor 11:15

Fig. 6. Modeled versus simulated AVF for the narrow-issue machine.

Table III. Error in Estimating AVF

Wide-Issue Machine Narrow-Issue Machine
MAE Max. Abs. Error MAE Max. Abs. Error

ROB 0.03 0.08 (hmmer) 0.06 0.13 (hmmer)
IQ 0.07 0.16 (bwaves) 0.07 0.16 (leslie3d)
LQ 0.05 0.09 (zeusmp) 0.05 0.10 (gemsFDTD)
SQ 0.02 0.06 (omnetpp) 0.02 0.07 (milc)
FU 0.01 0.05 (zeusmp) 0.02 0.13 (gromacs)

actual value, and total number of workloads, respectively. RMSE places higher weights
on larger deviations, due to the squaring of errors. Normalized RMSE (NRMSE) is
computed by dividing the RMSE by the arithmetic mean of the actual values. The
NRMSE for our model on the wide-issue and narrow-issue machine is 9.0% and 10.3%,
respectively.

The runtime of the profiling is of the same order as functional simulation (or
instruction-set simulation), which is typically orders of magnitude faster than de-
tailed execution. Additionally, many of the profiles for a binary are a one-time effort,
regardless of the microarchitecture being modeled. Also recall that we collect statistics
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Fig. 7. Impact of ignoring the interaction between miss events on ROB AVF.

over a range of instruction window sizes. Using data from a single set of profiles, we
are able to instantaneously vary the sizes of ROB, LQ, SQ, IQ, issue width, instruction
latencies, cache and TLB latencies, and memory latency, within typical ranges. Thus,
a large design space exploration is possible using the model, with significant speedup
over detailed simulation and relatively small error.

4.2. Potential Sources of Error

We outline the various potential sources of error in the model. Awareness of these
sources allows the architect to look out for such cases and make the necessary adjust-
ments to avoid them.

—We multiply the proportion of ACE bits injected in a structure by the program with
the average occupancy to compute AVF, under the assumption that the proportion
of ACE bits induced by the workload remains roughly constant during each inter-
val. We find that this is reasonable over the simulation points used. Over larger
execution lengths, a conservative approach would be to estimate AVF over smaller
execution lengths and combine the results to determine overall AVF. This does not
significantly increase the profiling time or AVF estimation time but may require
additional storage.

—For workloads such as hmmer that incur very few miss events, the accuracy of the
model is strongly dependent on the goodness of fit of the IW characteristic. For
workloads with few miss events and for which the relationship between W and K(W)
does not exactly fit a power curve, this approximation of fitting the W and K(W) to
a power curve may induce errors in modeling the ROB occupancy. In practice, we
observe that the error for workloads such as hmmer, though higher than most other
workloads, is reasonable.

—The out-of-order issue of instructions from the IQ causes errors in the estimation of
AVF. For example, NOP instructions, which are un-ACE, may leave the IQ immedi-
ately (or not be inserted into it at all) but are included in the computation of A(W) and
the average number of ACE bits induced by the instruction stream. Capturing these
effects would require the integration of ACE analysis with occupancy profiling. We
avoid this approach so that we can gain insight into the architectural and microar-
chitectural contributors to AVF and avoid rerunning of profiling and ACE analysis on
microarchitectural changes such as to the fields in each IQ entry or using a different
cache hierarchy.

4.3. Impact of Interaction Between Miss Events

As noted earlier, the interaction between data cache and TLB misses with front-end
events affects the accuracy in estimating the AVF of some workloads. Figure 7 illus-
trates the AVF of the ROB for the wide-issue machine, computed by assuming that
miss events are independent of one another. When compared with the ROB AVF error
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Table IV. Contribution of I-Cache Misses and Branch Mispredictions in the Shadow of
Long-Latency Data Cache Misses to Overall CPI for the Wide-Issue Machine

Total Performance Total Performance Penalty Due to
Penalty Due to Independent Mispredictions

Workload I-Cache Misses (%) in the Shadow of Data Misses (%)
perlbench 6.41 0.33
bzip2 0.00 0.00
gcc 0.01 0.30
bwaves 0.00 2.31
mcf 0.00 0.02
milc 0.00 0.00
zeusmp 0.00 2.04
gromacs 0.00 0.0
leslie3d 0.01 1.03
namd 0.00 1.33
gobmk 6.12 0.67
soplex 0.00 0.78
hmmer 0.00 1.28
sjeng 1.76 0.77
gemsFDTD 0.00 0.1
libquantum 0.00 0.9
h264ref 0.46 0.5
omnetpp 0.37 1.05
astar 0.00 0.0
sphinx3 0.01 1.23

presented in Figure 5(a), it is observed that the impact of such interactions is negli-
gible for a majority of workloads. However, workloads perlbench, mcf , and, to a lesser
extent, gcc and astar have significant errors. Mcf has a significant number of mispre-
dicted branches dependent on data L2 or TLB misses and occurring in their shadow.
Perlbench experiences instruction TLB misses in the shadow of data L2 or TLB misses,
reducing the occupancy of correct-path state. Workloads such as hmmer also see an
increase in error when the long intervals between a data L2 or DTLB miss and front-
end miss are not handled. The mean absolute error in computing the ROB AVF across
the entire workload suite in this case is 0.075 (as opposed to an MAE of 0.03 when
interactions are considered). A maximum error of 0.3 is observed for mcf (as opposed
to a maximum error of 0.08 when interactions are considered).

It may be clear from Figure 7 that the AVF induced by mcf and perlbench would
be significantly higher if the front-end miss events occurred outside the shadow of the
long-latency data cache miss events. The occurrence of the dependent branch mispre-
diction or I-cache miss relative to the nonoverlapped data cache miss has a negligible
impact on CPI.6 This dependence on the location of miss events relative to one another
and to the size of the instruction window further explains why aggregate metrics do
not necessarily correlate with AVF, and why AVF is extremely sensitive to the microar-
chitecture.

It is argued in Section 3.1.5 that consecutive or clustered I-cache misses have an
insignificant impact on the estimation of correct-path state due to their low frequency
and low latency. Table IV presents the contribution of all I-cache misses that hit in the
L2 cache toward overall CPI. This is computed as the product of the number of I-cache

6As noted in Section 2.2, Karkhanis and Smith [2004] and Eyerman et al. [2009] show that the impact of
miss events on CPI is separable.
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misses and the I-cache miss latency. In no case do I-cache misses have an influence
of more than 6.41% on overall performance, and for most workloads, it is less than
0.5%. Recall from Equation (1) that the occupancy during each event is weighted by its
contribution to the total number of execution cycles to determine overall occupancy. To
get a sense of the extent of clustering in our workload suite, we measure the proportion
of consecutive I-cache miss events that are separated by no more than 50 instructions;
as the L2 hit latency is nine cycles on the wide-issue machine, ROB occupancy after
an I-cache miss completes will return to steady state in less than 50 instructions.
We find that only 25% and 22% of I-cache misses in workloads perlbench and gobmk,
respectively, are clustered, accounting for less than 2% of overall CPI. It is therefore
reasonable to ignore the interaction between front-end miss events. It is nevertheless
recommended that the I-cache profiler captures the clustering of I-cache misses. If
clustering is significant, the impact of the lagging I-cache miss can be modeled in
a manner identical to an isolated I-cache miss, but with a lower initial occupancy
determined by the leading I-cache miss and the interval length between the two.

Table IV also outlines the contribution of branch mispredictions that are in the
shadow of the data L2/TLB miss and independent of long-latency data misses to overall
modeled CPI. We capture the number of mispredicted branches in the shadow of the
data L2/TLB miss that are independent of the long-latency data miss and multiply it by
the average branch misprediction latency. The interval model for CPI does not account
for such interactions, as the error in ignoring them is negligible [Karkhanis and Smith
2004; Eyerman et al. 2009]. As argued in Section 3.1.5, it is reasonable to assume that
these independent branch mispredictions in the shadow of long-latency cache misses
resolve quickly enough such that their overall impact on the average occupancy is
negligible, and hence can be ignored. In other words, for the workloads under study, it
is reasonable to model these branch mispredictions as if occurring outside the shadow
of the blocking long-latency data L2/TLB miss.

5. APPLICATIONS OF THE MODEL

The analytical model can be used to study performance versus reliability tradeoffs of
SER mitigation techniques, the impact of sizing of structures on AVF and performance,
compiler optimizations on AVF, different cache sizes and latencies, different branch
predictors, and so forth. In this section, we study a small subset of these potential
applications of the model. Specifically, we use the model to explore performance and
AVF sensitivity to microarchitecture structure sizing, to drive design space exploration,
and to characterize workloads for AVF.

5.1. Impact of Scaling Microarchitectural Parameters

5.1.1. Impact of Scaling the ROB on AVF and Performance. Sizing studies for AVF and
performance are interesting because they allow the architect to determine the tradeoff
between altering the size of a structure on performance and AVF. For example, it
may be reasonable to reduce the ROB size by a small amount provided that it has
negligible impact on performance but significantly reduces SER. Using our model, we
can instantaneously determine the impact of scaling a structure on AVF and CPI. In
this section, we study the impact of sizing the ROB on AVF and CPI on the wide-issue
machine presented in Table I, assuming a circuit-level fault rate of 0.01 units/bit. We
assume that the IQ, LQ, SQ, and other queue structures are scaled to maintain the
same proportion with the ROB as for the wide-issue machine so that the processor is
not unbalanced or constrained.

Figure 8 illustrates the impact of scaling the size of the ROB from 64 to 160 entries
on the wide-issue machine. The trend in SER due to an increase in ROB size has two
general mechanisms. Workloads for which the ROB is not large enough to be able to
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Fig. 8. Effect of scaling ROB size on its CPI and SER.

sustain an ideal IPC of four will see an increase in the contribution from ideal execution
until this is satisfied. Workloads with MLP will be able to exploit it, resulting in fewer
stalls due to data L2/TLB misses. However, for larger ROB sizes, the occupancy of
instructions in the shadow of these data L2/TLB misses increases as well, resulting
in an overall increase in SER. We present a few examples for, and exceptions to these
mechanisms, next.

Workloads such as gobmk do not see significant change in their CPI or SER due to
a large enough ROB and little available MLP. On the other hand, workloads such as
namd have a long critical dependency path, which results in high values for β

β−1 and
l/α (Section 3.1). Consequently, from Equation (3), namd induces high SER for all ROB
sizes despite its low CPI.

For workloads such as libquantum, the increase in ROB size provides increased MLP,
resulting in lower CPI, but also a greater SER in the shadow of the L2/DTLB miss.
Libquantum is able to exploit more MLP than gemsFDTD, resulting in a greater rate
of reduction of CPI and a lesser rate of increase of SER. Bwaves and zeus experience
an increase in SER due to both mechanisms.

Perlbench and mcf represent two important exceptions to this general trend. Despite
both workloads having a significant number of data L2/TLB misses, mcf experiences
a significant number of branch mispredictions dependent on data L2 misses, and perl-
bench experiences I-TLB misses in the shadow of data L2/TLB misses. Consequently,
scaling of the ROB size has little impact on SER, as the occupancy of state per cycle
does not change significantly. Mcf experiences reduction in CPI due to MLP, but the oc-
cupancy of ACE state during such misses is still limited by the dependent mispredicted
branches.

The scaling study allows the architect to make the appropriate tradeoffs between
performance and SER and understand the factors affecting the scaling of workloads.
For example, the 128-entry ROB provides a speedup of 1.098 (harmonic mean) and
increases the average SER by 18% over the 96-entry ROB.

Figure 8 also provides visual confirmation of the fact that aggregate performance
metrics such as IPC, L2 misses, branch mispredictions, and so forth do not correlate
well with AVF. From Figure 8(a), it is clear that gemsFDTD has fewer stalls due to
L2 cache misses when compared to mcf . However, it induces much higher AVF in the
ROB and overall SER than mcf , for reasons noted earlier. Perlbench has higher DTLB
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Fig. 9. Sensitivity to memory latency.

misses than most other workloads and yet induces very low AVF. Gromacs is a low CPI
workload with significant performance loss due to branch mispredicts and yet induces
higher AVF than h264ref .

5.1.2. Sensititivity of AVF to Memory Latency. We study the impact on AVF of changing
memory latency to provide insight into the influence of memory bandwidth contention
in multicore processors, or Dynamic Voltage and Frequency Scaling (DVFS). DVFS
can change the speed of the memory relative to the CPU’s frequency, making memory
appear slower or faster in terms of CPU cycles. Figure 9 presents the overall SER for
a memory latency of 150 cycles and 300 cycles obtained using our model and from
detailed simulation, assuming a constant circuit-level fault rate7 of 0.01 units/bit. The
memory latency used by the model and simulation is enclosed in parentheses. From
the formula for AVF (Section 2), we observe that reduction in memory latency reduces
the total number of cycles of ACE bit residency and the total number of execution cycles.
Consequently, the change in AVF in Figure 9 is sublinear and thus less sensitive to
memory latency when compared with CPI. AVF typically decreases with a decrease in
memory latency, although it may increase, as seen with astar. In the case of astar, the
occupancy of state during steady-state execution is high and is a dominant contributor
to overall AVF and CPI, as seen in Figures 8 and 9(b). However, nearly 50% of data L2
misses have dependent mispredicted branches in their shadow, resulting in low average
occupancy of ACE state. As total SER is the average occupancy of state weighted by the
cycles spent in each interval, reduction in memory latency results in a slight increase
in overall SER for astar.

Workload namd has negligible data L2 cache misses (0.13 MPKI) on the wide-issue
machine. Consequently, reducing DRAM memory latency will have little impact on AVF.
As noted earlier, the high AVF of namd is due to its high values of l/α and β

β−1 . As α and
β are binary specific and cannot be changed without recompiling or re-engineering the
workload, reducing the average latency l is the only microarchitectural knob available
to reduce the observed AVF without hurting performance. As namd has 23% load
instructions and 43% FP instructions, reducing the latencies of these instructions will
clearly reduce the AVF induced by namd. For example, reducing the L1 data cache
load-to-use delay and the FP multiplier latency by one cycle each results in unlocking
sufficient issue bandwidth, such that the steady-state occupancy is reduced.

The comparison with simulation also serves to validate our model. The average
change in AVF as predicted by the model is 3.25 units, as compared to 2.22 units from
simulation. The model faithfully captures the trend for change in SER. Figure 9(b)
illustrates the fraction of SER attributable to each event for a memory latency of 150

7Although the circuit-level fault rate will significantly increase at low voltages, a constant value allows us
to highlight the change due to AVF.
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Fig. 10. Comparison of CPI and SER of the wide- and narrow-issue machines.

and 300 cycles. Although the overall AVF remains nearly the same, the contribution of
AVF in the shadow of an L2 miss reduces significantly for workloads that are dominated
by L2 cache misses. Conversely, the relative contribution from ideal execution and
DTLB miss increases. The workload completes faster due to lower memory latency
and, consequently, the contribution of steady-state and DTLB misses to the overall
occupancy increases.

5.2. Design Space Exploration

The model can be used to compare different microarchitectures for their impact on
performance and AVF/SER. Figure 10 presents the CPI and SER of the wide-issue and
narrow-issue machines outlined in Table I. The SER is computed for the ROB, LQ, SQ,
IQ, and FU and is broken down into its contributing events so as to provide better
insight. On average, there is an 81% increase in SER and an average speedup of 1.35
(harmonic mean) going from the narrow-issue to the wide-issue configuration. This is
attributable to an increase in ROB size and dispatch width. Unlike scaling the ROB
size (Section 5.1), increasing the dispatch width typically increases the SER across
all workloads. From Equation (3), a larger instruction window is required to sustain
a larger dispatch width. For our workloads, β is between 1.24 and 2.39, resulting
in a superlinear increase in the ideal occupancy. Although branch resolution time
increases with dispatch width [Karkhanis and Smith 2004; Eyerman et al. 2006], it
is reasonable to expect that SER would generally increase with dispatch width on a
balanced design. As noted in Section 5.1, namd and bwaves have a long critical path
K(W). These workloads have sufficient ILP for the narrow-issue machine, but not the
wide-issue machine, resulting in maximum occupancy of state during ideal execution
for the wide-issue case. Additionally, bwaves also experiences an increase in SER due
to data L2 misses. The SER for bwaves and namd increases by a factor of 2.26 and
2.6, respectively. On the other hand, mcf is unaffected by an increase in issue width or
ROB size due to the large number of dependent mispredicted branches in the shadow
of its data L2 misses.

5.2.1. Area Versus SER for the Wide- and Narrow-Issue Machine. To understand the implica-
tions on multicore design, we compare the SER for a homogeneous Chip Multiprocessor
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(CMP) using multiple wide-issue and narrow-issue machines under the same area bud-
get. Using the McPAT simulator [Li et al. 2009], we estimate that on a 32nm process,
the wide-issue machine (core+cache) has a 65% higher area than the narrow-issue ma-
chine. Given that the wide-issue machine has on average 81% higher SER for the ROB,
LQ, SQ, and IQ, a wide-issue multicore CMP would be, on average, more vulnerable
for these structures for the same area. Of course, we have not modeled all structures or
considered the impact of shared resources in the memory hierarchy, such as memory
bandwidth, of the CMPs. However, as the ROB occupancy governs occupancy of state
in most other structures in the core, this result gives some insight on the SER of core
structures in the CMPs for the configurations under consideration. Although there is
a superlinear increase in core SER going from a narrow-issue to a wide-issue machine
in general, it should be noted that the exact scaling factor depends on the sizes of the
resources in the wide-issue versus the narrow-issue machine.

5.2.2. The Efficacy of Opportunistic Redundant Multithreading. The model can also be used
to provide insight into the efficacy of soft error mitigation schemes. Gomaa and
Vijaykumar [2005] propose an opportunistic mechanism, called Partial Explicit Redun-
dancy (PER), of enabling Redundant Multithreading (RMT) [Reinhardt and Mukherjee
2000] during low IPC events, such as L2/TLB miss, and disabling it during high-IPC
intervals to minimize the performance loss. RMT employs a lagging thread that re-
executes the operations of the leading thread and detects faults by comparing the out-
put. Load values and branch outcomes are forwarded by the leading thread so that the
lagging thread does not incur any miss penalties and always runs in the ideal mode.
Using detailed simulation for a specific microarchitecture running SPEC CPU2000
workloads, Sridharan et al. [2007] investigate the efficacy of PER for the ROB, LQ, SQ,
and IQ and report that nearly 60% of vulnerability occurs in the shadow of a long-stall
instruction, most of which are data L2 cache misses.

Under an optimistic assumption of no performance loss using the opportunistic
scheme, the components of SER in Figure 10(b) corresponding to data L2 and TLB
misses would disappear. Whereas this scheme generally reduces the AVF of most work-
loads significantly (we compute an SER reduction of 66% for the wide-issue machine),
namd would still have high AVF. Furthermore, given its low CPI (Figure 10(a)), the
performance of namd will be significantly impacted if RMT is enabled. Of course, these
results are microarchitecture and workload specific. For example, we compute that PER
results in an average SER reduction of 60% when the memory latency of the wide-issue
machine is reduced to 150 cycles, as illustrated in Figure 9(b). Our results are similar
to earlier work. The model enables architects to estimate the efficacy of such a scheme
in the first order for their microarchitecture and workloads.

5.3. Workload Characterization for AVF: A Case Study Using Sorting Algorithms

It is difficult to draw inferences on the effect of a workload on the AVF of a structure
using aggregate metrics beyond a qualitative analysis. Aggregate metrics such as cache
miss rates or branch misprediction rates (which correlate well with CPI) provide hints,
but as noted in earlier sections, there may be exceptions to our general intuitions of
occupancy of state. This poses a significant challenge for workload characterization
and developing a benchmarking suite for AVF. Nair et al. [2010] demonstrate that
SER coverage of a workload suite changes significantly when the microarchitecture
or the intrinsic fault rates of structures are changed; a workload suite that may have
good coverage on one microarchitecture or intrinsic fault rate may not necessarily have
the same coverage on another. As noted in preceding sections, this may be true even
when the workload suite has sufficient variety in terms of aggregate metrics used
for workload characterization for performance. For example, as noted in Section 5.2,
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the AVF induced by mcf is low because of the location of the dependent mispredicted
branches relative to the L2 cache miss, a characteristic that has low impact on per-
formance. Moreover, workloads may vary in the proportion of ACE bits despite having
similar performance characteristics. Observing the change in relative SER going from
the narrow- to wide-issue machine may make it apparent that the microarchitecture
affects the AVF of different workloads differently, and the mechanisms influencing AVF
are not discernable from aggregate metrics used for workload characterization for per-
formance. Our work presents a framework for performing workload characterization
for AVF/SER using relatively easy-to-measure metrics that allow the architect to test
the coverage of the workload suite.

The model enables the architect to study a greater number of workloads and over
longer intervals of execution than may be feasible using detailed simulation, and within
the bounds of error of the model, to identify workloads or phases in the workload that
induce high AVF in particular structures, enabling better workload characterization for
AVF. In the following section, we use the model to characterize the impact of compiler
optimizations and algorithms on AVF.

5.3.1. Use Case Experimental Setup. This section presents yet another potential use
case for the model for workload characterization. We examine the impact of compiler
transformations, algorithms, implementations, and input data on AVF and SER for a
given microarchitecture and intrinsic fault rate. An exhaustive study of these factors
is beyond the scope of this article; this section is intended to serve as an illustrative
use case for the model. We expect that compiler writers, code optimizers, and software
developers may use the model to quickly evaluate the impact of their optimizations on
SER and AVF and choose the appropriate algorithm or optimization that minimizes
these factors while maximizing performance.

The impact of various compiler transformations on AVF and SER has been studied in
prior art. However, we are unaware of any work that provides insight into the specific
mechanisms affecting AVF. Sridharan and Kaeli [2009] study the impact of compiler
transformations on the register file AVF but do not find a specific pattern or identify
specific mechanisms affecting the AVF. More recently, Demertzi et al. [2012] study the
effect of various compiler flags on AVF in the core but do not explain why a workload
compiled with different optimization levels induces different AVFs beyond qualitative
observations. They observe that highly optimized code induces higher AVF than unop-
timized, or less optimized, code. In the following discussion, we will characterize the
fundamental causes of these variations.

We select sorting as a workload to evaluate the impact of the aforementioned issues.
Sorting algorithms are widely understood and are frequently used in real programs.
Such microbenchmarks allow us to easily map our observations to our intuitive under-
standing of workload behavior, thereby enabling better insight. Sorting also stresses
the memory hierarchy and CPU (and I/O) and is therefore used for benchmarking
systems. For example, JouleSort [Rivoire et al. 2007] has been proposed as an energy
efficiency benchmark to evaluate both power consumption and performance of a sys-
tem. We use three divide-and-conquer sorting algorithms: quick sort, heap sort, and
merge sort. Each algorithm has time complexity O(n · lg(n)). Additionally, we compare
an optimized implementation of the quick sort algorithm with a “textbook” recursive
implementation to understand the impact of implementation-level optimizations.

To study the effect of compiler optimizations, we compile the workloads using gcc
version 4.1, -O1 and -O3 optimization flags, and using Alpha’s cc compiler using
-O1, -O3, and -Ofast optimization flags. Optimization level -O1 enables optimiza-
tions that do not significantly increase the code size. Inlining of small functions and
dead code elimination are some of the optimizations enabled. -O3 enables aggressive
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optimizations that may involve increasing the size of the code in order to gain per-
formance. Optimizations such as aligning branch targets, loop unrolling, aggressive
instruction scheduling, and so forth are turned on. Option -Ofast enables even more
aggressive optimizations such as fast math. A reliability architect would have to con-
sider all possible compilation options and design hardware to account for the observable
worst-case scenario. A compiler writer or application designer would be interested in
an optimization that minimizes vulnerability while simultaneously improving perfor-
mance.

We use the qsort benchmark in the MiBench [Guthaus et al. 2001] workload suite
for our study. This benchmark sorts points in a three-dimensional space based on
their distance from the origin. Instead of using a precompiled glibc implementation of
quick sort, we link our own implementation of the aforementioned sorting algorithms,
compiled using the appropriate flags. We create an input file with 500,000 randomly
generated x, y, and z coordinates. As the Cartesian distance is computed as a double-
precision floating-point value, the data footprint is large enough such that it does not fit
in the L2 cache of the wide-issue machine. As aggressive optimization often results in a
reduction in the number of instructions, simulating a fixed number of instructions may
be misleading. Therefore, we demarcate the beginning and end of the call to the qsort
routine and simulate/profile all the instructions in between. In the following sections,
we study the impact of compilers, algorithms, implementations, and input data on the
AVF and SER of the wide-issue machine.

We define a new metric to compare the failure rates experienced by a workload
while running on a microarchitecture, called Cumulative Failures (CFs). CF captures
the average or expected number of failures encountered by a workload running a
microarchitecture and is defined as CF = CPI· f · Icount ·SER = (execution time×SER),
where f stands for frequency. CF is along the lines of other metrics proposed to account
for workload and microarchitecture performance while estimating the impact of a
microarchitectural change on SER [Weaver et al. 2004; Demertzi et al. 2012]. For
example, Weaver et al. [2004] propose Mean Instructions to Failure (MITF), which is
defined as MITF = IPC · f · MTTF, where MTTF is the Mean Time to Failure of the
system. As MTTF = 1

SER , it is clear that CF = ( 1
MITF · Icount). CF allows us to compare

the failure rates of two workloads running on a given microarchitecture. MITF is useful
for evaluating IPC versus SER tradeoffs at a microarchitectural level. Unlike MITF,
CF accounts for a change in the runtime of a workload. In this article, we normalize
CF to the core frequency for convenience, as the microarchitecture being compared is
the same and the frequency is also unchanged.

5.3.2. Impact of Compilers on AVF. In this section, we examine the impact of compiling
the recursive quick sort algorithm using gcc with -O1 and -O3 optimization levels, and
Alpha cc with -O1, -O3, and -Ofast optimization levels. The quick sort algorithm is
implemented as described by Cormen et al. [2001]. The first element in the array is
picked as the pivot around which the sorting is performed. In the interest of brevity, we
only discuss the results for the ROB and the LQ. Figure 11 illustrates the CPI, ROB
AVF, and LQ AVF induced by running these binaries on the wide-issue machine. Figure
11(c) outlines some important metrics obtained from our profilers. Column NData lists
the number of nonoverlapped data L2 and TLB Misses Per Kilo Instruction (MPKI).
Column Nld lists the total number of loads Per Kilo Instruction (PKI). Column I-
count contains the total number of dynamic instructions for sorting the 500,000 points,
normalized to the I-count of qsort_gcc_O1. The column Exec. time reports the execution
time for the application in cycles, computed as a product of CPI and I-count. It may be
clear from Figures 11(a) and 11(b) that the binaries induce similar AVF in the ROB,
but very different AVF in the LQ.
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Fig. 11. Effect of compiler optimizations on AVF induced by the quick sort algorithm on the wide-issue
machine.

Despite having a large memory footprint with frequent nonoverlapping L2 data cache
and TLB misses, the induced ROB AVF of the quick sort algorithm is relatively low.
Intuitively, quick sort involves comparing the pivot value with the data, which results
in a load-compare-branch dependence chain. As the input data is random, this branch
is inherently unpredictable, resulting in low AVF in the shadow of the L2 miss. The
average ROB AVF (Figure 11(b)) across the five quick sort binaries is very similar. The
dependence length between a nonoverlapped data L2/TLB miss and a mispredicted
branch in its shadow is also comparable. As the data is the same, the total number
of such nonoverlapped misses is also similar. However, the mechanisms by which this
AVF is induced are contrasting: from Figure 11(c), qsort-gcc-O1 and qsort-cc-O1 induce
periods of very high AVF during ideal execution. On the other hand, the optimized
binaries have very low AVF during ideal execution. Owing to a significant reduction in
I-count due to aggressive optimization, these binaries also have a greater frequency of
data L2/TLB misses per cycle, but a higher proportion of un-ACE bits (approximately
20% lower than the unoptimized case), resulting in similar overall average AVF induced
in the ROB.

Figure 11(b) also indicates that the highly optimized binaries induce higher AVF in
the LQ. From Figure 11(c), it is apparent that the highly optimized binaries have a
greater proportion of loads Per Kilo Instructions, resulting in greater occupancy of the
LQ. Furthermore, these binaries have high ILP, resulting in lower dispatch-to-issue
latency for load instructions (see Section 3.3); these loads spend a smaller fraction
of their lifetime in the IQ as compared to the unoptimized case. In the case of our
wide-issue machine, each LQ entry has more bits than each IQ entry, resulting in
higher overall SER for the machine running the optimized workload (assuming both
structures have the same intrinsic fault rate).

Figure 11(c) also compares the relative SER observed in the wide-issue machine while
running these traces. The SER is computed for SQ, LQ, ROB, IQ, and FU, assuming
a constant intrinsic fault rate, and normalized to the SER of the binary qsort-gcc-O1.
From Figure 11(c), we note that the unoptimized binaries have lower SER as they have
lower occupancies in the LQ and SQ, which have the largest number of bits per entry
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Fig. 12. Effect of algorithms on AVF.

(see Table I). These binaries instead have more entries in the IQ, which has fewer bits
per entry.

The metric CF/GHz proposed earlier allows us to understand the tradeoff between
performance and vulnerability to soft errors on the same microarchitecture. The un-
optimized binaries have lower SER but much longer runtimes, making them more
vulnerable overall, as compared to the highly optimized Alpha cc binaries, as indi-
cated by their CF/GHz in Figure 11(c). However, workload qsort-gcc-O3 has the least
value for CF/GHz, indicating a favorable tradeoff between soft error vulnerability and
performance; it lies between the unoptimized binaries and the Alpha cc-optimized bi-
naries in terms of ILP, CPI, and utilization of the LQ and SQ. A compiler designer
interested in compiling for lower vulnerability may use the model to quickly estimate
the impact of an optimization on AVF, SER, and overall vulnerability.

5.3.3. Effect of Algorithms on AVF. In this section, we study the impact of altering the al-
gorithm or the implementation of the algorithm on AVF. Figure 12 illustrates the AVF
induced in the ROB and the LQ while running heap sort, merge sort, optimized quick
sort (opt-Qsort), and nonoptimized quick sort (quick sort). Figure 12(c) contains data
obtained using our profilers. We refer the reader to Section 5.3.2 for an explanation
of each column. The (unoptimized) quick sort algorithm is identical to the one used in
Section 5.3.2. Workloads heap sort and merge sort are based on the recursive imple-
mentations described in Cormen et al. [2001]. The opt-Qsort implementation is based
on an algorithm described by Bentley and McIlroy [1993]. This implementation miti-
gates the overhead of recursion, picks a pseudo-median value as the pivot to mitigate
pathological cases for quick sort, and switches to insertion sort once the array sizes are
sufficiently small. Less recursion also allows the compiler to aggressively optimize the
code. We compile these sorting routines with Alpha cc, with -Ofast optimization flags.

It is clear from Figure 12(a) that opt-Qsort induces the least AVF in the ROB, despite
having the highest nonoverlapped Data L2/TLB MPKI. This is primarily due to a
reduction in the average dependence length between the nonoverlapped data L2/TLB
miss and the dependent mispredicted branch in its shadow. On the other hand, heap
sort has low ILP, resulting in high ROB occupancy during ideal execution, as seen in
Figure 12(c). As seen earlier with the case of the -O1 optimized qsort algorithm, the low
ILP results in higher dispatch-to-issue latency for loads. Further, the low frequency of
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Table V. Impact of Input Data on AVF and SER

NData NLd I-Count SER Exec. Time
α β OROB

ideal MPKI PKI ROB AVF LQ AVF CPI (Relative) (Relative) (Cycles) CF/GHz
heapSort 1.46 1.34 128 1.18 158.1 0.30 0.04 0.35 1.15 1.11 0.40 0.44
mergeSort 1.34 1.66 34.26 2.04 177.1 0.25 0.08 0.44 1.47 0.95 0.65 0.61
opt-Qsort 1.0 2.15 28.22 4.86 268.5 0.35 0.30 1.58 0.13 1.43 0.21 0.30
quickSort 1.24 2.24 22.79 1.77 371.9 0.54 0.36 0.89 147.5 2.63 131.3 345.3

loads Per Kilo Instructions results in very low LQ AVF. Optimized quick sort (opt-Qsort)
has a higher proportion of loads Per Kilo Instruction but lower average occupancy of
state in the shadow of a data L2/TLB miss, resulting in lower ROB and LQ AVF. The
quick sort implementation, however, has a high proportion of loads as compared to
merge sort and heap sort, which, combined with the higher ROB occupancy, is reflected
in the LQ AVF.

For the random input, heapsort has the least execution time, followed by opt-Qsort. It
is clear that the heap sort implementation is also superior to the opt-Qsort implemen-
tation in terms of overall vulnerability to soft errors (CF/GHz); although the opt-Qsort
implementation induces the least SER for the structures under consideration, it is
not sufficient to compensate for its higher runtime compared to the heap sort imple-
mentation. Opt-Qsort clearly induces less overall vulnerability than either merge sort
or quick sort. Our model provides a method for quickly comparing the AVF induced
using various algorithms and characterizing their properties. Based on the insight
provided using the model, algorithm designers may alter their implementation such
that performance is maximized while simultaneously minimizing SER.

5.3.4. Impact of Input Data on AVF. It is well understood that input data can affect the
performance of a workload. In this section, we demonstrate that input data may have
a significant bearing on the AVF induced by a workload on a microarchitecture.

As noted in Section 5.3.2, the AVF induced in the ROB by the sorting algorithms
were low for the quick sort implementations, as the randomness of the input data
caused many of the branches in the shadow of a data L2/TLB miss to be mispredicted.
Intuitively, this suggests that if the data were such that the branches were biased, the
AVF induced would be much larger. An already sorted input would bias the comparison
operations between two data points, which would bias the branches. Depending on the
algorithm and implementation, this may introduce a significant change in the AVF
induced while running the workload.

Table V indicates the AVF and SER induced when sorting is applied on a presorted
array of the same 500,000 coordinates used in the earlier studies. The I-count and SER
results presented are computed relative to the heapsort results in Figure 12(c). A sorted
input has no significant impact on the working of heap sort, as the algorithm requires
the creation of a heap; heap sort always has a time complexity of O(n· lg(n)). In the case
of merge sort, the partitioning phase remains unchanged, but the merge operation is
simplified, resulting in a time complexity of O(n). Applying quick sort to a sorted input
triggers the worst-case behavior in the workload, making its time complexity O(n2).
The optimized version opt-Qsort avoids this through the use of the pseudo-median
pivot selection strategy. Furthermore, it switches to insertion sort once the array size
is relatively small, which has a time complexity of O(n) for sorted inputs. The change
in the input increases the induced SER for all sorting algorithms, as it results in a
decrease in the number of branch mispredictions. Consequently, there is an increased
proportion of correct-path state in the shadow of a long-latency L2 miss, resulting in
higher SER. The extent to which this occurs varies with the algorithm. It is clear from
Table V that there is very little change in either the CPI or I-count for heap sort. There
is a slight increase of 11% in the induced SER due to fewer mispredictions. The CPI
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for merge sort is nearly identical to the random input case, but there is a 44% increase
in SER and a 34% reduction in the I-count. Consequently, the same workload induces
higher AVF in the ROB and higher SER overall. The CPI for opt-Qsort increases by
54%, the SER increases by 57%, and the I-count reduces by 85%. The CPI for quick sort
increases by 25%, the SER increases by 31%, and the I-count increases by 5,130%. We
see that a simple change in input data may affect CPI, SER, both, or neither, depending
on the algorithm and implementation.

Comparing the data presented in Table V and Figure 12, we can explain the under-
lying mechanisms affecting the AVF and SER of these workloads. For heap sort, the
values of α, β, ideal occupancy, loads, and nonoverlapped loads per thousand instruc-
tions remain nearly identical. Consequently, the ROB and LQ AVF, CPI, I-count, and
SER are also largely unchanged. There is a slight increase in AVF that is attributed to
fewer dependent mispredicted branches in the shadow of the data L2 or TLB misses.
Merge sort has a larger number of nonoverlapped data MPKI and a greater proportion
of loads PKI, resulting in higher overall SER. The same factors are also responsible
for an increase in the AVF and SER for opt-Qsort and the unoptimized quick sort
implementation. Additionally, better branch prediction accuracy leads to a significant
increase in the proportion of ACE state in the shadow of a nonoverlapped L2 miss for
these workloads.

It is clear that for this input, opt-Qsort has the lowest execution time and CF of all
workloads, making it the least vulnerable workload. Our heap sort implementation
has the second-lowest overall vulnerability and the second-highest performance for
this input set on the wide-issue machine. We thus see that heap sort has consistent
performance and induced SER for both random and sorted data. If this is a desirable
feature for the program being designed or if the data is known to be nearly random in
the typical case, heap sort would be the best choice on the wide-issue machine. As the
CF of heap sort is 27% lower than opt-Qsort for random input data but is 47% higher
for sorted data, opt-Qsort may be the best choice if the data is expected to be sorted or
nearly sorted in the typical case. The CFs of merge sort in the random input and the
sorted input scenarios are nearly identical. The reduction in execution time is offset
by an increase in SER, such that the product of the two remains nearly the same. It is
seen that CF may remain identical, change very little (merge sort, heap sort), decrease
(opt-Qsort), or significantly increase (quick sort), depending on the input data.

The algorithm designer may thus select the best sorting algorithm based on the
knowledge of input data, microarchitecture, and SER. Our data also indicates that
if the vulnerability induced by heap sort could be reduced through the reduction in
CPI, I-count, or SER, it would be superior to the opt-Qsort implementation. From the
perspective of an algorithm designer/programmer, SER can only be affected by reducing
the occupancy of ACE state in vulnerable queues. I-count and CPI can be improved
through careful optimization of the code. This optimization may lead to an increase in
ACE state in the core structures, as seen in the previous compiler optimization study.
This involves careful tradeoffs, which can be quickly evaluated using our model.

5.3.5. Discussion. In the preceding sections, we studied the impact of compiler opti-
mizations, algorithmic changes, and input data on AVF and SER. Our study covers
only a subset of experiments necessary to determine the best sorting strategy for a
wide range of inputs and input sizes. Cache locality, or lack thereof, at larger input
sizes may lead to different conclusions, and the algorithm designer must choose the ap-
propriate algorithm to match the microarchitecture and data. We show that our model
enables a quick evaluation a large number of inputs, algorithms, implementations, and
optimizations on performance, AVF, and SER. From our studies, it can be seen that in
the first order, the choice of algorithm or implementation has a significant impact on
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AVF and SER. Compiler optimizations have a significant, albeit less dramatic influence
on AVF and SER.

Workload characterization for performance projection typically relies largely on hav-
ing workloads with a large range of microarchitectural parameters, such as CPI, in-
struction mix, ILP, MLP, number of last-level cache misses, and so forth. This article
demonstrates that AVF and SER are additionally influenced by the interaction be-
tween these events and by other events that may have little impact on performance.
The characteristics presented in this work may be used to evaluate the coverage of a
workload suite for AVF and SER. This work motivates the need for a methodology for
AVF benchmarking, orthogonal to any methodology used for performance. A workload
suite with a high level of coverage for the various factors identified in this work will
help guide correct tradeoffs for SER mitigation and provide confidence in the SER pro-
jections. Our methodology is the first that identifies a set of workload characteristics
that influence AVF and provides a basis for workload characterization for AVF. These
insights thus enable the development of a robust benchmark suite for AVF and SER
evaluation.

We also envision our model being used to select optimal algorithms, implementations,
or compiler transformations for SER. An implementation of an algorithm can be quickly
evaluated for improvement of AVF and SER, and the insight from the model can be
used to further optimize it for AVF/SER. Special cases that worsen AVF, such as input
data, can be immediately identified and corrected.

6. RELATED WORK

Mukherjee et al. [2003] use Little’s law as a high-level technique to estimate occupancy
of state in the structure; however, this methodology still requires detailed simulation
to extract the IPC and the average latency of each correct-path instruction in each
structure. Computing the latter from profiling is nontrivial for an out-of-order processor
due to overlapping of some execution latencies and dependence on the latencies of
other instructions in that structure. Furthermore, it fails to provide insight into the
fundamental factors affecting the occupancy of correct-path state beyond aggregate
metrics.

As AVF represents the combined effect of the workload and its interaction with the
hardware, Sridharan and Kaeli [2009] attempt to decouple the software component of
AVF from the hardware component through a microarchitecture-independent metric
called Program Vulnerability Factor (PVF). PVF has been shown to model the AVF
of the Architected Register File using inexpensive profiling. However, for estimating
the AVF of other structures, their methodology relies on the estimation of Hardware
Vulnerability Factor (HVF) [Sridharan and Kaeli 2010], which in turn requires detailed
simulation and thus provides less insight than our model. Sridharan and Kaeli have
shown that HVF correlates with occupancy of structures such as the ROB, and hence
we expect that our modeling methodology can be used to model HVF of the applicable
structures.

Fu et al. [2006] report a “fuzzy relationship” between AVF and simple performance
metrics such as IPC, cache hit/miss rates, branch mispredict rates, and so forth. As we
have observed in earlier discussions, it is the interaction of these events in a CPU that
influences AVF and SER. Black-box statistical models for AVF that utilize multiple
microarchitectural metrics have been proposed by Walcott et al. [2007] and Duan
et al. [2009] for dynamic prediction of AVF. These models use metrics such as average
occupancy and cumulative latencies of instructions in various structures as inputs to
the statistical model, which are not available without detailed simulation. Although
these models do not clearly identify the mechanisms that affect AVF induced in a unit,
they indicate that these microarchitectural events do influence AVF. Cho et al. [2007]
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utilize a neural-network-based methodology for design space exploration and use it to
model AVF of the IQ. As each workload is associated with its own neural network model,
training it would potentially require a significant amount of detailed simulations.
All these models combine the software and hardware components of AVF and do not
uncover the fundamental mechanisms influencing AVF, thereby providing less insight
than our approach. As we derive the factors affecting AVF from first principles that
explicitly model this fuzzy relationship, we can identify the precise cause of high or low
AVF in a particular structure and characterize workloads for AVF.

7. CONCLUSION

In this work, we developed a first-order mechanistic model for AVF, derived from
first principles of out-of-order execution, to provide quantifiable insight into the factors
affecting the AVF of microarchitectural structures. The modeling methodology requires
inexpensive profiling and computes AVF with mean absolute error of less than 7% for
the ROB, LQ, SQ, IQ, and FU. Additionally, the model quantifies the impact of each
microarchitectural event on AVF and SER. We have demonstrated that the model can
be used for understanding how microarchitecture affects AVF. The model can be used
to perform design space exploration, to evaluate the impact of parametric changes, and
to perform workload characterization for AVF. By modeling the complex relationship
between various miss events that affect the occupancy of state in the processor, we
are able to quantitatively explain the lack of correlation between AVF and aggregate
metrics observed in earlier work. This work enables the architect to identify workloads
that would induce high AVF in CPU structures. We presented a case study on using the
model to study the impact of compiler optimizations, algorithmic and implementation
changes, and input data on AVF, SER, and performance to enable compiler writers,
architects, and software designers to make informed choices about minimizing AVF or
SER while maximizing performance.
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